
Making Scientific Computing Libraries
Forward Compatible

Bryan Marker Don Batory Field Van Zee
Robert van de Geijn

{bamarker,batory,field,rvdg}@cs.utexas.edu

July 14, 2014

Abstract
NSF’s Software Infrastructure for Sustained Innovation funds the development of community

software in support of scientific computing innovation. A requirement is that the developed software
be sustainable. emphdDesign-by-Transformation (DxT) is an approach to software development that
views libraries not as instantiated in code, but as expert knowledge that is combined with knowledge
about a target architecture by a tool (DxTer) that synthesizes the library implementation. We argue
that this approach makes libraries to some degree forward compatible in that a (disruptive) new
architectural advance can be accommodated by encoding knowledge about that architecture. This is
particularly important when bugs are not correctness bugs, but instead performance bugs that affect
how fast an answer is obtained and/or how much energy is consumed to compute the answer. DxT
allows a human expert to focus on developing the primitives from which libraries are constructed and
new insights as opposed to the rote application of known ideas to entire libraries. We summarize our
success in the domain of dense linear algebra as evidence of DxT’s potential.

1 Introduction
A software engineer is called a domain expert when (s)he can implement domain-specific algorithms
on some hardware and attain high performance. Performance is what is commonly important to end
users, but to the expert developer there is another metric for success: sustainability of the software.
Current expert-developed scientific software has a common flaw: it is not forward compatible, meaning
significant future hardware and software changes are not easily incorporated.

Scientific software is generally redeveloped as a reaction to change. When new hardware is released,
domain experts spend years reimplementing, redebugging, and/or reoptimizing a library of domain-
specific algorithms implemented in high-performance code. In other words, they use their knowledge to
essentially develop new code in response to a major architectural change. Often, it is the same domain
knowledge (i.e., underlying math and algorithms) they employed for the last architecture, but they cannot
effectively reuse large parts of that code. This has happened recently, for example, first when multicore
CPUs and GPGPUs were introduced, and again now that many-core processors like the Intel Xeon Phi
have arrived. The hardware and APIs are too different to just mutate code from one to the other. The
expert has start over.

Similarly, when developing a library of functionality from scratch, an expert uses the same software-
design knowledge to implement each algorithm in his domain. Often, as the expert gains new insights,
those insights must be reapplied across much of the library.

Our view is that traditional libraries are combinations of different sets of expert knowledge. They
are the result of applied domain knowledge and hardware and software-design knowledge (e.g., how to

1

dsb
Text Box
Working towards Sustainable Software for Science: Practice and Experiences, New Orleans, November 2014



implement a function on a particular architecture). This knowledge is intertwined in the code to attain
high performance, so reactions to change are painful to incorporate.

Instead of encoding the result of applying that knowledge (i.e., the libraries of code), scientific
software can become forward compatible by encoding knowledge sets explicitly in knowledge bases.
How would a user then get the code he expects for his application? A code generator would take
knowledge bases and an algorithm specification and would output optimized, executable code for the
architecture du jour.

When a user needs to react to some change (e.g., targeting code to new hardware), only additional
knowledge about new algorithms, hardware, or programming models needs to be added to the knowledge
base – applicable existing knowledge would be reused automatically. Instead of reimplementing a library
of code, the code generator is reexecuted to get new implementations. This is forward compatibility
because there is extensive reuse of prior effort.

We present our approach to achieve future compatibility, Design by Transformation (DxT) [1, 3, 4, 5,
6, 7, 8], which enables experts to encode design knowledge. As evidence of DxT’s utility, we summarize
existing results for dense linear algebra (DLA), a domain that is often found at the bottom of scientific
software stacks. We expect DxT or, at least the idea of separating design knowledge and implementation
code, to be similarly applicable to other scientific software domains. Indeed, a next target of our research
is the domain of distributed-memory parallel libraries for tensor computations, which we will discuss in
future papers.

We believe this is one essential way in which computer science can contribute to computational
science: making domain knowledge explicit and systematic so that it can be applied mechanically,
creating a software infrastructure that not only supports sustained innovation, but sustains itself.

2 Design by Transformation
In DxT, algorithms are represented by directed, acyclic graphs (DAGs). Each node represents an
operation while edges represent data flow. Operation inputs and outputs are represented by incoming and
outgoing edges, respectively. Operations have two flavors. An interface has no implementation details
and is defined by preconditions and postconditions on its inputs and outputs. A primitive, on the other
hand, comes with a code implementation (e.g., an API function call).

One starts with a DAG of only interfaces representing a specification. Using design knowledge, one
transforms this spec into an DAG with only primitives, which implements the spec and can be mapped to
code and executed on specific hardware.

There are two types of graph transformations we use. A refinement replaces an interface with a graph
implementing that interface. It might employ architecture-specific operations or architecture-agnostic
domain algorithms. For example, a refinement can encode how to parallelize an operation. Optimizations
are transformations that replace a subgraph with another that implements the same functionality in a
different way. They are chained together to improve performance.

With these, one can transform a spec DAG into a high-performance implementation. Each transfor-
mation encodes software-design knowledge about the domain or hardware. Ending graphs represent
the code that has traditionally been found in libraries (i.e., the result of applying design knowledge).
It is these transformations and starting graphs that we want to encode instead. We want an automated
system to generate these implementations. Then, transformations are reusable across algorithms and/or
architectures unlike a piece of code. Further, we can better trust a system not to miss optimizations or
make coding errors.

We have developed a generator called DxTer. DxTer takes as input hardware-specific and hardware-
agnostic transformations (knowledge bases). A user writes a specification. DxTer searches the space of
implementations that can be generated from applying all combinations of input transformations. DxTer

2



estimates the cost (e.g., run time) of each implementation or compiles and times each implementation,
depending on which is sufficient for the domain. It outputs the best-performing implementation just as
an expert would do when manually developing code.

We see what DxTer does as what an expert would do given infinite time and patience to explore and
evaluate all design options. Transformations encode pieces of knowledge that the expert would consider
and DxTer explores all combinations of transformations.

Using this approach, one can add to the knowledge base or replace a subset of it to target new
hardware. DxTer is then rerun for each algorithm and new implementations are generated.

3 DLA Results
We demonstrated [4, 5, 6] how to encode DLA, hardware-agnostic knowledge (algorithms) as trans-
formations and how to encode implementation knowledge of domain interfaces (e.g., matrix-matrix
multiplication) in parallel code for distributed-memory machines. DxTer-generated code used the Ele-
mental [9] API. In all tests, DxTer-generated code that was the same as or better than what an expert
developed by hand or it generated new code.1

In [7], we demonstrated how the architecture-agnostic transformations used to generate Elemental
code were reused and augmented to target two different architectures using a new API, thus demonstrating
compatibility of transformations to a completely different target architecture. This supports our claim
that one can similarly target future architectures. BLIS [11] is a new framework for instantiating the
Basic Linear Algebra Subroutines (BLAS) [2], a widely-used set of standard DLA functionality. In BLIS,
BLAS routines are built from a small set of BLIS-specific computation and data movement operations
and an API for blocking matrices.

We demonstrated how to encode knowledge of BLIS and the target hardware. Further, we added
knowledge of the code formats for BLIS loops and matrix blocking. This additional knowledge represents
what is special to the new hardware and the new BLIS API. With these additions and existing (architecture-
agnostic) domain algorithms, DxTer generated sequential level-3 BLAS operations, the BLAS subset
that deals with matrix multiplication.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.5

1

1.5

2

2.5

3

Problem Size

Im
p
ro

v
e
m

e
n
t

Improvement of Parallel DxTer over Parallel MKL

 

 

Gemm NN

Symm LL

Syrk LN

Trmm LLN

Syr2k LN

Trsm LLN

Figure 1: Improvement over Intel MKL.

Furthermore, we demonstrated how to encode
knowledge about multicore systems to parallelize
the level-3 BLAS (i.e., we targeted new hardware
using the same API). We augmented the BLIS
knowledge base to target the new architecture by
reusing all BLIS-related transformations and just
adding to them. With DxTer, we were very pro-
ductive. We did not know how to best parallelize
the BLAS but could rely on DxTer to regenerate
all code each time we had a new idea instead of
manually reimplementing all code ourselves. Fig-
ure 1 summarizes, for a representative subset of
the level-3 BLAS, the improvement of generated
code over Intel’s highly optimized MKL library
on two Intel Xeon E5 (Sandybridge) processors,
which have a total of 16 cores.

1In one case, DxTer output code was correct while the expert-developed code had a bug. When transformations are correct,
DxTer’s output is correct-by-construction and can be better trusted than hand-developed code.

3



4 Not Just DxT
While we have had success with DxT across a variety of architectures, we are not arguing that it is the only
key for forward compatibility [10]. Instead, we suggest the scientific computing field investigate ways to
explicitly encode domain, hardware, and software-design knowledge instead of just the software that
results from it. We want to stop reacting to hardware changes by completely reimplementing software.
Instead, we aim to encode the core pieces of what we know about our software and automatically reuse
as much as possible each time a change is required.

Acknowledgements
We gratefully acknowledge support for this work by NSF grants CCF-0724979, CCF-0917167, and
ACI-1148125. Marker held fellowships from Sandia National Laboratories and the NSF (grant DGE-
1110007).

Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

References
[1] Don Batory et al. Dark knowledge and graph grammars in automated software design. In Software

Language Engineering, volume 8225 of Lecture Notes in Computer Science, pages 1–18. Springer
International Publishing, 2013.

[2] Jack J. Dongarra et al. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw.,
16(1):1–17, March 1990.

[3] Rui C. Gonçalves et al. ReFlO: An interactive tool for pipe-and-filter domain specification and
program generation. submitted, 2013.

[4] Bryan Marker et al. Designing linear algebra algorithms by transformation: Mechanizing the expert
developer. In VECPAR, 2012.

[5] Bryan Marker et al. A case study in mechanically deriving dense linear algebra code. International
Journal of High Performance Computing Applications, 27(4):439–452, 2013.

[6] Bryan Marker et al. Code generation and optimization of distributed-memory dense linear algebra
kernels. In ICCS, 2013.

[7] Bryan Marker et al. Code generation to aid parallel code development. Technical Report TR-14-08,
The University of Texas at Austin, Department of Computer Sciences, 2014.

[8] Bryan Marker et al. Understanding performance stairs: Elucidating heuristics. In ASE, 2014.
accepted.

[9] Jack Poulson et al. Elemental: A new framework for distributed memory dense matrix computations.
ACM Trans. Math. Softw., 39(2):13:1–13:24, 2013.

[10] Markus Püschel et al. SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and Adaptation”, 2005.

[11] Field Van Zee and Robert van de Geijn. BLIS: A framework for rapid instantiation of BLAS
functionality. ACM Trans. Math. Softw. accepted.

4


	Introduction
	Design by Transformation
	DLA Results
	Not Just DxT



