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1. Introduction

Today’s software engineering (SE) research develops tools
and techniques to help masses of programmers to write and
analyze their code. The emphasis of today’s SE research is to
be domain-independent, such as the following representative
titles of papers presented in the 2015 [nternational Confer-
ence on Software Engineering (ICSE):

e Efficient Scalable Verification of LTL Specifications
e Safe Memory-Leak Fixing for C Programs

¢ Automated Modularization of GUI Test Cases

® When and Why Your Code Starts to Smell Bad

Software development in Computational Science and Engi-
neering (CSE) is in a different universe. CSE is mostly math-
ematical computations. Tools are needed to help the few ex-
perts who write scientific libraries; these libraries are used
by the CSE masses.

CSE software is broadly believed to be different from
“normal” software. First, it is mathematical — there are pre-
cise (if not formal) specifications for code to be developed.
Relationships among program elements are defined by math-
ematics — few domains in SE have such rich underpinnings.
Our guess is that typical SE domains do have some of this
richness, but finding such relationships is hardly mainstream
SE research and certainly not practiced by or taught to typ-
ical programmers. In short, contemporary SE education and
interests are misaligned for long-term CSE needs.

Second, CSE software tends to be algorithm-centric, not
behavior-centric. Early SE researchers (Dijkstra, Hoare) fo-
cused on disciplined development of algorithms. Today’s
systems stress the coordination of agents (classes, subsys-
tems) to produce particular behaviors; algorithms tend to be
a tiny part of a system’s overall design.

Consequently, few papers relevant to CSE software tech-
nology find their way into major SE conferences. Simply
put, CSE is not on the cutting-edge or horizon of today’s
SE researchers. Although a discouraging but realistic obser-
vation, we see it as an opportunity in CSE to advance SE in
a general way.
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2. What We Think is Needed

Franchetti|recently made the observation: “Just because you
can write a program doesn’t mean that you understand it”.
Here is our take on his statement: program development is
an activity or function or generator D(...) whose param-
eters are the particular set of needs, platform, architecture,
and environment for a given task. These parameters are filled
in, and D(...) is given to a team of highly-paid experts to
build or evaluate. Sometime later, a program P = D(...)
is produced. Modify a key argument, say the architecture
or language, and the task to build program P’ = D(...)
starts anew. Writing P’ may not start from scratch, but it
might. CSE libraries are notoriously fragile: they are highly-
optimized for a particular platform or hardware architecture.
Changing hardware is not a simple port: optimized algo-
rithms that made the library efficient for architecture A may
be quite different for A’.

In a panel at the 2015 Modularity Conference, it was
stated that open source software repositories can become a
gold mine for SE researchers to data-mine important facts to
improve software design. We strongly disagreed. The most
important facts in design are abstractions and the (formal)
relationships among its elements: the derivation of a code
base, the key decisions that were made in its development,
and the alternative decisions that were discarded: all are
absolutely fundamental to changing a program P to P’ [].

None of this information is present in a repository. Where
is it then? It is, maybe, in the memory of programmers or
it must be reconstructed. Backtracking to a certain point
that is common to P and P’ (so that these decisions and
their code need not be revisited) is at best crudely done or
impractical today. Until these “meta” decisions are captured
and leveraged in a computer processable form, creating a
sustainable software development process for CSE will be
difficult. It is also clear that such “meta” decisions are not
widely appreciated by today’s SE researchers [2].

3. What We have Done

We have addressed a modest, but important, segment of CSE
software development: Dense Linear Algebra (DLA) and
Dense Tensor libraries for distributed-memory computers.
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Our approach captures and encodes meta-decisions of
DLA and tensor software development as graph rewrite rules
[1]]. Given a simple abstract dataflow graph of a computation
in terms of standard CSE user-callable primitives, we apply
rewrites to transform an input graph into a complex dataflow
graph of low-level DLA, tensor, and communication soft-
ware primitives. The transformations that we perform are
automated and are isomorphic to decisions made by experts.

A simple concrete example from DLA is Hermitian ma-
trix multiplication. It is a user-callable primitive in the DLA
universe. Its dataflow graph G is elementary: given three ma-
trices as input, Hemm computes a sum of their multiplication:

—
—_—

Hemm C’ = a'A'B+p-C

Qwy

Figure 1. An Abstract Hermitian Matrix Multiplication
Dataflow Graph.

Our tool, DxTer, with a rule base transforms this elementary
graph into a complex dataflow graph G’ containing only
low-level primitive operations whose architecture-specific
implementations are given to us. We can map this computed
graph to code yielding a high-performance implementation
of the Hemm operation on a particular platform/architecture.

DxTer captures insights of domain-experts by using cost-
functions to estimate the efficiency of architecture-primitive
operations. Given G’, we know how to estimate its efficiency
knowing the efficiency and sequence of primitives it calls.

DxTer goes further: there are colossal numbers of com-
plex dataflow graphs to which G can be mapped. In seconds,
DxTer quickly finds the graph G’ that is provably optimal [55].
G’ represents an architecture-optimized implementation of
g.

A fundamental property of our approach is correct-by-
construction (CxC) [3]]: if the initial graph is correct and each
rewrite is correct, the result is correct. This means that we
can build each graph in a derivation and verify/test that it is
correct. We return to this property in the last section.

The input graphs to DxTer can be nontrivial. The Coupled
Cluster Single Double (CCSD) is a commonly used method
in quantum computational chemistry [4] that strikes a bal-
ance between communication cost and accuracy. It is a nu-
merical, iterative method utilizing a set of equations to give
an accurate reproduction of experimental results on electron
correlation for molecules. We partition CCSD’s specification
into 11 dataflow graphs containing 2-15 nodes each. DxTer
searches a space of (10'6) solution graphs of hundreds of
nodes and does so in seconds to find a solution that is 40%
faster and can handle problems 50% larger than an exist-
ing high-performance tensor library [6]. Figure [2| shows the
performance of DxTer-generated code for CCSD on a Blue-
Gene/Q architecture [5].
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Figure 2. Performance of a single iteration of CCSD on
4,096 cores with one-quarter of peak performance at the top.

4. Closing Thoughts

The libraries that we have targeted are a small, but impor-
tant, sample of the CSE software universe. We achieved
sustainability in our CSE software development process by
mechanizing its “software development function” D(...).
By altering parameters to D we not only leverage critical
meta-knowledge to produce new libraries targeted to differ-
ent architectures, but we do so faster, cheaper, and better via
automation than can be performed manually. We therefore
scale critical CSE domain-expertise from a few extraordi-
nary individuals to CSE masses. Our work takes effort, not
something unreasonable but comparable to if not less than
what is done today manually for just one D(...) instantia-
tion.

CxC used to be a Grand Challenge in SE [3]]; SE re-
searchers gave up because it was too hard. They didn’t have
the right combination of ideas and examples to convince oth-
ers. We have both now. We teach these ideas to our under-
graduates [1]], as they are not specific to CSE. With further
work on CSE applications, we will have more evidence to
argue that automation should be main-stream SE paradigm
for a sustainable software development process.
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