
Scripting Parametric Refactorings in Java
to Retrofit Design Patterns

Jongwook Kim
University of Texas at Austin

Austin, TX 78712, USA
Email: jongwook@cs.utexas.edu

Don Batory
University of Texas at Austin

Austin, TX 78712, USA
Email: batory@cs.utexas.edu

Danny Dig
Oregon State University

Corvallis, OR 97333, USA
Email: digd@eecs.oregonstate.edu

Abstract—Retrofitting design patterns into a program by hand
is tedious and error-prone. A programmer must distinguish
refactorings that are provided by an Integrated Development
Environment (IDE) from those that must be realized manually, de-
termine a precise sequence of refactorings to apply, and perform
this sequence repetitively to a laborious degree. We designed,
implemented, and evaluated Reflective Refactoring (R2), a Java
package to automate the creation of classical design patterns
(Visitor, Abstract Factory, etc.), their inverses, and variants.
We encoded 18 out of 23 Gang-of-Four design patterns as R2

scripts and explain why the remaining are inappropriate for
refactoring engines. We evaluate the productivity and scalability
of R2 with a case study of 6 real-world applications. In one case,
R2 automatically created a Visitor with 276 visit methods by
invoking 554 Eclipse refactorings in 10 minutes – an achievement
that could not be done manually. R2 also sheds light on why
refactoring correctness, expressiveness, and speed are critical
issues for scripting in next-generation refactoring engines.

I. INTRODUCTION

Most design patterns are not present in a program during the
design phase, but appear later in maintenance and evolution
[1]. Modern IDEs – Eclipse, IntelliJ IDEA, NetBeans, and
Visual Studio – offer primitive refactorings (e.g., rename,
move, change-method-signature) that constitute basic steps to
retrofit design patterns into a program [2], [3]. It has been
over 20 years since design patterns were popularized [2], [3]
and longer still for refactorings [4]–[6]. For at least 15 years
it was known that many design patterns could be automated
by scripting transformations [1], [7]. So it is both surprising
and disappointing that modern IDEs automate few patterns
and offer no means to script transformations or refactorings to
introduce whole patterns.

Manually introducing design patterns using primitive refac-
torings from the IDE is error-prone. To retrofit a Visitor pattern
into a program requires finding all relevant methods to move
by hand and applying a sequence of refactorings in precise
order. It is easy to make mistakes. Missing a single method
in a class hierarchy produces an incomplete but executable
Visitor. But a future extension that uses the Visitor can break
the program (Section III-A).

We teach undergraduate and graduate courses on software
design. Among the best ways to learn refactorings and pat-
terns is not only to use them, but also to write programs
that sequence primitive transformations to mechanize them.
Doing so forces students, and programmers in general, to

understand the nuances and capabilities of each refactoring and
pattern. Although we are primarily motivated to improve tools
for teaching refactorings and patterns, our work will benefit
professional programmers as well.

The key question is: what language should be used to script
refactorings? There are many proposals with distinguished
merit [8]–[18], but all fall short in fundamental ways for
our goal. It is unrealistic to expect that students can quickly
learn sophisticated Program Transformation Systems (PTSs)
[9]–[11], [19] or utilities, such as Eclipse Language Toolkits
(LTKs) [20], to manipulate programs. Although PTSs and
LTKs are monuments of engineering prowess, their learning
curve is measured in weeks or months. Domain Specific
Languages (DSLs) to write refactoring scripts still have an
unneeded overhead [8]–[13], [15]–[18].

We present a practical way to move Java refactoring tech-
nology forward. We designed, implemented, and evaluated
Reflective Refactoring (R2), a Java package whose goal is
to encode the construction of classical design patterns as Java
methods. Using Eclipse Java Development Tools (JDT) [21],
R2 leverages reflection by presenting a JDT project, its pack-
age, class, method and field declarations as Java objects whose
methods are JDT refactorings. Automating design patterns
becomes no different than importing an existing Java package
(R2) and using it to write programs (in this case, refactoring
scripts). There is no need for a DSL.

Our paper makes the following contributions:
• JDT Extensions. JDT refactorings, as is, were never de-

signed to script design patterns. We describe our repairs to
make JDT supportive for scripting.

• Object-Oriented (OO) Metaprogramming. We present the
Java package, R2, with several novel features to improve
refactoring technology. R2 objects are Java entity declara-
tions and R2 methods are JDT refactorings, primitive R2

transformations, R2 pattern scripts, and program element
navigations (i.e., R2 object searches).

• Generality. We encoded 18 out of 23 Gang-of-Four design
patterns [3], inverses, and variants as short Java methods in
R2, several of which we illustrate. This shows that R2 can
express a wide range of patterns.

• Implementation.R2 is also an Eclipse plugin that leverages
existing JDT refactorings and enables programmers to script
many high-level patterns elegantly.

dsb
Text Box
ICSME 2015, Bremen Germany

visitor

(a)

+foo()

A

+foo()

B

+foo()

C

// application

a = new A();
b = new B();
c = new C();
...
a.accept(Visitor.singleton);
b.accept(Visitor.singleton);
c.accept(Visitor.singleton);

(b)

+visit(in a : A)
+visit(in b : B)
+visit(in c : C)

+singleton : Visitor = new Visitor();

Visitor

+accept(in v : Visitor)

A

+accept(in v : Visitor)

B

+accept(in v : Visitor)

C

// application

a = new A();
b = new B();
c = new C();
...
a.foo();
b.foo();
c.foo();

visitor

(a) (b)

+visit(in : Graphic)
+visit(in : Picture)
+visit(in : Square)
+visit(in : Triangle)

+instance : DrawVisitor = new DrawVisitor();

DrawVisitor

+accept(in : DrawVisitor)

Graphic

+accept(in : DrawVisitor)

Square

+accept(in : DrawVisitor)

Triangle

// application

p = new Picture();
p.add(new Square());
p.add(new Triangle());
...
p.draw();

+add(in : Graphic)
+draw()

Picture

+draw()

Square

+draw()

Triangle

+draw()

Graphic
0

..
1

-contains

1..*

+add(in : Graphic)
+accept(in : DrawVisitor)

Picture

// application

p = new Picture();
p.add(new Square());
p.add(new Triangle());
...
p.accept(DrawVisitor.instance);

0
..

1

-contains

1..*

+visit(in : Graphic)
+visit(in : Picture)
+visit(in : Square)
+visit(in : Triangle)

+singleton : Visitor = new Visitor();

DrawVisitor

+accept(in : DrawVisitor)

Graphic

+accept(in : DrawVisitor)

Square

+accept(in : DrawVisitor)

Triangle

// application

p = new Picture();
p.add(new Square());
p.add(new Triangle());
...
p.draw();

+add(in : Graphic)
+draw()

Picture

+draw()

Square

+draw()

Triangle

+draw()

Graphic

1

-contains

1..*

+add(in : Graphic)
+accept(in : DrawVisitor)

Picture

// application

p = new Picture();
p.add(new Square());
p.add(new Triangle());
...
p.accept(DrawVisitor.singleton);

1

-contains

1..*

visitor

-1

Fig. 1. A Visitor Pattern Refactoring.

• Evaluation. A case study shows the productivity and scal-
ability of R2. We applied a 20-line R2 script to retrofit 52
pattern instances into 6 real-world applications. One case
invoked 554 refactorings, showing that R2 scales well to
large programs.

II. A MOTIVATING EXAMPLE

Among the most sophisticated patterns is Visitor. There are
different ways to encode a Visitor; we use the one below.
Figure 1a shows a hierarchy of graphics classes; Graphic
is the superclass and Picture, Square, Triangle are its
subclasses. Each class has its own distinct draw method.

Mechanics. To create a Visitor for the draw method
(Figure 1b), a programmer first creates a singleton Visitor
class DrawVisitor. Next, s/he moves each draw method
into the DrawVisitor class, renames it to visit, and adds
an extra parameter (namely the class from which the method
was moved). Referenced declarations (e.g., fields and methods)
must become visible by changing their access modifiers after
a method move [22]. Further, s/he creates a delegate (named
accept) for each moved method, taking its place in the
original class. The signature of the accept method extends
the original draw signature with a DrawVisitor parameter
and whose code for our example is:

void accept(DrawVisitor v) {
v.visit(this);

}

Finally, s/he replaces all calls to the draw method with calls to
accept. Note that some of these steps can be performed by
JDT refactorings, but they require knowledge and familiarity
with available refactorings to know which to use and in what
order. Further, after each step, the programmer recompiles the
program and runs regression tests to ensure that the refactored
program was not corrupted.

Pitfalls. It is easy to make a mistake or forget a step. A
programmer can inadvertently skip draw methods to move.
Suppose a missed method is Triangle.draw. Although the
refactored code would compile and execute correctly in this
version, it breaks when another kind of Visitor is added in a fu-

ture maintenance task. Example: another programmer creates
a SmallScreenVisitor that displays widgets for small
screens of smartphones. When s/he passes an instance of the
SmallScreenVisitor instead of the DrawVisitor, the
Triangle.draw method will render the original behavior for
a large screen, not the expected one for small screens.

Complicating Issues. JDT refactorings were never de-
signed with scripting in mind. We encountered a series of
design and implementation issues in the latest version of
Eclipse JDT (Luna 4.4.1, Dec. 2014) [23] that compromises
its ability to support refactoring scripts without considerable
effort. (These issues need to be addressed, regardless of our
work). Here are examples.

A. Separation of Concerns
Figure 2a shows method draw in class Square,

after a DrawVisitor parameter was added. Figure 2b
shows the result of Eclipse moving Square.draw to
DrawVisitor.draw and leaving a delegate behind. Not
only was the method moved, its signature was also optimized.
Eclipse realizes that the original draw method did not need
its Square parameter, so Eclipse simply removes it.

class Square extends Graphic {
void draw(DrawVisitor v) {

...;
}

}

class DrawVisitor {
static final DrawVisitor instance

= new DrawVisitor();
}

class Square extends Graphic {
void draw(DrawVisitor v) {

v.draw()
}

}

class DrawVisitor {
static final DrawVisitor instance

= new DrawVisitor();

void draw() {
...;

}
}

(a)

(b)
error

class Graphic {
int ndraws;

}

class Triangle extends Graphic {
void draw(DrawVisitor v) {

...;
ndraws++;

}
}

class DrawVisitor {
static final DrawVisitor

instance = new DrawVisitor();
} (a)

class Graphic {
int ndraws;

}

class Triangle extends Graphic {
void draw(DrawVisitor v) {

v.draw(this);
}

}

class DrawVisitor {
static final DrawVisitor

instance = new DrawVisitor();

void draw(Triangle t) {
...;
ndraws++;

}
}

error
(b)

Fig. 2. A JDT Refactoring Being Too Smart.

As a refactoring, this optimization is not an error. But
when an entire set of refactorings must produce a consistent
result, it is an error. Preserving all parameters of moved
methods in a Visitor pattern is essential. Two concerns –
method movement and method signature optimization – were
bundled into a single refactoring, instead of being separated
into distinct refactorings. We programmatically deactivated
method signature optimizations in R2; users cannot disable
such optimizations from the Eclipse GUI.

B. Need for Other (Primitive) Refactorings

Suppose that we want to “undo” an existing Visitor – elim-
inate the target Visitor class by moving its contents back into
existing class hierarchies. Each visit method in the Visitor
is moved back to its original class. As an example, Figure 3a
shows class Triangle after such a move: Triangle has
both accept and visit methods. When the visit method
is inlined, the accept method absorbs the visit method
body (Figure 3b).

class Triangle extends Graphic {

 void accept(DrawVisitor v) {

 this.visit(v);

 }

 void visit(DrawVisitor v) {

 ...;

 if(true) return;

 ...;

 }

} (a)

class Triangle extends Graphic {

 void accept(DrawVisitor v) {

 ...;

 if(true) return;

 ...;

 }

} (b)

inline

Fig. 3. Restriction of JDT inline Refactoring.

Unfortunately, Eclipse refuses to inline the visit method
since a return statement potentially interrupts execution
flow. This precondition prevents automating a Visitor “undo”.
We had to deactivate this precondition check to script the
Inverse-Visitor described in Section III-B, in effect adding a
new refactoring to JDT, to accomplish our task.

C. Limited Scope

A benefit of Visitor is that a single Visitor class enables a
programmer to quickly review all variants of a method. Often,
such methods invoke the corresponding method of their parent
class. Moving methods with super calls is not only possible,
it is desirable. Unfortunately, JDT refuses to move methods
that reference super. It is not an error, but a strong limitation.
We removed this limitation by replacing each super.x() call
with a call to a manufactured method super xθ(), whose
body calls super.x(); θ is just a random number to make the
name of the manufactured method unique.1,2

class A {

void foo() {}

}

class B extends A {

void foo() {}

void bar() {

super.foo();

}

}

class A {

void foo() {}

}

class B extends A {

void foo() {}

void accept(Visitor v) {

v.visit(this);

}

void super_foo() {

super.foo();

}

}

class Visitor {

static final Visitor instance

= new Visitor();

void visit(B b) {

b.super_foo();

}

}(a) (b)

Fig. 4. Rewrite that Uses super Delegate.

1If super.x() returns a result of type X, super xθ() also returns
type X.

2A unique name is needed for a refactoring that “undoes” or
“removes” a Visitor (Section III-B). It guarantees the correct super-
delegate is called, as the meaning of this and super depends on
the position in a class hierarchy from which it is invoked.

In Figure 4a, the super keyword invokes an overridden
method A.foo(). We remove super by calling a delegate
method which calls the overridden method A.foo(). Figure 4b
shows a super delegate super fooθ() which replaces the
super.foo() call in B.bar(), thus allowing JDT to move
B.bar() to the Visitor class. Of course, super-delegates
throw the same exception types as its super invocation.

Now consider the use of super to reference fields of
a parent class. Again, JDT refuses to move methods with
super-references to fields. Here is how we fixed this: fields
in Java are hidden and not overridden. So we can get super
references simply by casting to their declared type. In Figure 5,
method B.foo() references field A.i with the expression
super.i. When B.foo() is moved to class Visitor, ex-
pression super.i is replaced with ((A)b).i.

class A {

 int i;

}

class B extends A {

 int i;

 void foo() {

 super.i = 0;

 }

}

class A {

 int i;

}

class B extends A {

 int i;

 void accept(Visitor v) {

 v.visit(this);

 }

}

class Visitor {

 static final Visitor instance

 = new Visitor();

 void visit(B b) {

 ((A)b).i = 0;

 }

} (a) (b)

Fig. 5. super Field Access.

D. Recap

Many patterns cannot be created with off-the-shelf JDT
without considerable manual effort as existing refactorings fall
short of what is required. We have repairs for JDT, and now
our next step is scripting, which we discuss next.

III. REFLECTIVE REFACTORING

A key decision for us was choosing the scripting language.
As refactorings are transformations, our initial inclination was
to define and script refactorings in a functional or dedicated
language, as others have done [8]–[14], [16]–[18]. But as
we said earlier, the learning curve to become proficient in
yet another language or programming paradigm makes these
approaches unappealing. The obvious answer is to script
refactorings in Java.

Let P be a JDT project. We leverage the idea of reflection;
R2 defines class RClass whose instances are the class
declarations in P; instances of classes RMethod and RField
are the method and field declarations of P, and so on. When P

is compiled, R2 creates a set of main-memory database tables
(one for RClass, RMethod, RField, etc.) where each row
corresponds to a class, a method, or a field declaration of P.
These tables are not persistent; they exist only when the JDT
project for P is open.

The fields of RClass, RMethod, RField, etc. – hence-
forth called R2 classes – also define association, inheritance,
dependency relationships among table rows (foo is a method
of class A, A is a superclass of B, B belongs to package C, etc.).

The member methods of R2 classes are JDT refactorings, sim-
ple R2 transformations, composite refactorings (our scripts),
and ways to locate program elements (i.e., R2 objects).

Internally, we leveraged XML scripts which Eclipse uses
only to replay refactoring histories. An R2 method call gen-
erates an XML script which we then feed to JDT to execute.
In this way, we automate exactly the same procedures Eclipse
users would follow manually. R2 exposes every available JDT
refactoring as a method and a few more (Section II). Overall,
we changed 51 lines in 8 JDT internal packages; the R2

package consists of ∼ 5K LOC.
In the following subsections, we give readers a feel for R2

scripts by illustrating interesting examples.

A. Automating the Visitor Pattern

Visitor is fully automatable as an R2 script. For a program-
mer to create a Visitor for some method m, s/he points to m as
a “seed” in the Eclipse editor and invokes the makeVisitor
R2 script via the Eclipse GUI. A parameter of makeVisitor
is the name of the Visitor class. All methods related to m are
moved into the Visitor. So, from a programmer’s viewpoint,
an R2 script is indistinguishable from an existing JDT refac-
toring.3

Figure 6 shows our makeVisitor, a method of class
RMethod. The Java keyword this refers to the “seed”
method to which the script is applied. Lines 3–5 create a
Visitor class (called visitorClassName) in the same package
as this and add a static Singleton field instance.
Lines 7–8 find all methods (called ”relatives”) with the same
signature as this and add a new parameter of type vis-
itorClassName to each of these methods. Calls to relative
methods have visitorClassName.instance as the default
extra argument. Lines 10–15 move each movable method to
the Visitor class, leave behind a delegate, and rename each
method to visit. Lines 17–18 collect delegate relatives and
rename them to accept.4 Line 20 returns the Visitor class.

Looping through a list of methods and invoking a refac-
toring on each method would be the obvious way to add a
parameter to relatives. But this is not how the JDT change-
method-signature refactoring works (Lines 7–8). It is applied
to the “seed” method only. Consider Figure 7. Suppose D.m
is the method that “seeds” a change-method-signature. All
m methods in D’s class hierarchy {A.m, B.m, C.m, D.m} and
interconnected interface and class hierarchies {I1.m, I2.m,
E.m} are affected by this refactoring. That is, all of these
methods (relatives) will have their signature changed. The
methodList variable in Line 7 is the list of all methods
in P whose signature will change. This list includes methods
that cannot be moved, such as interface and abstract
methods. In this example, the methods moved into the Visitor
are from classes {A, B, C, D, E}.

3To add another script, its method is added to R2. Eclipse is then run with
the updated R2.

4Delegate relatives include generated delegate methods and methods that
cannot be moved, e.g. interface and abstract methods.

1 // member of RMethod class
2 RClass makeVisitor(String visitorClassName) throws

RException {
3 RPackage pkg = this.getPackage();
4 RClass vc = pkg.newClass(visitorClassName);
5 RField singleton = vc.addSingleton();
6
7 RMethodList methodList = this.getRelatives();
8 RParameter newPara = methodList.addParameter(vc,

singleton);
9

10 RMethod delegate = null;
11 for(RMethod m : methodList) {
12 if(!m.isMovable()) continue;
13 delegate = m.moveAndDelegate(newPara);
14 m.rename("visit");
15 }
16
17 RMethodList delegateList = delegate.getRelatives();
18 delegateList.rename("accept");
19
20 return vc;
21 }

Fig. 6. A makeVisitor Method.

+m()

B

+m()

A

+m()

C

+m()

D

+m()

E

«interface»I3

+m()

«interface»I2

+m()

«interface»I1

seed

Fig. 7. Methods Altered by Change Signature.

Note: Although Eclipse provides ways to find methods, it
is still easy to miss program methods (relatives) that are
distributed over the entire program. Forgetting to move a
method when creating a Visitor manually is easy, yet it is
hard to detect as no compilation errors identify non-moved
methods. R2 eliminates such errors by invoking a trustworthy
R2 getRelatives() method.

B. Automating the Inverse Visitor

Figure 8 depicts a common scenario: An R2 programmer
creates a Visitor to provide a convenient view that allows
her/him to inspect all draw methods in the graphics class
hierarchy from our motivating example of Figure 1. The
programmer then updates the program, including Visitor meth-
ods, as part of some debugging or functionality-enhancement
process. At which point, s/he wants to remove the Visitor to
return the program back to its original structure.5

isec14‐1

visitor class modified
classes in red

Fig. 8. A Common Programming Scenario.

5Of course for this to be possible, certain structures and naming conventions
(as we use in our makeVisitor method) should not be altered. Effectively
the only edits that are permitted are those that would have modified the original
program. Restricting modifications can be accomplished similar to GUI-based
editors, where generated code is “greyed” out and cannot be changed.

In this scenario, undoing a Visitor is not a roll-back, as a
roll-back removes all of the programmer’s debugging edits.
Instead, an Inverse-Visitor – a refactoring that removes a
Visitor and preserves debugging edits – is required. Yet another
practical reason is if a program already contains a hand-crafted
Visitor, weaving its methods back into the class hierarchy
would be an optimization. Similar scenarios apply to other
design patterns, such as Builder and Factory Method.

Figure 9 shows our inverseVisitor, a method of
RClass, that moves visit methods back to their original
classes and deletes the Visitor class. Here is how it works:
Lines 8–9 recover the original class of a visit method. As
we turned off method signature optimization in Section II-A,
the original class is encoded as the type of the visit
method’s first parameter. Line 11 moves the method back to
its original class. Lines 13–14 inline super-delegates if they
exist by replacing each call to super xθ() with super.x()
(Section II-C) and then restore the original method body
(which is the body of the visit method) by inlining. Lines 6–
14 are performed for all visit methods. At this point, the
accept methods (i.e., the delegate methods) contain the body
of the original methods. Lines 17–20 collect all of the accept
methods, remove their first parameter (of type Visitor class),
and restore the original name of the method. The Visitor class
is then deleted in Line 22.

1 // member of RClass class
2 void inverseVisitor(String originalName) throws

RException {
3 RMethod anyDelegate = null;
4
5 for(RMethod m : this.getMethodList()) {
6 anyDelegate = m.getDelegate();
7
8 RParameter para = m.getParameter(0);
9 RClass returnToClass = para.getClass();

10
11 m.move(returnToClass);
12
13 m.inlineSuperDelegate();
14 m.inline();
15 }
16
17 RMethodList methodList = anyDelegate.getRelatives();
18
19 methodList.removeParameter(0);
20 methodList.rename(originalName);
21
22 this.delete();
23 }

Fig. 9. An inverseVisitor Method.

Note: The challenge is to determine the correct order to apply
move and inline refactorings. What if every visit method is
moved and then inline is applied to each visit? To see the
problem, let class A be the parent of class B and suppose both
A and B have visit methods. Now, B.visit is inlined. B
still inherits A.visit. Eclipse recognizes that inlining might
alter program semantics and issues a warning: “method to be
inlined overrides method from the parent class”. A similar
warning arises had A.visit been inlined first. The solution
is to move one method at a time, followed by an inline, as
done in Figure 9, to avoid warnings.

C. More Opportunities

Design patterns have many variations; Visitor is no ex-
ception. Consider Visitor PV of Figure 10 adapted from
[24]. It differs from the Visitor of our example of Sec-
tion II in several ways: PV is not a Singleton, it includes
state totalPostage, it has a custom non-visit method
getTotalPostage(), and at least one of its visit meth-
ods visit(Book) references totalPostage.

+accept(in : PostageVisitor)

CD

+accept(in : PostageVisitor)

DVD

+accept(in : PostageVisitor)
+getPrice() : double
+getWeight() : double

-price : double
-weight : double

Book

+accept(in : PostageVisitor)

«interface»
Item

+visit(in : Book)
+visit(in : CD)
+visit(in : DVD)
+getTotalPostage() : double

-totalPostage : double

PostageVisitor

void visit(Book book) {
 if (book.getPrice() < 10.0) {
 totalPostage += book.getWeight() * 2;
 }
}
void visit(CD cd) {}
void visit(DVD dvd) {}

double getTotalPostage() {
 return totalPostage;
}

+accept(in : PV)

CD

+accept(in : PV)

DVD

+accept(in : PV)
+getPrice() : double
+getWeight() : double

-price : double
-weight : double

Book

+accept(in : PV)

«interface»
Item

+visit(in : Book)
+visit(in : CD)
+visit(in : DVD)
+getTotalPostage() : double

-totalPostage : double

PV

void visit(Book book) {
 if (book.getPrice() < 10.0) {
 totalPostage += book.getWeight() * 2;
 }
}
void visit(CD cd) {}
void visit(DVD dvd) {}

double getTotalPostage() {
 return totalPostage;
}

Fig. 10. Visitor with State.

The Visitor variant of Figure 10 requires a slight modifica-
tion of our R2 inverseVisitor method. Figure 11 shows
the modified method; it differs from Figure 9 by moving only
methods named visitMethodName, not removing the Visitor
parameter, and not deleting the Visitor class.

1 // member of RClass class
2 void inverseVisitorWithState(String originalName,

String visitMethodName) throws RException {
3 RMethod anyDelegate = null;
4
5 for(RMethod m : this.getMethodList(visitMethodName)){
6 anyDelegate = m.getDelegate();
7
8 RParameter para = m.getParameter(0);
9 RClass returnToClass = para.getClass();

10
11 m.move(returnToClass);
12
13 m.inlineSuperDelegate();
14 m.inline();
15 }
16
17 RMethodList methodList = anyDelegate.getRelatives();
18 methodList.rename(originalName);
19 }

Fig. 11. Another inverseVisitor Variant.

These examples illustrate the power of R2: (1) we can
automate these patterns (by transforming a program without
these patterns into programs with these patterns), (2) we can
remove these patterns (by transforming programs with hand-
crafted patterns into programs without those patterns), and (3)
express common variations that arise in design patterns. R2

offers a practical way to cover all of these possibilities.

IV. OTHER PATTERNS

Figure 12 is our review of the Gang-of-Four Design Patterns
text [3]: 8 out of 23 patterns are fully automatable, 10 are
partially automatable. For the remaining 5 patterns, we are
unsure of their role in a refactoring tool (although some are
automatable).R2 scripts for all of the 18 automatable patterns
are listed in [25]. We elaborate our key findings below.

4. Other Patterns
Table 1 summarizes our review of the Gang-of-Four Design
Patterns text [15]. We found 35% of its patterns are fully
automatable, 43% are partially automatable, and for the re-
maining 22%, we are unsure of their role in a refactoring
tool (although some are automatable). We elaborate these
findings in the next sections.

Design Pattern Automation Possibility
Full Some Unsure

Abstract Factory X
Adapter X
Bridge X
Builder X

Chain of Responsibility X
Command X
Composite X
Decorator X

Façade X
Factory Method X

Flyweight X
Interpreter X

Iterator X
Mediator X
Memento X
Observer X
Prototype X

Proxy X
Singleton X

State X
Strategy X

Template Method X
Visitor X
Total 8 10 5

Table 1. Automation Potential of Design Patterns.

4.1 Fully Automatable Patterns
The Visitor pattern, its inverse and variants are fully au-
tomatable as they produce no “TO DOs” for a user. Ap-
pendix A sketches other fully automatable patterns as R2

methods: abstract factory, command, and memento. 35% of
patterns are in this category.

4.2 Partially Automatable Patterns
43% of patterns are partially automatable – the creation of a
pattern produces “TO DOs” that must be completed by a user.
The Adapter pattern, below, is typical. Appendix B sketches
another partially automatable pattern: Strategy.

The Adapter pattern resolves incompatibilities between a
client interface and a legacy class. For example, given inter-
face Target and class Legacy in Figure 11, an intermediate
class (called Adapter) adapts Target to Client.

The makeAdapter R2 method in Figure 12 creates an
Adapter class that implements interface Target and refer-
ences class Legacy. Programmers must provide bodies for
the generated method stubs – these are the user “TO DOs”. Al-
though partially automated – method bodies are still needed
– tedious and error-prone work is done byR2.2

2 For readers who are unconvinced that creating an adapter is not tedious
and error prone, try the following example: access Java String through the
collection < Character > interface.

+d()
+e()
+f()

Legacy

*

-legacy

1

a() { /* TO DO */ }
b() { /* TO DO */ }
c() { /* TO DO */ }+a()

+b()
+c()

<<interface>>
Target

+a()
+b()
+c()

Adapter

+m1(in param1, in param2)
+undo_m1(in param1, in param2)
+m2(in param)
+undo_m2(in param)

Document

+do()
+undo()

Command

+do()
+undo()

-param1
-param2

m1

-doc

1 *

+do()
+undo()

-param

m2

m2(d,p) {
doc = d;
param = p;

}

do() {
doc.m2(param);

}

undo() {
doc.undo_m2(param);

}

Figure 11. Adapter Pattern.

1 // member of RInterface class
2 RClass makeAdapter(String adapterName ,
3 RClass adaptee) {
4 RClass c = getRPackage ().newClass(adapterName);
5
6 RField f = c.newField(adaptee);
7 c.newConstructor(f);
8
9 for(RMethod m : getAllMethod ()) {

10 c.newMethod(m);
11 }
12
13 c.setInterface(this);
14
15 return c;
16 }

Figure 12. A makeAdapter Method.

4.3 Remaining Patterns
We are unsure of the role for the remaining 22% in a refac-
toring tool (some of which we note below are automatable).
Consider:

• Façade is a convenient class abstraction for a package.
Creating a façade requires deep knowledge of an appli-
cation that only an expert, not a refactoring tool, would
have. AnR2 script could be written to produce a particu-
lar façade, but it would be so application-specific it would
not be reusable.

• Interpreter is common in compiler-compiler tools [4, 31];
given the grammar of a language, a class hierarchy for the
language’s AST can be generated. Providing a grammar
to a refactoring engine to generate a class hierarchy is
possible, but we are unsure that it is consistent with
current refactoring tools.

• State is a simple application of Model Driven Engineer-
ing (MDE). Given a statechart of a finite state machine,
MDE tools can generate the class hierarchies and method
bodies that implement the State pattern. Again, providing
a statechart to a refactoring engine to generate the code
of a State pattern is possible, but we are unsure that it is
appropriate.

• Mediator is the basis for GUI builders; the drag-and-drop
of class instances from a pallete of classes is the essence

6 2015/3/17

Fig. 12. Automation Potential of Gang-of-Four Design Patterns.

A. Fully Automatable Patterns

The Visitor pattern, its inverse and variants are fully au-
tomatable as they produce no “TO DOs” for a user. Another
is Abstract Factory which provides an interface to concrete
factories. Figure 13b shows interface AbstractFactory
that exposes factory methods for every public construc-
tor of each public class in a given package: the pack-
age of Figure 13a contains classes A and B; the interface
AbstractFactory is implemented by concrete factory
class ConcreteFactory in Figure 13b. Figure 14 is the
R2 method that produces a concrete factory for a package. A
similar R2 script creates the AbstractFactory interface.

Factory

+A()
+A(in ...)

A

+B()
+B(in ...)

B

+createA()
+createA(in ...)
+createB()
+createB(in ...)

<<interface>>
AbstractFactory

+createA()
+createA(in ...)
+createB()
+createB(in ...)

ConcreteFactory

A createA() { return new A(); }
A createA(...) { return new A(...); }
B createB() { return new B(); }
B createB(...) { return new B(...); }

+A()
+A(in ...)

A

+B()
+B(in ...)

B

(a) (b)

Fig. 13. Factory Pattern.

1 // member of RPackage class
2 RClass makeConcreteFactory(String factoryName) throws

RException {
3 RClass factory = this.newClass(factoryName);
4
5 for(RClass c : this.getClassList()) {
6 if(c.isPublic())
7 for(RMethod m : c.getConstructorList())
8 if(m.isPublic())
9 factory.newFactoryMethod(m);

10 }
11
12 return factory;
13 }

Fig. 14. A makeConcreteFactory Method.

B. Partially Automatable Patterns

10 out of 23 patterns are partially automatable, i.e., these
patterns produce “TO DOs” that must be completed by a user.
The Adapter pattern is typical. It resolves incompatibilities
between a client interface and a legacy class. Given interface
Target and class Legacy in Figure 15, an intermediate
class (called Adapter) adapts Target to Legacy. The R2

makeAdapter method in Figure 16 creates the Adapter
class that implements interface Target and references class
Legacy. Programmers must provide bodies for the generated
method stubs; these are the user “TO DOs”. Although partially
automated – method bodies are still needed – tedious and
error-prone work is done by R2.

+d()
+e()
+f()

Legacy

*

-legacy

1

a() { /* TO DO */ }
b() { /* TO DO */ }
c() { /* TO DO */ }+a()

+b()
+c()

«interface»
Target

+Adapter(in l : Legacy)
+a()
+b()
+c()

Adapter

+Parent(in arg)

Parent

(a) (b)

+d()
+e()
+f()

Legacy

*

-legacy

1

Adapter(Legacy le) {
 legacy = le;
}

a() { /* TO DO */ }
b() { /* TO DO */ }
c() { /* TO DO */ }

+a()
+b()
+c()

«interface»
Target

+a()
+b()
+c()

Adapter

Fig. 15. Adapter Pattern.

1 // member of RInterface class
2 RClass makeAdapter(RClass adaptee, String adapterName)

throws RException {
3 RClass adapter = getPackage().newClass(adapterName);
4
5 RField f = adapter.newField(adaptee, "legacy");
6 adapter.newConstructor(f);
7
8 for(RMethod m : this.getMethodList())
9 adapter.newMethod(m);

10
11 adapter.setInterface(this);
12
13 return adapter;
14 }

Fig. 16. A makeAdapter Method.

C. Remaining Patterns

We are unsure of the role for the remaining patterns in a
refactoring tool (some of which are automatable):
• Façade is a convenient class abstraction for a package.

Creating a façade requires deep knowledge of an application

that only an expert, not a refactoring tool, will have. An R2

script can be written to produce a particular façade, but it
will be application-specific and unlikely to be reusable.

• Interpreter is common in compiler-compiler tools [26], [27];
given a language’s grammar, a class hierarchy for creating
language ASTs can be generated. Providing a grammar to a
refactoring engine to generate a class hierarchy is possible,
but seems inappropriate.

• State is a common application of Model Driven Engineering
(MDE). Given a statechart of a finite state machine, MDE
tools can generate the class hierarchies and method stubs
that implement the State pattern. Again, providing a state-
chart to a refactoring engine to generate the code of a State
pattern is possible, but also seems inappropriate.

• Mediator is the basis for GUI builders; the drag-and-drop of
class instances from a palette of classes is the essence of a
Mediator. Again, it is unclear that this functionality belongs
in a refactoring engine.

• Iterator is already part of the Java language. It is unclear
what a refactoring engine should do.

V. CASE STUDIES, EVALUATION, AND PERSPECTIVE

We evaluated R2 by answering two research questions:

• RQ1: Does R2 improve productivity?
• RQ2: Can R2 be applied to large programs?

Both questions address the higher level question “Is R2 use-
ful?” from different angles: Productivity measures whether R2

methods save programmer time. Scalability measures whether
R2 can work with large programs.

A. Experiment

Some design patterns (e.g., Adapter) are relatively simple:
create a few program elements, change class relationships, or
make minor code changes. Others are different. All patterns
are tedious and error-prone to create manually when the
target program is non-trivial. There are R2 scripts for all 18
automatable patterns. We evaluate R2 using patterns that (a)
exercise mostR2 methods and capabilities and (b) are difficult
to create manually. These are the Make-Visitor and Inverse-
Visitor patterns, which we have already presented.

We used six real-world Java applications that satisfied
the following criteria: (1) they were publicly available, (2)
they had non-trivial class hierarchies, (3) regression tests
were available for us to determine if our refactorings altered
application behavior, and (4) there were numerous method
candidates that could “seed” a Visitor. We randomly selected
methods among these candidates. We believe this selection
process presents both a representative set of applications and
a fair test for R2. The Subject column of Table I lists these
applications, their versions, application size in LOC, and the
number of regression tests. We used an Intel CPU i7-2600
3.40GHz, 16 GB main memory, Windows 7 64-bit OS, and
Eclipse JDT 4.4.1 (Luna).

B. Results
We have two sets of results: creating a Visitor and removing

a Visitor. First consider creating a Visitor. Table I lists results
of Make-Visitor applied to different methods in multiple
applications. Each row represents data from a subject program.
The columns are:
• Seed ID identifies the experiment.
• Subject is the Java subject program.
• Seed Method Name is the seed of the Visitor.
• Super Delegate is the number of super-delegates cre-

ated (Section II-C).
• Change Signature is the number of change-method-

signatures applied.
• Move is the number of methods moved into the Visitor.
• Rename is the number of methods renamed.
• # of Refactorings is the total number of JDT refactorings

invoked by the makeVisitor call.
• Time is average clock time (in seconds) to perform
makeVisitor.

• # of Errors is the total number of errors created by JDT
bugs in the old version of Eclipse (Juno 4.2.2 [32]) that
we started with.

RQ1: Does R2 Improve Productivity? Table I shows
that R2 performs tasks that are unachievable manually. Our
largest experiment, A3, invoked 554 JDT refactorings took 10
minutes. Had programmers attempted A3 by hand, we believe
that most would have given up at its sheer scale.
R2 offers a huge improvement in productivity even for

programmers who are experts in JDT refactorings. An R2

script takes a fraction of the time (with no user intervention):
the order in which refactorings should be sequenced, their
parameters, and which refactorings to use has already been
determined, in addition to choosing the “correct” options for
refactorings (should there be options). The hard work has been
done; R2 eliminates the errors and tedium of the process.

RQ2: Can R2 be applied to large programs? Table I
clearly demonstrates that R2 can be applied to non-trivial
programs. A number of these programs are more complicated
than they appear as we explain below.

Recall makeVisitor invokes addParameter to the list
of methods that are relatives of the method seed. Ideally, these
relatives are descendant from a single root method (A.m in
Figure 17a). This means that theR2 addParameter invokes
the JDT change-method-signature refactoring once on A.m to
add an extra parameter to all of its relatives B.m and C.m.

seed

seed

root(a) (b) root

Fig. 17. Method Seeds and Method Roots.

In general, there can be multiple roots.6 Figure 17b shows

6Some may argue that using multiple roots is too general; only one root
should ever be used. This is programmatically adjustable within R2.

TABLE I
APPLICATIONS AND VISITOR PATTERN RESULTS.

Seed Subject Seed Method Name Super Change Move Rename # of Time # of Errors
ID (Ver#, LOC, #Tests) Delegate Signature Refactorings (now fixed by JDT patches)

A1
AHEAD
jak2java [26]
(130320, 26K, 75)

getAST Exp 0 26 26 52 104 72s 26
A2 getExpression 0 17 17 34 68 54s 17
A3 printorder 0 1 276 277 554 604s 0
A4 reduce2Ast 1 1 29 30 60 46s 23
A5 reduce2Java 7 1 47 48 96 84s 100
C1

Commons
Codec [28]
(1.8, 16K, 6103)

encode 0 1 2 3 6 5s 27
C2 getCharset 0 4 4 8 16 13s 0
C3 getDefaultCharset 0 4 4 8 16 12s 0
C4 getEncoding 0 2 4 6 12 10s 3
C5 isInAlphabet 0 1 2 3 6 5s 2
I1

Commons
IO [29]
(2.4, 24K, 810)

getDefaultEncoding 0 1 1 2 4 4s 0
I2 getEncoding 0 1 1 2 4 5s 0
I3 getFileFilters 0 1 2 3 6 5s 0
I4 getSize 0 1 1 2 4 5s 0
I5 setFileFilters 0 1 2 3 6 5s 0
J1

JUnit [30]
(4.11, 23K, 2807)

countTestCases 1 1 7 8 16 13s 1
J2 failedTest 0 1 1 2 4 3s 0
J3 getName 0 4 5 9 18 40s 2
J4 run 2 1 9 10 20 20s 4
J5 testCount 0 1 1 2 4 4s 2

Q Quark [26]
(1.0, 575, 9) apply 0 1 7 8 16 13s 0

W1
Refactoring
Crawler [31]
(1.0.0, 7K, 15)

computeLikeliness 0 1 13 14 28 24s 14
W2 extractFullyQualifiedParentName 0 1 1 2 4 6s 0
W3 isRename 0 1 12 13 26 26s 10
W4 pruneFalsePositives 1 1 4 5 10 10s 1
W5 pruneOriginalCandidates 7 1 13 14 28 25s 4

a seed whose relatives are not descendant from a single root.
This means that the R2 addParameter invokes change-
method-signature refactoring three times, once for each root
E.m, F.m, G.m, to add an extra parameter to all relatives.
Programmers who apply JDT refactorings manually would
have to realize this situation and make these extra renames.

Now look at row/experiment A3 in Table I. Our tool created
a Visitor for the printorder method in AHEAD.R2 moved
276 methods into a Visitor, created no super-delegates, and
applied one change-method-signature. The number of renames
(277) was determined in this way: each method that is moved
is renamed to visit (276). Although 276 method delegates
were created, only one had to be renamed to accept. By
renaming a root method, all of its descendants were renamed.
Thus the total number of renames is 276 + 1 = 277.

Now consider row/experiment J3. R2 created a Visitor
for the getName method in JUnit. R2 moved 5 methods
into a Visitor, created no super-delegates, and applied 4
change-method-signatures. The reason for 4 is that there were
4 method roots for the given seed (Figure 17b). Thus, the
number of renames performed is 9; 5 methods were moved,
and 4 (root) delegates were renamed.

Finally, consider row/experiment W5. Our tool created a
Visitor for the pruneOriginalCandidates method in
RefactoringCrawler. R2 moved 13 methods into a Visitor,
where these methods had 7 “super” references and thus
required a super-delegate for each to be created.

Removing a Visitor. Figure 18 lists the results of inverting
(removing) the Visitors created in Table I.

Consider row/experiment A5. Our tool removed a Visitor
of the reduce2Java in AHEAD. 47 visit methods were
moved back to original classes. The number of inlines (54)

Scripting Refactorings in Java to Retrofit Design Patterns 21

created Visitor from a legacy program, or (as we consider here) can undo an
R2-created Visitor; it is definitely not just a “roll-back” of edits (see Section 3.2).

Seed Change
Move Inline Rename

of
Time

ID Signature Refactorings
A1 26 26 26 26 104 97s
A2 17 17 17 17 68 61s
A3 1 276 276 1 554 395s
A4 1 29 30 1 61 42s
A5 1 47 54 1 103 70s
C1 1 2 2 1 6 5s
C2 4 4 4 4 16 15s
C3 4 4 4 4 16 15s
C4 2 4 4 2 12 10s
C5 1 2 2 1 6 5s
I1 1 1 1 1 4 4s
I2 1 1 1 1 4 4s
I3 1 2 2 1 6 6s
I4 1 1 1 1 4 5s
I5 1 2 2 1 6 5s
J1 1 7 8 1 17 13s
J2 1 1 1 1 4 4s
J3 4 5 5 4 18 22s
J4 1 9 11 1 22 18s
J5 1 1 1 1 4 5s
Q 1 7 7 1 16 11s
W1 1 13 13 1 28 22s
W2 1 1 1 1 4 8s
W3 1 12 12 1 26 37s
W4 1 4 5 1 11 14s
W5 1 13 20 1 35 34s

Figure 20 lists the results. To invert the A3 Visitor took 554 Eclipse refactor-
ings for a total of 395 seconds (over 6 minutes). Look at row/experiment A5. Our
tool removed a Visitor of the reduce2Java method in AHEAD. 47 visit methods
were moved back to original classes. The number of inline methods (54) was
determined in this way: each visit method that is moved is inlined (47) and
7 super delegates are also inlined. Only one had to be renamed to its original
name (reduce2Java) and removed a visitor-type parameter. That is because,
by changing a root method’s signature, all of its descendants were updated. In
addition, we turned off an inline precondition described in Section 2.3 for A4,
A5, and C1. We repeated each experiment five times and found no significant
variance in execution time.

The results of Table 4 and Figure 20 indicate that R2 is indeed scalable.

6.3 Threats to Validity

As said earlier, most patterns are like those illustrated in Section 4, where simple
additions of program elements and changes of class relationships are typical. R2

scripts, in general, are tiny (∼20 LOC) because classical design patterns are
easy-to-code given an appropriate set of primitive refactorings.

The real test for R2 is to see whether students, not us, can write such scripts.
This was verified by our user study. The actual numbers reported in our exper-
iments could vary by changing the program complexity or pattern complexity

Fig. 18. Inverse Visitor Results.

was determined in this way: each visit method that is moved
is inlined (47) and 7 super-delegates are also inlined. Only
one had to be renamed to its original name (reduce2Java)
and removed a Visitor-type parameter. That is because, by
changing a root method’s signature, all of its descendants were
updated. In addition, we turned off an inline precondition
described in Section II-B for A4, A5, and C1. Note the
difference in execution time between creating and removing a
Visitor is due to different numbers and types of refactorings.

C. Perspective and Future Work

Our experiments demonstrate that R2 scripts (a) improve
productivity and (b) are scalable to large programs. The R2

idea is portable to other Java IDEs such as IntelliJ IDEA,

NetBeans, and Visual Studio; it is not limited to Eclipse (or
Java, for that matter). Practical issues still remain.

1) Correctness of IDE-supplied refactorings remains a seri-
ous problem. Look at column # of Errors in Table I. It shows
A5 executed 96 JDT refactorings and introduced 100 errors
(in Juno 4.2.2) that we had to fix manually. It took two years
for the current version of JDT (Luna 4.4.1) to resolve these
bugs (our bug reports are available at [33]).

2) IDE-supplied refactorings should be expressive and easy
to understand. Odd or limited refactorings (as discussed in
Section II) preclude or otherwise distort elegant scripts. An
expressive basis set of primitive refactorings to be supported
by IDEs remains an open problem [34], [35].

3) Refactoring speed is important as programmers expect
instantaneous results. Look at the Time columns of Table I and
Figure 18. Many executions are over 20 seconds; the largest
is 10 minutes. We are building a new refactoring engine that
executes R2 scripts almost instantaneously [36].

4) We are also in the process of writing up a user study
using R2 that shows students find it easy to use.

VI. RELATED WORK

Writing program transformations is a non-trivial exercise as
research has shown [5], [8]–[20], [37]–[42]. Prior work intro-
duced a number of impressive metaprogramming languages
such as ASF+DSF [17], iXj [10], JunGL [18], Parlanse [9],
Rascal [13], Refacola [16], SOUL [15], Stratego [11], Tom [8],
and TXL [12]. None match our requirements.

There are two primary distinctions between R2 and prior
work. First, R2 uses the base language – the language in
which programs to be refactored are written – as the scripting
language. Interestingly, the base and scripting language are
identical only in Wrangler [14]; all others use a different
scripting language (possibly even a different programming
paradigm) than the base. The second is whether a user has to
implement primitive refactorings in order to script them. Since
writing primitive refactorings (e.g., rename, move, change-
method-signature) is non-trivial, it is important to distinguish
approaches that can leverage existing refactoring engines from
those where primitives need to be written by users. To the best
of our knowledge, only SOUL and Rascal (besides R2) satisfy
the second criterion.

JunGL and Refacola are DSLs specialized for scripting
refactorings. JunGL is an ML-style functional language im-
plemented on the .NET platform and targets C#. JunGL facil-
itates AST manipulation with higher order functions and tree
pattern matching. It also has querying facilities for semantic
and data flow information look-up. Refacola is a constraint
language where refactorings are specified by constraint rules.
The Refacola framework supports implementation of program
element queries and constraint generation.

Program transformation systems are monuments of engi-
neering prowess. Among them are Codelink [41], DMS [9],
SmaCC [19], Wrangler [14], and XT [11]. Wrangler, men-
tioned earlier, is a tool (refactoring framework) implemented
in Erlang which is also the base language. Wrangler supports

refactoring commands for locating program elements and
provides a custom DSL to execute the commands.

Like R2, Rascal [13] also uses JDT refactorings, which
are available as APIs in the Rascal JDTRefactoring library.
They too target Java, but their scripting language (Rascal)
is not an OO language. Further, manual code changes are
required in their transformation process to fix incorrect access
modifiers, clean up unnecessary codes, etc., which we would
have preferred to be automated.

SOUL [15] uses declarative metaprogramming to define
design patterns and their constraints in a language-independent
manner. Their use of a variant of Prolog is elegant, as they
tackle problems similar to R2.

Moreover, R2 deals with scripting high-level refactorings,
not with recommending when and which refactorings to
apply or detecting existing refactorings. There are excellent
papers [43]–[62] on this, but all are orthogonal to the use and
goals of R2.

Finally, refactoring research has grown enormously in the
last decade. Traditional refactorings improve design, like R2.
More recent refactorings improve non-functional qualities
(e.g., energy consumption [63]), address more challenging
languages (e.g., Yahoo! Pipes [64]), or use novel paradigms
to check refactoring safety [65].

VII. CONCLUSIONS

Retrofitting design patterns into a program using refactor-
ings is tedious and error-prone. The burden can be alleviated,
either partially or fully, by refactoring scripts. Today’s IDEs
offer poor or no support for scripts, or require a background
and understanding of IDE internals that students and most pro-
grammers will never have. Proposed DSLs that can be used for
scripting may require knowledge of yet another programming
language and the need to code primitive refactorings.

Our solution R2 uses (1) Java as a scripting language, (2)
R2 objects are class, method, and field declarations of a Java
program, and (3) R2 methods are native JDT refactorings,
primitive transformations, or our scripts. We used R2 to
automate 18 out of 23 classical design patterns, where each
R2 script is a compact Java method.

Our case study shows that R2 refactoring scripts:
• save significant time for even relatively small refactor-

ings (reducing to 24 seconds to run an R2 script that
introduces a Visitor with 13 methods), and

• can be applied to non-trivial programs (554 refactorings
applied to a code base of 26K).

Next-generation refactoring engines should support refac-
toring scripts. We found that such scripts place a heavy
demand on the correctness, expressiveness, and speed of IDE-
provided refactorings. Whether off-the-shelf JDT (or other IDE
refactoring engines) will meet these challenges remains to be
seen. Nevertheless, R2 takes us a step closer to this goal.

Acknowledgements. We thank Friedrich Steimann for his
valuable comments on an early draft of this paper. We grate-
fully acknowledge support for this work by NSF grants CCF-
1212683 and CCF-1439957.

REFERENCES

[1] J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2004.
[2] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides, “Design

Patterns: Abstraction and Reuse of Object-Oriented Design,” in ECOOP,
1993.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] W. G. Griswold, “Program Restructuring as an Aid to Software Main-
tenance,” Ph.D. dissertation, University of Washington, 1991.

[5] B. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D. disserta-
tion, University of Illinois at Urbana-Champaign, 1992.

[6] W. F. Opdyke and R. E. Johnson, “Refactoring: An Aid in Designing
Application Frameworks and Evolving Object-Oriented Systems,” in
SOOPA, 1990.

[7] L. Tokuda and D. Batory, “Evolving Object-Oriented Designs with
Refactorings,” in ASE, 1999.

[8] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles, “Tom:
Piggybacking Rewriting on Java,” in RTA, 2007.

[9] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program Transfor-
mations for Practical Scalable Software Evolution,” in ICSE, 2004.

[10] M. Boshernitsan and S. L. Graham, “iXj: Interactive Source-to-Source
Transformations for Java,” in OOPSLA Companion, 2004.

[11] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/XT
0.17. A Language and Toolset for Program Transformation,” Science of
Computer Programming, Jun. 2008.

[12] J. R. Cordy, “The TXL Source Transformation Language,” Science of
Computer Programming, Aug. 2006.

[13] M. Hills, P. Klint, and J. J. Vinju, “Scripting a Refactoring with Rascal
and Eclipse,” in WRT, 2012.

[14] H. Li and S. Thompson, “A Domain-Specific Language for Scripting
Refactorings in Erlang,” in FASE, 2012.

[15] T. Mens and T. Tourwe, “A Declarative Evolution Framework for
Object-Oriented Design Patterns,” in ICSM, 2001.

[16] F. Steimann, C. Kollee, and J. von Pilgrim, “A Refactoring Constraint
Language and its Application to Eiffel,” in ECOOP, 2011.

[17] M. van den Brand, A. van Deursen, J. Heering, H. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder,
J. Vinju, E. Visser, and J. Visser, “The ASF+SDF Meta-environment: A
Component-Based Language Development Environment,” in CC, 2001.

[18] M. Verbaere, R. Ettinger, and O. de Moor, “JunGL: a Scripting Language
for Refactoring,” in ICSE, 2006.

[19] J. Brant and D. Roberts, “The SmaCC Transformation Engine: How to
Convert Your Entire Code Base into a different Programming Language,”
in OOPSLA Companion, 2009.

[20] L. Frenzel, “The Language Toolkit: An API for Automated Refactorings
in Eclipse-based IDEs,” https://eclipse.org/articles/Article-LTK/ltk.html.

[21] “Eclipse Java development tools (JDT),” http://www.eclipse.org/jdt/.
[22] F. Steimann and A. Thies, “From Public to Private to Absent: Refactor-

ing Java Programs Under Constrained Accessibility,” in ECOOP, 2009.
[23] “Eclipse Luna,” https://eclipse.org/luna/.
[24] J. Sugrue, “Design Patterns Uncovered: The Visitor Pattern,” https://

dzone.com/articles/design-patterns-visitor, 2010.
[25] “R2 Design Pattern Scripts,” http://www.cs.utexas.edu/∼jongwook/

r2designpatternscripts.html/.
[26] D. Batory, “A Tutorial on Feature Oriented Programming and the

AHEAD Tool Suite,” in GTTSE, 2005.
[27] “Dialect user’s guide,” 1990.
[28] “Apache Commons Codec,” https://commons.apache.org/proper/

commons-codec/.
[29] “Apache Commons IO,” https://commons.apache.org/proper/

commons-io/.
[30] “JUnit,” http://junit.org/.
[31] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated

Detection of Refactorings in Evolving Components,” in ECOOP, 2006.
[32] “Eclipse Juno,” https://eclipse.org/juno/.
[33] “JDT Refactoring Bugs,” http://www.cs.utexas.edu/∼jongwook/

jdtrefactoringbugs.html/.
[34] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and

R. E. Johnson, “Use, Disuse, and Misuse of Automated Refactorings,”
in ICSE, 2012.

[35] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and
How We Know It,” in ICSE, 2009.

[36] J. Kim, D. Batory, and D. Dig, “Design Pattern Refactoring by Pretty-
Printing,” in submitted for publication, 2015.

[37] M. Schaefer and O. de Moor, “Specifying and Implementing Refactor-
ings,” in OOPSLA, 2010.

[38] D. Roberts, “Practical Analysis for Refactoring,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, 1999.

[39] A. Garrido, “Program Refactoring in the Presence of Preprocessor Direc-
tives,” Ph.D. dissertation, University of Illinois at Urbana-Champaign,
2005.

[40] R. C. Miller and B. A. Myers, “Interactive Simultaneous Editing of
Multiple Text Regions,” in USENIX, 2001.

[41] M. Toomim, A. Begel, and S. L. Graham, “Managing Duplicated Code
with Linked Editing,” in VLHCC, 2004.

[42] M. van den Brand, M. Bruntink, G. Economopoulos, H. de Jong,
P. Klint, T. Kooiker, T. van der Storm, and J. Vinju, “Using The Meta-
Environment for Maintenance and Renovation,” in CSMR, 2007.

[43] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-Improving Cou-
pling and Cohesion of Existing Code,” in WCRE, 2004.

[44] O. Seng, J. Stammel, and D. Burkhart, “Search-based Determination
of Refactorings for Improving the Class Structure of Object-oriented
Systems,” in GECCO, 2006.

[45] N. Tsantalis and A. Chatzigeorgiou, “Identification of Move Method
Refactoring Opportunities,” IEEE Transactions on Software Engineer-
ing, May 2009.

[46] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah, “On the
Existence of High-Impact Refactoring Opportunities in Programs,” in
ACSC, 2012.

[47] H. Melton and E. Tempero, “Identifying Refactoring Opportunities by
Identifying Dependency Cycles,” in ACSC, 2006.

[48] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling Manual and
Automatic Refactoring,” in ICSE, 2012.

[49] D. Silva, R. Terra, and M. T. Valente, “Recommending Automated
Extract Method Refactorings,” in ICPC, 2014.

[50] R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, “Recommend-
ing Refactorings to Reverse Software Architecture Erosion,” in CSMR,
2012.

[51] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente, “Recommending
Move Method Refactorings Using Dependency Sets,” in WCRE, 2013.

[52] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Automating extract
class refactoring: an improved method and its evaluation,” Empirical
Software Engineering, Oct. 2014.

[53] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. D. Lucia,
“Methodbook: Recommending Move Method Refactorings via Rela-
tional Topic Models,” IEEE Transactions on Software Engineering, Jul.
2014.

[54] N. A. Milea, L. Jiang, and S.-C. Khoo, “Scalable Detection of Missed
Cross-function Refactorings,” in ISSTA, 2014.

[55] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, Recommending
Refactoring Operations in Large Software Systems. RSSE, 2014.

[56] Q. D. Soetens, J. Pérez, and S. Demeyer, “An Initial Investigation into
Change-Based Reconstruction of Floss-Refactorings,” in ICSM, 2013.

[57] B. Biegel, Q. D. Soetens, W. Hornig, S. Diehl, and S. Demeyer,
“Comparison of Similarity Metrics for Refactoring Detection,” in MSR,
2011.

[58] M. Ó. Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. H. Moghadam,
“Experimental Assessment of Software Metrics Using Automated Refac-
toring,” in ESEM, 2012.

[59] N. A. Milea, L. Jiang, and S. Khoo, “Vector Abstraction and Concretiza-
tion for Scalable Detection of Refactorings,” in FSE, 2014.

[60] G. Bavota, S. Panichella, N. Tsantalis, M. D. Penta, R. Oliveto,
and G. Canfora, “Recommending Refactorings based on Team Co-
Maintenance Patterns,” in ASE, 2014.

[61] G. Bavota, R. Oliveto, A. D. Lucia, G. Antoniol, and Y. Guéhéneuc,
“Playing with Refactoring: Identifying Extract Class Opportunities
through Game Theory,” in ICSM, 2010.

[62] G. Bavota, A. D. Lucia, and R. Oliveto, “Identifying Extract Class
Refactoring Opportunities Using Structural and Semantic Cohesion
Measures,” Journal of Systems and Software, Apr. 2011.

[63] C. Sahin, L. Pollock, and J. Clause, “How Do Code Refactorings Affect
Energy Usage?” in ESEM, 2014.

[64] K. T. Stolee and S. Elbaum, “Refactoring Pipe-like Mashups for End-
User Programmers,” in ICSE, 2011.

[65] O. Chaparro, G. Bavota, A. Marcus, and M. D. Penta, “On the Impact
of Refactoring Operations on Code Quality Metrics,” in ICSME, 2014.

https://eclipse.org/articles/Article-LTK/ltk.html
http://www.eclipse.org/jdt/
https://eclipse.org/luna/
https://dzone.com/articles/design-patterns-visitor
https://dzone.com/articles/design-patterns-visitor
http://www.cs.utexas.edu/~jongwook/r2designpatternscripts.html/
http://www.cs.utexas.edu/~jongwook/r2designpatternscripts.html/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-io/
https://commons.apache.org/proper/commons-io/
http://junit.org/
https://eclipse.org/juno/
http://www.cs.utexas.edu/~jongwook/jdtrefactoringbugs.html/
http://www.cs.utexas.edu/~jongwook/jdtrefactoringbugs.html/

	Introduction
	A Motivating Example
	Separation of Concerns
	Need for Other (Primitive) Refactorings
	Limited Scope
	Recap

	Reflective Refactoring
	Automating the Visitor Pattern
	Automating the Inverse Visitor
	More Opportunities

	Other Patterns
	Fully Automatable Patterns
	Partially Automatable Patterns
	Remaining Patterns

	Case Studies, Evaluation, and Perspective
	Experiment
	Results
	Perspective and Future Work

	Related Work
	Conclusions
	References

