
A Theory of Modularity for Automated Software Development
(Keynote)

Don Batory
Department of Computer Science

University of Texas at Austin, Texas, USA
batory@cs.utexas.edu

Abstract
Automated Software Development (ASD) are technologies
for developing customized programs automatically and com-
positionally from modules. The foundations of ASD are
domain-specific algebras, where each program in the target
domain maps to a unique expression. Algebraic identities are
used to optimize programs automatically. In this keynote,
I trace the history of ASD and present a general theory of
modularity for ASD that follows from its tenets.

Categories and Subject Descriptors D.2.2 Design Tools and Techniques
General Terms design
Keywords module composition, categories, commuting diagrams, functors

1. Introduction
I have worked in modeling and modularity for almost 40
years. I started with the modular construction of extensi-
ble database systems [3], which is now an early example
of Software Product Lines (SPLs) [8]. From there, it was
short steps to the modular construction of Domain Specific
Languages (DSLs) [7] and then to Model Driven Engineer-
ing (MDE) [33]. My current interest is automatically deriv-
ing high-performance software libraries [24] using a correct-
by-construction approach. This keynote presents a theory of
modularity that is appropriate for Automated Software De-
velopment (ASD).1

Why ASD? I believe it to be a grand challenge in Soft-
ware Engineering (SE). One needs to master (at least) three
distinct subjects:

1 There is no Related Work section in this paper: the entire paper is a Related
Work section. For space reasons, I limit citations to the most critical papers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODULARITY Companion’15, March 16–19, 2015, Fort Collins, CO, USA.
Copyright c© 2015 ACM 978-1-4503-3283-5/15/03. . . $15.00.
http://dx.doi.org/10.1145/

1. Domain. You must be an expert in the target domain, e.g.,
Dense Linear Algebra (DLA);

2. Software Engineering. You must be an expert in writing
efficient programs for that domain; and

3. Modeling. You must recognize the atomic modules of
software construction for that domain. What form that
modules take (graph rewrites) may be very different from
the form you have experienced in the past (mixin layers,
aspects).

It is non-trivial to acquire and integrate all three areas of
expertise. If you are lucky (and I have been on occasion), one
person assumes all three roles. More typically, the required
expertise is provided by a team of experts.

Modules for ASD must satisfy more constraints than typi-
cal modules (domain atomicity, composability, and reusabil-
ity which I document later). But does this make the problem
of module design harder? Honestly, I am not sure. I have
found the constraints of ASD to remove degrees of freedom
that only complicate solutions. I will leave the simplicity or
difficulty of this form of modularity for others to decide.

A recent chat with a colleague revealed his thoughts and
benefits of modularity, which I take as typical of SE practi-
tioners today:

• Modules for the sake of modules are uninteresting,
• Modules are created to improve performance,
• Modules are created for adaptability,
• Modules are created for reasons of understandability, etc.

I was bewildered by a list of properties that modules should
have, as it told me nothing about what modules should be,
which to me was a more fundamental and interesting ques-
tion. It is also a question that is, for many reasons, is difficult
to answer:

• Goals for modularity may be application-specific;
• Different perspectives and different goals lead to differ-

ent conclusions and different expectations;
• Our education imprints us to view problems in different

ways;

• There is far too much emphasis on concrete thinking and
too little on abstraction (which to me is what design is all
about);

• There are pitfalls: we (including myself) tend to general-
ize from too few domains; and

• It takes time to understand and appreciate the viewpoints
of others.

I could not have written this paper in my first 10 years, nor
20. Maybe 30. The contributions of this keynote are to:

• Review fundamental results on modularity that imprinted
my world view of ASD;

• Explain concepts that are fundamental to ASD modules;
• Present technical results that led me to this position; and
• Sketch a general Theory of Modularity for ASD

from the perspective of decades of hindsight.

2. Future Software Development Paradigms
The 1980’s were replete with prognostications on future
paradigms for software development, particularly ASD. The
primary four were:

• Compositional Programming – to develop software by
composing modules;

• Generative Programming – to have programs generate
programs;

• Domain-Specific Languages – to elevate languages to
domain-specific notations; and

• Automatic Programming – to translate declarative spec-
ifications into efficient programs automatically.

It was clear back then that a simultaneous advance on all
fronts was needed to make a significant impact. Astonish-
ingly, an example of this futuristic vision was realized a
decade earlier around the time when many AI researchers
gave up on automatic programming. It was Relational Query
Optimization (RQO) [27], which in my opinion is the most
significant result in ASD. Ironically, RQO is rarely men-
tioned in typical textbooks and papers in SE, software de-
sign, modularity, product lines, DSLs, and software archi-
tectures, almost as if RQO never existed.

To refresh everyone’s memory, Figure 1 illustrates the
basic ideas. An SQL select statement is translated by a parser
to an inefficient relational algebra expression. An optimizer
applies algebraic identities to optimize the expression. A
code generator translates the optimized expression into an
efficient data retrieval (Java) program.

SQL is a prototypical declarative DSL. Relational alge-
bra is an exemplar of compositional programming: relational
operations are composed into expressions to define data re-
trieval programs. The code generator is a contribution to gen-

Relational Query Optimization (RQO)

Modularity15-1

SQL
select

statement

parser

inefficient
relational

algebra
expression

optimizer

efficient
relational

algebra
expression

declarative
domain-specific

language

automatic
programming

code
generator

efficient
programgenerative

programming

compositional
programming

Figure 1. Relational Query Optimization Paradigm.

erative programming, and the optimizer is the key to auto-
matic programming (more on this later).

RQO simplified database usage and revolutionized a fun-
damental area in Computer Science. It automated the de-
velopment of data retrieval programs which were notori-
ously hard-to-write, hard-to-optimize, and even harder-to-
maintain. Modules were operations, compositions of oper-
ations were expressions, each of which represented a unique
program, and algebraic identities could be used to optimize
programs/expressions automatically.

In short, RQO provided me a framework in which to think
about ASD. It led me to make the following assumption that
I believe is correct to this day: all domains have fundamen-
tal “shapes” or “modules” or “operations” from which their
programs could be assembled. I illustrated this insight in my
first tutorial on ASD in 1994 using Figure 2. In (a) I cut out
of paper two shapes, a triangle and rectangle, and chose an
attendee to use scissors to partition each shape (which repre-
sented the source code of a program) into modules. I might
get (b) as a decomposition. Then I revealed that I wanted to
build program (c), a parallelogram. By overlaying modules
from each of the decomposed programs onto the parallel-
ogram as in (d), it was easy to show that a lot of hacking
would be needed to build the parallelogram using ad hoc de-
compositions. Then I showed (e) which demonstrated that a
“domain-atomic” decomposition could enable the composi-
tion of pieces x and y of Figure 2e to build (c) in no time.

Modularity15-2

(a)

(b)

(c)

(e)

(d)

x

y

Figure 2. Fundamental Shapes in a Domain.

Scientific Theory = Domain Analysis

• A theory
• starts with a set of disparate but

intuitively related phenomena

• fundamental but open set of
atoms from which programs can
be constructed

• to explain existing phenomena in
an elegant way and also

• to predict new phenomena that
hadn’t been seen before

domain of programs

‘atomic’ theory of modular
automated construction

Modularity15-3

Figure 3. Domain Analysis

I viewed the process
of domain analysis (the
activity of studying a
domain of programs to
find its atomic shapes)
to be the analog of cre-
ating an atomic the-
ory in science. Starting
with a set of disparate
but representative pro-
grams (indicated by ◦
in Figure 3), I ab-
stracted to a theory of
modular construction so that I could explain these pro-
grams in an elegant way by composing “atoms” (funda-
mental shapes/modules) and to predict new phenomena/pro-
grams (indicated by •) that hadn’t been seen or built before.

set of semantically
equivalent programs

program

Modularity15-14

domain of programs

‘atomic’ theory of modular
automated construction

‘best’ program
w.r.t. red metric

‘best’ program
w.r.t. green metric

Figure 4. Deriving Semanti-
cally Equivalent Programs

Further, RQO derived
a set of semantically
equivalent programs
given a seed program.
In Figure 4, programs
that are equivalent to
the initial program (the
blue dot) are derived
by applying algebraic
identities, where an
arrow A → B says
program B is derived
from A. That is, replac-
ing equals with equals
yields program B that is semantically equivalent to A.

Given an estimate of the performance of each program,
RQO selects the “best”. Using a one metric – say red – one
program would be proclaimed the “best”; using another met-
ric – say green – a different program may be selected (see
Figure 4). Note that the graph of semantically equivalent
programs derived from identities in Figure 4 remains invari-
ant w.r.t. chosen metrics.

So how does RQO select the “best” program? Answer:
It maintains different representations for each operation. So
given a relational expression:

P = σ(A) on σ(B)

to estimate P’s red performance, RQO composes redr perfor-
mance representations of each operation and relation [27]:

Pr = σr(Ar) onr σr(Br)

and evaluates Pr to determine P’s red efficiency. It composes
greeng performance representations to estimate P’s green
efficiency:

Pg = σg(Ag) ong σg(Bg)

And to produce the sources code for P, it composes source
representations:

Ps = σs(As) ons σs(Bs)

To me, this was supremely elegant – granted that I under-
stood/created this explanation only a decade ago. The sym-
metry that one finds in Nature was obvious in this explana-
tion, so it had the right look and feel.

In short, my database upbringing imprinted me to think
about ASD in terms of algebras, that “compositional” meant
following the tenets of high-school mathematics – not any
ad hoc means which often passes for gospel in SE literature
[22].

3. ASD Modularity Diagrams: Part 1
We are all familiar with UML class diagrams. They allow
designers to express relationships among program entities,
such as classes, interfaces, methods, and so on. These rela-
tionships are declarative: they can be implemented in lots of
ways in Java, C#, C, and even assembly languages.

ASD uses different kinds of entities and relationships and
also benefits from declarative diagrams. Figure 5 shows an
ASD “modularity” diagram. A dot (•) represents a program
or artifact. A series of changes (δi) is applied to P0 to pro-
duce P4. These deltas could be edits, refactorings, reformat-
tings, etc. In normal programming, deltas are realized man-
ually by programmers. In ASD, all deltas are automatically
executed. For now, think of a delta as adding a module. So
program P1 is produced from P0 by adding module δ1. Given
this description, we can formulate the relation between P4
and P0 as the expression:

P4 = δ4 · δ3 · δ2 · δ1 · P0

where the δi are domain operations to be composed.2

Modularity15-16

𝑃0 𝑃1
𝛿1 𝑃2

𝛿2 𝑃3
𝛿3 𝑃4

𝛿4(a)

𝛿1 𝛿2 𝛿3 𝛿4

(c)

+a()
+b()
+c()

K1

+a()
+b()
+c()

K2

+a()
+b()
+c()

K3

+a()
+b()
+c()

K

+d()
+e()
+f()

G

1 *

𝑃0
𝑃1 𝑃2 𝑃3

𝑃4

K G

K1 K2 K3

1 *

Figure 5. Declarative Modularity Diagrams in ASD.

Let’s use these ideas to examine a modular development
of Section 2 of this keynote. Figure 6 shows its ASD mod-
ularity diagram. The dot on the far left denotes the null or
empty section; the dot on the far right represents the com-
pleted section. The remaining dots represent intermediate
stages of that section’s development. An edge (X → Y) rep-
resents a modular increment to X that produces Y.

“Design” is a noun: it represents the structure and rela-
tionship among formal elements within an artifact or set of
artifacts. “Design” is also a verb: it is a sequence of steps
to produce a (noun) design. Figure 6 represents both static
and sequence relationships. A design process is a path con-
necting dots in Figure 6. I took the “high-road” by adding

2 Even P0, a base document, can be considered a base operation – it has no
parameters.

Modularity15-1

RQO Recap

DomAn ≠ DomAn’
CompProps ≠ CompProps’

ø Section 2

Figure 6. Modular Design of Section 2.

the module for DomainAnalysis before CompProperties
when I created Section 2. But I could have proceeded in
another way, using slightly different modules, first using
CompProperties’ and then DomainAnalysis’, to produce
exactly the same end result. I see this modular structure all
the time in software design [2, 33]. Here are examples.

Example 1. Consider the tiny code example of Fig-
ure 7a [1]. Starting with the null class, I first create a
container class (the region in gray) [21]. Then I add
a module that introduces an insert() method (the
region in light blue). Next I add a module that main-
tains the size of a container (the regions in green):
it introduces a method getSize, a size field and a
modification of insert() to increment the container
size when an element is added. This last/green module
must be aware that insert exists to make the appro-
priate reparation of insert.3 Finally, I add a module
(orange) that supplies the remaining members.

class container {

}

int size = 0;

void insert(Element e)

{

...

}

size++;

int getSize() {

return size;

}

... // the rest

(a)

cont rest

class container {

}

int size = 0;

int getSize() {

return size;

}

... // the rest

(b)

void insert(Element e)

{

...

}

size++;

cont rest

Figure 7. A Tiny Code Example.

Figure 7b is another design. The difference is that I
add a size module first (the regions in green), and
then a module that introduces insert() (the region
in light blue). Note that the last/blue module must
be aware that container size exists to introduce the
correct insert method.3 Observe the green and blue
modules in Figure 7a-b are not identical, but the re-
sults of their compositions are indistinguishable [1].4

3 In AOP-speak, the green module cannot be oblivious to the blue module in
Figure 7a, and vice versa in Figure 7b. The same for Figure 8a-b. Compare
with [17].
4 It is possible to write two aspects that are commutative to produce Fig-
ure 7, but this not my point. I am interested in compositions of different
modules that produce the same result.

Example 2. Now consider a larger example in Fig-
ure 8a. Starting with an empty code base, I introduce
an IDE as a container of language-based tools. Next I
add code bases for a compiler and AST5 creation (out-
lined in blue, ignoring green files). Then I add a refac-
toring engine (green), which also modifies the AST
codebase to permit AST manipulation. This refactor-
ing/green module must be aware of the AST codebase
to make the correct changes.3 Lastly, I add a module
(orange) that introduces remaining tools.

(a)

IDE rest

Refactoring Engine

Compiler

AST

(b)

IDE rest

Refactoring Engine’

Compiler

AST

Figure 8. A Larger Code Example.

Figure 8b shows a different design. This time I had
foresight when writing my AST module to include
AST manipulation capabilities. So my initial module,
Refac’ (green), already has the needed infrastructure
for later tools. Then I add my compiler (blue), which
must be aware that the required AST codebase exists
for it to work correctly.3 Observe that the green and
blue modules in Figure 8a-b are not identical, but the
results of their compositions are indistinguishable.6

Example 3. A “theory” of modularity should not be
limited to code. The artifact being created could be a
latex file, powerpoint file, or pdf of my keynote. The
ideas behind Figure 6 are quite general.7

Modularity15-17

𝑓′

𝑔𝑔′

𝑓

𝑓′ ∙ 𝑔 = 𝑔′ ∙ 𝑓

𝑓

𝑔𝑔’

𝑓′

𝑓′ ∙ 𝑔′ = 𝑔 ∙ 𝑓

(b) IDE rest

Figure 9. A Com-
muting Diagram

The name given to the equal-
ity relationship in Figure 6 is a
commuting diagram. A commut-
ing diagram (Figure 9) says noth-
ing about how modules are im-
plemented – such details are ab-
stracted away so that implementa-
tion is a parameter to the theory,
as it should be. It also says noth-
ing about when composition takes

5 Abstract Syntax Trees (ASTs).
6 To my aspect colleagues: I know you can define two aspects that are
commutative whose composition yields the same as my examples. That is
not the point that I want to make: namely, composing different modules
yields the same result.
7 These are examples of feature interaction, a phenomena well-known in the
SPL literature [6, 10].

place: it could be at compile-time, load-time, or run-time;
composition time is also a parameter to the theory, as it
should be. But these diagrams say something important: all
paths between two points/dots yield the same result. It is a
statement of common sense: there are many ways to modu-
larly build an artifact. Further, commuting diagrams define
algebraic identities among compositions of different mod-
ules.

Incidentally, a “theory of modularity” which we are work-
ing toward requires us to separate concerns [13]. We should
distinguish implementation techniques from their abstrac-
tions. It then becomes an interesting problem to decide when
certain implementations are appropriate or not. We all know
that no implementation technique is perfect for all situations;
this too is common sense and our “theory” requires it.

4. ASD Modularity Diagrams: Part 2

.html.java .perf.class .xml

program

Figure 10. Multiple Representa-
tions of a Program

Modularity is not
just about code.
Programs have
many different rep-
resentations, all of
which should be
consistent. Plato
had the right idea:
a program is ab-
stract – a Platonic
form [35] – and all
that humans can perceive are its shadows (Figure 10). One
shadow projects a Java representation; moving the light
source, another shadow is cast to expose an HTML repre-
sentation; yet another is a Java .class file representation; a
fourth is an XML document (possibly containing configura-
tion data); and a fifth is a Mathematica performance model
of the program’s run-time behavior.

Further, program representations can be hierarchically
decomposed. One such structure is shown in Figure 11a. An
instance is shown in (b), where a Java program has a code
representation (consisting of a pair of Java files), a makefile,
a configuration file, and documentation (consisting of a pair
of Word files). Another instance is (c), a client-server which
has a client code base (a pair of C# files), UML and HTML
artifacts, and a server code base (a C# and data file). In
short, a module can contain any number of representations
and decompositions, not just code. Equivalently, a module
can contain any number of submodules. Our “theory” can
express both.

.html.java .perf.class .xml

program

program

(a) hierarchy of representations

java1 java2 doc1 doc2

code docs

make config

program

(b) a Java program

java1 java2 doc1 doc2

code docs

make config

program

client server
UML html

C#1 C#2 C# data

(c) a client-server

Figure 11. Hierarchy of Program Representations.

Let’s return to the modularity diagrams of the previous
section. We start with a program P0. Adding a module to P0
yields program P1, denoted earlier by P0 → P1. But now,
we know that P0 is a hierarchy of consistent representations.
A module that encapsulates a semantic increment must up-
date any or all of these representations lockstep, so that the
corresponding representations of P1 are consistent too. Fig-
ure 12 shows this update as a set of red arrows – it is as if
the hierarchy of P0 is “pulled forward” to the hierarchy of P1
through a modularized set of updates. Again, appreciate that
an implementation of individual arrows is a parameter to our
“theory”.

𝑃0

𝑃1

Figure 12. Modular Update of a Program’s Representation.

Example 4. Remember RQO and its reliance on mul-
tiple representations of relational operations? Fig-
ure 13 illustrates the precise modularity relationships
that RQO exploits.

Modularity15-1

𝑅

𝑅𝑠 𝑅𝑝

𝜎(𝑅)

𝜎𝑠(𝑅𝑠) 𝜎𝑝(𝑅𝑝)

Figure 13. RQO Modules.

Example 5. In the early 1990s, Egon Börger (Hum-
bolt Research Award 2007) developed Abstract State
Machines (ASMs) as a methodology, formalism, and
foundational theory for incrementally developing cor-
rect programs. He is a pioneer in modular incremental
semantics.
We first met at a 1995 Dagstuhl seminar. And judging
from each other’s presentations, we knew that we
were working on something similar. But we also knew
that were were not ready to understand and appreciate
each other’s technical details or point of view.
We met next in 2006 at a Stanford workshop on the
Verifying Compiler challenge. Egon would make a
remark during the meeting, and I’m thinking: that’s
what I would say. And when I made a comment, Egon
felt the same. That was the start of a very satisfying
collaboration which continues to this day.

Egon, with Robert Stärk and Joachim Schmid, wrote
the text Java and the Java Virtual Machine, referred to
as the JBook [31]. They formally defined and proved
correct an ASM version of the Java 1.0 compiler and
(among other results) found errors in the Java 1.0
specification. The JBook presented a structured way
to incrementally and modularly develop a grammar,
interpreter, compiler, and bytecode JVM interpreter
for Java 1.0. This was an enormous accomplishment.
They began with a sublanguage of Java expressions,
the Expr program at the far left in Figure 14, with its
grammar, ASM interpreter, ASM compiler, and ASM
JVM interpreter as subrepresentations. One module
was added at a time, incrementally extending the se-
mantics of the language and its tools.8 For example,
module Stm added imperative statements, then mod-
ule ExpS added static fields and expressions, then
StmM added method calls and returns, and so on. Only
after the definition of Java 1.0 had been constructed
was a manual proof of tool consistency attempted.

gram

JVM
comp

interp

Expr

proof

gram

JVM
comp

interp

Java1.0

Expr - imperative expressions

Stm - imperative statements

ExpS - static fields & expressions

StmM - method calls & returns

ExpO - object expressions

ExpE - expression exceptions

StmE - exception statements

Proof added at the end

Figure 14. Development of the JBook and its Proof.

The “theory of modularity” spoke to us: the construc-
tion of the proof could be modular too [4]. Reason:
a proof is just another representation (albeit complex)
of the target program. And indeed this was the case
(see Figure 15). A proof-of-correctness for the sublan-
guages could indeed be modularized and built as other
representations. This was subsequently confirmed by
Delaware [12] using the Coq theorem prover and by
others (e.g., [32]).

proof

Expr

Java1.0

Figure 15. Modularizing and Composing Proofs.

5. My Path to Here
I approached ASD modularity starting from practice and
working toward theory. I began with a simple idea, built
it, reflected on what went right and wrong, was prepared to
abandon hard-fought territory, and looped on this process.

8 The form of modularity Börger used matched that of AHEAD: introduc-
tions and wrappings of existing introductions.

At each step, I generalized what I knew and how I thought
about ASD – the set of tenets that governed my world often
collapsed into a smaller and more general core. Initial steps
took ∼8 years, because (a) none of the ideas or implementa-
tions were obvious, (b) it involved one or more Ph.D.s, and
(c) I had to re-learn what I previously understood from a
broader context. Later steps took less time.

My work on ASD modules began with Genesis ’82-’90.
Inspired by Star Trek episodes and movies, the idea of com-
posing plug-compatible “modules” to save the Universe
seemed to be a good idea. Using standardized interfaces
and modules that exported and imported these interfaces, I
created a set of “legos” from which to construct customized
database management systems (DBMSs).

Figure 16 illustrates how Genesis worked. From domain
analysis, I defined standardized interfaces for fundamental
programming abstractions in DBMSs. Figure 16a lists these
interfaces as “types” R and G. Modules exported a single in-
terface and imported zero or more interfaces. The signature
R β(G) meant module β exports interface R and imports
interface G. Signature R η meant module η exports interface
R and imports nothing (other than making OS calls); η is a
base module.

R 𝜶(G)
R 𝜷(G)
R 𝜿(R)
R 𝜼

G 𝜸(G)
G 𝝀

(a) Pb = 𝜶(𝜸(𝝀))(b)

Pc = 𝜷(𝜸(λ))(c)

Pd = 𝜿(𝜼)(d)

Figure 16. Genesis ASD Modules.

Compositions of these modules implement programs that
export a standardized interface. Expression Figure 16b de-
fines program Pb that exports interface R and is a compo-
sition of three modules (α, γ, λ). Program Pc also imple-
ments R in Figure 16c and is another composition of three
modules (β, γ, λ). Lastly Pd in Figure 16d implements R by
two modules (κ, η).9

Genesis interfaces generalized Dijkstra’s 1965 idea of
virtual machines (VMs). A VM was a collection of functions
that expressed a particular abstraction; a VM at level i + 1

calls a VM at level i. I refreshed these ideas to define
Object-Oriented VMs (OOVMs) as a set of Java classes and
interfaces. Figure 17 shows two OOVMs: R has five distinct
and related classes; G has two unrelated classes.

A Genesis module or layer was a package that translates
objects and calls of the exported OOVM to objects and calls
of the imported OOVM. Module α (or β) had the graphical
depiction of Figure 18a – it exported R and imported G. This
layer could have been a composition of two smaller layers
α = x(y) in (b). The corresponding ASD diagram of

9 The connection of Figure 16a to a grammar, where sentences of this
grammar are legal compositions of modules, did not go unnoticed. This
is the origin of “GenVoca grammars” [8].

Class1 Class3

Class2

Class4 Class5

1
*

1

*

Class10 Class11

OOVM R

OOVM G

Figure 17. Object Oriented Virtual Machines.

this composition is (c) where, as before, each arrow adds a
module. Figure 18 should look familiar to Context Oriented
Programming (COP) researchers.

Modularity15-5

R

G

layer

exported

imported

(a) (b) (c)

R

G

R R2G1(g:G)

R R2G2(g:G)

R R2R(r:R)

R R2B

G G2G(g:G)

G G2B

(a) P1 = R2G1(G2G(G2B))(b)

P2 = R2G2(G2G(G2B))(c)

P3 = R2R(R2B)(d)

R x(i:T)

T y(i:G)

R

x

x(y)

Figure 18. Layers and Layer Composition.

Modules that exported and imported standardized inter-
faces worked really well. Layers were increments in pro-
gram/system semantics – and eventually were called fea-
tures.10 This was the first time I saw a tree of derivations that
underlie software product lines: each node in Figure 19 is a
particular Genesis DBMS, each arrow adds a module, and a
path from ∅, the null or empty DBMS, to a particular node
Di was a composition of layers that defined the customized
DBMS Di.11

𝐷7

𝐷10

∅ 𝐷1

𝐷3

𝐷2

𝐷4
𝐷5

𝐷6

𝐷8

𝐷9

𝐷11 𝐷12

𝐹1
𝐹2

𝐹3
𝐹4

𝐹5
𝐹6

𝐹9

𝐹4
𝐹6

𝐹4

𝐹7 𝐹8

Figure 19. An ASD Diagram of a Software Product Line.

As I said, modules with standardized interfaces worked
well, I needed more. I wanted to create customized classes
from modules. This reminded me of the 1988 “Program-
ming by (Subclass) Differences” (PSD) paper by Johnson
and Foote [19].

Consider Figure 20. (a) shows a base class A. In (b), a
feature’s modifications to A are encapsulated in a subclass

10 It was not until 2001, almost 15 years later, that I first used “features” and
“product lines” even though Kang used Genesis as one of the four exemplars
to motivate his 1990 pioneering work on feature models [20].
11 The feature model of an SPL encodes this graph as a set of rules.

and – here’s the trick – when the feature is composed, the
name A is assumed by the subclass and the original class is
no longer referenced. The addition of subsequently applied
features in (c) and (d) show a repeat of these ideas (which is
much easier illustrated visually). (e) shows this progression
of changes in as an ASD diagram.

A

base
class

(a)

A

and
feature 1,

(b)

A

A

and
feature 2,

(c)

and
feature 3.

A

A

A

(d) (e)

(a)

(b)

(c)

(d)

Figure 20. Programming by Subclass Differences (PSD).

This idea – which can be emulated by mixins [9] – must
be coupled with the following trick, which was indepen-
dently discovered by Smaragdakis [28] and Flatt, Krishna-
murthi, and Felleisen [18]. I call the idea mixin layers. Con-
sider Figure 21a. A base feature is a collection of classes;
this particular base has classes A and B. A feature can in-
troduce new classes and modify existing classes. Feature 1
introduces class C and modifies class B; feature 2 extends
classes A and C and introduces class D; and feature 3 extends
classes A, B, and D. The ASD modularity diagram of this
composition is shown in Figure 21b. You should recognize
this diagram as another example of Figure 12, where a hi-
erarchy of changes/introductions of multiple files are modu-
larized and composed.

null or empty class
identity transformation

C
V

(b)
base

feature 1

feature 2

feature 3

(a)

C

B

Æ Æ

A D

Figure 21. Mixin Layers Scale PSD.

In honestly, I did not recognize Figure 21b at the time
mixin layers were discovered; this occurred years later with
the advent of AHEAD, where my tools and ideas leapt from
limited depth hierarchies of code files to arbitrarily-deep
hierarchies and extensions of arbitrary files. It was the first

Base
Program

Figure 22. AHEAD Program Derivations.

time I visualized product lines as Figure 22, but I still had no
“theory”.12

The next advance broadened my view to include MDE.
MDE is about creating models, integrating different models,
and deriving models from other models. Figure 23a depicts
a classical example that converts a state chart diagram into
a set of relational tables, Java source code that implements
the state chart is generated from these tables, and the source
is compiled into bytecode. Figure 23b abstracts this process
into an ASD diagram.

Ready

Drink

Eat

Family yells "pig"

start stop

State Chart Diagram
XML document

xform

FSM source code

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FMS

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

«interface»
State

FSM() {
 state = new Start();
}
gotostart()
{ state = state.gotostart(); }

gotoready()
{ state = state.gotoready(); }

...

-state

1*

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Start

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Ready

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Eat

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Drink

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Fam

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

StopState gotostart()
{ return this; /* ignore */ }

State gotoready()
{ return new Ready(); }
...

String getName()
{ return "start"; }

parse

Relational Tables

(a)

(b)

bytecode

parse xform javac

javac

xformparse

Relational Tables

(a)

(b) parse xform javac

javac

State Chart Diagram
XML document

Ready

Drink

Eat

Family yells "pig"

start stop

FSM source code

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoStop()

-currentState

Current

+gotoReady()
+gotoDrink()
+gotoEat()
+gotoFamily()
+gotoStop()

Start

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoFamily()
+gotoStop()

Ready

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoFamily()
+gotoStop()

Drink

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoFamily()
+gotoStop()

Eat

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoFamily()
+gotoStop()

FamilygotoReady() {
 currentState = new Ready();
}
gotoDrink() { /*ignore*/ }
gotoEat() { /*ignore*/ }
gotoFamily() { /*ignore*/}
gotoStop() { /* ignore */ }

static currentState = new Start();

+gotoReady()
+gotoEat()
+gotoDrink()
+gotoFamily()
+gotoStop()

Stop

bytecode

Figure 23. A Model Driven Application.

Look what happens when MDE is combined with SPLs:
Figure 24a shows program P0 has four different representa-
tions – a state chart SC0, a database DB0, Java code JV0, and
bytecode BC0. The green (vertical) arrows show how these
representations are derived from each other.

𝐷𝐵0

𝐽𝑉0

𝐵𝐶0

𝑃0

𝑆𝐶0

𝐷𝐵0

𝐽𝑉0

𝐵𝐶0

𝑃1

𝑆𝐶1

𝐷𝐵1

𝐽𝑉1

𝐵𝐶1

𝑃2

𝑆𝐶2

𝐷𝐵2

𝐽𝑉2

𝐵𝐶2

𝑃3

𝑆𝐶3

𝐷𝐵3

𝐽𝑉3

𝐵𝐶3

𝑃0

𝑆𝐶0

(a) (b)

Figure 24. Model Driven Software Product Lines.

Figure 24b shows modular elaborations of P0 → P1 →
P2 → P3. If we treated P0 as the module ∅ → P0 (which
is exactly what AHEAD did), modules are horizontal ar-
rows and tools (which map one program representation to
another) are vertical arrows.

Figure 25a shows this more clearly, where we see com-
muting diagrams galore. All paths from the upper-left dot

12 Someone at ICSE’03 pointed out to me that AHEAD was related to
categories. I didn’t make the connection for another 4 years.

(SC0) to the bottom-left dot (BC3) produce the same re-
sult. But from an engineering perspective, not all paths are
equally efficient. When arrows are stretched to match their
run-times, the rectangular grid of Figure 25a warps into Fig-
ure 25b, where the shortest path (a.k.a., geodesic) tells us the
most efficient way to compute BC3 given SC0.

Modularity15-39

(a) (b)

Figure 25. Commuting Diagrams and Geodesics.

Our “theory” predicts such situations would arise. Sure
enough, we looked and discovered geodesics that improved
program build times by 2-3× [33] and by 30-50× [34].

Armed with these ideas, I next explored correct-by-
construction derivations of programs [5]. In particular, I
looked at derivations of programs, where modules of of pro-
gram construction were graph identities (i.e., replace graph X
with an equivalent graph Y). Such rules X→ Y could always
be expressed in one of two forms that are analogous to Java
implements and extends: X is an interface and Y is a legal
implementation of X or X is extended by Y. The key to this
approach is: if the starting specification graph is correct and
each graph transformation that is applied is correct, the fi-
nal (implementing) graph is also correct. Note that although
modules in this universe are very different from modules
that I discussed before, they are special implementations of
arrows in ASD diagrams.

Let’s look at the history of this line of work. Classical
approaches (pre-1992) to formal software development start
with a specification A3. A series of rewrites (identities) is
applied to map it to code (an implementing program) D3
[23]. If the specification is correct and the transformations
are correct, the resulting program is correct by construction.
Figure 26a shows a derivation (path) from A3 to D3.

𝐴0 𝐴1 𝐴2 𝐴3

𝐵0 𝐵1 𝐵2 𝐵3

𝐶0 𝐶1 𝐶2 𝐶3

𝐷0 𝐷1 𝐷2 𝐷3

𝐴3

𝐵3

𝐶3

𝐷3

(a)

𝐴0 𝐴1 𝐴2 𝐴3

𝐵3

𝐶3

𝐷3

(b)

𝐴0 𝐴1

𝐵0 𝐵1

𝐶0 𝐶1

𝐷0 𝐷1

(c)

𝐴0 𝐴1 𝐴2 𝐴3

𝐵0 𝐵1 𝐵2 𝐵3

𝐶0 𝐶1 𝐶2 𝐶3

𝐷0 𝐷1 𝐷2 𝐷3

(d)

Figure 26. Formal Models of Program Development.

If programs could be developed incrementally – read
“modularly” – wouldn’t this also apply to specifications? Of
course it should. Formal approaches, like Z [30], follow the
design process of Figure 26b. To produce a complex specifi-
cation A3, one starts with a simple specification A0. By (mod-
ularly) extending A0 → A3 by adding one requirement at a

time, one can more easily understand A3’s design. Given A3,
one then applies a series of implementing modules/rewrites,
as before, to produce program D3.

It is well-known that deriving implementations of a sim-
ple spec is a lot easier than deriving implementations for
a complicated spec. We observed that if a specification is
too complicated, it is virtually impossible to derive an im-
plementation: the vertical transformations (modules) are too
complicated to explain and understand. This leads to an
obvious question: Why can’t derivations be modularly ex-
tended? Of course they can.13 Figure 26c illustrates the map-
ping of derivation A0 → D0 to its extended A1 → D1, a graph
that should now look familiar. In effect, we take the original
derivation A0 → D0 and incrementally (modularly) “pull it
forward” to produce the desired derivation A3 → D3. Doing
so enables every step that we take to be small enough to be
understandable and demonstrating correctness becomes eas-
ier [26]. We see this as a foundation for future interactive
domain-specific program design tools.

We have found this approach to be indispensable for gen-
erating high performance Dense Linear Algebra libraries
[24] and re-engineering complex legacy dataflow applica-
tions. We could not have done this without an intimate un-
derstanding of the relationships that our “theory” exposed.

6. A Theory of Modularity for ASD
Using the procedure of Figure 3 and the phenomena that
I observed over decades to develop programs modularly, I
recognized that a “Theory of Modularity for ASD” already
exists: It is Category Theory (CT) [25]. The modularity dia-
grams that I’ve shown previously are diagrams of categories.

A category is a directed multi-graph14 where a node,
called an object15, is a single artifact or a domain of artifacts.
An arrow A : X → Y is a total function from object X to
object Y. CT says nothing about the implementation of A. An
arrow is a statement that every x ∈ X is paired with a y ∈ Y

(or in the case of individual artifacts, X is paired with Y).
CT is governed by three rules or laws:

• Arrows compose: Given arrows A : X→ Y and B : Y→ Z

there is an arrow B · A : X→ Z;
• Composition is associative: A · (B · C) = (A · B) · C; and
• Identity arrows: Every object X has an identity arrow
IdX : X → X, such that for every arrow A : X → Y,
IdY · A = A and A · IdX = A.

We never talked about identity arrows, but that’s OK: they
are necessary for the mathematics behind CT and are typi-
cally no-brainers to implement (i.e., they do nothing).

13 These derivations are substantially different than that of Börger [31] and
Delaware [12]. In retrospect, they are instances of the same idea.
14 A multi-graph allows multiple edges between the same pair of nodes.
15 Not to be confused with “objects” in OO programming! CT was devel-
oped in the late 1940s, long before OO programming.

The theorems of CT are commuting diagrams. These are
the fundamental relationships that exist among objects of a
category. Here is its pragmatic meaning: if your implemen-
tation does not preserve these relationships, your implemen-
tation is wrong [33].

We used one other categorical concept in this paper. A
functor F : C → D is a mapping (basically an embedding)
of category C into category D such that all objects in C

are mapped to objects in D and all primitive and composed
arrows in C are present in D. That is: each object c ∈ C maps
to F(c) ∈ D and each arrow x → y ∈ C maps to arrow
F(x) → F(y) ∈ D. Readers may have already recognized
that functors were illustrated in 9 of the last 15 figures of
this paper.

That’s it. CT is the epitome of elegance, order, and power.
Of course, CT is a lot more. But this is enough for a first
lesson about categories.

7. Final Thoughts
There are many different ways in which an artifact (itself a
module) can be decomposed into modules and recomposing
them reconstructs the original artifact. Compositions of dif-
ferent modules can yield the same result; consequently these
different compositions must be equivalences.

This paper presents logical conclusions that follow from
this premise. Modularity is about science — a body of facts
or truths systematically arranged showing the operation of
general laws. Categories gave me a big picture perspective,
not an in-the-trenches perspective, of what Modularity is
about and how it and historical results fit together. It answers
a fundamental question that interested me: What are mod-
ules? Answer: they are mappings that can assume any num-
ber of forms and implementations. Categories define proper-
ties that mappings and their compositions must satisfy.

It has been over 40 years since Codd proposed his rela-
tional theory of databases [11]. His Relational Model was
based on set theory, which was panned in Computing Re-
views [16]. To this day, it is not deep set theory, but some-
thing like the first few pages of a set theory text. The lesson
here is that simple mathematics go a very long way. I use CT
as a language, much like UML, to explain and define declar-
ative relationships in modular development, not as a mathe-
matical formalism. It provides a solid foundation about how
to think about the nouns (objects) and verbs (arrows) of de-
sign. It gives me a framework to relate disparate phenomena
with simple ideas. It tells me what is correct and what is not
[22]. It can do the same for you, too, as it has for pioneers
before me (e.g., [14, 15, 29]).

Acknowledgments. I thank Gary Leavens, Mark Grechanik,
Dewayne Perry, Rui Gonçalves, and my graduate class
(CS392F Automated Software Design) for their helpful
comments. I gratefully acknowledge support for this work
by NSF grants CCF-1212683 and CCF-1421211.

References
[1] S. Apel, C. Kästner, and D. Batory. Program refactoring using

functional aspects. In GPCE, 2008.

[2] D. Batory. Using Modern Mathematics as an FOSD Modeling
Langauge. In GPCE, Oct. 2008.

[3] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda,
B. Twichell, and T. Wise. Genesis: An extensible database
management system. IEEE Trans. Softw. Eng., Nov. 1988.

[4] D. Batory and E. Börger. Modularizing theorems for software
product lines: The jbook case study. Journal of Universal
Computer Science, jun 2008.

[5] D. Batory, R. Goncalves, B. Marker, and J. Siegmund. Dark
knowledge and graph grammars in automated software de-
sign. In Software Language Engineering, volume 8225 of
Lecture Notes in Computer Science, pages 1–18. Springer In-
ternational Publishing, 2013.

[6] D. Batory, P. Höfner, and J. Kim. Feature Interactions, Prod-
ucts, and Composition. In GPCE, 2011.

[7] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools for
implementing domain-specific languages. In Proc. 5th Int.
Conf. on Software Reuse, ICSR, 1998.

[8] D. Batory and S. O’Malley. The Design and Implementation
of Hierarchical Software Systems with Reusable Components.
ACM TOSEM, 1992.

[9] G. Bracha and W. Cook. Mixin-based inheritance. In ECOOP,
1990.

[10] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec.
Feature interaction: A critical review and considered forecast.
Computer Networks, 2003.

[11] E. F. Codd. A relational model of data for large shared data
banks. CACM, June 1970.

[12] B. Delaware, W. Cook, and D. Batory. Theorem proving for
product lines. In OOPSLA/SPLASH, 2011.

[13] E. W. Dijkstra. Selected Writings on Computing: A Personal
Perspective. Springer-Verlag, 1982.

[14] Z. Diskin and T. S. E. Maibaum. Category theory and model-
driven engineering: From formal semantics to design patterns
and beyond. In ACCAT, 2012.

[15] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. In-
formation preserving bidirectional model transformations. In
Fundamental Approaches to Software Engineering. Springer
Berlin Heidelberg, 2007.

[16] R. Elliott. Review: A relational model of data for large shared
data banks. ACM Computing Reviews, Mar. 1971.

[17] R. E. Filman and D. P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Aspect-oriented
Software Development. Addison-Wesley, 2004.

[18] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and
mixins. In POPL, 1998.

[19] R. E. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, June/July 1988.

[20] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-oriented domain analysis (foda) feasibility study.
CMU/SEI-90-TR-021, 1990.

[21] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
software product lines. In ICSE, 2008.

[22] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disci-
plined Approach to Aspect Composition. In PEPM, 2006.

[23] Z. Manna and R. Waldinger. Fundamentals of deductive
program synthesis. IEEE TSE, 18, 1992.

[24] B. Marker, D. Batory, and R. van de Geijn. Understanding
performance stairs: Elucidating heuristics. In Automated Soft-
ware Engineering, 2014.

[25] B. Pierce. Basic Category Theory for Computer Scientists.
MIT Press, 1991.

[26] T. Riché, R. Goncalves, B. Marker, and D. Batory. Pushouts
in Software Architecture Design. In GPCE, 2012.

[27] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A.
Lorie, and T. G. Price. Access Path Selection in a Relational
Database Management System. In ACM SIGMOD, 1979.

[28] Y. Smaragdakis and D. S. Batory. Implementing layered
designs with mixin layers. In ECOOP, 1998.

[29] D. R. Smith. Mechanizing the development of software. In
Client Resources on the Internet, IEEE Multimedia Systems
99, 1999.

[30] J. Spivey. The Z Notation: A Reference Manual. Prentice Hall,
1989.

[31] R. Stärk, J. Schmid, and E. Börger. Java and the java virtual
machine - definition, verification, validation, 2001.

[32] T. Thüm. Product-Line Specification and Verification with
Feature-Oriented Contracts. PhD thesis, University of
Magdeburg, 2015.

[33] S. Trujillo, D. Batory, and O. Diaz. Feature Oriented Model
Driven Develop.: A Case Study for Portlets. In ICSE, 2007.

[34] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test
generation for software product lines. IEEE TSE, May 2010.

[35] WikiQuotes. Plato’s theory of forms. http://en.

wikipedia.org/wiki/Theory_of_Forms.

