
Noname manuscript No.
(will be inserted by the editor)

Teaching Model Driven Engineering from
a Relational Database Perspective

Don Batory · Maider Azanza

the date of receipt and acceptance should be inserted later

Abstract We reinterpret MDE from the viewpoint of relational databases to provide
an alternative way to understand, demonstrate, and teach MDE using concepts and
technologies that should be familiar to undergraduates. We use (1) relational database
schemas to express metamodels, (2) relational databases to express models, (3) Prolog
to express constraints and M2M transformations, (4) Java tools to implement M2T
and T2M transformations, and (5) Java to execute transformations. Application case
studies and a user study illuminate the viability and benefits of our approach.

1 Introduction

Model Driven Engineering (MDE) is an approach to software development that uses
models to specify complex systems at multiple levels of abstraction. MDE transforma-
tions map these models to other models, including source code, documentation, and
inputs to external tools, for purposes of software construction and analysis.

We believe it is essential to expose undergraduates to MDE concepts so that they
will have an appreciation for MDE when they encounter them in industry. Specifically
these concepts are: models, metamodels, model constraints, model-to-model (M2M)
transformations, model-to-text (M2T) transformations, and tool-to-model (T2M) trans-
formations. Our motivation is from experience: unless students encounter an idea
(however immature) in school, they are less likely to embrace it in the future. Further,

Don Batory
Department of Computer Science
University of Texas at Austin
Austin, Texas, USA
E-mail: batory@cs.utexas.edu

Maider Azanza
University of the Basque Country (UPV/EHU)
San Sebastian, Spain
E-mail: maider.azanza@ehu.es



2 Don Batory, Maider Azanza

teaching MDE is intimately related, if not inseparable, to the tools and languages that
make MDE ideas concrete.

Our initial attempt to do this in Fall 2011 was a failure. We used the Eclipse
Modeling Tools1 and spent quite some time creating videos for students to watch on
installation and tool usage. Despite our efforts, installation for students was a problem.
A version of Eclipse was eventually posted that had all tools installed. The results
were no better when students used the tools. A simple assignment was given to draw a
metamodel for state diagrams (largely something presented in class) using Eclipse,
let Eclipse generate a tool for drawing state diagrams, and to use the generated tool
to draw particular state diagrams. This turned into a very frustrating experience for
most students. 25% of our upper-division undergraduate class got it right; 50% had
mediocre submissions, and the remaining just gave up. Another week was given (with
tutorial help) to allow 80% to ‘get it right’, but that still left too many behind. The
whole experience left a bitter taste for us, and worse, our students. We do not know if
this is a typical situation or an aberration, but we vowed not to repeat it again.

In retrospect we found many reasons. In a nutshell, Eclipse MDE tools were the
culprit.

1. The tools were unappealing—they were difficult to use even for simple
applications.

2. The tools fostered a medieval mentality in students to use incantations
to solve problems. Point here, click that, something happens. From a
student’s perspective, this is gibberish. Although we could tell them what
was happening, this mode of interaction leaves a vacuum where a deep
understanding should reside.2

3. With benefit of years of hindsight, we concluded that the entry cost of using,
teaching, and understanding these tools was too high for our comfort.

We sought an alternative and light-weight way to understand and demonstrate MDE,
leveraging tools and concepts undergraduates should already know.

In this paper, we present an evolutionary rather than revolutionary approach to
understand and teach core MDE concepts (models, metamodels, M2M, M2T, T2M
transformations, constraints). We tried this approach – which we henceforth call
MDELite – with a new class of undergraduates in Fall 2012 and every year since, and
experienced many fewer problems. This paper extends our initial work on MDELite at
MODELS’13 [9]. The contributions of that paper were:

– a description of the database/Prolog/Velocity technology behind MDELite
that we now use to teach MDE concepts;

– interesting applications to illustrate the viability of MDELite;
Here we round out that work by presenting an evaluation of MDELite consisting of
two quasi-experiments:

– an informal cohort study with undergraduate students in Fall 2011 (Eclipse
MDE tools) and Fall 2012 (MDELite) to evaluate its benefits and limita-
tions, and

1 Specifically EMT, Graphical Modeling Tooling Framework Plug-in, OCL Tools Plug-in, and Eugenia
for Eclipse 3.6.2.

2 Admittedly, this statement holds for IDEs in general, and Eclipse in particular.



Teaching Model Driven Engineering from a Relational Database Perspective 3

– a quasi-experiment with graduate students in Fall 2013 to evaluate student
perception of the tools.

We report that students largely preferred MDELite over Eclipse MDE tools. And
finally,

– we summarize our (now) multi-year perspective using MDELite with
directions on future work.

2 MDE Models and MetaModels

MDE can be understood in terms of relational databases. Although MDE is usually
presented in terms of graphs (as visual representations of models or metamodels), all
graphs have simple encodings as a set of normalized tables.

Consider a metamodel for finite state machines (FSMs) in Figure 1a, consisting of
nodes and edges. The schema for the underlying relational tables (using manufactured
identifiers, denoted by node# and edge#) is shown in Figure 1b. A particular FSM
populates these tables with tuples. The FSM of the first author’s eating habits and its
tuples are given in Figure 1c-d.

ready

drink

eat

family yells "pig"

start stop

node# name type edge# startsAt endsAt

(b)

(a)

node# name type

nStart start start

nReady ready state

nDrink drink state

nEat eat state

nPig pig state

nStop stop stop

edge# startsAt endsAt

e0 nStart nReady

e1 nReady nDrink

e2 nReady nEat

e3 nDrink nDrink

e4 nEat nEat

e5 nDrink nEat

e6 nEat nDrink

e7 nDrink nPig

e8 nEat nPig

e9 nPig nStop

(c)

(d)

-name
-type

node
edge

-startsAt

1

-startPoint *

-endsAt

1

-endingPoint *

Fig. 1 A State Machine and its Tables.

Manufactured tuple identifiers eliminate virtually all of the complexities of rela-
tional table design, e.g., functional dependencies and forming compound primary keys
[17,23]. There are only five simple rules to map metamodels to table definitions and
one rule for tuple instantiation:

1. Every metaclass maps to a distinct table. If a metaclass has k attributes, the table
will contain at least 1+k columns: one for a manufactured identifier and one for
each attribute.



4 Don Batory, Maider Azanza

ready

drink

eat

family yells "pig"

start stop

-name

Node Edge

-icon

Start

-icon

Stop

-icon

State

-startsAt

1

-StartPoint

*
-endsAt

1

-EndingPoint

*

-icon

Transition

-icon
-name

«state»Node

-icon

«transition»
Transition

-icon

«state»Start

-icon

«state»Stop

-icon

«state»State

-startsAt

1

-StartPoint

*
-endsAt

1

-EndingPoint

*

+toString() : String
+inc()
+reset()

+attr : String
-cntr : Integer

ClassName

+another()

-extra

Subclass

+inc()
+another()

«interface»
InterfaceName

1

n

1n

student activities

activityRecord

m

student activities

activityRecord

n nm

-utid : String

student

-name : String

dept

-enrolledIn

1

-has

*

-name
-type

node
edge

-startsAt

1

-startPoint *

-endsAt

1

-endingPoint *

-name : String
-state : String

City

-number : Integer
-balance : Double

Account

-name

Class
-name : String
-type : String

Attribute-ofClass

1 *

State6 State6

stop start

-startsAt

1

-StartPoint *

-endsAt

1

-EndingPoint *
EndNode

-name
-type

NormalNode

-name
-type=start

Start

Transition

-name

Person

-value

Contract

-name

Company

-ownedByCompany

0..1

-owns

*-ownedByPerson

0..1

-owns

*

IconType

InPin OutPin

-End51-End6* -End71 -End8*

-name
-type=stop

Stop

Class10

Class11

Class12

remove
n:m assocs

-startsAt

1

-start *

-endsAt

1

-end *
state

-name

normalStatestart

transition

stop

Fig. 2 Transformation That Removes n : m Associations.

2. n : m associations are valid in metamodels [36], but not in normalized tables. Every
association must have one end with a 0..1 or 1 cardinality. Figure 2 shows how
n : m associations are transformed into a pair of 1 : n and 1 : m associations with an
explicit association class. The reason for this is the next rule.

3. Each association is represented by a single attribute on the ‘0 : 1’ or ‘1’ side of the
association. Usually an association adds an attribute to both tables that it relates.
The ‘n’ side would have a set-valued attribute which is disallowed in normalized
tables. The ‘0 : 1’ or ‘1’ side has a unary-valued attribute (a tuple identifier) which
is permitted. As both attributes encode exactly the same information, we simply
omit the set-valued attribute.

Figure 3a shows an application of the last three rules: the dept table has two
columns { #, name } and the student table has three { #, utid, enrolledIn }.
Column enrolledIn, which contains a dept# value, encodes the student−
dept association. The mapping of Figure 1a to 1b is another example of these
ideas.

student# utid enrolledIn dept# name 

member# fname lname 

member# fname lname rank 

member# fname lname position 

staff 
table 

faculty 
table 

member 
table 

student table dept table 

table(node,[id,name,type]). 
 
node(nstart,‘start’,start). 
node(nReady,‘ready’,state). 
node(nDrink,‘drink’,state). 
node(nEat,‘Eat’,state). 
node(nPig,‘Family’,state). 
node(nstop,‘stop’,stop). 

-fname
-lname

member

-rank

faculty

-position

staff

(a) (b) 
-startsAt

1

-start *

-endsAt

1

-end *
state

-name

normalStatestart

transition

stop

-utid : String

student

-name : String

dept -enrolledIn

1

-has

*

Fig. 3 Diagram-to-Table Mapping.

4. For classes that are related by inheritance, the attributes of each superclass table
are included as attributes in each of its subclass tables. The identifier of the root
class is shared by all subclasses. See Figure 4.

student# utid enrolledIndept# name

crewman# fname lname

c1 mr spock

crewman# fname lname rank

c2 james kirk captain

crewman# fname lname specialty

c3 hikaru sulu navigation

commander
table

lieutenant
table

crewman
table

student tabledept table

table(node,[id,name,type]).

node(nstart,start,start).

node(nReady,ready,state).

node(nDrink,drink,state).

node(nEat,eat,state).

node(nPig,pig,state).

node(nstop,stop,stop).

(a) (b)
-startsAt

1

-start *

-endsAt

1

-end *
state

-name

normalStatestart

transition

stop

-utid : String

student

-name : String

dept -enrolledIn

1

-has

*

-fname
-lname

crewman

-rank

commander

-specialty

lieutenant

Fig. 4 Inheritance Diagram-to-Table Mapping.

5. In Java, objects are created for a specific class and implicitly become objects
of superclasses. The same holds for tuples and tables. In Figure 4, the crewman
table has three tuples (spock, kirk, sulu), although only one tuple (spock) was



Teaching Model Driven Engineering from a Relational Database Perspective 5

created specifically for crewman. The other two tuples are inferred: the commander
table has one tuple (kirk) and the lieutenant table has one tuple (sulu). This
example is discussed further in Section 3.

6. Tuple identifiers can be manufactured (e.g., e1 and e3 in Figure 1d) or they can be
readable single-column keys (e.g., nReady and nDrink in Figure 1d). Readable
keys are preferred in hand-written assignments; tools use manufactured identifiers.

Observation 1. Relational tables have always been able to encode data hier-
archies. The elegance of normalized or ‘flat’ tables highlights the conceptual
simplicity of our approach. Appendix B illustrates a mapping of an aggregation
hierarchy to a set of MDELite tables.

3 Model Constraints

OCL is the standard language for expressing model constraints in MDE. Given the
connection to relational databases, there is an obvious alternative. Prolog is a funda-
mental language in Computer Science (CS) for writing declarative database constraints.
It is Turing-complete and is a language that all CS students should have exposure.
Figure 5 shows how we express the database of Figure 1. The first line of Figure 5a
defines the schema of the node table of Figure 1b; it consists of three attributes
{ id, name, type }. Tuples of this table are Prolog facts. Figure 5b gives the encod-
ing of the edge table.

table(node,[id,name,type]).

node(nstart,start,start).

node(nReady,ready,state).

node(nDrink,drink,state).

node(nEat,eat,state).

node(nPig,pig,state).

node(nstop,stop,stop).

(a) table(edge,[id,startsAt,endsAt]).

edge(e0,nStart,nReady).

edge(e1,nReady,nDrink).

edge(e2,nReady,nEat).

edge(e3,nDrink,nDrink).

edge(e4,nEat,nEat).

edge(e5,nDrink,nEat).

edge(e6,nEat,nDrink).

edge(e7,nDrink,nPig).

edge(e8,nEat,nPig).

edge(e9,nPig,nStop).

(b)

Fig. 5 Prolog Tables for Figure 1d.

Here are three constraints to enforce on a FSM:

c1 All states have unique names,
c2 All transitions must start and end at a defined state, and
c3 There must be precisely one start state.

Their expression in SWI-Prolog [38] is given below; error(Msg) is a library call that
reports an error. allConstraints is true if there are no violations of each constraint.



6 Don Batory, Maider Azanza

c1 :- node(Id1,Name,_),node(Id2,Name,_),not(Id1=Id2),
error(’non-unique names’).

c2 :- edge(_,Starts,Ends),
( not(node(_,Starts,_)) ; not(node(_,Ends,_)) ),
error(’edge refers to non-existent node’).

c3a :- not(node(_,_,start)), error(’no start state’).
c3b :- node(Id1,_,start),node(Id2,_,start),not(Id1=Id2),

error(’too many start states’).
allConstraints :- not(c1),not(c2),not(c3a),not(c3b).

As a last example, Figure 6a replicates the crewman table inheritance hierarchy
of Figure 4 and also shows our Prolog encoding of these tables, their individual
tuples, and their inheritance constraint: every tuple of a subtable is also a tuple of its
supertable.3

table(node,[id,name,type]).

node(nstart,start,start).

node(nReady,ready,state).

node(nDrink,drink,state).

node(nEat,eat,state).

node(nPig,pig,state).

node(nstop,stop,stop).

(a) table(edge,[id,startsAt,endsAt]).

edge(e0,nStart,nReady).

edge(e1,nReady,nDrink).

edge(e2,nReady,nEat).

edge(e3,nDrink,nDrink).

edge(e4,nEat,nEat).

edge(e5,nDrink,nEat).

edge(e6,nEat,nDrink).

edge(e7,nDrink,nPig).

edge(e8,nEat,nPig).

edge(e9,nPig,nStop).

(b)

crewman# fname lname

c1 mr spock

crewman# fname lname rank

c2 james kirk captain

crewman# fname lname specialty

c3 hikaru sulu navigation

lieutenant
table

crewman
table

table(crewman,[id,fname,lname]).

crewman(c1,mr,spock).

crewman(I,F,L):-commander(I,F,L,_).

crewman(I,F,L):-lieutenant(I,F,L,_).

table(commander,[id,fname,lname,rank]).

commander(c2,james,kirk,captain).

table(lieutenant,[id,fname,lname,specialty]).

lieutenant(c3,hikaru,sulu,navigation).

commander
table

(a) (b)

Fig. 6 Inheritance Constraints.

4 Model-to-Model Transformations

The semantics of an MDE application are captured by the data that is stored, model
constraints, and in transformations, such as model-to-model (M2M) transformations.
MDELite does not alter this, except instead of using languages that were specifi-
cally invented for MDE, we use Prolog both for writing declarative constraints and
declarative database-to-database (M2M) transformations.

Suppose we want to perform the M2M mapping of Figure 7, where we shade
abstract classes to make them easier to recognize. That is, we want to translate a
database that conforms to Figure 7a (which is identical to Figure 1a) to a database that
conforms to Figure 7b. The Prolog rules that express this transformation are:

start(Id,Name) :- node(Id,Name,start).
stop(Id,Name) :- node(Id,Name,stop).
normalState(Id,Name) :- node(Id,Name,state).
transition(Id,Sid,Eid,SName,EName) :- edge(Id,Sid,Eid),

node(Sid,SName,_),node(Eid,EName,_).

As Prolog is Turing-complete, database transformations can be arbitrarily complex.
Appendix B illustrates a more complex M2M mapping.

3 Prolog tuples can have unquoted atoms (james) and quoted atoms (′James Tiberious′).



Teaching Model Driven Engineering from a Relational Database Perspective 7

-fname
-lname

crewman

-rank

commander

-specialty

lieutenant

-type
-name

node edge
-startsAt

1

-startPoint *

-endsAt

1
-endingPoint * M2M 

transformation

state

-startName
-endName

transition

-startsAt

1

-start *

-endsAt

1

-end *

start

-name

normalState stop

(a) (b)

Fig. 7 A Model-to-Model Transformation.

Observation 2. There is an intimate connection between database design
and metamodel design. Presenting MDE in the above manner reinforces this
connection. Students do not have to be familiar with databases to understand
the above ideas. Normalized tables are a fundamental and simple conceptual
structure in CS. Undergraduates may already have been exposed to Prolog
in an introductory course on programming languages. (When one deals with
normalized tuples and almost no lists, Prolog is indeed a simple language). We
chose Prolog for its database connection, but suspect that Datalog, Haskell,
Scala, or other functional languages might be just as effective.

5 Model-to-Text Transformations

A key strength of MDE is that it mechanizes the production of boiler-plate artifacts
(e.g., code). This is accomplished by Model-to-Text (M2T) transformations. There
are many text template engines used in industry. Apache Velocity is an easy-to-learn
example [4]. We made two modifications to Velocity to cleanly integrate it with Prolog
databases. Our tool is called Velocity Model-2-Text (VM2T).

First, we defined a Velocity variable for each table. If the name of a table is “table”
then the Velocity table variable is “tableS” (appending an “S” to “table”). This
enables a Velocity foreach statement to iterate over all tuples of a table, where a
particular attribute A of a tuple is referenced by $tuple.A:

#foreach($tuple in $tableS)
... $tuple.A

#end

Second, a Velocity template directs its output to standard out. We introduced
markers to redirect output to different files during template execution. The value of the
MARKER variable defines the name of the file to which output is directed; reassigning
its value redirects output to another file. An example of MARKER is presented shortly.

As a running example, Figure 8a shows a metamodel for classes. Two instances of
this metamodel, city and account, are shown in Figure 8b. The database containing
both instances is Figure 8c.

Figure 9a is a VM2T template. When non-MARKER statements are executed, Fig-
ure 9b is the output. Preferably, the definition of each class should be in its own
file. When all Velocity statements are executed, the desired two files are produced
(Figure 9c).



8 Don Batory, Maider Azanza

-name

class
-name
-type

attribute-ofClass

1 *
(a) 

-name : String
-state : String

city
-number : Integer
-balance : Double

account

(b) 

table(class,[cid,name]). 
class(c1,city). 
class(c2,account).                         
 
table(attribute,[aid,name,type,ofclass]). 
attribute(a1,name,string,c1). 
attribute(a2,state,string,c1). 
attribute(a3,number,integer,c2). 
attribute(a4,balance,double,c2). 

data.pl (c) 

#set($MARKER="//--") 
#foreach($c in $classS) 
${MARKER}src/${c.name}.java 
class ${c.name} { 
#foreach($a in $attributeS) 
#if ($c.cid==$a.ofclass) 
   ${a.type} ${a.name}; 
#end 
#end 
} 
 
#end gen.vm 

(a) class city { 
   string name; 
   string state; 
} 
 
class account { 
   integer number; 
   double balance; 
} 

stdout 

(b) class city { 
   string name; 
   string state;   
} 

src/city.java 
class account { 
   integer number; 
   double balance; 
} 

src/account.java 

(c) 

Fig. 8 A Class Metamodel, a Model Instance, and a Prolog Database.

(a)

(b)

table(class,[cid,name]).
class(c1,city).
class(c2,account).                        

table(attribute,[aid,name,type,ofclass]).
attribute(a1,name,string,c1).
attribute(a2,state,string,c1).
attribute(a3,number,integer,c2).
attribute(a4,balance,double,c2).

data.pl(c)

#set($MARKER="//--")
#foreach($c in $classS)
${MARKER}src/${c.name}.java
class ${c.name} {
#foreach($a in $attributeS)
#if ($c.cid==$a.ofclass)

${a.type} ${a.name};
#end
#end
}

#end gen.vm

(a) class city {
string name;
string state;

}

class account {
integer number;
double balance;

}

stdout

(b) class city {
string name;
string state;  

}

src/city.java
class account {

integer number;
double balance;

}

src/account.java

(c)

Fig. 9 A VM2T Template and Two Outputs.

Given VM2T, it is an interesting and straightforward assignment to translate the
FSM database of Figure 1d to the code represented by the class diagram of Figure 10.
The VM2T script for this example is given in Appendix C.

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FSM

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

«interface»
state

FSM( ) {
   state current = new start( );
}
gotostart( ) 
{ current = current.gotostart( ); }

gotoready( ) 
{ current = current.gotoready( ); }

...

-state

1*

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

start

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

ready

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

eat

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

drink

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

pig

+gotostart() : state
+gotoready() : state
+gotoeat() : state
+gotodrink() : state
+gotopig() : state
+gotostop() : state
+getName() : String

stop

state gotostart( )
{   return this; /* ignore */ }

state gotoready( )
{   return new ready( ); }
...

String getName( )
{ return "start"; }

Fig. 10 Class Diagram of FSM Code Output.



Teaching Model Driven Engineering from a Relational Database Perspective 9

Observation 3. The benefits of Velocity seem clear: students use an industrial
tool that is not-MDE or Eclipse-specific; it is stable, reasonably bug-free, and
has decent documentation. Velocity is by no means our only choice; Handlebars
is another tool that looks promising [24]. More on this later.

6 Tool-to-Model Transformations

Given the discussion in previous sections on models, constraints, and transformations,
it is not difficult for students to understand Figure 11: an application engineer spec-
ifies a FSM using a graphical tool, the tool produces a set of tables, the tables are
transformed into a more appropriate tabular organization, and VM2T produces the
source code for the FSM. All the engineer sees is a single tool that takes his/her FSM
diagram and produces application source at the click of a button.

draws
FSM
using

Application
Engineer FSM tool

stores
FSM

graph in
relational

tables

vm2t script
translates

to code application source code

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FMS

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

«interface»
State

FSM( ) {
   state = new Start();
}
gotostart( ) 
{ state = state.gotostart( ); }

gotoready( ) 
{ state = state.gotoready( ); }

...

-state

1*

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Start

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Ready

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Eat

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Drink

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Fam

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

StopState gotostart( )
{   return this; /* ignore */ }

State gotoready( )
{   return new Ready(); }
...

String getName( )
{ return "start"; }

draws
FSM
usingApplication

Engineer
FSM graphical

editor

stores
FSM

graph in

initial
relational

tables

VM2T
template
translates

to code

application source code

+gotostart()
+gotoready()
+gotoeat()
+gotodrink()
+gotofam()
+gotostop()
+getName() : String

FMS

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

«interface»
State

FSM( ) {
   state = new Start();
}
gotostart( ) 
{ state = state.gotostart( ); }

gotoready( ) 
{ state = state.gotoready( ); }

...

-state

1*

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Start

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Ready

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Eat

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Drink

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

Fam

+gotostart() : State
+gotoready() : State
+gotoeat() : State
+gotodrink() : State
+gotofam() : State
+gotostop() : State
+getName() : String

StopState gotostart( )
{   return this; /* ignore */ }

State gotoready( )
{   return new Ready(); }
...

String getName( )
{ return "start"; }final

relational
tables

database
to

database
mappings

FSM MDELite Tool

Fig. 11 FSM Application Engineering in MDE.

There are three missing pieces to complete this design. The first is a Tool-to-Model
(T2M) transformation (the dashed arrow in Figure 11) that converts grossly-verbose
XML output of a graphics tool into a clean set of Prolog tables. We wrote a Java
program to read the tool’s XML file, parse it, and output a text file containing a Prolog
database. Frankly, of all the tasks in MDELite, writing the T2M program is the most
painful – parsing XML, harvesting its data, and outputting Prolog facts is unpleasant.
If the XML is simple, it turns out to be a good exercise for students who haven’t
parsed XML before to get this experience. For more complex graphical tools, writing
an XML-to-Prolog transformation would require some expertise, but once done, it
would become yet another tool in a library of tools that could be integrated into an
MDELite application.4 We note that such translations need to be written anyways
to integrate foreign tools and their output into Eclipse MDE tools, so MDELite is
not disadvantaged in this regard. Further, we will see later in Section 9 that students
preferred MDELite over Eclipse.

The second missing piece is to find a suitable graphical editor (GE) for Figure 11.
This is a three-fold challenge:

(a) its XML is stable, meaning its XML format is unlikely to change,
(b) its XML must be simple to understand, and
(c) its palette5 is customizable.

4 The code for MDELite, including all of our T2M transformations, is free at
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html

5 The set of icons that one can drag and drop onto a canvas to create instances.

http://www.cs.utexas.edu/users/schwartz/MDELite/index.html


10 Don Batory, Maider Azanza

MS Visio is easy to use and its palette is easily customizable, but its XML files are
incomprehensible and periodically MS completely modifies the format of these files.
Simpler GEs, such as Violet [40], yUML [42], UMLFactory [39], satisfy (a) and (b);
it is not difficult to write T2M tools for them.

We have yet to find a GE that satisfies all three constraints. Violet is typical: all
palettes are hardwired – there is one non-extendible palette per UML diagram. It is
impossible in Violet (without serious hacking) to define a set of icons with graphic
properties to draw customized graphs. All that is permitted is to translate XML files
that were specifically designed for a given UML diagram to Prolog tables. This is not
bad; it just is not ideal.

Observation 4. MDE is moving away from UML toward modeling environ-
ments that are domain-specific with icons and other abstractions that map to
the domain. MDELite is agnostic to the specific modeling language. We used
UML tools because they were available and are familiar to students, but any
graphical specification tool can be used. One still has to convert its output into
a form (Prolog tables) that can be subsequently processed.

The third and last missing piece is to add a button to the GE to initiate the
computations of Figure 11. Alternatively, the engineer could supply the name of
the XML file that is output by the tool to a command line program to invoke the
computations.

Observation 5. MDE tools, such as the FSM tool, could be structure editors.
That is, a tool should immediately label incorrect drawings or prevent users
from creating incorrect drawings. GEs are typically stupid – they let you
draw anything (such as edges that connect no nodes). To provide immediate
feedback would require saving a design to an XML file, translating the file
into Prolog tables, evaluating Prolog constraints, and displaying the errors
encountered. As mentioned earlier, modifying existing tools with a button to
activate this analysis and present this feedback can indeed be done, but is not
high-priority for our goals.

7 MDELite and its Applications

MDELite is a small set of tools (SWI Prolog, VM2T) that are connected by a tiny
Java framework that implements the ideas of the previous sections. An MDELite
application uses this framework and is expressed as a category [7,34].

A category is a directed multigraph; nodes are domains and arrows are total
functions (transformations) drawn from the function’s domain to its codomain. Many
of the interesting ideas about categories, like functors and natural transformations, are
absent in the MDE applications of this paper, so there is nothing to frighten students.
Nonetheless, it is useful to remind students that categories are a fundamental structure
of mathematics, they are a core part of MDE formalisms [18] and they define the
organization of an MDE application [7].6

6 Also known as megamodels [12] and tool chain diagrams [32].



Teaching Model Driven Engineering from a Relational Database Perspective 11

Recall the FSM MDELite tool of Figure 11. It embodies a tool chain whose
category has four domains (Figure 12a): the domain of XML files that are produced by
the FSM GE , a domain of database instances that a T2M tool creates, another domain
of database instances that results from a restructuring of T2M-produced databases, and
a domain of Java Directories whose elements (directory instances) are FSM programs
(a set of generated Java files).

When this category is implemented in Java, each domain is a manually-written
Java class and each arrow is a method as indicated in Figure 12b. (We talk about
the automated construction of these classes and methods in Section 11.) Underneath
each domain in Figure 12a is a Java class in Figure 12b. Every class instance has a
pointer to a file (XML, Prolog database, etc.) that instance represents. Every Prolog
database class has a conform() method to validate database instances. The remaining
methods correspond to category arrows that exit from that domain (e.g., M2T exits from
the FinalPrologTable domain and thus is a method of class FinalPrologTables,
T2M exits from the FSMXML domain and thus is a method of class FSMXML). Unlike
most UML class diagrams, categories typically have no associations but can have
inheritance relationships.

CLASS
FILES

CLASS
PL

JAVA
SOURCE

T2M M2TYUML T2M

+T2M() : InitPrologTables

FSMXML

-xmlFile

+M2M() : FinalPrologTables
+conform() : Boolean

InitPrologTables

-prologFile

+M2T() : JavaSourceCode
+conform() : Boolean

FinalPrologTables

-prologFile

JavaDirectory

-javaDirectory

FSM
XML

Init
Prolog
Tables

Java
Directory

T2M M2T
Final

Prolog
Tables

M2M(a)

(b)

Fig. 12 Category of a FSM MDELite Tool.

GProlog

MDELiteObject Common

Conform Convert

Dot

Main

SDB

Violet

VioletPl

MDELiteObject JavaDirectory tool(FSMXML x)

  throws RunTimeException {

  ipt = x.T2M();

  ipt.conform();

  fpt = itp.M2M();

  fpt.conform();

  jd = fpt.M2T();

  return jd;

}

GProlog

+T2M() : InitPrologTables

-xmlFile

FSMXML

-javaDirectory

JavaDirectory

+T2M() : InitPrologTables
+conform() : Boolean

-prologFile

InitPrologTables

-prologFile
-M2T : JavaDirectory

FinalPrologTables

(a) (b)

MDELiteObject

JavaDirectory tool(FSMXML x)

  throws RunTimeException {

  ipt = x.T2M();

  ipt.conform();

  fpt = itp.M2M();

  fpt.conform();

  jd = fpt.M2T();

  return jd;

}

GProlog

+T2M() : InitPrologTables

-xmlFile

FSMXML

-javaDirectory

JavaDirectory

+M2M() : FinalPrologTables
+conform() : void

-prologFile

InitPrologTables

+M2T() : JavaDirectory
+conform() : void

-prologFile

FinalPrologTables

(a) void conform() {

  String[] list = {…

     “libpl/FinalPrologTables.conform.pl” }

  FinalPrologTable t = new FinalPrologTable(list);

  t.executeProlog();

  t.delete();

}

(b)

Fig. 13 MDELite Encoding of the Category of
Figure 12.

These classes are then hooked into
the tiny MDELite framework; frame-
work classes are shaded in Figure 13.
All database classes are subclasses
of GProlog (a class that has util-
ity methods to invoke Prolog transfor-
mation and constraint computations);
the remaining classes are subclasses
of MDELiteObject (a class that has
utility methods for executing arbi-
trary programs, including VM2T). In
Figure 13, InitPrologTables and
FinalPrologTables are subclasses of
GProlog; FSMXML and JavaDirectory

are subclasses of MDELiteObject.
A method of an MDELite class is a

small piece of code that follows any one of a number of standardizable forms. The
conform method of the InitPrologTables class is shown below:



12 Don Batory, Maider Azanza

void conform() {
String[] list = ... , this.prologFile, ...

"libpl/InitPrologTables.conform.pl" ;
InitPrologTables t = new InitPrologTables(list);
t.executeProlog();
t.delete();

}

Here’s what it does: a list of Prolog files are concatenated. One of the files corresponds
to FinalPrologTables database in question (namely "this.prologFile") and
another the Prolog file that encodes model constraints to evaluate (file "InitProlog-
Tables.conform.pl") which is stored in a standard MDELite directory ("libpl/").
The concatenated file is executed. If no errors are discovered (which would halt
the computation), the concatenated file is deleted. The only difference between the
conform methods of class InitPrologTables and FinalPrologTables is literally
the name of the class. In effect, the above code is a class-generic Java method.

To perform the computation(s) of the tool, a programmer writes a Java method for
each activity. The only computation in our example is to translate an FSMXML file –
an XML file produced by the FSM drawing tool – into a directory of Java files:

JavaDirectory tool(FSMXML x)
throws RunTimeException {
ipt = x.T2M();
ipt.conform();
fpt = ipt.M2M();
fpt.conform();
jd = fpt.M2T();
return jd;

}

Here’s what the above method does: the input XML file is mapped to a initial prolog
database (ipt) whose conformance is checked. Then this database is restructured
into a final prolog database (fpt) whose conformance is checked. Finally the fpt

is translated to a directory of Java files by a VM2T script. Any error encountered
during translation or conformance test simply halts the MDELite application with an
explanative message.

Observation 6. MDE lifts metamodel design to the level of metaprogram-
ming—programs that build other programs [6]. The objects of MDE are pro-
grams (models) and the methods of MDE are transformations that yield or
manipulate other programs (models). The elements of each domain are file
system entities—an XML file, a Prolog file that encodes a database, or a direc-
tory of Java files—not typical programming language objects. Each MDELite
method is literally a distinct executable: a T2M or M2T arrow is a Java program
and an M2M arrow (and conformance test) is a Prolog program.



Teaching Model Driven Engineering from a Relational Database Perspective 13

8 A Case Study of MDELite
Our first application of MDELite was instructive. We found several free UML tools
that we wanted to:

(i) draw class diagrams,
(ii) verify the diagrams were legal, and

(iii) translate diagrams of one tool into corresponding diagrams of another.

The integration of the Violet [40], UMLFactory [39], and yUML [42] tools (as they
existed in June 2012) is expressed by the category of Figure 14a.7 We could draw
UML class diagrams in each of these tools and have them displayed in any other tool.

(a)

yUML Violet2yUML(VioletXML v){

vpl = v.toPL();

vpl.conform();

sdb = vpl.toSDB();

sdb.conform();

ypl = sdb.toYUML();

ypl.conform();

return ypl.toYUML();

}

VioletXML yUML2Violet(yUML y){

ypl = y.toPL();

ypl.conform();

sdb = ypl.toSDB();

sdb.conform();

d = sdb.toDOT();

dk = d.kieler();

sdb1 = dk.toSDB();

sdb2 = sdb.removeXY();

sdb3 = sdb2.merge(sdb1);

upl = sdb3.toUMLF();

upl.conform();

return upl.toXML();

}

(b)

(c)

SDB
PL

DOT

removeXY kieler
toPL

toXML

toPL

toYUML

toPL

toXML

toSDB

toViolet

toSDB

toUMLF

toSDB

toYUML

toDOT

toSDB

UMLF
XML

YUML

Violet
XML

UMLF
PL

YUML
PL

Violet
PL

SDBPL
´ 

SDBPL

merge

Fig. 14 A Category for an MDELite Application.

We used a simple approach:

1. We created a database for each tool, such that the translation: tool file to Prolog
database back to tool file was an equivalence mapping. We visually inspected the
display of both files to determine if they were identical.

2. We created a database (SDBPL) which was the lowest common denominator
across all tool databases; it encoded a FSM database representation that was
tool-independent.

3. When positioning information was not exposed by a tool file, we computed it (see
below).

Paths in a category represent computations. To convert a VioletXML file to a
yUML file is the path VioletXML.toPL.toSDB.toYUML.toYUML in Figure 14a and
the method of Figure 14b. Look at Figure 15: (a) shows a Violet class diagram, (b) is
its computed SDBPL representation,8 and (c) shows its yUML depiction.

7 The only oddity of Figure 14a is the domain SDBPL×SDBPL, which is the cross-product of the SDBPL
domain with itself. The merge arrow composes two SDBPL databases into a single SPBPL database (i.e.,
merge : SDBPL×SDBPL→ SDBPL).

8 SDBPL tables classImplements, interfaceExtends, interface have no tuples. The Prolog dec-
laration :- dynamic T/n. states that prolog tuples for table T with n attributes is empty.



14 Don Batory, Maider Azanza

table(class,[id,"name","fields","methods",superid]).

class('classnode0','Library','name','getName()',null).

class('classnode1','Book','title','getTitle()',null).

table(association,[cid1,"role1",arrow1,

cid2,"role2",arrow2]).

association('classnode1','*','agg',

'classnode0','1','').

table(interface,[id,"name","methods"]).

:- dynamic interface/3.

table(classImplements,[cid,iid]).

:- dynamic classImplements/2.

table(interfaceExtends,[id,idx]).

:- dynamic interfaceExtends/2.

table(position,[id,x,y]).

position('classnode0',333,259).

position('classnode1',599,264).

(a) Violet Class Diagram

(c)  Corresponding yUML Class Diagram (b) SDBPL database

Fig. 15 A Violet Diagram mapped to an SDBPL database mapped to a yUML Diagram.

The reverse – converting a yUML file to a VioletXML file – is a bit more compli-
cated. A yUML spec for the Library—Book class diagram of Figure 15c is:

[Library|name|getName()]
[Book|title|getTitle()]
[Library]<>1-*[Book]

Translating a yUML spec to the XML document of another tool requires graphical
(x,y) positioning information for each class (i.e., where each class is to appear on a
canvas). yUML computes this information, but never returns it. Lacking positioning
information, Violet simply draws all the classes on top of each other, yielding an
unreadable mess.

We looked for tools to compute node positioning information for a graph and
found the Kieler graph layout web service [29]. We translated an SDBPL database into
a DOT graph [19], transmitted the DOT file to the Kieler server, it returned a new
DOT graph with the required positioning information, and we stripped the Kieler re-
sponse to create a position table. This computation is the traversal: Kieler path=
SDBPL.toDOT.kieler.toSDB in Figure 14a.

Look at Figure 16. Given the SDBPL database of the above yUML spec, the
SDBPL.toDOT transformation produces a DOT specification (a) which defines a graph
with two nodes (c0,c1) that are linked (c1→ c0). This file is transmitted to the Kieler
server, which returns (b): a DOT file with positioning information. The DOT.toSDB
transformation parses the DOT file and strips away irrelevant information to yield
the (x,y) positioning information for nodes (classes) c0,c1 expressed as tuples in a
SDBPL position table in (c).

To complete the yUML-to-Violet transformation, we still need some additional
computations. We started with an SDBPL database s whose position table contained
useless class positioning information. Using the Kieler server, we created a useful
position table replacement. The remaining steps are to project (remove) the useless
position table from s and merge it with the Kieler position table replacement to
produce a correct SDBPL database. This computation is expressed in the traversal
(SDBPL.removeXY)× (Kieler path)).merge.



Teaching Model Driven Engineering from a Relational Database Perspective 15

digraph {

// classes 

c1;

c0;

// interfaces 

// class Implements

// interface Extends

// class Extends

// associations 

c1->c0;

}

(a) Generated DOT file

digraph {

// classes 

c1 [pos="50.0,20.0", width="0.14", height="0.14"];

c0 [pos="20.0,20.0", width="0.14", height="0.14"];

c1->c0 [pos="45.0,20.0 25.0,20.0"];

bb="0,0,70.0,40.0";

}

(b) Kieler-Returned DOT file

table(position,[id,x,y]).

position(c1,50,20).

position(c0,20,20).

(c) Extracted Position Table

Fig. 16 DOT File Transformations.

This application required all kinds of T2M, M2T, and M2M transformations.
Figure 17 lists the size of MDELite framework and this application in lines of Prolog,
Velocity, and Java code. As the tables indicate, the framework is tiny; the application
numbers indicate the volume of “code” that was needed to write this application.

LOC LOC LOC Java
Concern Prolog Velocity Java

MDELite Framework 84 0 581
MDELite Application 506 654 2532

Total 590 654 3093

Fig. 17 Size of MDELite Framework and Application: Lines of Prolog, Velocity, and Java Code

Observation 7. You can try this for any set of tools that satisfies constraints (a)
and (b) of Section 6. Doing so, you will likely discover that your set of selected
tools were never designed for interoperability. Ideally, interoperability should
be transparent to users. Unfortunately, this is not always achievable. We found
UMLFactory to be flakey; some tools had cases that we simply couldn’t tell if
they worked correctly. Hidden dependencies lurked in XML documents about
the order in which elements could appear and divining these dependencies
to produce decent displays was unpleasant (as there was no documentation).
But it is a great lesson about the challenges of tool interoperability, albeit on a
small-scale.

9 Student Evaluation

Increased emphasis is placed today on the experimental evaluation of educational
programs [41]. By systematically applying different programs (teaching methods),
researchers can study their effects and decide on which ones to keep [21]. The goal
of MDELite is to provide an ‘improved’ learning experience and ‘better’ platform
for teaching MDE. For this reason, we created a user study to evaluate MDELite as a
teaching tool for MDE and to quantify its effects.

It is well-known that evaluations need to be feasible and appropriate to the realities
of school-based outcome evaluation [41]. Although standard experimental designs can



16 Don Batory, Maider Azanza

establish causal relations between a new program and its outcomes, such experiments
are uncommon in education [13,16]. A cited reason, among others, are ethical issues
raised when students are denied access to a potentially better program when assigned
to the control group [10,13,21].

A widespread alternative are quasi-experiments. Quasi-experiments are similar
to experiments in that they compare the new program and baseline. The difference
stems from participants not being randomly assigned to groups. Instead, evaluators
use a non-equivalent control group for comparison [16]. Among these designs, cohort
studies provide a viable option for conducting school-based outcome evaluation [41].

A cohort is a group of people with similar characteristics. In education the term
is often used to describe successive groups that go through a grade level.9 Having
successive groups in the same environment (e.g., same class, similar group of students
with comparable backgrounds, same lecturer, same study program) approximates a
tight control of these variables.

Our first experiment was an informal cohort study. We introduced MDE in the
Fall 2011 undergraduate CS378 Software Design course at the University of Texas at
Austin. The goal of the course was to expose students to fundamental structures and
concepts in software development, with an emphasis on automation and middleware.
Students were in their 3rd and 4th year and had taken introductory courses on software
engineering and programming languages. Topics covered included MDE, refactorings,
design patterns, correct-by-construction parallel dataflow applications [8], and service
oriented architectures. Within MDE, UML models, meta-modeling, OCL, the MOF
architecture, and Eclipse editors were covered in three weeks of lectures, although
programming assignments extended the topic by another two weeks. We already
described the results.

We replaced Eclipse tools with MDELite in Fall 2012. The MDE module covered
the same topics (sans Eclipse) plus transformations and ended with an assignment of
comparable difficulty to Fall 2011. Although anecdotal, the results this time seemed
better: installation and tool usage problems disappeared. Students had far fewer
troubles grasping the idea of a database of tables and programs (be it Prolog or
Java) to read and write such databases. Using Prolog to write statechart (metamodel)
constraints was doable by students. Nevertheless, we did not have measurable data. In
Fall 2011, the MDE programming assignments were removed from the computation
of final grades as the instructor (Batory) felt they were not representative of student
performance; not so in Fall 2012 where they were included.

This experience encouraged us to evaluate MDELite more systematically in the
next class. As research indicates that students are generally good judges of teaching
effectiveness [30], we designed an evaluation to gather their perception.

In Fall 2013 we carried out this evaluation in the graduate CS392F Automated
Software Design course at the University of Texas at Austin. The reason why un-
dergraduates were not used was because the first author (Batory) did not teach the
undergraduate course that academic year. There were, however, students in his gradu-
ate class who could provide insights and this opportunity offered a broader evaluation

9 In some research, the term cohort is also used to refer to any group that is repeatedly measured over
time, as in a longitudinal or panel study; however, this is a different use of the term [21,35]

http://www.cs.utexas.edu/users/dsb/cs392f/
http://www.cs.utexas.edu/users/dsb/cs392f/


Teaching Model Driven Engineering from a Relational Database Perspective 17

that included writing M2M transformations. The goal of the evaluation was to gather
student opinions on MDELite and to detect deficiencies in MDELite and its tools.

9.1 Evaluation Design and Execution

We followed the guidelines of Jedlitschka [26]. To provide students with enough infor-
mation to give a balanced opinion on MDELite, students worked with both alternatives
(i.e., MDELite and the baseline), resulting in a quasi-experimental design with repeated
measures [35]. We state the goal of our evaluation using the Goal/Question/Metric
(GQM) method [5]:

• Analyze the classroom instruction of MDE using MDELite
• for the purpose of comparing it with a baseline alternative
• with respect to student perception of MDELite
• from the point of view of a researcher trying to assess MDELite
• in the context of case studies selected from the ATL Zoo.

The baseline was the Eclipse MDE tools from Fall 2011 (albeit updated), namely
Eclipse Modeling Tools, Graphical Modeling Tooling Framework Plug-in, OCL Tools
Plug-in, and Eugenia for Eclipse 3.6.2.

Variables. The independent variable in our study was the tool: MDELite (using Prolog
for writing constraints and M2M transformations) and the baseline (using OCL for
constraints and ATL for M2M transformations). The dependent variables measured
student perception of the tools, constraint languages, and M2M transformation lan-
guages via questionnaires. We also measured the time it took to complete the assigned
tasks with each tool – as an indicator of productivity [25].

Participants. Twelve students participated. Four weeks were dedicated to MDE, cov-
ering metamodeling, M2M transformations, and M2T transformations using MDELite.
30% of the final mark in the course was a five-week project and the MDELite project
was a possible topic. 12 of the 25 students chose this project. At the beginning of the
course, we surveyed their status.10 All participants were from Computer Science, 55%
in the Masters Program and 45% in the Bachelor Program. Figure 18 surveys their
prior knowledge. 67% were unfamiliar with MDE, 78% were unfamiliar with Prolog,
and 89% were unfamiliar with categories. Students worked in five groups of two or
more, being two graduate student groups, two undergraduate student groups and the
remaining one a hybrid group.

Students provided weekly updates of their projects through a Google Groups web
page, which was also used by the instructor to post project clarifications.11 At the end
of the semester, a joint presentation was given by all groups with their conclusions.
They were given our questionnaire after the students had received their project grades
to avoid biased responses if they believed their answers could influence their grade.
The responses were analyzed by one of the authors (Azanza) who had no direct contact
with the students.

10 Nine out of the twelve students chose to give their background information
11 https://groups.google.com/forum/#!forum/atl-ocl

https://groups.google.com/forum/#!forum/atl-ocl


18 Don Batory, Maider Azanza

Major Or Department
Status at the 

University of Texas

Answer
Options

Response 
Percent

Answer 
Options

Response 
Percent

CS 87 Bachelor 20

ECE 13 Masters 74

other 0 Ph.D. 6

Major Or Department
Status at the 

University of Texas

Answer
Options

Response 
Percent

Answer 
Options

Response 
Percent

CS 87 Bachelor 20

ECE 13 Masters 74

other 0 Ph.D. 6

Answer Options % Very 
Familiar

% Somewhat 
Familiar

% Not 
Familiar

UML Class Diagrams 33 52 15
Model Driven Engineering 0 22 78

Relational Databases 33 56 11
Program Transformations 4 22 74

Category Theory 0 7 93
BNF Grammars 26 33 41

Parsers 30 48 22
Prolog 7 22 70(a) Participant Status 

(b) Participant Prior Knowledge

Fig. 18 Participant Demographics.

Tasks. ATL is an integral part of the Eclipse Modeling Tools, a modern model trans-
formation language and toolkit for MDE [28]. Among the contributions of ATL and its
project is the ATL Zoo, which is a collection of over one hundred MDE applications
that have been written in ATL. We found it to be a good source that could be used as
examples of MDELite applications. Each group implemented three case studies from
the ATL Zoo using both MDELite and the baseline.

Fig. 19 ATL Zoo Applications Used.

All groups implemented the ATL tutorial application Families2Persons, then they
chose a second (medium-difficulty) and third (hard-difficulty) application. Figure 19
lists those that were used. To give a flavor of the complexity of the applications, we

http://www.eclipse.org/atl/atlTransformations/
http://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation


Teaching Model Driven Engineering from a Relational Database Perspective 19

list the LOC, number of rules and number of helpers of the solutions provided in the
ATL Zoo, together with the number of groups that implemented each of them. The
MDELite solution to Families2Persons is given in Appendix A.

Instrumentation. Students were given lecture notes for MDELite. For the baseline,
they were given the instructional material prepared for the Fall 2011 course.

9.2 Analysis

We wanted answers to the following research questions:

RQ1: Does MDELite reduce student effort to develop applications?
RQ2: How do students perceive MDELite as a tool to learn MDE?
RQ3: How do students perceive Prolog as a constraint language?
RQ4: How do students perceive Prolog as a M2M transformation lan-

guage?

The quantitative analysis for each question was complemented with a qualitative
analysis of open questions. Quantitative answers are analyzed using non-parametric
Wilcoxon signed-rank tests to assess significance. The test assumes that there are no
differences between the two measurements, MDELite vs. baseline (referred to as the
null hypothesis). Then, the conditional probability of having observed the results under
the assumption that the null hypothesis is valid is computed. If that probability p is low
enough (typically p< 0.05), the null hypothesis is rejected. Unless otherwise noted,
results correspond to a five point Likert scale (1-Completely Disagree, 5-Completely
Agree).

9.2.1 RQ1: Does MDELite reduce student effort to develop applications?

As described above, each group implemented three case studies from the ATL Zoo
using both MDELite and the baseline. All implemented Families2Persons and they
had to choose a second (medium-difficulty) and third (hard-difficulty) applications.

The distinction between medium and hard difficulty applications did not prove
useful. When rating application difficulty, the medium one scored 3.67 (1-5 scale)
while the hard one scored 3.50. When asked about the invested effort, both in MDELite
and the baseline the ‘medium-difficulty’ application took longer than the ‘hard’ one
(4.17 vs 4.08 hours in MDELite and 6.68 vs. 4.29 hours in the baseline). Hence for
purposes of presentation, we present measured results of Familes2Persons and the
accumulative remaining set of ATLApplications in Figure 19, together with whether
the groups were capable of finishing the application with each alternative and their
type (i.e., undergrad, graduate or hybrid). Figure 20a presents the aggregated perceived
difficulty of the applications.

Consider the effort students invested in each implementation. Figure 20b presents
the average and standard deviations for both tools and calculates the non-parametric
Wilcoxon signed-rank test (z) and its corresponding p value. We found no statisti-
cally significant difference using baseline and MDELite for Familes2Persons and
ATLApplications, indicating that MDELite had no impact on student productivity.



20 Don Batory, Maider Azanza

Fig. 20 Responses on developed applications.

Focusing on the baseline, how much students relied on the ATL answer provided
in the Zoo is listed in Figure 20a. Note that, while the perceived difficulty was not
very high (2.33 for Familes2Person and 3.75 for ATLApplications), 60% of the
ATLApplications were unfinished in baseline (compared to only 20% unfinished in
MDELite) and the reliance on the posted ATL solution for students to develop their
ATL solution was high (over 4 in all cases). Students admitted having to consult the
solution provided in the ATL Zoo to perform the task.

In summary, we found no statistically significant differences between the baseline
and MDELite. Consequently, we cannot assert that MDELite improves productivity.

9.2.2 RQ2: How do students perceive MDELite as a tool to learn MDE?

Figure 21 summarizes student perceptions of MDELite, again using the average and
standard deviations for both tools and the non-parametric Wilcoxon signed-rank test
(z) and its corresponding p value. The last column shows the effect size (0≤ r≤ 1)
in the cases where statistically significant differences are found.

Fig. 21 Responses on the Tools.

Only item 2 of Figure 21 we did not find significant differences between tools. For
the rest, the differences between tools are statistically significant (i.e., p< 0.05) and
favor MDELite in all cases. Moreover, the effect size (the impact of using MDELite)
is large in all four items (r> 0.5). That is, MDELite was perceived to be easier to use,
easier to install, its messages were easier to understand, and its use would be preferred
in the future over the baseline.

To evaluate MDELite as a teaching tool, we found student responses to items
1 and 4 interesting. Item 1 suggests that MDELite is significantly easier to use and
item 4 indicates that its messages help more in understanding what is going on during



Teaching Model Driven Engineering from a Relational Database Perspective 21

application development. We believe this is essential in learning MDE. This was
corroborated by their responses to the open question:

• ‘From a learning standpoint MDELite was much easier for me to grasp.’
• ‘MDELite is a much better tool for teaching MDE... I like that you can see each

step of the transformation happening. Prolog is not always intuitive to students
since generally we’re not taught languages like Prolog, but it’s not impossible to
learn.’

• ‘I felt like MDELite was overall little easier to use and learn (because it was, at
least for our group, more of learning languages compared to learning the tool
itself).’

• ‘I do think that part of the reason why in general I prefer MDELite is that we had
more experience in it due to coursework; however, in making comparisons about
the ease of learning how to use tool X, I tried to think about how easy it was to
learn MDELite in September (which I think was still easier than learning ATL in
recent weeks).’

• ‘MDELite was generally easier to use. The exception was when intricate recursion
was needed to generate the transformation.’
• ‘Hard to tell how difficult ATL would have been without the solutions provided.

Lack of documentation really hurts. MDELite was generally easier except for the
geometric transformations version.’

• ‘At this stage I cannot really say confidently whether I would find ATL/OCL as
easy if we weren’t building up from examples but doing things from scratch. By
contrast I do remember that it was relatively easy to pick up on the MDELite
end when I started using it for my first class assignment, though we weren’t just
replicating known examples. So I believe that MDELite is a lot more welcoming
to newbies.’

A possible elaboration of the above comments were the differences in how the tools
show what is going on:

• ‘The idea of having a “1-click” transformation is nice for practical use, but not
good for teaching someone about transformations and the various steps between
the input file and the output file.’

• ‘EMT tools need some work. For one, when they are working, I have no idea what
is truly going on.’

• ‘In MDELite I like that you can see each step of the transformation happening.’

Summing up, in general students perceived MDELite as a good teaching tool (easy
to use, easy to install and its messages were easy to understand).

9.2.3 RQ3: How do students perceive Prolog as a constraint language?

Figure 22 lists the items we posed. Statistically significant differences were found in
items 1, 3 and 5. These numbers show that students perceived Prolog to be a better
language to write metamodel constraints, that they became familiar enough with
Prolog to write the required constraints after a shorter time and found that Prolog



22 Don Batory, Maider Azanza

Item (1-5 scale) OCL Prolog T z p r
Ave Std Ave Std

I found that X is an adequate language to write metamodel constraints 3.08 1.00 4.27 0.47 51.50 2.521 0.012 0.580
I found that X is an easy language to learn 2.42 0.67 3.33 1.07 45.00 1.813 0.070
I became familiar enough with X to write the required constraints after a short time 2.58 0.90 3.75 0.87 40.00 2.333 0.020 0.476
I found that X eased my grasp of metamodel constraints. 2.92 1.17 3.83 1.03 29.50 1.639 0.101
I found that X improved my ability to write metamodel constraints 2.58 0.51 4.00 0.85 55.00 2.850 0.004 0.582

Contraint Languages Table

Item (1-5 scale) OCL Prolog T z p r
Ave Std Ave Std

I found that X is an adequate language to write metamodel constraints 3.08 1.00 4.27 0.47 51.50 2.521 0.012 0.580
I found that X is an easy language to learn 2.42 0.67 3.33 1.07 45.00 1.813 0.070
I became familiar enough with X to write the required constraints after a short time 2.58 0.90 3.75 0.87 40.00 2.333 0.020 0.476
I found that X eased my grasp of metamodel constraints. 2.92 1.17 3.83 1.03 29.50 1.639 0.101
I found that X improved my ability to write metamodel constraints 2.58 0.51 4.00 0.85 55.00 2.850 0.004 0.582

Item (1-5 scale) Baseline Prolog z p r
Ave Std Ave Std

I found that X is an adequate language to write metamodel constraints 3.08 1.00 4.27 0.47 2.521 0.012 0.580
I found that X is an easy language to learn 2.42 0.67 3.33 1.07 1.813 0.070
I became familiar enough with X to write the required constraints after a short time 2.58 0.90 3.75 0.87 2.333 0.020 0.476
I found that X eased my grasp of metamodel constraints. 2.92 1.17 3.83 1.03 1.639 0.101
I found that X improved my ability to write metamodel constraints 2.58 0.51 4.00 0.85 2.850 0.004 0.582

Fig. 22 Responses on constraint languages.

improved more their ability to write metamodel constraints. The effect size of using
Prolog is medium for Item 3 (r> 0.3) and large for items 1 and 5.

Two students commented that OCL (i.e., the baseline) was easier to learn and three
felt that OCL is less powerful than Prolog:

• ‘The baseline provided a very convenient way to define metamodels and constraints.
However, I felt it was definitely limited compared to Prolog, which was harder to
write constraints but was more flexible and extensible.’
• ‘After the initial learning curve, I found Eclipse’s GUI for creating metamodels

quite nice. Constraints however were very difficult to enforce and create.’
• ‘Prolog is definitely much more powerful in defining metamodel constraints.’
• ‘Even though MDELite initially had a steeper learning curve because of Prolog, it

was definitely easier to use overall. Prolog is definitely much more powerful in
defining metamodel constraints.’

Considering the qualitative and quantitative data, students perceived that Prolog is a
good language to write metamodel constraints and that they became familiar enough
with it to write the required constraints quickly. However, no statistically significant
differences were found to indicate which language was easier to learn.

9.2.4 RQ4: How do students perceive Prolog as a M2M transformation language?

Responses for this variable are summarized in Figure 23. Statistically significant
differences were only found in items 3 and 5. That is, students became familiar enough
with Prolog to do the required M2M transformations after a shorter time and found
that Prolog improved more their ability to write M2M transformations. The effect size
is large in the case of item 3 and medium in the case of item 5.

Fig. 23 Responses on M2M transformation languages.

In open questions, different students commented on ATL being easier to under-
stand, but more difficult to write from scratch:

• ‘ ATL’s syntax was a major barrier to understand what we were doing as we were
composing the code. It is expressive in the sense that when you look at it you



Teaching Model Driven Engineering from a Relational Database Perspective 23

can get a very good idea of what it means, but producing it from scratch was
troublesome.’

• ‘Assuming I am equally versed in Prolog and ATL, I think that ATL code is more
readable. However, from a learning standpoint MDELite was much easier for me
to grasp (at least for the easy examples).’

• ‘I felt like ATL/OCL was easier to understand M2M transformations as it has
visual representations of metamodels that are pretty easy to understand, and
rules show how one type of class is transformed into another type of class (in
another metamodel). Prolog constraints were definitely more powerful in creating
different metamodels but also little hard to visualize. For someone new to M2M
transformations, it is probably easier to understand what’s going on with ATL/OCL
(writing one from scratch is completely different story though—MDELite is
definitely better in that sense, at least for us).’

Students also commented on the balance between the generality MDELite offers as
opposed to the domain specificity of ATL:
• ‘MDELite is like a truck: it’s capable of getting over any kind of terrain and

hauling some gear too, but its gas mileage is inefficient. ATL is like a sports car:
it can’t handle all terrain, but it’s very quick on a race track. I felt that if I had a
strange problem to deal with, I could use MDELite’s loose combination of Java,
Prolog, and Velocity to figure out a solution. ATL doesn’t offer that. The Eclipse
GUI keeps you constrained to a very specific way of doing things and doesn’t let
you fool around to learn what’s actually going on. However, when the way ahead
is very clear, ATL provides an elegant solution.’

• ‘What I thought was interesting was that MDELite’s shortcomings were often
ATL/OCL’s strengths, and vice versa.’
• ‘MDELite is a good contradiction (contrast) to the ATL. It uses general purpose

languages to provide an acceptable solution to writing M2M transformations.
BUT, its use of general purpose languages makes fundamentally limited. A well
implemented DSL for M2M transformations has a much higher ceiling than
MDELite will ever be able to achieve.’

• ‘ATL definitely has the advantage of being purpose built for M2M transformations,
and it shows. However the required time to understand MDELite was considerably
less.’

• ‘For transformations, Prolog was sometimes easy to use (for simple examples)
but as examples got more complex in the M2M conversions needed, it got to be a
pain.’

and how choosing one or the other depends on the domain at hand:
• ‘I think using ATL vs Prolog depends a lot on the use case. For instance if the

transformations were simple – like in families to persons where you were just
converting members to individuals – Prolog would definitely be a lot easier to use.
But I think in more complicated scenarios Prolog would be less desirable mainly
because ATL seems a lot closer to the imperative programming paradigm, we are
used to. So I think ATL would help us get the tasks done a lot quicker.’

Some students commented on the difficulties of handling recursive transformations
using Prolog:



24 Don Batory, Maider Azanza

• ‘MDELite seems poorly suited for tasks involving the definition of a recursive
model or recursively-based transformations.’

• ‘MDELite was generally easier except for the geometric transformations version.’
• ‘Recursive nature of geometric transformations was difficult to get working in

MDELite.’

In general students perceived that M2M transformations were easier to write in
Prolog but that ATL is more suited for complex transformations.

9.3 Summary

Below we briefly summarize the answers to our research questions:

RQ1: Does MDELite reduce student effort to develop applications? We found
no evidence that MDELite improves student productivity when writing MDE
applications.

RQ2: How do students perceive MDELite as a tool to learn MDE? Students found
that MDELite was significantly easier to use, easier to install and its messages
being easier to understand than the baseline. In general they perceived it to be a
good teaching tool.

RQ3: How do students perceive Prolog as a constraint language? Students found that
Prolog is a good language to write metamodel constraints and that they became
familiar enough with it to write the required constraints quickly. However, no
evidence was found to indicate that it is easier to learn than the baseline.

RQ4: How do students perceive Prolog as a M2M transformation language? Students
found that they became familiar enough with Prolog to do the required M2M
transformations after a short time and that Prolog improved their ability to write
M2M transformations (except in the case of geometric transformations). They
commented on Prolog being easier to learn than the baseline. Nevertheless, they
found ATL more suited for complex transformations.

These results, together with student comments and their answers to the open questions
gave us valuable feedback on how to improve MDELite in the future.

9.4 Threats to Validity

A first issue relates to sample size. Johnson et al. suggest six participants per group
as the minimum required for a controlled experiment [27]. Our experiment used
twelve participants divided in five groups. Even though our results show statistically
significant differences and large effect sizes, larger groups are needed to corroborate
these findings.

Another issue relates to the background of students. Our students were enrolled in
the University of Texas at Austin. It would be interesting to replicate the evaluation in
another setting to see if the findings are corroborated.



Teaching Model Driven Engineering from a Relational Database Perspective 25

A third concern is the evaluation design. The course taught MDE concepts using
MDELite (4 weeks) and then students carried out the project with both MDELite and
the baseline (5 weeks). In this time teams had access to the baseline material, had
regular meetings with the instructor, but no classroom discussion was dedicated to the
issue. While we believe students provided balanced and coherent feedback, a similar
evaluation in a setting that taught the baseline and then did MDELite as a project
might reveal a different perspective.

Moreover, the evaluation was performed in a graduate course, when MDELite is
firstly aimed at undergraduate students. The reason was opportunistic, the first author
(Batory) did not teach the undergraduate course that academic year and we wanted to
gather student perception on MDELite and to identify areas for improvement. Never-
theless, 45% of the students that participated in the evaluation were undergraduates
and we found no significant differences between graduate and undergraduate students.

Last, while we tried our best not to influence students in any way during the project
and asked for their honest opinion, them knowing that MDELite was created by their
instructor could have had an impact on their answers.

10 Lessons Learned

Multi-Paradigm Programming. In general, students are Java programmers and
novices to Prolog. Prolog and Java have two very different mind-sets, and flipping
between paradigms can be confusing. Trivial things like Prolog rules ending in (Java)
semicolons instead of (Prolog) periods was a mistake constantly made. Prolog inequal-
ities (=<) are syntactically reversed in Java (<=). In SWI-Prolog, when something
is mistyped, a question-mark prompt (?) is produced and the usual Windows/Linux
character escapes (e.g., ctl-C) to reset to the command prompt fails. Problems like
these disappear once familiarity with Prolog sets in—they clearly are not fundamental,
but are jolting to students in a first, quick immersion into Prolog. For this reason, we
recommend that MDELite be a pair-programming project: one person concentrating
on Prolog, the other on Java, to minimize cross-paradigm confusion.

Many-Columned Tables. When there are many columns, it can be daunting in
Prolog to correctly reference a table and account for each of its columns in a predi-
cate. In such cases, one can M2M transform such tables into RDF 3-tuple format of
(tupleid, columnName, value) or a 4-tuple format (tableName, tupleid, column-
Name, value) for easy attribute referencing.VioletPL SDBPL YUMLPL YUML

M2M M2M M2T

VioletPL

M2M M2TM2M

SDBPL YUMLPL YUML

Fig. 24 Debugging Transformation Scripts.

Transformation Debugging.
MDELite provides a microcosm
of the challenges of debugging
transformations. Even though a
transformation takes an object
(a model) as input and produces
an object (a model) as output,
objects are Prolog databases that are anything but simple values and can have complex



26 Don Batory, Maider Azanza

structures. Writing transformations in any language is not simple—it is easy to forget a
case or incorrectly code a translation. Our hunch is that the simpler a transformation’s
specification, the easier it will be to track down errors. This remains, however, a
conjecture.

A technique that we found useful—perhaps motivated by the “shape” of the
category of Figure 14a—was to define a transformation τ and then its inverse τ−1, so
that we could test whether τ · τ−1 was an identity or an equivalence. This helped, but
obviously did not eliminate all bugs.12

Nonetheless, the fundamental challenge in debugging transformations becomes
clearly evident: an error is detected in a database (far right of Figure 24). Upon
examination, we discovered that the transformation that produced it was correct, but
its input database was incorrect. This unwinds backwards until we discover a correct
database that was input to a transformation that produced an incorrect database. Surely
results on debugging Prolog programs and debugging database transactions—studied
long ago—might be useful to MDELite. This too remains a conjecture.

Velocity Limitations. When Velocity templates have many loops and if statements,
it is easy to lose track of loop and if-then-else boundaries, thereby creating incorrect
templates. One reason why loops and if-statements are used is to join tables. For
example, consider the following Class table rows, where class Customer is connected
to class Address via a ∗→1 association:

class(c1,’Customer’,’’,’’,’’).
class(c2,’Address’,’’,’’,’’).
association(c1,’*’,none,c2,’1’,arrow).

To correctly compute the set of attributes that each class will have requires a Velocity
template that joins these tuples.

Another issue, one that is much more difficult to solve, is that Velocity provides
very limited capabilities to manipulate Strings—which ironically is the purpose of
Velocity. Simple Java String methods can be invoked within a template, but any
significant manipulation requires hacking (i.e., distorting what would otherwise be a
simple and straightforward template).

We mentioned earlier that it is possible to use a Prolog M2M transformation to
‘prepare’ a database that is better suited for (i.e., makes it easier to write) Velocity
templates. But a well-known weakness of Prolog is its clumsy handling of strings,
which limits the use of Prolog M2M transformations for this purpose.

We have since discovered other M2T (text-template) tools, such as Handlebars [24]
that offers Velocity-like functionality with the ability to allow customized Java methods
to be invoked from templates. To offer Handlebars (or other text-template tools) will
simply make MDELite more of a framework, where programmers can pick-and-choose
the text-template tools that they want to use.

12 Two documents d1 and d2 can differ in whitespace, ordering of declarations, etc. and still represent
equivalent class diagrams.



Teaching Model Driven Engineering from a Relational Database Perspective 27

Prolog Limitations. Although Prolog is Turing-complete, there are applications
for which is is poorly suited. One of the applications selected from the ATL Zoo
involved geometric transformations. Students had to recode ATL computations in
Prolog which was unpleasant. It is not difficult to extrapolate this to more computation-
extensive transformations – where highly-tuned modules were programmed, say, in
the C language are already available to accomplish this task. This would mean that
cross-language calls from Prolog to whatever language is daunting and unattactive.
This lead us to realize that picking-and-choosing text-template tools should also lead
to the picking-and-choosing of M2M transformation languages, where the reading
and writing of readable Prolog databases—rather than obscure XML documents—is
the key to generalizing MDELite. While we could not express such generality in
MDELite, a next generation of MDELite does permit this [15]. So in our opinion, a
practical benefit of our user study was to reveal the direction for our future research.

11 Current Status, Bootstrapping, and Course Lectures

Current Status. The framework of MDELite is tiny because MDELite, as described
in this paper, does not have a meta-meta model nor was bootstrapped. It became
clear soon enough that classes and methods of an MDELite application that we wrote
manually (as described previously) could indeed be generated from a category diagram
of an MDE application.

BootStrapping. Since our original publication [9], we have made two efforts to
bootstrap MDELite. The first was accomplished by graduate students in Fall 2013
using the existing MDELite framework. Effectively it did the following: given a
category spec, it produced a set of Java files, which would then be compiled and
executed like a manually-written MDELite application.

A second and more ambitious attempt was made by the first author (Batory) in
Summer 2014 to reimplement MDELite not as a code-generator but as an interpreter.
The project was called Catalina. An entire MDE application was expressed as a cate-
gory diagram, from which a set of Prolog database tables was derived, and executions
(e.g., paths through categories) were interpretively executed.

Catalina went further, as it prototyped an IDE plug-in. For example, to write or
debug a VM2T transformation, a triplet of text windows would be presented to a
programmer: one showing the current Prolog database, another the VM2T template,
and a third the source that the VM2T template generated given that Prolog database.
In this way, a programmer was given a cocoon-like environment in which VM2T
templates could be dynamically and incrementally developed. The programmer would
edit the VM2T template in one window, push a button, and see the result of its
execution in the third window. Similar environments were created to develop Prolog
constraints and Prolog M2M transformations. In principle, this triad of windows
worked extremely well.

Catalina was used in a graduate class on Automated Software Design in Fall 2014.
The first author believes that Catalina’s ideas sketched above are correct. However, it
is not clear that Catalina was successful. In a nutshell, consider at Figure 25.

http://www.eclipse.org/atl/atlTransformations/


28 Don Batory, Maider Azanza

LOC LOC LOC Java
Tool Prolog Velocity Java

MDELite 590 654 3093
Catalina 1130 383 8237

Fig. 25 Size of MDELite and Catalina: Lines of Prolog, Velocity, and Java Code

Catalina is at least 3× the size of MDELite, but it feels 10×. It was a nightmare to build
the specialized window management that Catalina needed, and even though it worked,
Catalina’s implementation didn’t feel “integrated”. The three windows described above
were realized as separately spawned text editors that were not managed within a single
window frame; a programmer had to manage these windows manually as a group.

The bottom-line is that we are still exploring the simplest way to bootstrap and
present MDELite ideas. We have gained far greater appreciation of the difficulties of
creating a usable IDE environment for MDE in general, and MDELite in particular; it
was far more difficult than we imagined. A fuller account of Catalina, with its lessons
learned and trade-offs, may be described in some future paper.

Course Lectures. In the meantime, our basic lectures on MDELite have not funda-
mentally changed. In a graduate class, our first lecture covers the contents of this
paper up through and including T2M transformations (Section 6). A second lecture
briefly reviews Prolog and how to use Prolog to write model constraints and M2M
transformations within the MDELite/Catalina environment. The third lecture explains
how MDELite can be bootstrapped. As this section reveals, we have not yet settled on
the best way to bootstrap and what constitutes “best”.

Our undergraduate curriculum follows a similar trajectory, but at a much slower
pace. The first lecture familiarizes students with UML class diagrams. The second
explains how meta-models are mapped to database schemas, how models (and UML
Object models) are mapped to databases. The third explains how Prolog can be used
to express model constraints and a fourth reinforces these ideas with in-class exercises,
hinting at Prolog M2M transformations.13 The idea that an MDE engineer draws a
program specification and generates code from it, as in Figure 11, are clear by then.
We have not observed any advantage for students who had prior database knowledge,
or any disadvantage for students not knowing database concepts prior to this course.

In both classes, there is a small number of lectures on MDE concepts. Assignments
to reinforce these ideas, both written and programming, extend weeks past the end of
these formal lectures. This matches our instincts: the ideas behind MDE are elegant,
simple and powerful. To appreciate them requires hands-on experience which takes
longer.

12 Related Work

At the presentation of MDELite at the MODELS13 conference, Pantel observed that
the STOOD, ADELE, and AADL-inpector tool sets rely on Prolog for model analysis

13 The undergraduate class is not MDE specific, but is intended to cover and explain a wide spectrum of
software development and design approaches.



Teaching Model Driven Engineering from a Relational Database Perspective 29

and transformations; these toolsets have been used in the Airbus static architecture
plane model [33]. So the basic ideas of MDELite (using Prolog) do indeed scale to
large systems.

On a panel discussion held during the Educators Symposium at MODELS 2009,
Bézivin presented a statement entitled “We Need an Army of Engineers to Implement
the MDE Vision”. He described how teaching MDE to future engineers is key to
realizing the vision [11]. The same belief is behind this work. However, our expe-
rience coincides with France’s insights at the same symposium in 2011, i.e., that
many existing modeling tools introduce significant accidental complexity and that
dissatisfaction with current toolset is sometimes the basis for students dismissing
modeling techniques [22]. Hence, the seed for MDELite was born.

A paper by Favre inspired our work [20]. He warned against adding complex
technologies on top of already complex technologies, and advocated a back-to-basics
approach, specifically suggesting that MDE be identified with set theory and the
use of Prolog to express MDE relationships among models and their meta-model
counterparts.

In searching the literature, we found many papers advocating Prolog-database
interpretations of MDE. For lack of space, we concentrate on the most significant,
although we feel none are quite as compact or as clean as MDELite. Almendros-
Jiménez and Iribarne advocated Prolog to write model transformations and model
constraints [1,3]. The difference between our work and theirs is orientation: our goal
is to find a simple way to demonstrate and teach MDE to undergraduates. Their goal is
to explore the use of logic programming languages in MDE applications. For example,
PTL is a hybrid of the Atlas Transformation Language and Prolog for writing model
transformations [2]. In another paper, OWL files encode MDE databases and OWL
RL specifies constraints in terms of Description Logics. For teaching undergraduates,
the use of OWL and Description Logic is overkill and obscures the simplicity of
MDELite. How M2T transformations are handled and MDE applications (categories)
are encoded are not discussed.

Störrle’s Model Manipulation Toolkit uses unnormalized (set-valued) relational
tables as the basic Prolog data representation and uses Prolog to query these tables [37].
Although M2M transformations seem not to be discussed, the obvious implication is
present. MDELite goes beyond this work also integrating M2T and T2M transforma-
tions, as well as exposing the bigger picture of MDE applications as categories.

Oetsch et. al. advocate Answer-Set Programming (ASP) to express a limited form
of MDE [31]. Entity-Relationship models represent meta-models (drawn using Eclipse
MDE tools); and their tool allows one to enter ASP facts (similar to Prolog facts)
manually that conform to the input meta-models; ASP queries are used to validate
meta-model constraints expressed in the ER model.14 MDELite is more general
than this: M2M, M2T, and T2M mappings need to be defined in addition to model
constraints. Further, how MDE applications are defined (as in MDELite categories) is
not considered.

14 The Eclipse OCL tool plugin is similar in that one has to manually enter tuples beforehand before OCL
queries can be executed. This is impractical, even for classroom settings.



30 Don Batory, Maider Azanza

To our knowledge, few papers have reported rigorous evaluations of MDE teaching
experiences. Brosch et al. report their experience teaching an advanced modeling
course called Model Engineering at the Vienna University of Technology [14]. We
had the same experience with student complaints concerning the maturity of MDE
technologies and lack of documentation. The authors state that they would like to
develop a dedicated model engineering framework for teaching purposes. This is
exactly the role of MDELite.

13 Conclusions

MDELite reinterprets MDE from the viewpoint of relational databases. A metamodel
is a database schema with declarative constraints written in Prolog. A model is a
database of tuple-populated-tables that satisfy metamodel constraints. Declarative
M2M transformations are written in Prolog. M2T and T2M transformations rely
on simple Java programs or off-the-shelf tools. Categories, a fundamental structure
in mathematics, integrates these concepts to define MDE applications. MDELite
leverages (and maybe introduces or refreshes) core undergraduate CS knowledge to
explain, illustrate, and build MDE applications without the overhead and complexity
of Eclipse MDE tools. Our case studies indicate MDELite is feasible; our initial user
study supports our observations on MDELite as a good platform for teaching MDE
concepts.

The next phases of our research, which we have already begun, is to bootstrap
MDELite. We have already explored several possibilities, but have not yet settled on a
way that exhibits both simplicity and usability within an IDE framework. Improving
MDE teaching material/descriptions and building MDE tools are separable concerns:
MDELite has a conceptual compactness and elegance that MDE should have. Finding
a correspondingly pleasing IDE framework remains our top open problem.

We believe MDELite is a clarion way to explain MDE to undergraduate students.
It is our hope that others may benefit, and indeed improve, our ideas. MDELite is
available at http://www.cs.utexas.edu/users/schwartz/MDELite/index.html.

Acknowledgements. We thank the SoSyM referees for very constructive reviews of
our initial draft; in a time where writing unconstructive, uninformed negative reviews
has become a sport, these referees took their jobs seriously, for which we are grateful.

We are indebted to S. Trujillo (Ikerlan), O. Diaz (UPV/EHU), P. Stevens (Edin-
burgh), J. Siegmund (Passau) and L. Vozmediano (UPV/EHU) for their insightful
comments on earlier drafts of this paper. We also appreciate the help given by M.
Spönemann on the Kieler graph layout tools and R. Lämmel his invaluable help an-
swering questions about Prolog. We also thank R. Berg, E. Huneke, A. Shali, and J.
Ho for creating VM2T and thank J. Croy, D. Ilijev, B. Koo, E. Liu, T. McCandless,
M. Parikh, C. Orchard, C. Salisbury, A. Sharp, J. Siu, C. Stewart, and M. Teng for
participating in the user evaluation. We gratefully acknowledge support for this work
by NSF grants CCF-1421211, CCF-0724979, and OCI-1148125, the Spanish Ministry
of Education, and the European Social Fund under contract TIN2011-23839.

http://www.cs.utexas.edu/users/schwartz/MDELite/index.html


Teaching Model Driven Engineering from a Relational Database Perspective 31

References

1. Almendros-Jiménez, J.M., Iribarne, L.: A Framework for Model Transformation in Logic Programming.
In: VIII Jornadas sobre Programación y Lenguajes (PROLE 2008), Gijón, Spain. pp. 29–39 (2008)

2. Almendros-Jiménez, J.M., Iribarne, L.: A Model Transformation Language Based on Logic Program-
ming. In: 39th International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2013), Špindlerův Mlýn, Czech Republic. Lecture Notes in Computer Science, vol. 7741,
pp. 382–394. Springer (2013)

3. Almendros-Jiménez, J.M., Iribarne, L.: ODM-based UML Model Transformations using Prolog. In:
International Workshop on Model-Driven Engineering, Logic and Optimization: friends or foes?
(MELO 2011), in conjunction with the 7th European Conference on Modelling Foundations and
Applications (ECMFA 2011), Birmingham, UK. Lecture Notes in Computer Science, vol. 7741, pp.
382–394. Springer (2013)

4. Apache Velocity Project. http://velocity.apache.org/. Last accessed: April 2015
5. Basili, V.R.: Software Modeling and Measurement: the Goal/Question/Metric Paradigm. Tech. rep.,

University of Maryland (1992)
6. Batory, D.: Multilevel Models in Model-driven Engineering, Product Lines, and Metaprogramming.

IBM Systems Journal 45(3), 527–540 (2006)
7. Batory, D., Azanza, M., Saraiva, J.: The Objects and Arrows of Computational Design. In: 11th

International Conference on Model Driven Engineering Languages and Systems (MoDELS 2008),
Toulouse, France. Lecture Notes in Computer Science, vol. 5301, pp. 1–20. Springer (2008)

8. Batory, D., Gonçalves, R., Marker, B., Siegmund, J.: Dark Knowledge and Graph Grammars in
Automated Software Design. In: 6th International Conference on Software Language Engineering
(SLE 2013), Indianapolis, IN, USA. Lecture Notes in Computer Science, vol. 8225, pp. 1–18. Springer
(2013)

9. Batory, D., Latimer, E., Azanza, M.: Teaching Model Driven Engineering from a Relational Database
Perspective. In: 16th International Conference on Model-Driven Engineering Languages and Systems
(MODELS 2013), Miami, FL, USA. Lecture Notes in Computer Science, vol. 8107, pp. 121–137.
Springer (2013)

10. Baughman, M.: The Influence of Scientific Research and Evaluation on Publishing Educational
Curriculum. New Directions for Evaluation 117, 85–94 (2008)

11. Bézivin, J., France, R.B., Gogolla, M., Haugen, Ø., Taentzer, G., Varró, D.: Teaching Modeling:
Why, When, What? In: Workshops and Symposia at the 12th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 2009), Denver, CO, USA, Reports and Revised
Selected Papers. Lecture Notes in Computer Science, vol. 6002, pp. 55–62. Springer (2009)

12. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: OOPSLA/GPCE Workshop on
Best Practices for Model-Driven Software Development (MDSD 2004) in conjuction with the 19th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2004), Vancouver, Canada (2004)

13. Boruch, R.: Encouraging the Flight of Error: Ethical Standards, Evidence Standards, and Randomized
Trials. New Directions for Evaluation 2007, 55–73 (2007)

14. Brosch, P., Kappel, G., Seidl, M., Wimmer, M.: Teaching Model Engineering in the Large. In: 5th
Educators’ Symposium in conjunction with the 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2009), Denver, CO, USA (2009)

15. Catalina: A Next-Generation of MDELite. http://www.cs.utexas.edu/users/schwartz/
MDELite/index.html. Last accessed: April 2015

16. Cook, T.D.: Why have Educational Evaluators Chosen Not to Do Randomized Experiments? The
ANNALS of the American Academy of Political and Social Science 589(1), 114–149 (2003)

17. Dehayni, M., Féraud, L.: An Approach of Model Transformation Based on Attribute Grammars. In: 9th
International Conference on Object-Oriented Information Systems (OOIS 2003), Geneva, Switzerland.
Lecture Notes in Computer Science, vol. 2817, pp. 412–423. Springer (2003)

18. Diskin, Z.: Algebraic Models for Bidirectional Model Synchronization. In: 11th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS 2008), Toulouse, France.
Lecture Notes in Computer Science, vol. 5301, pp. 21–36. Springer (2008)

19. Dot Language. http://www.graphviz.org/content/dot-language. Last accessed: April 2015
20. Favre, J.M.: Towards a Basic Theory to Model Driven Engineering. In: 3rd Workshop in Software

Model Engineering (WISME 2004) in conjuction with the 7th International Conference on the Unified
Modeling Language (UML 2004), Lisbon, Portugal (2004)

http://velocity.apache.org/
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html
http://www.cs.utexas.edu/users/schwartz/MDELite/index.html
http://www.graphviz.org/content/dot-language


32 Don Batory, Maider Azanza

21. Fraenkel, J.R., Wallen, N.E.: How to Design and Evaluate Research in Education. McGraw-Hill (2009)
22. France, R.B.: Teaching Programming Students how to Model: Challenges & Opportunities. In: Keynote

Speaker at the 7th Educators’ Symposium in conjunction with the 14th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2011), Wellington, New Zealand (2011)

23. Hainaut, J.: The Transformational Approach to Database Engineering. In: 1st International Summer
School on Generative and Transformational Techniques in Software Engineering (GTTSE 2005), Braga,
Portugal. Revised Papers. Lecture Notes in Computer Science, vol. 4143, pp. 95–143. Springer (2005)

24. Handlebars Template Project. http://handlebarsjs.com/. Last accessed: April 2015
25. ISO/IEC: Software Engineering - Software Product Quality - Part 1: Quality Model (2001)
26. Jedlitschka, A., Pfahl, D.: Reporting Guidelines for Controlled Experiments in Software Engineering. In:

International Symposium on Empirical Software Engineering (ISESE 2005), Noosa Heads, Australia.
pp. 95–104. IEEE (2005)

27. Johnson, P.: Human Computer Interaction: Psychology, Task Analysis, and Software Engineering.
McGraw-Hill (1992)

28. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Science of
Computer Programming (SCP) 72(1-2), 31–39 (2008)

29. Kieler Web Service Tool. http://rtsys.informatik.uni-kiel.de/confluence/display/
KIELER/Downloads+-+KIELER+Web+Service+Tool. Last accessed: April 2015

30. McKeachie, W.J.: Research on College Teaching: The Historical Background. Journal of Educational
Psychology 82, 189–200 (1990)

31. Oetsch, J., Pührer, J., Seidl, M., Tompits, H., Zwickl, P.: VIDEAS: A Development Tool for Answer-Set
Programs Based on Model-Driven Engineering Technology. In: 11th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2011), Vancouver, Canada. Lecture Notes in
Computer Science, vol. 6645, pp. 382–387. Springer (2011)

32. Oldevik, J.: UMT: UML Model Transformation Tool Overview and User Guide Documentation.
http://umt-qvt.sourceforge.net/docs/UMT_documentation_v08.pdf. Last accessed: April
2015 (2004)

33. Pantel, M.: Private Email Conversation (2013)
34. Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press (1991)
35. Shadish, W., Cook, T., Campbell, D.: Experimental and Quasi-experimental Designs for Generalized

Causal Inference. Cengage Learning (2002)
36. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling: State of the Art and Research

Challenges. In: Model-Based Engineering of Embedded Real-Time Systems. International Dagstuhl
Workshop, Dagstuhl Castle, Germany, 2007. Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6100, pp. 57–76. Springer (2010)

37. Störrle, H.: A prolog-based approach to representing and querying software engineering models. In:
Workshop on Visual Languages and Logic (VLL 2007) in conjunction with the IEEE Symposium
on Visual Languages and Human Centric Computing (VL/HCC 2007), Coeur d’Aléne, Idaho, USA.
CEUR Workshop Proceedings, vol. 274, pp. 71–83. CEUR-WS.org (2007)

38. SWI-Prolog. http://www.swi-prolog.org/. Last accessed: April 2015
39. UML Factory. http://www.umlfactory.com/. Last accessed: June 2012
40. Violet UML Editor. http://alexdp.free.fr/violetumleditor/page.php. Last accessed: April

2015
41. Walser, T.M.: Quasi-Experiments in Schools: The Case for Historical Cohort Control Groups. Practical

Assessment, Research and Evaluation 19(6), 1–7 (2014)
42. yUML Beta. http://yuml.me/

A Families2Persons Application

Families2Persons is a simple M2M application. A family database, consisting of two tables family and
member, is transformed into a persons database, consisting of the male and female tables. Figure 26a-b
shows the schema and tuples of the family and persons databases, respectively. The M2M rules in Prolog
are given in Figure 26c.

http://handlebarsjs.com/
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Downloads+-+KIELER+Web+Service+Tool
http://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Downloads+-+KIELER+Web+Service+Tool
http://umt-qvt.sourceforge.net/docs/UMT_documentation_v08.pdf
http://www.swi-prolog.org/
http://www.umlfactory.com/
http://alexdp.free.fr/violetumleditor/page.php
http://yuml.me/


Teaching Model Driven Engineering from a Relational Database Perspective 33

familyId lastName

… …

memberId firstName fatherOf motherOf sonOf DaughterOf

… … … … … …

personId name

… …

personId name

… …

family

member

male

female

family(f1, ‘march’ ).

family(f2, ‘sailor’). 

member(m1, ‘jim’,     f1,   null, null, null).

member(m2, ‘cindy’,   null, f1,   null, null).

member(m3, ‘brandon’, null, null, f1,   null).

member(m4, ‘brenda’,  null, null, null, f1 ).

member(m5, ‘peter’,   f2,   null, null, null).

member(m6, ‘jackie’,  null, f2,   null, null).

member(m7, ‘david’,   null, null, f2,   null).

member(m8, ‘dylan’,   null, null, f2,   null).

member(m9, ‘kelly’,   null, null, null, f2 ).

male(m1, ‘jim march’).

male(m3, ‘brandon march’).

male(m5, ‘peter sailor’).

male(m7, ‘david sailor’).

male(m8, ‘dylan sailor’).

female(m2, ‘cindy march’).

female(m4, ‘brenda march’).

female(m6, ‘jackie sailor’).

female(m9, ‘kelly sailor’).

(a) (b)

% utility needed to concatenate atoms with blank in between

concatnames(X,Y,Z) :-

string_to_atom(Sx,X),string_to_atom(Sy,Y),

string_concat(Sx,' ',XX),string_concat(XX,Sy,Z).

% here are the database translation rules

male(Id,N)   :- family(F,Ln),member(Id,Fn,F,_,_,_),concatnames(Fn,Ln,N).

male(Id,N)   :- family(F,Ln),member(Id,Fn,_,_,F,_),concatnames(Fn,Ln,N).

female(Id,N) :- family(F,Ln),member(Id,Fn,_,F,_,_),concatnames(Fn,Ln,N).

female(Id,N) :- family(F,Ln),member(Id,Fn,_,_,_,F),concatnames(Fn,Ln,N).

(c)

Fig. 26 Families to Persons.



34 Don Batory, Maider Azanza

B An Illustrative M2M Example

Consider Figure 27. (a) shows an aggregation hierarchy: each course has a number of offerings, each
offering has students and instructors. Using the rules of Section 2, the schema of (b) is produced
from (a). The primary or partial keys of each table are indicated in (a) by ‘Key’ and are underlined in (b). To
map this to a proper set of relational tables, where MDELite internal identifiers are absent and only primary
or compound keys are present in tuples as in (c), we need a M2M transformation.

c# cnumber title

o# onumber days location c#

s# snumber sname grade o#

i# inumber iname o#

cnumber title

cnumber onumber days location

cnumber onumber snumber sname grade

cnumber onumber inumber iname

-snumber : key
-sname
-grade

student

-inumber : key
-iname

instructor

1

*

1

*

1

*

-onumber : key
-days
-location

offering

-cnumber : key
-title

course
course

offering

student

instructor

courser

offeringr

studentr

instructorr

(a) (b) (c)

Fig. 27 Database Normalization Transformation.

The Prolog program that translates schema (b) to (c) is listed below:

/* MDELite database and schema declarations */

dbase(one,[course,offering,student,instructor]).
dbase(two,[courser,offeringr,studentr,instructorr]).

table(course,[cid,cnumber,title]).
table(offering,[oid,onumber,days,location,cid]).
table(student,[sid,snumber,sname,grade,oid]).
table(instructor,[iid,inumber,iname,oid]).

table(courser,[cnumber,title]).
table(offeringr,[cnumber,onumber,days,location]).
table(studentr,[cnumber,onumber,snumber,sname,grade]).
table(instructorr,[cnumber,onumber,inumber,iname]).

/* table translation rules */

courser(C,T) :- course(_,C,T).

offeringr(C,O,D,L) :- offering(_,O,D,L,Cid),course(Cid,C,_).

studentr(C,O,S,N,G) :- student(_,S,N,G,Oid),offering(Oid,O,_,_,Cid),course(Cid,C,_).

instructorr(C,O,I,N) :- instructor(_,I,N,Oid),offering(Oid,O,_,_,Cid),course(Cid,C,_).



Teaching Model Driven Engineering from a Relational Database Perspective 35

C Illustrative VM2T Application

The VM2T script that converts an FSM Prolog database into executable source is given below.

#set($MARKER="//----")
${MARKER}src/FSM.java
##
## FSM code
##
class FSM {

state current = new start();

#foreach( $n in $nodeS)
void goto$n.name()
{ current = current.goto$n.name(); }

#end
String getName()
{ return current.getClass().getName(); }

}
##
## state interface
##
${MARKER}src/state.java
interface state {

#foreach( $n in $nodeS)
state goto$n.name();

#end
String getName();

}
##
## node classes
##
#foreach ( $n in $nodeS )
${MARKER}src/$n.name.java
class $n.name implements state {

#foreach ( $s in $nodeS )
#set ($legal = false)
#foreach ( $e in $edgeS )

#if ($e.startsAt == $n.id && $e.endsAt == $s.id)
#set ($legal = true )
#set ($end = $s.name )

#end
#end
#if ($legal)

public state goto$s.name() { return new $end(); }
#else

public state goto$s.name() { return this; /* ignore */ }
#end

#end

public String getName() { return "$n.name"; }

}
#end

The Java code for class drink is shown below:



36 Don Batory, Maider Azanza

class drink implements state {

public state gotostart() { return this; /* ignore */ }
public state gotoready() { return this; /* ignore */ }
public state gotodrink() { return new drink(); }
public state gotoeat() { return new eat(); }
public state gotopig() { return new pig(); }
public state gotostop() { return this; /* ignore */ }

public String getName() { return "drink"; }

}


	Introduction
	MDE Models and MetaModels
	Model Constraints
	Model-to-Model Transformations
	Model-to-Text Transformations
	Tool-to-Model Transformations
	MDELite and its Applications
	A Case Study of MDELite
	Student Evaluation
	Lessons Learned
	Current Status, Bootstrapping, and Course Lectures
	Related Work
	Conclusions
	Families2Persons Application
	An Illustrative M2M Example
	Illustrative VM2T Application

