Iaccepted for publication SoSYM 2015

From Software Extensions to Product

Lines of Dataflow Programs

Rui C. Gongalves

High-Assurance Software Laboratory
INESC TEC
Braga, Portugal

rgoncalves@di.uminho.pt

Don Batory

Department of Computer Science
The University of Texas at Austin
Austin, TX, USA

batory@cs.utexas.edu

Taylor L. Riché

National Instruments
Austin, TX, USA

taylor.riche@ni.com

Jodo L. Sobral

Departamento de Informatica
Universidade do Minho
Braga, Portugal

jls@di.uminho.pt

Abstract

Dataflow programs are widely used. Each program is a directed
graph where nodes are computations and edges indicate the flow
of data. In prior work, we reverse-engineered legacy dataflow pro-
grams by deriving their optimized implementations from a simple
specification graph using graph transformations called refinements
and optimizations. In MDE-speak, our derivations were PIM-to-
PSM mappings.

In this paper, we show how extensions complement refinements,
optimizations, and PIM-to-PSM derivations to make the process of
reverse engineering complex legacy dataflow programs tractable.
We explain how optional functionality in transformations can be
encoded, thereby enabling us to encode product lines of transfor-
mations as well as product lines of dataflow programs. We describe
the implementation of extensions in the ReF10 tool and present two
non-trivial case studies as evidence of our work’s generality.

Keywords: MDE, PIM, PSM, model transformation, software ex-
tension, dataflow programs, software product line.

1. Introduction

Dataflow programs (DfP) abound in today’s world. They are fault-
tolerant servers [14, 46], relational query execution plans [20, 46],
dense linear algebra kernels [38, 39], virtual instruments [26, 49,
53], stream processing applications [26, 54], and large-scale cloud
data processing applications [13, 25]. A DfP is a directed graph:
nodes called boxes are components or computations; edges indicate
the flow of data. Edges that flow into a box are box inputs; edges
leaving a box are box outputs. The graph of a DfP is referred to as
its architecture.

In prior work [24] we explored an MDE approach to encode
DfP design knowledge as graph transformations so that a simple

[Copyright notice will appear here once "preprint’ option is removed.]

easy-to-understand DfP could be transformed into a complex and
optimized implementation, also expressed as a DfP. That is, we
transformed an initial DfP (graph), always preserving its behavior,
until we reached another DfP that had the desired implementation
properties regarding, for example, efficiency or availability. This
DfP could then be mapped to code using a domain specific code
generator. The transformations we used were refinements (replace
a box with an implementing graph) or optimizations (replace a
subgraph with a semantically equivalent graph).

Our derivations begin with a simple DfP (high-level specifica-
tion or platform independent model (PIM)). In this paper, we show
how a complex PIM can be constructed incrementally. That is, we
start with an elementary PIM that defines only part of the desired
behavior. New behavior is incrementally added to this PIM, until
we arrive at a PIM with the desired behavior [47]. Adding behav-
ior is extension; an increment in behavior (or functionality) that is
added is called a feature.

In its most basic form, an extension maps a box A without
a functionality F to a box B with the functionality of A and F.
Refinements and optimizations preserve behavior; extensions (in
contrast) extend behavior.

Extensions are not new. They
are basic to classical approaches
to software development [1, 51].
A simple specification Ao is pro- l L i
gressively extended to produce a AjAAS B AN . AASZ,
desired specification, say Zo (Fig-
ure 1). The final specification, Zo, l l l
is then used as the starting point
for a derivation, using refinements, l L l i
to produce the desired implementa-
tion Zq, called a platform specific
model (PSM) (Figure 1).

Our initial interest in this topic
arose when we tried to reverse en-
gineer legacy DfPs, to understand
and encode the domain knowledge used by experts to build them.
‘We used the model-driven approach described above, where expert
knowledge was captured as model transformations in the process of
mapping a PIM to a PSM. We discovered that when a PIM is com-
plex, it is almost impossible to recognize, understand, and explain

VALV 2:RVAVAP SHRVAVAY 2

AN NP Bpr NS> L ANN>Z,

AN NA>BoANANA> L ANN>Z,

Figure 1: Extension vs.
derivation

2015/9/10

don
Text Box
accepted for publication SoSYM 2015

the transformations that map it to a PSM. In short, the classical ap-
proach of Figure 1 is not always practical. We devised an alternate
way to derive such PSMs. Namely, we derive an implementation
A from a simple specification A, and then incrementally extend
this derivation to that which maps Zo to Zq in Figure 1 [47]. Exten-
sions are higher-order transformations [55] in our approach.

Reverse engineering legacy systems to extract and systematize
the transformations (knowledge) used to build them is only the first
step of a larger process. The knowledge gathered and encoded can
later be used to mechanize/automate forward engineering [38, 39],
i.e., to generate new programs. Extensions provided a mechanism
to ease the process of extracting knowledge from legacy systems,
and allowed us to improve the tools to assist experts in this task.
Moreover, extensions can express optional features. When this hap-
pens, a software product line (SPL) of DfPs arises [2]. In this paper,
we show how application derivations are extended to product lines
of derivations.

To summarize, our initial work [24] focused on multi-step
derivations of implementations from specifications. This paper
generalizes [24] and [47] to examine and reveal the rich relation-
ships among extensions, refinements, optimizations, derivations,
dataflow graphs, and SPLs. The contributions of this paper are to:

e define fundamental relationships among these concepts;

e illustrate a pragmatic way to extend dataflow graphs, graph
transformations, and PIM-to-PSM derivations;

e distinguish transformations (refinements and optimizations)
from higher-order transformations (extensions);

e explain how extensions can be encoded to support incremental
development (or reverse engineering) of DfPs and the specifi-
cation of dataflow SPLs; and

e describe how extensions were implemented in the ReF10 frame-
work [24].

We start with a review of background concepts that are central to
our approach.

2. Background

Fundamental ideas in Object-Oriented Programming (OOP) are
“implements” and “extends”. Figure 2a is a UML declaration that
class C implements interface I. Interface I specifies some abstract
behavior for which class C provides an implementation. Figure 2b
provides some additional declarations. Interface IX extends inter-
face I, i.e., it specifies some additional behavior, when compared
to I. Similarly, class CX extends class C, i.e., it extends implementa-
tion C, so that CX also implements the additional behavior required

by IX.
«interface» «interface» «interface»
l l K] l—= X
[J [J L1
7AY Ay a ,
3 | | c c
c‘ c o c” X " CX
xc=c"x
(a) implements (b) extension (c) commuting diagram

Figure 2: Fundamental Ideas in OOP and Product Lines.

Extensions define increments in behavior (either on a specifica-
tion/interface or on an implementation/class). SPLs generalize the
scale of extension. A feature embodies an increment in functional-
ity (a.k.a. requirement). Instead of limiting extension to one class or
one interface at a time, a feature extends an entire class diagram [7].
This is what we have in Figure 2b: diagram (C implements I) is ex-
tended to diagram (CX implements IX).

By reversing the arrows in Figure 2b, the mapping relationships
of a commuting diagram in Figure 2¢ are exposed. The key property
of a commuting diagram is that all paths between any two nodes
yield the same result [43]. So in Figure 2c, we can develop class
CX in two ways starting with I. One way is to extend I to IX
and then IX is implemented by CX. Alternatively, we could have
implemented I by C and then extend C to CX.

In this paper, we apply these ideas to design SPLs of DfPs.
DfPs have interfaces. An interface I can be implemented by a code
component C, a relation we define as an implementing rewrite rule
I — C, meaning I can be replaced by C. Or more generally, I could
be implemented by a dataflow graph G, written I — G, where G
implements the behavior of I.

We also need extensions: a dataflow interface I is extended to
interface IX, written as an extension mapping I ~+ IX. Similarly,
extension mappings can also be defined for a code component or a
dataflow graph. We use the latter to express the changes a feature
makes to a dataflow graph.

We now make a critical observation: the rewrite rules that we
expose and use in our work encapsulate basic steps or modules
of domain-specific DfP construction. These rewrites are identified
with the help of domain experts: they know and implicitly use these
“identities” in their designs. Our work provides a means for experts
to (a) articulate them in a machine-processable form and (b) use
them to design—or explain the design—of domain-specific DfPs.

Here is how we will proceed: we first explore how an ab-
stract dataflow graph AG (PIM)—consisting only of interconnected
interfaces—can be progressively elaborated using one or more im-
plementation rewrites to an implementing graph IG (PSM). We
denote such a mapping by AG —* IG (—" represents multiple
behavior-preserving derivation steps). This is our earlier work [24].

We then show how AG maps to a more elaborate abstract
dataflow graph EAG using extensions, denoted AG ~~* EAG, and
then how the derivation of the implementing graph IG can be ex-
tended to the derivation of the graph that implements EAG, which
is EIG. That is, we show (AG —™ IG) ~~" (EAG —* EIG). How
derivations are extended is a primary contribution of this paper.

To our readers: The meaning of “implements” and “extends”
in OOP are well-understood. Countless successful programs have
been built using these ideas without a hint of formal models be-
hind them. Our work is the same vein: we rely on standard OOP
concepts of “implements” and “extends” to express how we re-
engineered complex legacy dataflow applications (e.g. EIG above)
by starting with a simple description AG of the application and de-
veloping a commuting diagram that allows us to reconstruct EIG
using fundamental implementation and extension rewrites of the
target domain.

The next section presents an illustrative example of our ap-
proach. Section 6 presents real-world case studies.

3. Motivating Examples and Methodology
3.1 Refinements and Optimizations

Figure 3 shows a DfP or PIM called Server that projects (elimi-
nates) fields and sorts a stream of database tuples. The tuples are
displayed by WSERVER and then are transmitted as the output of
Server. Boxes PROJECT, SORT and WSERVER are inferfaces as they
do not imply any particular implementation.

I PROJECT SORT WSERVER

Figure 3: Initial Server DfP.

2015/9/10

These interfaces express operations that are well-known to
domain experts. An expert also knowns different ways of im-
plementing these interfaces, which can be used to derive imple-
mentations of programs providing certain properties, such as ef-
ficiency or availability. Server can be parallelized (to improve
efficiency) by replacing the PROJECT and SORT interfaces with
their parallel implementations, which a domain expert specifies
as rewrite rules PROJECT — parallel_project and SORT —
parallel_sort [24].

Figure 4 shows the SORT — parallel_sort rewrite: an in-
terface box (SORT) is linked—using an implementation connector
(dashed arrow)—to a parallel implementation following a map-
reduce strategy (parallel_sort) [37]. A refinement is the appli-
cation of a rewrite rule that replaces an interface by an implementa-
tion. After using the aforementioned rewrite rules to refine Server,
we obtain the DfP of Figure 5.

SORT = = > parallel_sort
= b
I o

\ PROJECT Sort

|] g] g

s o fwerce seur Jswerce WSERVER |

- o [rorer] o [som |3 bt b

T T =CIRY 5L oo d b—Ld Y ICH o
o1 e o T

Figure 5: Server DfP after map-reduce refinements.

The DfP of Figure 5, if directly mapped to code, would be
inefficient. It has two identical SPLIT boxes. The substreams that
are output by the PROJECT boxes are merged into a single stream,
which is then split to reconstruct the substreams that were merged!
This is clearly unnecessary work. We can apply the optimization
of Figure 6 to eliminate this overhead: it replaces a sequential
composition of boxes MERGE — SPLIT with direct connectors from
inputs to outputs, producing the optimized DfP of Figure 7. Again,
such inefficiencies are known to domain experts. They, in turn,
write optimization rewrite rules to remove them.

Mo mergesone |

ms_mergesplit

ms_identity

o1
02

Figure 6: The MERGE — SPLIT optimization.

An optimization is a transformation that replaces a subgraph
G’ with another graph G that preserves the semantics of G,
but implements G’ in a different way. Optimization G’ — G
is really a pair of transformations: G’ is abstracted to the
interface AT that it implements, and then AT is replaced by
an alternative implementation G.

Figure 7: Optimized Server DfP.

3.2 Extensions

Let A be a dataflow interface, component, or graph. We write F.A to
denote the F extension of A.

Suppose we want to add new functionality to the Server PIM.
We want WSERVER to change the sort key attribute at runtime. How
would this change be made? Answer: by extending the Server
with feature K (short for Key), Server ~~ K.Server, resulting in
the PIM of Figure 8.

d-)g PROJECT —> K.SORT K.WSERVER
[o 11" b—o [o

Figure 8: The DfP K.Server.

Methodology. Extension of a DfP is accomplished by a
two-step procedure. Think of K as a function G ~» K.G that
maps a graph G to the K-extended graph K.G. In general,
each element e € G—where an element e is a box, port
or connector—is either mapped to an element K.e € K.G
or removed from K.G. Element K.e is an extension of e: a
connector may carry more data, a box has a new port or its
ports may accept data conforming to an extended data type.!
Occasionally K does nothing, i.e., K.e = e. Whatever the
outcome may be, an expert would know—it is not always
evident to non-experts. For our Server example, the effects
of extension K are not difficult to deduce.

The first step is to perform the K mapping. Figure 9 shows
that the only elements changed by K are SORT and WSERVER.
Box K.SORT, which K-extends SORT, has sprouted a new
input (to specify the sort key parameter), and K.WSERVER has
sprouted a new output (that specifies a sort key parameter).
The resulting DfP (Figure 9) is provisional—it is not yet
complete.

PROJECT

|:1|—>¢3 —> K.SORT K.WSERVER

1 1 o1 o— o o
: = m

Figure 9: Applying K to Server.

The second step completes the provisional DfP: the new
input of K.SORT needs to be supplied. An expert would
connect the new output of K.WSERVER to the new input of
K.SORT. This yields Figure 8 and the Server ~~ K.Server
extension is complete.

Now suppose we want K.WSERVER to change the list of attributes
that are projected at runtime. Another extension accomplishes this:
K.Server ~» L.K.Server, where L denotes feature List. This
extension produces the PIM of Figure 10.

L.K.WSERVER EI—)FI
o] o

| | J——>] K.SORT

Figure 10: The DfP L.K.Server.

!'In object oriented parlance, E is an extension of C iff E is a subclass of C.

2015/9/10

Methodology. The procedure defined above is applied. List
maps each element e € K.Server to L.e € L.K.Server.
Namely, box L.PROJECT sprouts a new input port (to specify
the list of attributes to project) and L.K.WSERVER sprouts
a new output port (to provide that list of attributes). This
produces the provisional DfP of Figure 11.

L.K.WSERVER I—)f
o (o]

£l L.PROJECT
= |

Figure 11: Applying L to K.Server.

Figure 11 is completed by connecting the new input of
L.Project to the new output of L.K.WSERVER. This yields
Figure 10, the K.Server ~+ L.K.Server extension.

With the Key and List features, we defined three PIMs: Server,
K.Server, and L.K.Server. There is a fourth: extend Server with
just the List feature. Figure 12 depicts the different PIMs that
can be built and the extension relationships among them. Starting
from Server, we can either extend it with feature Key (obtaining
K.Server) or with feature List (obtaining L.Server). Taking ei-
ther of these PIMs, we can add the remaining feature to obtain
L.K.Server. By doing so, we have created a tiny product line of
Servers where Server is the base product and Key and List are
optional features.

K.Server

Server L.K.Server

L.Server

Figure 12: A Server product line.

Henceforth, we assume the order in which features are com-
posed is irrelevant: L.K.Server = K.L.Server as both mean
Server is extended with features List and Key. This assumption
is standard in the SPL literature where a product is identified by its
set of features. Of course, dependencies among features can exist,
where one feature requires (or disallows) another [2, 6]. This is not
the case for Server; nevertheless, our work does not preclude such
constraints, as the user can provide a feature model [17] specifying
those constraints.

3.3 Rewrite Rules, Derivations and Their Extensions

We now step back from the previous sections to expose our use of
arule base R of refinements and optimizations. Given a PIM S, we

use one or more rules in R to derive a PSM G, written S E)* G.
Further, observe that PIM S is not unique: we could use the rules of
‘R to derive a PSM for any one of a large collection of PIMs. A rule
base R therefore encodes reusable steps in many PIM —* PSM
mappings.

Extensions fit into this universe in an interesting way. Just as
extensions elaborate DfPs, extensions also elaborate rule bases and
derivations:

e The E extension of rule base R is another rule base E.R.
e The E extension of derivation (S By G)is (E.8 ER E.G).

Recall Section 3.1. We started with the Server PIM and derived its
PSM. We used three rewrite rules: SORT — parallel_sort (we
denote it by ry), PROJECT — parallel_project (denoted by r»),
and the ms_mergesplit — ms_identity optimization (denoted

by rs). We presented the derivation Server —%» Server; —»
Server, —% Serverq where Serverq is the PSM of Figure 7.
The sequence of rewrites applied is r3 - T - r1,” s0 we can write the

derivation as Server ——2"' Serverq.

Recall Section 3.2. We extended the Server PIM with features
Key and List. Consider feature Key. We want to derive the PSM
for K.Server. We can approximate this derivation by extending
each rewrite rule r; to K.r;, and applying them in order to yield

the derivation K.Server M)

K.Serverq is the PSM of K.Server.

Rule extension is a consequence of the concepts we discussed
earlier. Figure 13 illustrates (SORT — parallel_sort) ~-
(K.SORT — K.parallel sort), i.e., how the r; rewrite rule is
extended by the Key feature.

K.Serverq, where

SORT [~ ™ = ~>|parallel_sort
I
0 SORT
D_FD D?L)D
SMERGE
SPLIT
O—0 o1 SORT 11 O—
l 1 O— o—>0 o o
021 o 12
[K.SORT [= == =>| K parallel_sort
ID E10
1K SPLIT [——>1| K.SORT
O—0 o1 |
| | >0 o
02 |k
L5 K.SORT
" o K.SMERGE
IK K O0—0
S o | o
1K

Figure 13: Extending the SORT — parallel_sort rewrite rule.

Methodology. Extending rewrite rules is no different than
extending DfPs. To spell it out, a rewrite rule L — R speci-
fies that L can be replaced with R. When feature/extension K
is applied, L is mapped to a provisional K.L and R is mapped
to a provisional K.R. These provisional DfPs are then com-
pleted by an expert to yield the non-provisional X.L and K.R.
Rule extension follows: (. — R) ~» (K.L — K.R).” The
same holds for optimization rewrites.

3.4 Bringing It All Together

Figure 15 summarizes this section:

e We began with PIM Server;

e By rewriting Server using rules from a rule set R, we derived
an implementing DfP Serverq;

e We extended Server with features Key and then List to create a
small product line of PIMs, namely {Server...LK.Server};

e We extended R to rule sets K.R, L.K.R, and L.R by applying
features Key and List;

e We extended the (Serverg*ServerQ) derivation to corre-
sponding derivations of implementations of K.Server, L.K.Ser-

2 In standard function composition notation, the order in which the transfor-
mations are listed is the reverse of the order in which they are applied.

3 Rule extensions need not be unique. Our experience to-date is that they
are, largely because the increments in DfP functionality are sufficiently
small for unique extensions to present themselves.

2015/9/10

| | LK Server

|
|
o L.PROJECT LK.WSERVER
! o - p—o

SORT WSERVER 8
o1 o1 o o

Figure 14: The 5 *\1 k servero, cCOMmuting diagram.

Figure 15: Extending derivations and PSMs.

ver, and L.Server:

K.Server ~7% *K.Serverq (€8]
LX.Server =X *L K.Servern ?2)
L.Server —% *L.Serverq 3)

Server is a simple example. In more complex DfPs, obtaining ex-
tended derivations may require additional rewrite rules (not just the
extended counterparts of previous-used rewrites), or for previously-
used rewrites to be dropped. Such changes we cannot automate—
they would have to be specified by a domain-expert. Nevertheless,
a considerable amount of tool support can be provided to users and
domain-experts in program derivation, precisely because the basic
pattern of extension that we use is straightforward.

3.5 Commuting Diagrams of DfP Designs

Our approach to the design and derivation of DfPs is visual.
Figure 14 shows the commuting diagram whose upper-left node
is the Server PIM of Figure 3 and whose lower-right node is
L.K.Serverq of Figure 10. This figure is digitally enlargable so
that readers can “zoom” in on a particular design n;;, extension
nij~n;(j41) Or refinement/optimization ni;— n(;y1)5 step.

The commuting diagrams that ReF10 produces are large, simply
because systems that are being modeled are complex, they may

have many steps in their PIM-to-PSM mappings, and they have
many features.

Finally, we hinted at the possibility that feature-extended deriva-
tions may use additional refinements or optimizations that did not
exist in the non-extended derivation (or vice versa). This means
we may have identity transformations in the commuting diagram,
so that the before-and-after extension derivations are of the same
length, and that each vertical arrow X — Y in the original deriva-
tion corresponds to the E-extended arrow E.X—E.Y in the extended
derivation (and vice versa). Identity-transformation-padded deriva-
tions are visible in our case studies.

In the next section, we explain how these ideas were imple-
mented in our ReF10 tool, and then the basic workflow for using
the approach we propose. After that, we present some steps of our
derivations of two real applications using ReF10.

4. Encoding Extensions (Higher-Order Rewrites)

There are many ways to encode (i.e., express in a machine-
understandable notation) extensions. At the core of ReF10 is its
ability to store rewrite rules. Given an initial rule base R, for each
rule r € R we maintain a (small) product line of rules: an initial
rule r and each of its extensions. For a reasonable number of fea-
tures (say < 20), a simple way to encode the variations of a rewrite
rule is to form the union of it variants, and then annotate each el-
ement of the result to specify for which combinations of features
it is to appear (and hence for which combinations of features it
should be discarded). This is an annotative approach to product
line implementation [16].

Annotations specify how we can “project” a variant of a rewrite
rule, for a certain combination of features, from the union of all
variants of that rule. They may even specify that a rewrite rule
should disappear for a certain combination of features. We do this
for all rewrite rules of a rule base.

Rewrite rules (and its elements) are annotated with two at-
tributes: a feature predicate and a feature tags set. The feature pred-
icate determines when a box, port, or connector is part of a rewrite
rule. The feature tags set determines how boxes are tagged/labeled,
i.e., K is a tag for feature Key. In this section we explain how these

2015/9/10

annotations specify a product line of rule bases, and how they en-
able the projection of the rewrite rules variants.

4.1 eXtended ReF10 Domain Models

In ReF10, arule base is encoded in a ReF10 Domain Model (RDM).
We defined its UML class diagram metamodel in [24]. With annota-
tions, we enhanced this metamodel (see Figure 16). Now an initial
rule base and its extensions are superimposed into a single artifact
called an eXtended ReF10 Domain Model (XRDM), which encodes
a product line of RDMs. A projection of an XRDM produces an
RDM supporting a given set of features. That is, whereas an RDM
defines rewrite rules supporting a fixed set of features, an XRDM
is the result of superimposing multiple RDMs, effectively defining
rewrite rules supporting multiple sets of features.

Element

XRDM name : String

replicated : String
doc : String
featuresPredicate: String

featureModel : String

Bo: going|
target] X ports Port source * Connector
7| parameters : String * - String|1__incomin i : Stri
featuresTags : String dataType : String — 4 featuresPredicate : String
ccnneclursT .

1 source ¢

Interface Primitive Algorithm Output Input
template : String

~fetements t e
Pattern

Figure 16: UML class diagram metamodel.

Boxes, ports, and connectors now have a featuresPredicate
attribute. Given a subset of features S C F and a model element
with predicate P : P(F) — {true,false} (where P denotes
the power set), P(S) is true if and only if the element is part of
the RDM when S are the enabled features. We use a propositional
formula to specify P, where its atoms represent the features of the
domain. P(S) is computed by evaluating the propositional formula
associating true to the atoms corresponding to features in S and
associating false to the remaining.

Boxes now have another attribute, featuresTags. It is a set of
abbreviated feature names that determines box tagging. A tag is a
prefix that is added to a box’s name to identify the variant of the box
being used (e.g., L and K are tags of box L.K.WSERVER, specifying
that this box is a variant of the WSERVER with features L(ist) and

K(ey))-

Example. Recall our web server example. We can define
rewrite rule WSERVER — pwserver to specify a primi-
tive implementation (direct code implementation [24]) for
WSERVER (see Figure 17a).

When feature Key (abbreviated as K) is applied to this rule,
a new port (0K) is added to the WSERVER and pwserver
boxes. As these ports are present only when feature Key is
enabled, they are annotated with predicate Key. Further, the
boxes now provide extra behavior, therefore we need to add
the K tag to each. The result is depicted in Figure 17b (red
boxes show tags sets, and blue boxes show predicates).

When feature List (abbreviated as L) is applied, another
port (OL) is added to both boxes. Again, these ports are an-
notated with a predicate (in this case, List specifies the
ports are only part of the model when feature List is en-
abled). The set of tags of each box also receives an addi-
tional tag L. The final model is depicted in Figure 17c.

WSERVER [T ™™ "~>| pwserver
o
| n

=]
o
1 n
oK oK
WSERVER [T = =] pwserver |
Il:l o Il:l o
(b)

()

WSERVER pwserver [

{K,L} list {K,L} list
©

Figure 17: Incrementally specifying a rewrite rule.

This information encodes the extensions of the rule base and
allows us to project an RDM for a specific set of features from the
XRDM.

Features may have inter-dependencies, i.e., a certain feature
may require or exclude another, which in SPLs are typically speci-
fied by a feature model. Therefore, the XRDM has an additional at-
tribute, featureModel, allowing users to specify a feature model
that expresses the valid combinations of features, capturing their
dependencies and incompatibilities. ReF10 uses the grammar nota-
tion of [6].

4.2 Projection of an RDM from the XRDM

A new transformation is needed to map an XRDM to an RDM with
the desired features enabled. This transformation takes an XRDM,
and a given set of active features, and projects the RDM for that set
of features. The projection is done by examining all model elements
and hiding (or making inactive) those elements whose predicate
is evaluated to false for the given list of features. To simplify
predicate specifications, we use implicit rules that determine when
an element must be hidden regardless of the result of evaluating
its predicate. The idea is that when a certain element is hidden, its
dependent elements must also be hidden. For example, when a box
is hidden, all of its ports must also be hidden. A similar reasoning
may be applied in other cases. The rules are:

e if the 1hs of a rewrite rule is hidden, the rhs is hidden;
e if a box is hidden, all of its ports are hidden;
e if a graph is hidden, so too are its internal boxes and connectors;

e if a port is hidden, the connectors linked to that port are hidden.

These rules greatly reduce the effort needed to specify an XRDM,
as repetition of formulas is avoided. Consequently, the projection
algorithm we use is straightforward.

Part of a projection is to determine which tags are attached to
each box. Given the set S of selected features, and given box B
with tag set T, the tags of B after the projection are TN S. That is, T
specifies the features that change the behavior of B, but we are only
interested in the enabled features specified by S.

Example. Consider the rewrite rule from Figure 17¢ and
assume S = {K}. Projection yields Figure 18. Ports OK,
that depend on feature Key, are present. However, ports 0L,
that depend on feature List, are hidden. Additionally, both
boxes are tagged with K (as {K,L} N {K} = {K}).

The projection is only allowed if the selected combination of
features is valid (according to the user specified feature model).

2015/9/10

o
O = O

K.WSERVER B~ =] K.pwserver
o
| OK | OK

Figure 18: Projection of feature K from rewrite rule
WSERVER — pwserver (note the greyed out OL ports).

5. Approach Workflow

Our goal is to build a knowledge base by reverse engineering ex-
isting systems, a process conducted by domain experts (or by a
developer with the support of a domain expert). As the knowledge
base becomes larger, it will eventually be usable for forward engi-
neering, allowing developers to automatically explore the space of
implementations for a domain of programs.

An expert starts with a simplified specification (PIM) of a sys-
tem he wants to reverse engineer—it is simplified as some features
of the target system have been removed. He creates interfaces for
required domain operations along with their possible implementa-
tions and optimizations, and codifies them as ReF10 rewrite rules.
Using these rules, he derives a PSM that implements the PIM.

Next, the expert adds a feature F to the PIM to elaborate it, and
then he reviews existing rewrite rules to F-extend them. That is, he
examines each rewrite rule, determines how it is affected by F, and
adds the new model elements and annotations needed to support
F. In the end, the expert can apply a projection to the XRDM, to
obtain the RDM with the rewrite rules supporting the new feature,
and repeat the derivation to produce an F-extended PSM for the
F-extended PIM. During this process, the domain expert may also
realize that completely new rewrite rules are also needed, which
he adds to the XRDM. This process is repeated by progressively
adding features, until a PIM is reached that matches the target
system. The PIM-to-PSM mappings produced along the way are
extended too, yielding a PSM that matches the target system. At
this point, assuming the refinements, optimizations, and extensions
used are correct, the domain expert has correct-by-construction
design of the target system.

The expert may choose different orders in which to add fea-
tures. Different orders will expose feature interactions in different
orders—in the end, all features and interactions will be accounted
for. But he should also take into account the feature dependencies
imposed by a feature model. That is, if feature G depends on fea-
ture F, he must add feature F before G. The result of evaluating a
feature predicate is the same for a given set of features, regardless
of the order in which they were added. The set of features chosen
must comply with the feature model, though the projection opera-
tion verifies this constraint.

Although ReF10 does not guarantee the behavioural correct-
ness of the rewrite rules of an XRDM, it provides a safe com-
position [52] mechanism, which allows experts to check whether
all projections that can obtained from an XRDM are syntactically
correct and whether types of interfaces and implementations are
compatible. Moreover, the interpretations mechanism provided by
ReF10 can be explored to implement more complex validation
rules. See [24] for details.

6. Case Studies

We highlight the most sophisticated dataflow applications that we
reverse-engineered in this section: a crash fault-tolerant (CFT)
server called UpRight [14] and a parallel molecular dynamics
(MD) [22] simulator called MolDyn [12, 48].

As said earlier, ReF10 rewrites and extensions encode deep
domain knowledge—knowledge that typically is appreciated (only)
by domain experts. Consequently, we expect few readers of this
paper to be experts in either CFT or MD. Admittedly for us, only

the fourth author (Riché) was an expert in CFT (he was a co-author
of UpRight) and the first author (Gongalves) was familiar with an
MD application. Without expertise, our case studies read like a
semantics-free structured-evolution of graphs.

Of course, this is not the case. For UpRight, Riché built a
lightweight, concurrent actor framework in Python [45], and coded
each of its different derivations and extensions by hand. (He fin-
ished this work prior to the completion of ReF10.) At each step, he
ran regression suite to ensure that all tests passed. After each exten-
sion, more tests were included to check that the extra functionality
was correct. As for MolDyn, existing C++ code components and
test suite were used to support the translation from models to code,
and to verify code (and models) correctness [41]. That is, from a
software engineering viewpoint, our approach allowed us to write
tests to confirm that each of our design modifications were correct.

The next sections give an overview of our CFT and MD designs
and extensions.

6.1 UpRight

Figure 19a shows an SPL of four variant PIMs of UpRight and
their derivations: Synchronous CFT (SCFT), Asynchronous CFT
(ACFT), Authenticated Synchronous CFT (ASCFT), and Authen-
ticated Asynchronous CFT (AACFT). The shaded region in Fig-
ure 19a denotes a commuting diagram that we highlight below; the
remaining commuting diagrams (of which there are many) illus-
trate the same ideas of prior sections, except they are more compli-
cated.

The full commuting diagram, with SCFT PIM in the upper-left
corner and AACFTg, in the lower-right is given in Appendix A. For
more details, see [23].

ACF,

ASCFT l
!
|

l AACFTq

ASCFTq
() (b)
Figure 19: UpRight’s (a) SPL derivations and (b) PIM cylinder.

6.1.1 Highlighted Commuting Diagram

Figure 20 is an enlarged version of the highlighted commuting
diagram. The ACFT PIM (upper left) has a set of client C boxes
(only two are shown, but an arbitrary number is supported) that
submit messages to a Serial box that multiplexes messages to a
recoverable virtual server R.VS. Each message is processed by the
server, the server updates its state, and then sends its result to a
Demult box that routes the response message back to its originating
client. ACFT PIM of Figure 20a is formed by unrolling the cylinder
in Figure 19b.

The first refinement of ACFT is 1list; it replaces server R.VS
with a recoverable list R.L, which queues messages and remembers
its state (for purposes of recovery), followed by a recoverable server
R.S. Box R.L sends messages to R.S for processing (this is the
R.L — R.S connector in Figure 20b). When R.S recovers from
a failure, it requests/needs state information from R.L (this is the
R.S — R.L connector in Figure 20b).

2015/9/10

Adding A(uthentication) to ACFT extends it to the AACFT PIM

(Figure 20a ~~ Figure 20c). The only box affected by A(uthentication)

is the recoverable virtual server, i.e. R.VS ~» A.R.VS.

A.list, an A-extended list rewrite, is the first refinement of
AACFT. Messages are first validated (authenticated) by box V,
which discards invalid messages. Valid messages are then sent
to the list box A.R.L which queues and forwards messages to a
recoverable server R.S. As before, when R.S is recovering from a
failure, it requests state information from the list box A.R.L.

6.1.2 Encoding Extensions

For each of the four UpRight designs in Figure 19a, there is a
unique definition of the list rewrite, namely 1ist, R.1ist, A.1list,
and A.R.1list. Figure 21 shows the annotations of this rewrite rule
with the features A and R that allows ReF10 to project the correct
version of the rewrite given a set F of features, where F C {R, A}.

{AR} {AR} {R}

vs' = — =it
O =]
1 o
O L S O0—
| " [_R;q DO—TD D:j o
1 o
|nol Authentication "Authentication " Recovery | |Recovery |

Figure 21: Annotated VS — 1ist rewrite rule.

6.2 MolDyn

Figure 22 shows an SPL with six variant PIMs of MolDyn and their
derivations: the base MDCore, which can be enhanced with fea-
tures Neighbors, Blocks, and Cells (which requires the Blocks fea-
ture). The shaded region represents the commuting diagram (Fig-
ure 22) that we highlight in this section. The full commuting dia-
gram, with MDCore PIM in the upper-left corner and CBNMDCoregq
in the lower-right is given in Appendix B, noting the initial deriva-
tion MDCore — MDCoreg is visually simpler than the final deriva-
tion CBNMDCore — CBNMDCoreq,. For more details, see [23].

6.2.1 Highlighted Commuting Diagram

MD simulations use computational resources to predict properties
of materials [22]. Materials are modeled by a set of particles (e.g.,
atoms or molecules) with certain properties (e.g., position, velocity,
and force). The set of particles is initialized with properties such as
density and initial temperature. The simulation starts by computing
interactions between particles, iteratively updating properties, until

list -

Demult |3 !
= = o1
ol = -
02 02

BNMDCore

Y
y
y

CBNMDCoreq

the system stabilizes, at which point the properties of the material
can be studied/measured.

The expensive part of MD simulation is computing particle in-
teractions (forces among particles), where a naive implementation
has a complexity of 0(N?) where N is the number of particles. Fig-
ure 23a shows the base PIM we use. It contains UPDATEP box,
which express the core operation of an MD simulation, the update
of particles. The final goal of this derivation is to obtain an opti-
mized parallel implementation of MolDyn (with support for shared
memory, distributed memory, or both). The selected commuting
diagram of Figure 23 shows only the first step of this derivation,
where we expose the two operations needed to update the particles:
first particles positions are updated (Move box), then forces among
particles are recomputed (FORCES box).

A common technique used in MD simulations to reduce the base
0(N?) complexity is pre-computing and caching the list of particles
that interact with another particle [57]; doing so improves perfor-
mance. Called the Neighbors feature, N may or may not change the
behavior of the simulation.* Implementing N requires an extension
of the internal boxes used by the program, which results in the PIM
NMDCore shown Figure 23c, which is identical (sans N.UPDATEP)
to Figure 23a.

To obtain the implementation for this PIM we need to extend
the move_forces algorithm. The extended algorithm exposes the
to steps of updating particles as before, through boxes MOVE and

4We can “relax” the correctness criteria of the simulation (and therefore
change the behavior of the program) [57] to improve performance.

2015/9/10

| MDCore | N
dﬁﬂ UPDATEP [>T
Pd gn P P
epot epot epot epot
H —
vir I vir vir vir

| move_forces

MOVE 1

|:|I 95 L sfrorces|n b o epot
p P P
p|:|—>|:| [——>

>0 P P
epot epot epot epot epot l epot vir
vir vir vir vir vir vir

——————— - ——
NMDCore |

:‘—>ﬂ N.UPDATEP
vd p P >

epot epot

vir | vir vir vir

e —b
vir Hﬂ D—)D—>h
NEIGHBORS n vir vir | vir
™
n

|
|
move_forces |
|

MOVE

—>0 N.FORCES [y

Figure 23: A MolDyn commuting diagram.

FORCES. However, box FORCES is extended and now has a new
input, which receives a list of neighbors of each particle (i.e., the
particles that interact with a certain particle). Moreover, a new box
(NEIGHBORS) was added to compute this list of neighbors, using as
input the set of particles output by box MOVE. Box MOVE itself is not
affected by this extension.

6.2.2 Encoding Extensions

Figure 24 shows the annotated rewrite rule UPDATEP — move_for-
ces after specifying the Neighbors extension, which allow ReF10
to project both rewrite rules used in the commuting diagram of
Figure 23.

{N} {N}
dueoater [F ™ T ™ | move_forces
P P
MOVE
epot epot O o -
vir vir 3 o —drres B—
8 p p
epot epag] -
o i epol epot

=)
NEIGHBORS n vir vir
= =
P n

Neighbors Neighbors

Figure 24: Annotated UPDATEP — move_forces rewrite rule.

6.3 Discussion

We re-engineered the dataflow designs of UpRight and MolDyn by
starting with a simple PIM-to-PSM derivation A, starting with a
simple PIM A, and deriving its PSM Aq:

Ay = Ay =" Aq

An expert validated the PIM design, the PSM design, and the
steps (rewrites) used in derivation. We validated this work by an
implementation.

We then extended the derivation by adding a feature B to the
PIM, to the rewrite rules, and including additional rules that were
needed to produce the feature-extended PSM and its derivation:

Ag = B.(As =" Ag) = (B.Ao) =" (B.An) = By —" Bg

Again, we confirmed the correctness of the extension via imple-
mentation. By repeating the process of adding more features, we

extended the original derivation A, to a derivation Az whose PSM
is the design of the target system we wanted to re-engineer:

Az = Zo —* Zo

This is the process that we followed and that we recommend others
to follow to re-engineer legacy dataflow applications.

Our extensions approach is integrated with ReF10 framework,
which does not impose a particular model of computation to our
DfP, i.e., different domains may specify different rules for how a
DfP is to be translated to code and executed. The dataflow com-
puting model [31] is an obvious candidate and it is the one used
by UpRight. In contrast, MolDyn (and in some other domains ana-
lyzed) the translation to code simply treats each box as a function
that must be executed with some order constraints (and parallelism
is obtained executing multiple instances of the DfP, following an
single program multiple data model [19]). When specifying the
rewrite rules, extensions or PIMs, the user should make sure they
are correct with regard to the model used to generate code and ex-
ecute the DfP.

7. Related Work

There is a strong connection between classical work on formal
program development and the approach we propose. Z [51], Event-
B [1], and Abstract State Machines (ASMs) [10] have notions of
refinement and extension. (Event-B uses different terms horizontal
refinement and vertical refinement for the same ideas.) Event-B
and ASMs focus on state transition representations of programs,
whereas we deal with DfPs. Our emphasis is not on developing
proofs of program correctness, but instead what it takes to encode
the knowledge used/need as rewrite rules to build complex and
efficient DfPs and product-lines of DfPs in an MDE context.

We use extensions to explain the effects of optional features in
dataflow graphs, allowing us to encode a SPL of dataflow graphs.
There are several techniques in which features of SPLs can be im-
plemented. Some are compositional, including AHEAD [5], Fea-
tureHouse [3], Delta-Oriented Programming (DOP) of Bettini et
al. [9], and AOP [33], all of which work mainly at code level. Other
solutions have been proposed to handle SPLs of higher-level mod-
els [40, 44].

2015/9/10

We use an annotative approach where a set of artifacts con-
taining all features/variants are superimposed. Artifacts (e.g., code,
model elements) are annotated with feature predicates to determine
when these artifacts are visible in a particular combination of fea-
tures. Preprocessors are a primitive example [35] of a similar tech-
nique. Code with preprocessor directives can be made more under-
standable by tools that color code [21] or that extract views from
it [50]. More sophisticated solutions exist, such as XVCL [29],
Spoon [42], Spotlight [15], or CIDE [32]. However, our solution
works at a model level, not code.

Other annotative approaches also work at the model level. Ziadi
et al. [60] proposed a UML profile to specify model variability in
UML class diagrams and sequence diagrams. Czarnecki and An-
tkiewicz [16] proposed a template approach, where model elements
are annotated with presence conditions (similar to our feature pred-
icates) and meta-expressions. FeatureMapper [28] allows the asso-
ciation of model elements (e.g., classes and associations in a UML
class diagram) to features. Instead of annotating program architec-
tures directly (usually too complex), we annotate model transfor-
mations (simpler) that are used to derive program implementations.
This reduces the complexity of the annotated models, and it also
makes extensions available when deriving other implementations,
thereby making extensions more reusable.

An appealing alternative to annotations, and closer in spirit
to compositional approaches, is work by Haber, et al. on Delta
Simulink [27]. Simulink models are component (multi-)graphs,
syntactically similar to dataflow graphs [49]. Deltas (from DOP)
are a sequence of block add, remove, replace, and modify opera-
tions on Simulink graphs. Deltas are used to express features (ex-
tensions) of Simulink graphs, and is an alternative to Czarnecki’s
annotative approach. To us, graph rewrites provide a higher-level
and a more natural modeling approach when it comes to correct-
by-construction program derivation. Whether annotations or deltas
are better for encoding extensions remains an open problem for
SPL construction, in general, and not just graphs.

Our work can be used to extract an SPL from legacy applica-
tions. RE-PLACE [8] is an alternative to reengineer existing sys-
tems into SPLs. Other approaches have been proposed with similar
intent, employing refactoring techniques [34, 36, 56].

Extracting variants from a XRDM is similar to program slic-
ing [59]. Slicing has been applied to models [4, 30] to reduce
model complexity and make easier for developers to analyze mod-
els. These approaches are focused on the understandability of the
artifacts, whereas in our work focuses on rule variability. Neverthe-
less, ReF10 projections remove elements from rewrite rules that are
not needed for a certain combination of features, which we believe
also contribute to improved rewrite rule understandability. In [58]
Wasowski proposes a slice-based solution where SPLs are speci-
fied using restrictions, that remove features from a model, so that a
variant can be obtained.

We use a dataflow notation in our work. Similar graphical no-
tation has been used by several other tools such as LabVIEW [53],
Simulink [49], Weaves [26], Fractal [11], or StreamlIt [54]. How-
ever, they focus on component specification and construction of
systems composing those components. We are unaware of any sup-
port for extensions in these tools.

ReF10 supports analyses to verify whether all projections of a
XRDM that can be obtained meet the metamodel constraints. The
analysis method used is based on solutions previously proposed by
Czarnecki and Pietroszek [18] and Thaker et al. [52].

8. Conclusions

Designing program architectures always has an element of “magic”.
The term “spaghetti diagram” was coined to express architectural
diagrams that are indecipherable, except to their authors. How

these architectures work and why they work remains a mystery but
to a few people.

Classical formal approaches to software development recog-
nized this problem by elaborating designs in an incremental man-
ner. One starts with a simple specification. This specification is pro-
gressively elaborated by understandable increments in functional-
ity. When the full specification is produced, a derivation of its im-
plementation is undertaken, using refinements and optimizations.

Our work explored this classical approach from the applied
perspective of deriving complex dataflow programs (DfPs) from
an MDE perspective. Our involvement stemmed from the need to
reverse-engineer complex legacy DfPs [24, 47]. In prior work [24],
we showed how refinement and optimization design knowledge
of DfPs could be captured as graph transformations, so that a
complex and optimized DfP (or PSM) could be derived from a
high-level DfP (or PIM). We observed that starting PIMs could
be complicated, and the transformations that refined and optimized
such PIMs were themselves complex: hard to recognize, hard to
define, and (frankly) hard to believe [46].

This paper blends ideas from classical formal work on program
design with our prior work [24, 47]. We begin with an elementary
PIM and derive its PSM using simple, domain-specific refinements
and optimizations. This set of graph rewrites defines a rule base
R. We showed how increments in program functionality, called
features, could be integrated into this universe. A feature F extends
a graph G to graph F.G through the addition, modification, and
removal of boxes and connectors. Each graph rewrite rule L—R
is extended by feature F to an extended rule F.(L—R) = F.L—F.G.
F-extending a rule base R, which adds new rules, delete rules, and
modifies existing rules, yields an F-extended rule base F.R.

Further, we showed that PIM 5 *PSM derivations (the notation
meaning apply one or more rules r € R to map a PIM graph
to a PSM graph), were also subject to extensions. That is the F-

extension of derivation PIM— *PSM was F.PIM=2 *F PSM.

We explained how extensions were implemented in the ReF10
tool; we used an annotative approach to superimpose rules that
were related by extension. By a simple projection operation, we
could recreate the rule that was specific to a set of features. By
doing this for all rules, we could recreate the rule base that was
specific to a set of features.

Our approach relies on domain experts to define the rewrite
rules and extensions (that comprise the domain knowledge). To
make the approach easier for those domain experts, we use a declar-
ative notation that relates graphs providing equivalent behavior,
where the expert does not have to care about the steps that are re-
quired to actually perform the transformations on a DfP.

The approach we propose, supported by the ReF10 tool/frame-
work, provides an important contribution to encode and systematize
domain knowledge that is used by experts, and to show how and
why complex architectures work in a more understandable way.
ReF10 includes model-to-text capabilities, which enable the gener-
ation of runnable code from models.

Availability. The ReF10 framework with extensions support can
be downloaded at http://cs.utexas.edu/users/schwartz/
DxT/reflo/x/.

Acknowledgments. We gratefully acknowledge helpful feedback
from B. Marker (U. Texas), and from the anonymous reviewers.
This work was partially supported by FCT — Fundagdo para a
Ciéncia e a Tecnologia (Portuguese Foundation for Science and
Technology) grant SFRH/BD/47800/2008. We also gratefully ac-
knowledge support for this work by NSF grants CCF-0724979,
CCF-1421211, and OCI-1148125.

2015/9/10

http://cs.utexas.edu/users/schwartz/DxT/reflo/x/
http://cs.utexas.edu/users/schwartz/DxT/reflo/x/

References

[1] J.-R. Abrial. Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 1st edition, 2010.

[2] S. Apel, D. Batory, C. Kistner, and G. Saake. Feature-Oriented
Software Product Lines. Springer Berlin Heidelberg, 2013.

[3] S. Apel, C. Kaistner, and C. Lengauer. Featurehouse: Language-
independent, automated software composition. In ICSE ’09: Proceed-
ing of the 31st International Conference on Software Engineering,
pages 221-231, 2009.

[4] J. H. Bae, K. Lee, and H. S. Chae. Modularization of the UML meta-
model using model slicing. In ITNG ’08: Proceedings of the 5th In-
ternational Conference on Information Technology: New Generations,
pages 1253-1254, 2008.

[5] D. Batory. Feature-oriented programming and the AHEAD tool suite.
In ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, pages 702-703, 2004.

[6] D. Batory. Feature models, grammars, and propositional formulas.
In SPLC °05: Proceedings of the 9th international conference on
Software Product Lines, pages 7-20, 2005.

[7] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refine-
ment. /IEEE TSE, June 2004.

[8] J. Bayer, J.-F. Girard, M. Wiirthner, J.-M. DeBaud, and M. Apel. Tran-
sitioning legacy assets to a product line architecture. ACM SIGSOFT
Software Engineering Notes, 24(6):446-463, 1999.

[9] L. Bettini, F. Damiani, and I. Schaefer. Compositional type checking
of delta-oriented software product lines. Acta Informatica, 50(2):77—
122, 2013.

[10] E. Borger and R. F. Stark. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer-Verlag, 2003.

[11] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The fractal component model and its support in java: Experiences
with auto-adaptive and reconfigurable systems. Software—Practice
& Experience, 36(11-12):1257-1284, 2006.

[12] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey.
A benchmark suite for high performance java. Concurrency: Practice
and Experience, 12(6):81-88, 1999.

[13] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Brad-
shaw, and N. Weizenbaum. Flumejava: Easy, efficient data-parallel
pipelines. In PLDI ’10: Proceedings of the 2010 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
363-375, 2010.

[14] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. L. Riché. UpRight cluster services. In SOSP ’09: Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 277-290, 2009.

D. Coppit, R. R. Painter, and M. Revelle. Spotlight: A prototype tool

for software plans. In ICSE ’07: Proceedings of the 29th international
conference on Software Engineering, pages 754-757, 2007.

[15

[16] K. Czarnecki and M. Antkiewicz. Mapping features to models: a tem-
plate approach based on superimposed variants. In GPCE ’05: Pro-
ceedings of the 4th international conference on Generative Program-
ming and Component Engineering, pages 422-437, 2005.

[17] K. Czarnecki and U. W. Eisenecker. Generative programming: meth-
ods, tools, and applications. ACM Press/Addison-Wesley Publishing
Co., 2000.

[18] K. Czarnecki and K. Pietroszek. Verifying feature-based model tem-
plates against well-formedness OCL constraints. In GPCE ’06: Pro-
ceedings of the 5th international conference on Generative program-
ming and component engineering, pages 211-220, 2006.

[19] E. Darema. The SPMD model: Past, present and future. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface,
volume 2131. Springer Berlin Heidelberg, 2001.

[20] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-
I. Hsiao, and R. Rasmussen. The gamma database machine project.
IEEE Transactions on Knowledge and Data Engineering, 2(1):44-62,
1990.

[21] J. Feigenspan, M. Papendieck, C. Kistner, M. Frisch, and R. Dachselt.
Featurecommander: Colorful #ifdef world. In SPLC ’11: Proceedings
of the 15th International Software Product Line Conference, pages
48:1-48:2,2011.

[22] D. Frenkel and B. Smit. Understanding molecular simulation: from
algorithms to applications. Academic press, 2001.

[23] R. C. Gongalves. Parallel Programming by Transformation.
thesis, Universidades do Minho, Aveiro e Porto, 2015.

[24] R. C. Gongalves, D. Batory, and J. L. Sobral. ReFlO: An interactive
tool for pipe-and-filter domain specification and program generation.
Software and Systems Modeling, 2014.

[25] Google Cloud Dataflow.
dataflow/.

PhD

https://cloud.google.com/

[26] M. M. Gorlick and R. R. Razouk. Using weaves for software construc-
tion and analysis. In ICSE ’91: Proceedings of the 13th international
conference on Software engineering, pages 23-34, 1991.

[27] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari, B. Rumpe, and
I. Schaefer. First-class variability modeling in matlab/simulink. In
Vamos, 2013.

[28] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: mapping
features to models. In ICSE Companion '08: Companion of the 30th
international conference on Software engineering, pages 943-944,
2008.

[29] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL: XML-based
variant configuration language. In ICSE '03: Proceedings of the 25th
International Conference on Software Engineering, pages 810-811,
2003.

H. Kagdi, J. I. Maletic, and A. Sutton. Context-free slicing of UML
class models. In ICSM ’05: Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance, pages 635-638, 2005.

[31] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In Information Processing '74: Proceedings of the IFIP
Congress, pages 471-475, 1974.

[32] C. Kastner, S. Apel, and M. Kuhlemann. Granularity in software
product lines. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 311-320, 2008.

[33] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In
ECOOP '97: Proceedings of the 11th European Conference on
Object-Oriented Programming, pages 220-242, 1997.

[34] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A case study
in refactoring a legacy component for reuse in a product line. In
ICSM °05: Proceedings of the 21st IEEE International Conference on
Software Maintenance, pages 369-378, 2005.

[35] J. Liebig, S. Apel, C. Lengauer, C. Kistner, and M. Schulze. An
analysis of the variability in forty preprocessor-based software product
lines. In ICSE ’10: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, volume 1, pages 105-114, 2010.

[30

—

[36] J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of
legacy applications. In ICSE ’06: Proceedings of the 28th interna-
tional conference on Software engineering, pages 112—121, 2006.

[37] Mapreduce. http://en.wikipedia.org/wiki/MapReduce.

[38] B. Marker, D. Batory, and R. A. van de Geijn. Understanding perfor-
mance stairs: Elucidating heuristics. In ASE ’14: Automated Software
Engineering, 2014.

[39] B. Marker, J. Poulson, D. Batory, and R. A. van de Geijn. Designing
linear algebra algorithms by transformation: Mechanizing the expert
developer. In iWAPT ’12: International Workshop on Automatic Per-
formance Tuning, 2012.

[40] A. McNeile and N. Simons. State machines as mixins. Journal of
Object Technology, 2(6):85-101, 2003.

[41] Md product line.
md-product-line/.

http://alba.di.uminho.pt/research/

[42] R. Pawlak. Spoon: Compile-time annotation processing for middle-
ware. [EEE Distributed Systems Online, 7(11), 2006.

2015/9/10

https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
http://en.wikipedia.org/wiki/MapReduce
http://alba.di.uminho.pt/research/md-product-line/
http://alba.di.uminho.pt/research/md-product-line/

[43] B. Pierce. Basic Category Theory for Computer Scientists. MIT Press,
1991.

[44] C. Prehofer. Plug-and-play composition of features and feature in-
teractions with statechart diagrams. Software and Systems Modeling,
3(3):221-234, 2004.

[45] Python code generator. http://code.google.com/p/
stepwise-ft/.

[46] T. L. Riché, D. Batory, R. C. Gongalves, and B. Marker. Architecture
design by transformation. Technical Report TR-10-39, The University
of Texas at Austin, Department of Computer Sciences, 2010.

[47] T. L. Riché, R. C. Gongalves, B. Marker, and D. Batory. Pushouts
in software architecture design. In GPCE ’12: Proceedings of the
11th ACM international conference on Generative programming and
component engineering, pages 84-92, 2012.

[48] R. A. Silva and J. L. Sobral. Optimizing molecular dynamics simula-
tions with product lines. In VaMoS ’11: Proceedings of the 5th Work-
shop on Variability Modeling of Software-Intensive Systems, pages
151-157, 2011.

[49] Simulink - Simulation and Model-Based Design. http://www.
mathworks.com/products/simulink/.

[50] N. Singh, C. Gibbs, and Y. Coady. C-CLR: a tool for navigating highly
configurable system software. In ACP4IS '07: Proceedings of the
6th workshop on Aspects, components, and patterns for infrastructure
software, 2007.

[51] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall,
1989.

[52] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe composition
of product lines. In GPCE ’07: Proceedings of the 6th international
conference on Generative programming and component engineering,
pages 95-104, 2007.

[53] The LabVIEW Environment. http://www.ni.com/labview/.

[54] W. Thies. Language and Compiler Support for Stream Programs. PhD
thesis, MIT, 2008.

[55] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the use
of higher-order model transformations. In ECMDA-FA '09: Proceed-
ings of the 5th European Conference on Model Driven Architecture -
Foundations and Applications, pages 18-33, 2009.

[56

S. Trujillo, D. Batory, and O. Diaz. Feature refactoring a multi-
representation program into a product line. In GPCE ’06: Proceedings
of the 5th international conference on Generative programming and
component engineering, pages 191-200, 2006.

[57] L. Verlet. Computer “experiments” on classical fluids. i. thermo-
dynamical properties of lennard-jones molecules. Physical Review,
159(1):98-103, 1967.

[58] A. Wasowski. Automatic generation of program families by model
restrictions. In Software Product Lines, volume 3154 of Lecture Notes
in Computer Science, pages 73—89. Springer Berlin Heidelberg, 2004.

[59] M. Weiser. Program slicing. In ICSE '81: Proceedings of the 5th
international conference on Software engineering, pages 439—449,
1981.

[60] T. Ziadi, L. Hélouét, and J.-M. Jézéquel. Towards a UML profile
for software product lines. In Software Product-Family Engineering,
volume 3014 of Lecture Notes in Computer Science, pages 129—139.
Springer Berlin Heidelberg, 2004.

2015/9/10

http://code.google.com/p/stepwise-ft/
http://code.google.com/p/stepwise-ft/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.ni.com/labview/

A. UpRight Commuting Diagrams

"SUOIBALIOP 9} JO Sd./Q oy Suisnooy weiderp Jupnuwiwod CLIdVWR - oy], 67 9msi]

2015/9/10

13

Pasn So[NI 9)LIMAI Y} SuIsnooy weISerp Sunnuruod SLIVVR
g 1408

Zronpoid” [$ — — =

I
-

oYL :9g om31g

Zzonpoid™

2015/9/10

14

B. MolDyn Commuting Diagrams

| MDCore | I NMDCore |
C——>0{ UPDATEP [———3[] ——> N.UPDATEP A
p P
’ > 0’ N> d—3o B—°
epo! €po; epo! epo epot epot epot
P»d P.;n :IP ;up p I:l p p epot
vir I vir vir vir vir I vir vir I vir
. - ___ =
=
wocore T
| I | NMDCore |
vir
MOVE l_)n FORCES
- - - vir
L - P =
>
epot epot
|
e e o o ———— —

-

Mwocore

__________ —_—
|CBNMDCore 1
H C.B.N.UPDATEP ﬂ—)h
P p l vir
epot } epot epot ! epot
vir | vir vir | p

==

TConocare

Figure 27: The "%\ cammcore, commuting diagram focusing the DfPs of the derivations.

2015/9/10

e,
o 1 o i

o forces

S - 3

am forces am_forces

dm_forces

S torces

S forces

SMPARTITION

Cforces

Figure 28: The "™\ cammcors,, commuting diagram focusing the rewrite rules used.

16 2015/9/10

	Introduction
	Background
	Motivating Examples and Methodology
	Refinements and Optimizations
	Extensions
	Rewrite Rules, Derivations and Their Extensions
	Bringing It All Together
	Commuting Diagrams of DfP Designs

	Encoding Extensions (Higher-Order Rewrites)
	eXtended ReFlO Domain Models
	Projection of an RDM from the XRDM

	Approach Workflow
	Case Studies
	UpRight
	Highlighted Commuting Diagram
	Encoding Extensions

	MolDyn
	Highlighted Commuting Diagram
	Encoding Extensions

	Discussion

	Related Work
	Conclusions
	UpRight Commuting Diagrams
	MolDyn Commuting Diagrams

