
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

School of Engineering and Sciences

Semi-Automatic Program Partitioning

A dissertation presented by

Priscila Angulo López

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Information Technologies and Communications

Major in Computer Science

Monterrey, Nuevo León, December 5th, 2017









Declaration of Authorship

I, Priscila Angulo López, declare that this dissertation titled, Semi-Automatic Program
Partitioning and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at
this University.

• Where any part of this dissertation has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this dissertation is entirely my own work.

• I have acknowledged all main sources of help.

• Where the dissertation is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed myself.

Priscila Angulo López
Monterrey, Nuevo León, December 5th, 2017

©2017 by Priscila Angulo López
All rights reserved





Dedication

A mi amada madre.





Acknowledgements

This was a long endeavor, accompanied by added trials, as life usually goes. However, the
best part is that it allowed me to be the recipient of exceptional encouragement, support
and love from a large number of generous and kind persons. I would like to mention them
in chronological order.

Professor Guillermo Jiménez, who has been my supporter since before this endeavor and,
planted this Ph. D. idea in my mind, thank you for opening my eyes to a world of oppor-
tunities that I never thought were within my reach. Luis, thank you for pushing me to be
brave and assertive. Mom and Dad, thank you for your unconditional love, for being my
pillars, and for helping me to stand up after every fall, I love you both. Rosy Sandoval,
thank you for your long and loyal friendship. You are my family, my home. Thank you for
your unconditional love. Professor Lorena Gómez, thank you for being my mentor and my
friend. You further set me in the right direction. Thank you Manuel Rodríguez, my dear
friend. You are my example of endurance and resilience. Pablo Mazzucchi and Mónica
Muñoz, thank you for every piece of advice, and for extending your home’s warmth to me.
Marcel Váldez, you are a great example of quality and excellence. Thank you for teaching
me how to be thorough. Rachel Lloyd, now Rachel Ahn, my best friend, thank you for your
kindness, generosity and constant love. Carl W. Handlin, your friendship and support ar-
rived at the most critical moment, thank you for being my friend and the best teammate.
Néstor Vázquez, I admire you and deeply appreciate every perspective-giving conversation
we have. José Luis Leal, thank you for listening to me and giving me strength every time I
needed it. Eduardo González, thank you for your support and for always being full of em-
pathy. Seth Beinhart, thank you for your constant support and endless encouragement.
Mariel Mariscal, my dear cousin, confidant, my shoulder to lean on: You are irreplaceable.
Fernando Reyes, thank you for your encouragement and your positivism. Don and Karen
Batory, my Austin adoptive parents, thank you for embracing me, comforting me, bearing
with me, and for making me the object of your warmth and kindness. Mireya Almaraz, my
little sister I never had, thank you for your example of perseverance and your loving sup-
port. Ana Rodríguez, thank you my friend for your generosity and our reassuring conver-
sations. Fernando Sánchez, Pedro Pérez and Tiago Damasceno, thank you my friends for
your support and company. Kennedy C. Brown, thank you for your support, your friend-
ship, and being my affirmative company during stressful times. Vandana Gunupudi, thank
you my friend for every time you gave me reassurance and inspired strength in me. Deven
Desai, thank you for your friendship and constant words full of empathy and considera-
tion.

I regret that I can only list each of your names once, as you have each helped me not once,
but a multitude of times. Thank you.





Abstract

Partitioning a program into features is a fundamental problem in both Software Product
Line (SPL) and object-oriented framework research.

An SPL is a family of related programs that are created and differentiated by features – incre-
ments in program functionality. An extractive way to create an SPL is to refactor a legacy
program into a stack of feature modules or layers. We developed BttF, a tool that infers
the feature membership of all package, class, and member declarations of a Java program
from facts given by a program expert. BttF recognizes hooks to be methods that defy clas-
sical layering in that they reference declarations of layers/feature modules that are added
in the future. The information collected by BttF is used to feature-annotate the program,
giving it a feature-based design. Doing so enables optional or unnecessary features to be
removed from the program’s codebase to produce subprograms, the beginnings of an SPL.
Case studies validate BttF, the best result yielded by our experiments show that BttF is ca-
pable of inferring the assignment of over 80% of a program’s declarations, this means that
less than 20% of the assignments were provided as facts by an expert.

An object-oriented framework is a two-tiered structure: a framework (consisting of many
abstract classes) that encode common and shared behavior in a domain of applications,
and a plug-in (having a concrete class for each framework abstract class) to complete an
application. Refactoring a legacy application into a framework and plug-in is a common
activity. Surprisingly, tools to perform this task are absent, even though frameworks have
been in use for 25 years. After all this time, it remains a tedious, error-prone, and manual
task. Two tools are needed: one that determines how classes of a legacy application and
their members are partitioned across a framework and plug-in, and which methods are
hooks. A second tool takes this partitioning information as input and runs a refactoring
script that invokes refactorings programmatically to transform the legacy application into
a framework and a plug-in. R3 is a new refactoring engine for Java that supports the writing
of transformation scripts [51]. We present the integration of BttF and R3 to cover this need,
and evaluate this integration by effectively transforming a set of six Java programs into a
framework and plug-in structure.

Furthermore, we use BttF as a tool to identify features in a non-object-oriented environ-
ment: Multi-Agent Systems (MAS). This active research area has started to see some efforts
to integrate SPL concepts and technologies, however, identifying features in existing MAS
was a problem not being addressed. BttF was successfully used to identify features on six
MAS simulators developed on GAMA platform.

v





List of Figures

2.1 Classical Software Layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Illustrates OO layering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 A Legacy Program Telescoped from Figure 2.2. . . . . . . . . . . . . . . . . . . . 6

2.4 Differences between private and fprivate. . . . . . . . . . . . . . . . . . . . 7

2.5 Differences between public and fprivate. . . . . . . . . . . . . . . . . . . . . 8

2.6 Basic Framework and Plug-in Organization. . . . . . . . . . . . . . . . . . . . . 10

2.7 Two-Step Splitting of Class C1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 An R3 MoveAndDelegate Refactoring. . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 CRG of Java Complex Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 BttF Main Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 BttF’s Possibility Offerings for a Declaration e . . . . . . . . . . . . . . . . . . . 20

3.4 Hook Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 A Field Initialization Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Risk of wrong assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 fprivate possibilities. Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.8 fprivate possibilities. Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 fprivate possibilities. Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 fprivate possibilities. Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11 Example: Assigning a method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.12 Inference 1. fprivate Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.13 Inference 1. fprivate Propagation Caveats . . . . . . . . . . . . . . . . . . . . 36

3.14 Inference 2. fprivate Container . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



3.15 Inference 3. References flow across features . . . . . . . . . . . . . . . . . . . . 39

3.16 Simple CRG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 BttF as Eclipse’s plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 A .bttf file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 A BttFcsv file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 A BttF’s error log file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Operations Java Program Source Code . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Operations Java Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Partition Operations Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 BttF’s More Information about a Declaration. . . . . . . . . . . . . . . . . . . . 50

4.9 Field Int.v’s CRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 The @Feature Annotation Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.11 @Feature Annotations and an R4 Projection . . . . . . . . . . . . . . . . . . . . 54

4.12 Operations Java program source code annotated. . . . . . . . . . . . . . . . . 55

4.13 Operations Java program structure with added R4Feature. . . . . . . . . . . 56

5.1 RQ1. Correlation between Last feature size percentage and BttF’s Inference
rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Assignment Order vs. Number of Possibilities . . . . . . . . . . . . . . . . . . . 68

6.1 C1. Problem with partitioning superclasses. . . . . . . . . . . . . . . . . . . . . 77

6.2 Lift constructor calls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Problem refactoring a hook method. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Framework+Plugin structure of a hook method. . . . . . . . . . . . . . . . . . . 88

6.5 Framework+Plugin structure for a public constructor. . . . . . . . . . . . . . . 88

7.1 GAMA IDE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 The @Feature Annotation Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3 GAMA refresh metadata option. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1 Refactoring process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



A.2 Transformation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.1 Calc Java Program. Original class diagram. . . . . . . . . . . . . . . . . . . . . . 117

C.2 Calc Java Program. Class diagram after framework and plug-in transformation.118

C.3 ExpressionTree Java Program. Original class diagram. . . . . . . . . . . . . . 119

C.4 ExpressionTree Java Program. Class diagram after framework and plug-in
transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.5 Gates Java Program. Original class diagram. . . . . . . . . . . . . . . . . . . . . 121

C.6 Gates Java Program. Class diagram after framework and plug-in transforma-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

C.7 ImageStreamGangApp Java Program. Original class diagram. . . . . . . . . . . 123

C.8 ImageStreamGangApp Java Program. Class diagram after framework and plug-
in transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.9 ImageTaskGangApplication Java Program. Original class diagram. . . . . . . 125

C.10 ImageTaskGangApplication Java Program. Class diagram after framework
and plug-in transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

C.11 SearchTaskGang Java Program. Original class diagram. . . . . . . . . . . . . . 127

C.12 SearchTaskGang Java Program. Class diagram after framework and plug-in
transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.1 CSV output example for a GAML model. . . . . . . . . . . . . . . . . . . . . . . 141





List of Tables

3.1 Basic Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Invariant Feature and Modifier Combinations . . . . . . . . . . . . . . . . . . . 21

3.3 Scenarios to Consider for fprivate possibilities . . . . . . . . . . . . . . . . . 27

3.4 Example 1. Validation of (3.30). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Example 1. Validation of (3.31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Example 1. Validation of (3.32). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Example 1. Validation of (3.33). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.8 Example 1. Validation of (3.34). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.9 Do not ask for a’s modifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Ask for a’s modifier. User says fprivate(a). . . . . . . . . . . . . . . . . . . . . 40

3.11 Ask for a’s modifier. User says fpublic(a). . . . . . . . . . . . . . . . . . . . . . 40

4.1 Differences between BttF’s Execution Modes . . . . . . . . . . . . . . . . . . . . 44

4.2 Operations Program Partitioning. Facts and Inferences. . . . . . . . . . . . . . 53

5.1 Java programs to validate BttF partitioning into SPLs. . . . . . . . . . . . . . . 58

5.2 Java SPLs partitioning results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 RQ1. Last feature size vs. BttF’s Inference Rate. . . . . . . . . . . . . . . . . . . 62

5.4 RQ2. Correlation between Assignment Time and Number of Possibilities. . . . 65

5.5 E1. Average of declarations % per Number of Possibilities’ Bin. . . . . . . . . . 67

5.6 E2. Average of declarations % per Number of Possibilities’ Bin. . . . . . . . . . 67

5.7 E3. Average of declarations % per Number of Possibilities’ Bin. . . . . . . . . . 67

5.8 E4. Average of declarations % per Number of Possibilities’ Bin. . . . . . . . . . 67

xi



5.9 Valente’s results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Java programs to validate BttF partitioning into Framework and Plug-in. . . . 79

6.2 Java Framework and Plug-in partitioning results. . . . . . . . . . . . . . . . . . 81

7.1 GAML declarations’ types mapping to BttF’s declaration types. . . . . . . . . . 97

7.2 GAML programs to partition into SPLs with BttF. . . . . . . . . . . . . . . . . . 98

7.3 GAML SPLs partitioning results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



Contents

Abstract v

List of Figures vii

List of Tables xi

1 Introduction 1

2 Background 4

2.1 Layers and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Object Oriented Layering . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Legacy Programs Telescope OO Layers . . . . . . . . . . . . . . . . . . . 6

2.1.3 OO Layers, Packages, and Features . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Feature Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Challenge and Relevance of SPLs . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Framework and Plug-in Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Partitioning L into F + P . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 R3 Refactoring Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 BttF Classification and Inference Rules 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 BttF Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Declaration Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Feature Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xiii



3.2.4 Containment Reference Graph (CRG) . . . . . . . . . . . . . . . . . . . . 14

3.2.5 A BttF Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.6 Feature Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.7 Partitioning Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.8 Notation, Predicates, and Rules . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.9 Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Feature Bounds and Possibilities Calculation . . . . . . . . . . . . . . . . . . . 22

3.3.1 Importance and Definition of Feature Bounds . . . . . . . . . . . . . . . 23

3.3.2 Possibility Calculations Process . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Possibility Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Example: Assigning a method . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 BttF Inferences and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 Inference 1: fprivate Fields and Methods . . . . . . . . . . . . . . . . . 34

3.4.2 Inference 2: fprivate Containers . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Inference 3: Declarations in latest feature are always fprivate . . . . . 38

3.4.4 Inference 4: One Feature in Bounds . . . . . . . . . . . . . . . . . . . . . 39

3.4.5 Inference 5: Declaration with no References . . . . . . . . . . . . . . . . 40

3.5 Recursive Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Processing of a Feature Model for Recursive Partitioning . . . . . . . . . 41

3.5.2 Reassigning Declarations to Sub-Features . . . . . . . . . . . . . . . . . 42

4 BttF Execution 44

4.1 BttF’s Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 BttF’s User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 BttF’s Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 R4 for Java Code Feature Annotation . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 BttF’s R4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 BttF Partitioning of Java Programs into SPLs 57

5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



5.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 RQ1. In which scenario(s) BttF’s inference rate is the highest? . . . . . . 60

5.3.2 RQ2. In which scenario(s) BttF’s inference rate is the lowest? . . . . . . 63

5.3.3 RQ3. Is there a negative correlation between Assignment Time and
Number of Possibilities? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Valente-2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.2 ICFL-2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.3 LEADT-2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 BttF Refactoring a Program into a Framework and Plug-in 75

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Java Constraints for Framework and Plug-in Refactoring . . . . . . . . . . . . . 76

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5.1 RQ1. Is BttF’ s inference rate better for framework and plug-in parti-
tioning than for the best scenario in SPL partitioning? . . . . . . . . . . 82

6.5.2 RQ2. Is it possible to automatically transform a Java program into a
framework and plug-in structure? . . . . . . . . . . . . . . . . . . . . . . 84

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6.1 Cornerstone Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6.2 Generalization Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7 BttF Partitioning of Non-OO Programs (GAML) into SPLs 92

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.2 GAMA Platform and GAML Language . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3 Obtaining a CRG from a GAML Program . . . . . . . . . . . . . . . . . . . . . . 95

7.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6.1 RQ1. How similar are the inference rates obtained when partitioning
GAML models into SPLs, to the inference rates obtained when parti-
tioning Java programs into SPLs? . . . . . . . . . . . . . . . . . . . . . . . 100

7.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Conclusions and Future Work 106

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A Refactorings versus Transformations 108

B R3 framework and plug-in transformation script 110

C Class diagrams of framework and plug-in programs 117

D GAMA platform source code modification 129

Bibliography 142

Published articles 151

Curriculum Vitae 153



Chapter 1

Introduction

A Software Product Line (SPL) is a design for a family of related programs that are differen-
tiated by features — stereotypical increments in program functionality [1]. Every program
of an SPL is theoretically a stack of layers or (equivalently) feature modules [12, 94, 92].

SPLs offer significant improvements in cost, time-to-market, and quality in customized
program production [17]. However, adopting SPL technology is a considerable challenge,
it requires converting legacy programs into an SPL, a notoriously difficult task [47, 98, 23,
56, 29].

Why is this task hard? Consider what the task implies:

1. Identify a set of features in a program, then

2. Partition the original codebase by indicating which feature introduced each decla-
ration (or more microscopically, which lines of code); the code of a feature is the
contents of its feature module,

3. Determine the correct order in which these features were incrementally added to the
program, and which feature depends on which other features,

4. Verify that you did this process correctly by removing one (say an optional feature)
and still have the resulting program correctly compile.

Now consider, where to start to accomplish this task? Related research suggests searching
for keywords related to a feature in comments and source code, or perform pattern match-
ing on naming conventions [23, 29, 47, 56, 98]. This could be useful for step 1, but it is
methodologically incomplete, and is far from guaranteeing the achievement of our final
goal: a correct feature partitioning of the program.

Prior work does not exploit the structure of feature modules to extract an SPL. Nor do they
leverage ‘feature-private’ modifiers of packages, classes, and members to limit their visi-
bility only to that module, as opposed to ‘feature-public’ declarations that are visible to all
feature modules. Experience in building Java SPLs has long hinted that ‘feature-private’
declarations could help identify the contents of a feature module as any declaration that
references a ‘feature-private’ element must also belong to that module.

1



CHAPTER 1. INTRODUCTION 2

We developed Back to the Future (BttF), a new tool to extract an SPL from a legacy pro-
gram.1 Unlike most prior work, BttFdoes not use feature location, concern location heuris-
tics, text analysis or machine learning to extract an SPL. Most prior work based their ap-
proaches analyzing source text, and cannot offer strong guarantees that their results are
consistently successful. Instead, BttF leverages a structural theory of SPLs whose programs
are composed from feature modules. This required a close and precise integration of pre-
viously loosely-connected ideas: truth maintenance systems [38], classical layering [28],
mixin-layers [6, 92, 94], hook methods in OO frameworks [79], and ‘feature-public’ and
‘feature-private’ modifiers [3] that would adorn declarations in feature modules if such
modules were supported by Java. BttF is semi-automated: given a Java legacy program P

and a stack of features, it relies on a program expert to supply facts about P’s declarations
to infer a feature partition of all P declarations.

Our work is based on a theory of layering [93, 94]. Leveraging layer concepts guarantees the
type correctness of a partition (feature). A layer depends on previously introduced layers to
compile. We treat features as layers, we stack them in the order they should be introduced,
guaranteeing the type correctness of the partition. This was not our first approach, and
definitely not an approach taken by related work. Originally, we tried to build upon exist-
ing work, but their lack of guarantees made us develop our own approach. We first thought
of using SAT solver concepts [1], however we promptly realized that it was insufficient. The
right approach became clear when we started representing a program declaration depen-
dencies as a graph. It was then when layers became an obvious partitioning approach. The
rest fell in place in an almost organic way.

BttF is integrated with R4, an Eclipse plug-in, that supports the refactoring and creation
of feature-annotated Java SPL codebases [50]. R4 plays a similar role to that of the C-
PreProcessor (CPP) used in C-based SPLs, except it uses Java annotations. But R4 also sup-
ports the refactoring of such codebases, where only limited support exists today for C+CPP
SPL codebases [55]. BttF takes the feature-assignments it is given and infers and feature-
annotates all P declarations to create a Java SPL that R4 can process.

A task that is similar to converting a legacy program into an SPL is converting a program
into a framework and plug-in. A framework is a classical design in reusable Object-oriented
(OO) software [21, 36, 45, 67, 79]. It standardizes the encoding of the classes, relationships,
and functionality that are shared by programs in an application domain. Specific applica-
tions extend/complete the framework by a plug-in which adds the distinctive functionality
of that application. Frameworks abound in graphics [101], middleware [87], web applica-
tion frameworks [88], IDEs [33, 64], and, of course, software product lines [9].

A common way to create a framework is to refactor an existing legacy application into two
parts: a reusable framework and an application-specific plug-in. The basic ideas for doing
so have been known for 25 years. Yet after all this time, it remains a tedious, error-prone,
and manual task. For example, a legacy class might (1) belong to the framework, (2) belong
to the plug-in, or (3) have its members partitioned so that some belong to the framework
and others to the plug-in. This activity of classifying the contents of a class must be made

1 Mainly executed as an Eclipse plug-in.



CHAPTER 1. INTRODUCTION 3

repetitively for every class in the legacy application. Even for legacy applications with a few
classes, without tool support it is easy for programmers to get lost or make mistakes. We
know of no widely available tool(s) that help.

A second task takes the classification output of the first task and refactors each legacy class,
either moving it into a framework or plug-in, or to distribute its members across both. The
difficulty here is that refactoring engines of today’s IDEs allow programmers to manually
perform one refactoring at a time. When tens or hundreds of refactorings are needed, once
again programmers can easily get lost or make mistakes. What is missing is the ability
to script refactorings (ie to programmatically invoke refactorings repeatedly) which would
make this second task largely automatic.

We use BttF as a support tool to partition a Java legacy program into framework and plug-
in. This information is then input to a refactoring script that automatically transforms the
legacy application into a framework and plug-in. This script is executed by a new refactor-
ing engine R3 for Eclipse that supports user-programmable refactoring scripts as simple
Java methods [51]. To give readers an appreciation, most design patterns (in the Gang-of-
Four text [108]) can be encoded as an R3 Java method of∼ 25 LOC. The BttF legacy program
to framework + plugin refactoring script is ∼ 300 LOC, the largest script written to date.

Furthermore, the need to identify features is not only relevant for OO programs. It is
also important in other software development scenarios, for example, Multi-Agent Systems
(MAS) development. Among the research topics to advance MAS engineering, is the effort
to combine MAS and SPL approaches: Multi-Agent Systems Product Lines (MAS-PL) [75].
Most of the research done in MAS-PL is in methodological aspects, and there is no tool to
identify features in a MAS. We use BttF also in this scenario.

The novel contributions of this research are:

• A careful and precise integration of the concepts of Java packages, classical layers,
mixin-layers, hook methods, feature-modifiers, and truth maintenance systems;

• The Containment Reference Graph (CRG) as the key data structure for SPL extraction
analysis;

• Rules to infer and maintain a consistent database of facts (feature-declaration assign-
ments);

• Case studies that demonstrate the utility of BttF for SPL partitioning, framework and
plug-in refactoring, and MAS features identification; and

• An explanation of how BttF goes beyond prior work on feature-localization and ex-
tracting SPLs.

We begin by with an overview of relevant prior work.



Chapter 2

Background

2.1 Layers and Features

Layering is a fundamental design technique to control and manage software complexity
[12, 28]. Layers exist in every non-trivial program explicitly or implicitly [43]. Figure 2.1
illustrates classical layering. Each layer is a blue-colored horizontal rectangle that contains
a set of classes. A package is a vertical black rectangle. In classical layering, there is no
difference between layers and packages; eg layer Lη equals package Pη. The lowest layer or
base is L1 and the highest is L3. We write this stack of layers as L1×L2×L3, where× is the
layer stacking operation.

  L3
+t()

C1 C2

  L1
+m()

A1 A2 A3

  L2
+p()

B1 B2

P1 P2 P3

(a)

Figure 2.1: Classical Software Layers.

Suppose all declarations are either private or public; there is no package-private (or
null) modifiers as in Java. Then:

4



CHAPTER 2. BACKGROUND 5

• L1 has three classes A1−A3. Method A1.m can reference private members in class A1
and public members in L1.

• L2 has two classes B1 and B2. Method B1.p can reference private members in B1

and public members in L1×L2.

• L3 has two classes C1 and C2. Method C1.t can reference private members in C1,
public members in L1×L2×L3.1

2.1.1 Object Oriented Layering

OO layering has a more sophisticated structure [92, 94]. The essential idea is that each sub-
sequent layer can not only add new classes, but also extend, via subclassing, any public
class of a layer beneath it, this can be observed in Figure 2.2.

  L0
+n()

Class28
Class24 Class26 Class29 Class27 Class25 Class20

  L3
+o()

A2

+q()

B1

+t()

C1 C2

  L1
+m()

A1 A2 A3

  L2
+n()

A1

+p()

B1 B2

+m()
+n()

A1

+o()

A2 A3

+p()
+q()

B1 B2

+t()

C1 C2

P1 P2 P3

P1 P2 P3

(a)

(b)

  L3
+t()

C1 C2

  L1
+m()

A1 A2 A3

  L2
+p()

B1 B2

P1 P2 P3

(a)

Figure 2.2: Illustrates OO layering.

• L1 is indistinguishable from its classical counterpart.

• L2 introduces classes B1 and B2 as before. But now it also extends class L1.A1 with
method n. An extension, like any subclass, can add new fields and methods to its
parent class, and override existing methods. As in classical layering, methods of L2
can reference public members in L1×L2.

• L3 again introduces classes C1 and C2. It also extends class L1.A2 with method o, and
extends class L2.B1 with method q. Methods of L3 can reference public members in
L1×L2×L3.2

1 Early papers on classical layering restricted the access of Li members to public members of the layer
immediately below it, namely layer Li−1 [28]. This is too strict for practical layering [12].

2 By historical accident, inheritance or subclassing hierarchies are normally drawn with the base class at



CHAPTER 2. BACKGROUND 6

2.1.2 Legacy Programs Telescope OO Layers

Habermann et al argued that layers exist in every application; most layers are implicit, not
explicit [43]. This means that instead of having explicit OO layers as in Figure 2.2, pro-
grammers telescope or collapse sub-classing chains into a single class, removing all traces
of explicit layering. The result is a monolithic layer or program P of Figure 2.3, which to us
is the OO structure of a legacy program.

+n()
+m()

A1

+o()

A2 A3

+q()
+p()

B1 B2

+t()

C1 C2

P1 P2 P3

(b)

Figure 2.3: A Legacy Program Telescoped from Figure 2.2.

This is our starting point. We are given a telescoped legacy program P that is a collection of
packages. Using the interactive analysis of BttF, a programmer tells us that P has the layer
stack L1×L2×L3, and from facts (s)he gives us, we infer the contents of these layers.

2.1.3 OO Layers, Packages, and Features

OO layers are collections of classes and so too are packages. The difference: an OO layer
cross-cuts packages. The dark outlines in Figure 2.2 show the contents of packages P1−P3,
and their telescoped counterparts in Figure 2.3.

OO layers correspond to features in SPLs [5, 6, 2]. Henceforth we refer to OO layers as
features.

2.1.4 Feature Modifiers

Modifiers private, <null> (package-private), and public adorn every declaration in a
Java package. They tell Java the visibility of a declaration is restricted to a single class, to a
package, or to the world.

Features also have modifiers [3]. fpublic says a declaration is exported or is visible to
other features of a program. In contrast, fprivate says a declaration is visible to (or can
be referenced by) only the feature which defined it.

the top of a hierarchy and the most specialized subclasses at the bottom. This is in contravention to layer
hierarchies. We retained classical layer ordering in Figure 2.2, requiring the base class of a subclassing
chain to be at the bottom, not at the top. This is why the inheritance chains of Figure 2.2 are inverted.



CHAPTER 2. BACKGROUND 7

Java modifiers are independent of feature modifiers, although this is not immediately ap-
parent. (Apel et al independently reached a similar conclusion [3]). Let’s contrast Java
private and feature fprivate. Figure 2.4 depicts a Java package with the feature stack
F1×F2×F3. Feature F1 introduces base versions of classes J,K,L; features F2 and F3 extend
these classes. Member J.a is introduced by feature F1. If J.a is fprivate, it is horizon-
tally visible to all classes of F1 and is otherwise invisible to (or not referenceable by) other
features. If J.a is private, it is vertically visible to all later extensions of class J, but to
no other classes. Having both private and fprivate modifiers restricts J.a’s visibility to
their overlap, namely the declarations that F1 introduced in class J (bottom left class of
Figure 2.4).

  F1
+a()

J K L

  F2
J K L

  F3
J K L

feature
private

visibility

Java
private

visibility

  F1
+a()

J K L

  F2
J K L

  F3
J K L

P1 P2 P3

feature
private

visibility

Java
public

visibility

Figure 2.4: Differences between private and fprivate.

Now contrast Java public and feature fprivate (Figure 2.5). If J.a is public then J.a is
visible to the world. But if J.a is also fprivate, only the code of feature F1 can reference J.a;
it is invisible to (not referenceable by) other features.

The remaining combinations also yield surprises. If member J.awas fpublic in Figure 2.4,
its visibility would be indistinguishable from that of Java package-private. But if J.a was
fpublic in Figure 2.5, J.awould be visible only to packages P1−P3; there is no correspond-
ing mechanism in Java that would restrict its visibility only to those packages. For the above
reasons, we concluded that Java and feature modifiers are independent.

Obviously, feature modifiers are not present in a Java legacy program. Because we can
treat feature modifiers independently of Java modifiers, this simplifies our task. We do
not alter the Java modifiers in feature-refactoring P. To feature-refactor program P into a
stack of features, we must recover for each declaration of P (packages, classes, initializers,
constructors, and members):

• the feature to which it belongs and

• whether or not it is fprivate.



CHAPTER 2. BACKGROUND 8

  F1
+a()

J K L

  F2
J K L

  F3
J K L

feature
private
visibility

Java
private
visibility

  F1
+a()

J K L

  F2
J K L

  F3
J K L

P1 P2 P3

feature
private
visibility

Java
public

visibility

Figure 2.5: Differences between public and fprivate.

So if P is the program of Figure 2.3 and its feature stack is L1×L2×L3, our task is to recon-
struct the design of Figure 2.2.

2.2 The Challenge and Relevance of SPLs

A Software Product Line (SPL) is a design for a family of related programs [1]. Each program
is composed from a unique stack of feature modules or layers, each of which is a stereotyp-
ical increment in program functionality [12, 92, 94]. SPLs offer significant improvements
[17], [78, pp. 9-11]. Namely, they:

• improve the software development process,

• reduce cost and time to market,

• increase software quality attributes like reliability, usability and maintainability,

• provide increased ability of application evolution, and

• reduce application complexity, and increase manageability.

Two fundamental barriers limit SPL success. First, there are astonishingly few public Java
SPLs. Experimental studies on real SPLs are critical to advance SPL technology [63, 72].
Second, adopting SPL technology requires converting legacy programs into an SPL, a no-
toriously difficult task [23, 29, 47, 56, 86, 98].

Although many tools can search code for keywords to locate features or concerns, ie posi-
tions in source code that might implement a desired functionality [29, 86], few tools extract
a Java SPL from a legacy program [48, 76, 99].

Prior work does not exploit the structure of feature modules to extract an SPL. Nor do they
leverage the concept of feature-private modifiers of packages, classes, and members to



CHAPTER 2. BACKGROUND 9

limit their visibility only to that module, as opposed to feature-public declarations that are
visible to all modules. Our experience in building Java SPLs has long hinted that feature-
private declarations could help identify the contents of a feature module as any declara-
tion that references a feature-private element must also belong to that module.

An SPL can be created in three ways [1]:

1. A proactive way develops a product line from scratch;

2. A reactive way extends a small product line incrementally with new features, broad-
ening the product line’s scope; and

3. An extractive way starts with a legacy program (sometimes several) and feature-refactors
it into an SPL, at which point a reactive approach takes over.

BttF (Back to the Future) is a new tool to extract an SPL from a legacy program. Unlike most
work, BttF does not use feature location or concern location heuristics to extract an SPL.
Instead, BttF leverages a well-known structural theory of SPLs whose programs are com-
posed from feature modules. This required a close and precise integration of previously
loosely-connected ideas: truth maintenance systems [38], classical layering [28], mixin-
layers [6, 92, 94], hook methods in OO frameworks [79], and feature-public and feature-
private modifiers [3] that would adorn declarations in feature modules if such modules
were supported by Java. BttF is semi-automated: given a Java legacy programP and a stack
of features, it relies on a program expert to supply facts about P to infer a feature partition
of all P declarations.

2.3 Framework and Plug-in Concepts

Frameworks are a standard design for OO extensibility [46, 37, 15]. A framework consists
of one or more abstract classes that define a common functionality in an application do-
main. It might also have zero or more additional private concrete classes that are required
for this functionality. Each abstract class has one or more hook methods – abstract
methods whose implementation must be specified by a plug-in.

A plug-in or extension, is a set of concrete subclasses, one for each framework abstract
class, that provides additional functionality to complete the framework. A plug-in’s con-
crete classes implement the framework’s hook methods. Like the framework itself, a plug-
in can have additional private concrete classes that complete the plug-in’s functionality
[57, 15].

Figure 2.6a shows a simple framework F consisting of two abstract classes (A1 and A2)
and one concrete class (X1). Every framework also has an abstract factory class, AF,
which provides an abstract factory method for each abstract and/or public class in
the framework. (Note: blue classes and methods are abstract in our figures).

Figure 2.6b shows a plug-in P . There is a concrete subclass C for each framework abstract
class A and a concrete method C.h() for each abstracthook method A.h(). Two such classes



CHAPTER 2. BACKGROUND 10

+hook1()
+hook2()

A1

+hook3()

A2 X1

+newA1()
+newA2()

AF

+hook1()
+hook2()

C1

+hook3()

C2 X2

+newA1()
+newA2()

F

(a)
framework

(b)
plug-in

Ln

L0

...

L1

calls

calls

calls

(a)
L0

L1

Ln

···

(b)
highest layer

most advanced
functionality

lowest layer
most primitive
functionality

X2

X1c1 c2 cn

d1 d2 dn

 class ℓ0

 class ℓ1

+hook1()
+hook2()

C1

+hook3()

C2 X2

+newA1()
+newA2()

F

(b) plug-in

(a) framework

+hook1()
+hook2()

A1

+hook3()

A2 X1

+newA1()
+newA2()

AF

Ln

L0

...

L1

calls

calls

calls

(a)
L0

L1

Ln

···

(b)

+hook1()
+hook2()

C1

+hook3()

C2 X2

+newA1()
+newA2()

F

(b) plug-in

(a) framework

+hook1()
+hook2()

A1

+hook3()

A2 X1

+newA1()
+newA2()

AF

A1 newA1( ) { return new C1( ); }
A2 newA2( ) { return new C2( ); }

+hook1()
+hook2()

C1

+hook3()

C2 X2

+newA1()
+newA2()

F

(b) plug-in

(a) framework

+m1()
+hook1()
+m2()
+hook2()

A1

+m3()
+hook3()

A2 X1

+newA1()
+newA2()

AF

A1 newA1( ) { return new C1( ); }
A2 newA2( ) { return new C2( ); }

+m1()
+m2()

C1

+m3()

C2 X1 X2

+m1()
+hook1()
+m2()
+hook2()

C1

partition

+hook1()
+hook2()

C1

+m1()
+hook1()
+m2()
+hook2()

A1

+m1()
+m2()

C1

Lift hooks

+m1()
+m2()
+hook1()
+hook2()

C1

partition

+hook1()
+hook2()

C1

+m1()
+m2()

C1

Lift hooks

+m1()
+m2()
+hook1()
+hook2()

A1

Figure 2.6: Basic Framework and Plug-in Organization.

are shown in Figure 2.6b, C1 and C2. An additional concrete class specific to the plug-in (X2)
is also present. Plug-in P is completed with a concrete factory class F that has a factory
method for each public class constructor in the framework + plug-in combination. Note
that concrete factory method newA1() returns a (plug-in) C1 object; method newA2() returns
a (plug-in) C2 object.

2.3.1 Partitioning L into F + P

Legacy application L is mapped to a framework F and plug-in P in three steps. First, each
class of L is either (1) moved to F or (2) moved to P or (3) its membership is split between
F and P . Steps (1) and (2) are implemented by a move-class refactoring. Figure 2.7 shows
the typical steps of option (3). Starting with class C1, an expert determines that methods
m1() and m2() have both framework content and plug-in content. So these methods are split
(lifted) into their generic part (whose names remain m1 and m2) and hook methods hook1()
and hook2() that are respectively called from m1 and m2 and that contain plug-in contents.

Second, the revised class C1 is partitioned into an abstract class A1, which contains all
framework-classified members, while class C1 extends A1 retains the concrete members
that are specific to the plug-in. This transformation (of moving or splitting) is applied to all
classes in L .

Third, the framework F is given an abstract factory class AF (containing abstract factory
methods) and the plug-in P is given the corresponding concrete factory subclass CF (con-



CHAPTER 2. BACKGROUND 11

+m1()
+hook1()
+m2()
+hook2()

partition

+hook1()
+hook2()

C1

+m1()
+m2()

Lift hooks

+m1()
+m2()
+hook1()
+hook2()

C1

partition

+hook1()
+hook2()

C1

+m1()
+m2()

C1

Lift hooks

+m1()
+m2()
+hook1()
+hook2()

A1

Figure 2.7: Two-Step Splitting of Class C1.

taining corresponding concrete factory methods).

This is the essential mapping of L→F+P . It can be implemented by a R3 refactoring
script.

2.3.2 R3 Refactoring Scripts

R3 is a new Java refactoring engine for Eclipse [49, 51].3 R3 was specifically designed to
support refactoring scripts as Java methods to invoke refactorings programmatically. In
particular, most classical design patterns can be expressed as 10-25 line methods, which
has been the primary use for R3 to date [49, 51]. R3 does not rely on the Eclipse refactoring
engine, but rather uses a novel relational-database and pretty-printing technology to map
Java programs to refactored Java programs [51].

R3 works in the following way: R3 exposes all packages, classes, methods and fields as R3
objects, similar to that of reflection of Java class files. What distinguishes R3 from reflection
are R3 object methods: they are refactorings (eg rename, create, move) or methods to find
related objects (eg return the R3 class object of a given method, return the R3 objects that
are members of a given class, return all R3method objects that have a given type signature).

An R3 script for the moveAndDelegate() refactoring is shown in Figure 2.8. The script del-
egates a method m to a class whose name is cn in a package whose name is pn. Line 3
determines the R3 class object o to which method m belongs. Line 4 converts name pn to a
R3 package object p. Line 5 converts name cn to an R3 class object c. Line 7 moves method
m to class c and Line 8 adds a delegate method for m to class o. Errors in R3 script execution
are Java exceptions; as R3 does not alter Eclipse Abstract Syntax Trees (ASTs), recovery from
failed script executions is fast.

3 R4 is a Java SPL refactoring engine that is an extension of non-SPL refactoring engine R3.



CHAPTER 2. BACKGROUND 12

1 void moveAndDelegate( RMethod m, String cn, String pn )
2 {
3 RClass o = m.getClass();
4 RPackage p = Project.findPackage(pn);
5 RClass c = p.getClass(cn);
6

7 m.moveToClass(c);
8 o.createDelegate(m);
9 }

Figure 2.8: An R3 MoveAndDelegate Refactoring.

The following chapters provide full details on the theory behind BttF, its execution envi-
ronment, and its successful application and evaluation.



Chapter 3

BttF Classification and Inference Rules

3.1 Introduction

Our tool, Back to the Future (BttF)1, allows the semi-automatic partitioning of a program
into a sequence of layers or features.2 BttF is a truth maintenance system [38]. It collects
and infers facts, guaranteeing they are consistent. BttF obtains from a user a feature model
for partitioning a program and feature + feature modifier assignments to program declar-
ations.

BttF’s targeted applications are:

1. Partitioning of a program to create an elementary SPL. We say ‘elementary’ because
the features in the resulting product line are initially all required. However, after this,
a user may use other tools to manage and generalize the resulting product line, and
derive other products. And

2. Partitioning of a program into framework+plugin, the framework part is the base
layer, the plugin part is the second layer with optional functionality.

Both applications are very similar, however their outputs are quite different. Details are
described later.

The following sections explain BttF partitioning concepts, bounds calculations, and infer-
ences.

1 BttF’s name alludes to a behavior that we noticed while working on this project. When partitioning pro-
grams into layers, we found that declarations in a layer would reference declarations in future layers, and
future layers would reference declarations defined in past layers.

2 We use the terms layer and feature interchangeably.

13



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 14

3.2 BttF Concepts
3.2.1 Declaration Types

A declaration is a code element found in a program’s source. BttF considers the following
four declaration types:

• Package. A package declaration.

• Class. This term includes classes, interfaces, enums and annotations.

• Method. Includes methods, constructors, static and non-static initializers.

• Field. Represents a member variable. The initializer expression (IE) of a field is con-
sidered part of the field.

3.2.2 Feature Modifiers

A modifier defines a declaration’s visibility among features. There are two possible feature
modifiers fpublic and fprivate; fpublic says a declaration is referable by declarations
in other features of a program. In contrast, fprivate says a declaration is only referable by
declarations in the feature which defined it.

3.2.3 Facts

A fact is provided by a user. It indicates both the feature assignment and the feature mod-
ifier of a declaration. When BttF infers a feature assignment, it does not infer a modifier.
This chapter details BttF inferencing.

3.2.4 Containment Reference Graph (CRG)

The core analysis of BttF relies on a containment reference graph (CRG). Each node of a CRG
represents a program declaration. A containment edge d→c connects a nested declaration
d to its container declaration c, eg d is a class, interface, or subpackage of package c. A
reference edge m→d connects m (a method or constructor or initializer or field with an IE)
to a declaration d that it references. In its analysis, BttF does not distinguish containment
from reference edges. We write m→{d,c} as an abbreviation for m→d and m→c, and {x,y}→
z for x→z and x→z.

A CRG is obtained by harvesting the Abstract Syntax Trees (ASTs) of a program.3 References
that point to external declarations, like org.junit, are excluded. Figure 3.1a presents the
code of the Java Complex class and Figure 3.1b is its CRG with:
3 For Java programs ASTs are available in Eclipse. For programs coded in other languages for which compiler

support is lacking, other means are needed to obtain a CRG.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 15

• Containment edges: {FLOAT,Complex}→p, toFloat→Float, {im,re,cconj,real}→
Complex.

• Reference edges: cconj→{toFloat,FLOAT,im,re} and real→re.

As readers may observe in Figure 3.1b, fields are not necessarily terminal nodes. Terminals
could be any type of declaration that does not reference or contain other declarations.

1 package p;
2

3 class Complex {
4 FLOAT im; //FLOAT belongs to p
5 float re;
6

7 float cconj() {
8 return

im.toFloat()*im.toFloat()
+ re*re;

9 }
10

11 int real() {
12 return re;
13 }
14 }

(a)

pComplex

im

FLOAT

re

cconj

toFloat

real

(b)

Figure 3.1: CRG of Java Complex Class

Once a CRG has been obtained, a user must provide a BttF feature model to follow for
partitioning.

3.2.5 A BttF Feature Model

A feature model in BttF is provided by a user. Compared to traditional feature models
which can be elaborate hierarchies of features with different containment relationships
and cross-tree constraints [1], a BttF feature model is quite simple – but this is all that is
needed for feature-partitioning legacy applications.4 A program is to be partitioned ac-
cording to a sequence of features. A BttF’s feature model follows this format:

P : A B C

In this case, P is a program to be partitioned into features A, B and C. A feature name is any
sequence of letters and numbers, starting with a letter. Feature names can not be repeated.
A user provides the names of the features in order as they were layers, starting with the
bottom layer or base feature, in this case A, and ending with the top layer, in this case C.

4 We call a non-feature oriented program legacy application or legacy program.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 16

A BttF’s feature model has only mandatory features, no optional features, and no alterna-
tive features[1, 59]. Since we treat features as layers, there are implicit constraints: let F and
G be features. If F< G, meaning that feature F comes before (or is closer to the base feature)
than G, then G⇒ F. That is, G requires all features beneath it in a BttF feature model. Cross-
tree constraints and more elaborate feature models can be developed from BttF’s output
using a follow-on Java-based tool for SPL development [50].

A recursive partitioning of a feature is its partitioning into a sequence of smaller features.
Recursive partitioning has the advantage of divide-and-conquer, which may be helpful to
partition large programs. If a feature is recursively partitioned, there will be at least one
more line to a BttF feature model that looks like:

A : X Y

The above means that the base feature, A, is partitioned into a sequence of primitive layers,
where the first layer is X and layer Y is atop X. A feature to sub-partition, A above, should
exist in one of the previous lines of a BttF feature model. A feature can be sub-partitioned
only once. All features (irrespective if they are sub-features or not) have unique names. The
sub-features should also be provided in order as they were layers of the containing feature.

3.2.6 Feature Dependency

An edge of a CRG where both connected declarations have been assigned to a feature, pro-
vides feature dependency information. The feature of the edge’s source declaration src(ed)
depends on the feature of the edge’s destiny declaration dst(ed). Thus, the feature depen-
dency FD of an edge ed= src(ed) → dst(ed) is FD(ed):

FD(ed) = F(src(ed)) → F(dst(ed)) (3.1)

Feature dependency is related to Safe Composition (SC) of an SPL [95]. SC guarantees that
all programs in a product line are type safe: there are no references to undefined elements
and all programs of the product line compile without error.

Effectively, each edge in a CRG F(src(ed)) → F(dst(ed)) is a theorem that Safe Composition
has to prove is consistent with the feature model. If it is not, then there will be programs
where F(src(ed)) is true and F(dst(ed)) is false, meaning that at least one program of the
SPL will not compile.

Note that SC is not part of BttF, but of a follow-on tool for SPL development [50]. BttF does
not check these rules, as all features that BttF deals with are mandatory, and partitioning
is done based on a layered approach, guaranteeing that declarations are introduced in a
timely layer- or feature-based manner. Only when features are optional is the full SC anal-
ysis needed.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 17

3.2.7 Partitioning Process

BttF’s main path to assign features to declarations is the process of visiting nodes of a CRG
in a right-to-left breadth-first manner. That is, BttF traverses the CRG from the leaves to
the roots, hence, it first assigns to features those declarations that do not reference other
declarations, and then it assigns declarations that point to only leaves, and so on.

BttF’s main path is illustrated in Figure 3.2. This CRG contains declarations a, b, c, d, e, f.
The edges are f→e, {d,e}→c, {c,e}→b, and c→a. Declarations a and b are the leaf nodes,
they are assigned first, then c and e, and finally, the roots d and f.

c

a

bef

d

References flow from

root nodes to leaf nodes

t0t1t2t3
t : assignation time

Feature assignment flows from

leaf nodes to root nodes

Figure 3.2: BttF Main Path

The reason for BttF’s main path is historical. Initially, we thought that assigning features to
declarations via the main path would be sufficient to feature-partition an application. As it
turns out, programmers found it convenient to supply a set of feature and modifier assign-
ments to declarations that are known to them before running BttF. How BttF handles this
input is covered in Chapter 4.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 18

3.2.8 Notation, Predicates, and Rules

In this and the following sections, we use Greek letters α . . .ω to denote features, and their
alphabetical linear order α< β< . . . < ω to denote the order in which they are composed.

α is the earliest or base feature (3.2)

ω is the latest, last or top feature (3.3)

α<β means α is earlier than β and β is after α (3.4)

γ≤ δ means δ is either γ or later than γ (3.5)

Let lowercase letters a,b, . . . ,z denote declarations. F(d) =β means that the feature assign-
ment of declaration d is β. We use ⊥ to denote the unknown feature. F(d) = ⊥ means that
the feature of d has not been assigned.

In the following, D denotes the domain of all program declarations, DD denotes a com-
putable subset of D, F = {α . . .ω} is the domain of all features, and P is the domain of all
assignment possibilities, ie P = F×D× {fprivate,fpublic}. We explain possibilities later
in this chapter. Finally, to permit declarations that are not assigned to features, we use the
domain FF = F∪ {⊥}.

Table 3.1 contains the predicates of the rules and formulas that we will use; an explanation
of each entry follows:

• PD is the set of declarations encountered in a program’s CRG.

• e is a declaration encountered in a program’s CRG.

• parent(e) is e’s container.

• F(e) is the feature assignment of declaration e. If unassigned, F(e) =⊥.

• eb(e), lb(e), FB(e) define the feature bounds of e. eb(e) is the earliest feature to
which e could be assigned, lb(e) is the latest feature, and the feature bounds of e is
FB(e) = {lb(e) . . . ub(e)}.7

• fprivate(e) and fpublic(e) indicate the feature modifier that is assigned to e. Ini-
tially e is unassigned: fprivate(e) = fpublic(e) = false. A modifier assignment
makes precisely one of fprivate(e) and fpublic(e) true.

• RefFrom(e) and RefTo(e) return the sets of declarations that e references and is ref-
erenced by. AssignedRefFrom(e) are declarations in RefFrom(e) that have been as-
signed to a feature. AssignedRefTo(e) are declarations in RefTo(e) that have been
assigned to a feature.

• AtLeastOneAssigned(DD) returns true if at least one declaration in DD is assigned
to a feature. NoneAssigned(DD) returns true if none of the declarations in DD are
assigned to a feature.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 19

• method(e), hook(e), field(e), container(e)5 indicate whether e is a method, hook,
field, or container. Note that only one of method(e), field(e), container(e) is ever
true, eg:6

¬ method(e) = field(e) ∨ container(e) (3.6)

Predicate Type Meaning
PD DD Set of declarations in a program’s CRG

e D A program declaration
parent(e) D A program declaration’s container

F(e) FF Assigned feature of e
eb(e) F Earliest Bound of e
lb(e) F Latest Bound of e
FB(e) range(F) Valid features in range for e, FB(e) = {eb(e) . . . lb(e)} 7

fprivate(e) Boolean Modifier of e is fprivate
fpublic(e) Boolean Modifier of e is fpublic

RefFrom(e) DD References made by e to other declarations
AssignedRefFrom(e) DD Declarations referenced by e that have been assigned to

a feature: AssignedRefFrom(e) = { d | d ∈ RefFrom(e) ∧(
F(d) 6=⊥ )

}
RefTo(e) DD References from other declarations to e

AssignedRefTo(e) DD Declarations that reference e that have been assigned to a
feature: AssignedRefTo(e) = { d | d ∈ RefTo(e) ∧(

F(d) 6=⊥ )
}

AtLeastOneAssigned(DD) Boolean There is at least one declaration in DD that is assigned to a
feature, ∃r(

r ∈ DD ∧ F(r) 6=⊥ )
NoneAssigned(DD) Boolean None of the declarations in DD are assigned to a feature,

∀r(
r ∈ DD ⇒ F(r) =⊥ )

ByInference(e) Boolean F(e) was assigned by inference
ByInferenceDec(e) D Declaration that caused e to be assigned by inference. e ref-

erences this declaration. ByInferenceDec(e) ∈ RefFrom(e)

method(e) Boolean e is a method
hook(e) Boolean e is a hook method
field(e) Boolean e is a field
container(e) Boolean e is a container

P(F,e,mod) Boolean An assignment possibility composed of a feature, a declara-
tion and a modifier

P(e) P All assignment possibilities for declaration e

Table 3.1: Basic Predicates

5 Classes and packages are considered containers.
6 exactlyOne(e1,e2, . . . ,en) is true if precisely one of the ei arguments is true.
7 eb(e) and lb(e) will never be ⊥. Their formulas defined in this chapter prevent this from happening.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 20

The big picture for feature and modifier calculations is to determine the options that BttF
offers its users. When BttF asks users to assign a feature and modifier to a declaration e, it
displays via GUI buttons the set of all legally permissible (feature,modifier) pairs. Each pair
is called a possibility. Figure 3.3 shows a snapshot of BttF’s GUI that lists 8 legal possibilities
for some declaration e in a program that is to be partitioned into features BASE, TABLE,
CONSTRAINT and EVAL. The possibilities in Figure 3.3 are P(e):

Figure 3.3: BttF’s Possibility Offerings for a Declaration e

P(e) = {
(BASE,e,fprivate), (BASE,e,fpublic), (TABLE,e,fprivate), (TABLE,e,fpublic),

(CONSTRAINT,e,fprivate), (CONSTRAINT,e,fpublic), (EVAL,e,fprivate),

(EVAL,e,fpublic)
}
.

These are the legal fact assignments that BttF allows users to make. The possibilities for
one declaration d may be different than the possibilities for another declaration e 6= d.

At runtime, BttF maintains the disjunction of invariants in Table 3.2. Invariant (i) is the
initial value for e’s feature assignment, which is ⊥. Invariant (ii) means when a user as-
signs e as fprivate of a feature, that feature exists and e cannot be fpublic too. Invariant
(iii) means when a user assigns e as fpublic of a feature, that feature exists and e cannot
be fprivate too. Invariant (iv) means BttF inferred e’s feature assignment, then neither
modifier is applied. Precisely one of (i)− (iv) always holds for every e ∈ PD.

With reference to (iv), the primary goal of BttF is to assign features to program declara-
tions. If BttF discovers that a declaration d can be assigned to only one feature (FB(d) =
[η...η]), it assigns F(d) = η, and proceeds to the next declaration in the CRG. Declaration d

does not have a feature modifier assigned to it because the modifier could be ultimately be
either fprivate or fpublic.

Once a program is partitioned, only (ii)-(iv) apply, as no declarations satisfy (i).

Finally, BttF uses rules of the form:

typed variable bindings and preconditions



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 21

# Invariant fprivate(e) fpublic(e)
(i) F(e) =⊥ false false
(ii) F(e) ∈ F ∧ fprivate(e) ∧ ¬fpublic(e) true false
(iii) F(e) ∈ F ∧ ¬fprivate(e) ∧ fpublic(e) false true
(iv) F(e) ∈ F ∧ ¬fprivate(e) ∧ ¬fpublic(e) false false

Table 3.2: Invariant Feature and Modifier Combinations

feature or modifier or possibility assignments using above variables (3.7)

That is, a set of typed variables are declared with constraints followed by feature or modifier
assignments that reference these variables. Assignments may be conditional.

3.2.9 Hooks

A hook is a method that can reference declarations in future features. Only methods can
be hooks; BttF uses the following rule to recognize hooks:

method(m)∧ (∃e (
e ∈ RefFrom(m) ∧ (F(m) 6=⊥) ∧ (F(e) 6=⊥) ∧ (F(m) < F(e))

))
hook(m) (3.8)

That is, if method m references e, and both m and e have been assigned to a feature, and
F(e) is after than F(m) (ie, e is defined in a future layer than m), then m is a hook.

Let h be a hook. h, as the rest of declarations, can reference any declaration in the past that
is fpublic, and also reference declarations in future features regardless of their modifier.
In other words, h can reference a declaration e when the latter is:

1. fpublic regardless of its feature, or

2. fprivate and assigned to a feature at or after F(h).

BttF checks this invariant at runtime, which is expressed as following:

hook(h)

∀e
( (
e ∈ AssignedRefFrom(h)

)⇒ (
fpublic(e) ∨ (

fprivate(e) ⇒ (
F(h) ≤ F(e)

))) )
(3.9)

A class is a container. Members of a class require the class to exist before they are intro-
duced. In a CRG, members reference their container. A classical method in a CRG refer-
ences declarations in its body. A hook exhibits both classical method and container-like
properties.

Figure 3.4a presents a hook method hook, which belongs to feature β. (In the following,
remember α < β < δ). Declarations in line 4: Y and getYInt belong to a future feature δ.
Declarations Y and getYInt use hook as a container. hook also exhibits classical method
behavior as it references declarations getXInt and X which belong to past feature α. This
means they were defined earlier than the hook method.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 22

1 int hook(X op) {
2 //block added by another feature
3 if(op.getXInt() == 1){
4 return new Y.getYInt(op);
5 }
6 //original code
7 return op.getXInt();
8 }

(a)

hook

getXInt

getYInt

X

Y

(b)

F(getXInt) =α
F(X) =α

F(hook) =β
F(getYInt) = δ

F(Y) = δ

(c)

Figure 3.4: Hook Example

Note: We decided that field IEs cannot be hooks, even if its IE has inlined the contents
of a hook method. Consider Figure 3.5a that presents field var calling hook init. Fig-
ure 3.5b presents code with the same functionality as Figure 3.5a, in this case it is an IE
with the hook method inlined. So the question is: besides methods, could field IEs be
hooks? We note that in OO languages, only classes can be extended and only methods
can be overridden, not field IEs. With this observation, and to avoid additional (and
perhaps unnecessary complexity), we discarded the possibility of having hook fields (or
rather field IEs).

1 X var = init();
2 X init() { //init is a hook
3 return new X().increment();
4 }

(a)

1

2 X var = new X().increment();
3

4

(b)

Figure 3.5: A Field Initialization Expression

3.3 Feature Bounds and Possibilities Calculation

Layers are fundamental to our feature partitioning approach. As features are expected to
behave as layers, it is necessary to establish a feature bounds for each declaration. A feature
bounds is a range of features that are valid assignments for a declaration. Feature bounds
are derived by equating features with layers. Doing so guarantees the type correctness of
each layer that are built in a step-wise (incremental) manner.

BttF is a Truth Maintenance System [38]. It collects and infers facts, guaranteeing they are
consistent. Assigning declarations to features imposes constraints on other declarations to
avoid invalid partitioning (ie inconsistencies). Feature bounds are important to prevent er-
roneous assignments. Also, since feature bounds may reduce the available feature options,
they may simplify a user’s work to feature-partition a legacy application.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 23

3.3.1 Importance and Definition of Feature Bounds

Figure 3.6 is useful to explain the importance of feature bounds to prevent wrong assign-
ments of declarations to features. This CRG contains three declarations a, b and c; a has
been assigned to feature β, and b has been assigned to δ. The edges are {a,b}→c. For c to
be visible to both a and b, it has to be assigned to a feature introduced at or before β.8,10

Given this, the only valid feature options for c are α and β.

c

a

b

F(a) =β
F(b) = δ

Figure 3.6: Risk of wrong assignment

Feature bounds FB(e) = {eb(e) . . . lb(e)} of a declaration e determines the range of features
to which e can be assigned. eb(e) is the earliest valid feature; lb(e) is the latest valid feature.
eb(e) establishes how far in the past e could be assigned, and lb(e) sets how far in the future
it could be assigned without violating existing constraints.

eb(e) is always at or after the base feature α, lb(e) is always at or before the latest feature
ω. Thus:

α ≤ eb(e) ≤ F(e) ≤ lb(e) ≤ ω

Bounds calculations vary depending on existing assignments and declaration type. At the
beginning of the BttF partitioning process, no feature assignment has been made. As
assignments are made, there is more information to restrict bounds.

Importance of RefTo(e) and RefFrom(e)

Hooks complicate many things, but not bounds calculation. The reason is that bounds are
computed before a method is determined to be a hook. So keep this in mind as we proceed.

To calculate eb(e) we use the references made by e, RefFrom(e). For e to reference declar-
ations in RefFrom(e), e needs to be introduced at or after the latest of the features of the
declarations in RefFrom(e).9

To calculate lb(e) we use the references made to e, RefTo(e). For declarations in RefTo(e)
to reference e, e needs to be introduced at or before the earliest of the features of the dec-

8 earliest(β,δ) =β where β≤ δ.
9 A declaration (other than a hook) can only reference declarations at or before it was defined.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 24

larations in RefTo(e).10 When e is a method, we also consider the fprivate declarations
it references for calculating lb.

In the possibility calculation process, bounds are obtained first, then modifiers. The fol-
lowing sections explain the rules for calculating feature bounds and modifiers, using as-
signment information of e’s surrounding CRG declarations.

3.3.2 Possibility Calculations Process

Let e be a declaration. We first describe how to assign bounds to e, then how to determine
the possibilities for e.

Step 1. Obtain Earliest Bound eb(e)

eb(e) is calculated depending on e’s declaration type. There are two cases: when e is not a
method and when e is.

Case 1. e is not a method. The IE of a field can reference classes, methods and other
fields.11 Containers can only reference other containers. Both fields and containers always
follow a layered design, they can only reference declarations that have been already intro-
duced.

Let AssignedRefFrom(e) be the set of declarations in RefFrom(e) that are assigned to a
feature:

AssignedRefFrom(e) = { r | r ∈ RefFrom(e) ∧ F(r) 6= ⊥ } (3.10)

For e to reference declarations in AssignedRefFrom(e), e must be introduced at or after
the latest of the features of declarations in AssignedRefFrom(e). If AssignedRefFrom(e)
is empty, then eb(e) is α, the base feature.12

¬method(e)

eb(e) =
{
latest

{
F(r) : r ∈ AssignedRefFrom(e)

}
, if AssignedRefFrom(e) 6= ;

α, otherwise
(3.11)

Case 2. e is a method. Since e might be a hook, it could be assigned to a feature that is
earlier than the features of declarations in RefFrom(e), but not earlier than its own con-
tainer. In other words, e can be assigned as early as the feature of its own container. If its

10 A declaration can be referenced at or after it has been defined, except if it is being referenced by a hook.
11 Of course, a special case is that there is no IE, so a field declaration only references its declared type.
12 α is the earliest possible feature, if none of the assigned declarations references e, then the earliest bound

of e is α.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 25

container’s feature is unknown, then eb(e) is the earliest feature α:

method(e)

eb(e) =
{
F(parent(e)), if parent(e) 6=⊥ ∧ F(parent(e)) 6=⊥
α, otherwise

(3.12)

Step 2. Obtain Latest Bound lb(e)

lb(e) is calculated by a single formula. However, the value for a term used in the formula
depends on e’s type. This term is L(e), it represents the set of declarations that follow a lay-
ered design and impose a constraint on e’s feature assignment. Key point: because methods
may be hooks, they do not follow a ‘classical’ layered design, and thus do not influence lb(e)
calculations. The earliest element in L(e) determines lb(e). The following paragraphs ex-
plain how L(e) is computed.

Case 1. e is a container. L(e) is the set of declarations that reference container e or are
contained in e. The only methods being considered here are those in e.

L(e) = { r | r ∈ RefTo(e) ∧ ( ¬ method(r) ∨ (
method(r) ∧ (parent(r) = e)

) )
} (3.13)

Case 2. e is a field. L(e) is the set of fields13 that reference e. Methods that reference e do
not influence lb(e) as they could be hooks.

L(e) = { r | r ∈ RefTo(e) ∧ ¬ method(r) } (3.14)

Case 3. e is a method. e can be referenced by methods and by fields, the latter always
follow a layered design and require e to be introduced at or before the earliest of them. In
addition, since e might be a hook, it could reference fprivate declarations in the present
or future, but not it the past. In other words, e must be introduced at or before the earliest
of the fprivate declarations that it references.

L(e) is the set of fields that reference e union the set of fprivate declarations that e refer-
ences.

L(e) = { r | r ∈ RefTo(e) ∧ ¬ method(r) } ∪ { q | q ∈ RefFrom(e) ∧ fprivate(q) } (3.15)

Formula. Declarations in L(e) require e to be introduced at or earlier than them. Thus
lb(e) is determined by the earliest assigned declaration in L(e). For this and following sec-
tions let AssignedL(e) be the set of declarations in L(e) that have been already assigned to
a feature.

AssignedL(e) = { r | r ∈ L(e) ∧ F(r) 6= ⊥ } (3.16)

13 Field IE’s.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 26

e has to be assigned to a feature at or before the earliest of the features of AssignedL(e). If
there are no declarations in AssignedL(e), then the lb(e) is ω, the latest feature:

TRUE

lb(e) =
{
earliest

{
F(r) : r ∈ AssignedL(e)

}
, if AssignedL(e) 6= ;

ω, otherwise
(3.17)

Step 3. Obtain Possibilities

Once the feature bounds for e have been obtained, we can calculate the valid modifiers for
e to obtain the set of possibilities to present to a user. There are only two cases:

Case A. fpublicpossibilities. Determining fpublicpossibilities is easy: e can be fpublic
on any of the features in bounds for e.

TRUE

∀F (
F ∈ FB(e) ⇒P(F,e,fpublic)

)
(3.18)

Case B. fprivatepossibilities. There are four independent cases for calculating fprivate
possibilities. The fprivate modifier affects a declaration’s visibility. If e is fprivate
to feature F, only declarations in feature F can reference e.14 For this reason, to deter-
mine e’s fprivate possibilities we consider the available information about declarations
in RefTo(e). From RefTo(e) we obtain two subsets D(e) and M(e). This means:

RefTo(e) = D(e) ∪ M(e) (3.19)

D(e) contains fields and containers that reference e and also all declarations contained in
e.15 M(e) represents the set of methods that reference e and are not contained in e.16 Dec-
larations in M(e) can reference e regardless of its modifier.

D(e) = { r | r ∈ RefTo(e) ∧ ( ¬ method(r) ∨ (
method(r) ∧ (parent(r) = e)

) )
} (3.20)

M(e) = { r | r ∈ RefTo(e) ∧ method(r) ∧ (parent(r) 6= e)) } (3.21)

Let AssignedD(e) and AssignedM(e) be the subset of declarations in D(e) and M(e), respec-
tively, that have been already assigned to a feature.

AssignedD(e) = { r | r ∈ D(e) ∧ F(r) 6= ⊥ } (3.22)

AssignedM(e) = { r | r ∈ M(e) ∧ F(r) 6= ⊥ } (3.23)

Table 3.3 contains eight disjoint scenarios that can be encountered in D(e) and M(e) and the
case that is used to calculate fprivate possibilities. The union of the possibilities of these
disjoint scenarios equals all fprivate possibilities.17

14 fprivate does not affect the references a declaration can make.
15 Assuming e is a container.
16 Assuming e is a container.
17 D can be empty, none assigned, or at least one assigned. So too can M. This yields the 9 scenarios listed in



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 27

# Scenario for fprivate calculation Case
No declarations in either D(e) or M(e)
(i)

(
D(e) =;) ∧ (

M(e) =;)
1

Only declarations in D(e) - none are assigned
(ii)

(
D(e) 6= ;) ∧ (

M(e) =;) ∧ NoneAssigned(D(e)) 1

Only declarations in D(e) – at least one assigned
(iii)

(
D(e) 6= ;) ∧ (

M(e) =;) ∧ AtLeastOneAssigned(D(e)) 2

Only declarations in M(e) – none are assigned
(iv)

(
D(e) =;) ∧ (

M(e) 6= ;) ∧ NoneAssigned(M(e)) 1

Only declarations in M(e) – at least one assigned
(v)

(
D(e) =;) ∧ (

M(e) 6= ;) ∧ AtLeastOneAssigned(M(e)) 3

Declarations in D(e) and M(e) – none are assigned
(vi)

(
D(e) 6= ;) ∧ (

M(e) 6= ;) ∧ NoneAssigned(D(e)) ∧ NoneAssigned(M(e)) 1

Declarations in D(e) and M(e) – at least one of the first assigned, none of the second assigned
(vii)

(
D(e) 6= ;) ∧ (

M(e) 6= ;) ∧ AtLeastOneAssigned(D(e)) ∧ NoneAssigned(M(e)) 2

Declarations in D(e) and M(e) – none of the first assigned, at least one of the second assigned
(viii)

(
D(e) 6= ;) ∧ (

M(e) 6= ;) ∧ NoneAssigned(D(e)) ∧ AtLeastOneAssigned(M(e)) 3

Declarations in D(e) and M(e) – at least one of each assigned
(ix)

(
D(e) 6= ;) ∧ (

M(e) 6= ;) ∧ AtLeastOneAssigned(D(e)) ∧ AtLeastOneAssigned(M(e)) 4

Table 3.3: Scenarios to Consider for fprivate possibilities

Case 1 (Scenarios (i),(ii),(iv),(vi)). If none of the declarations in D(e) and M(e) have been
assigned, e can be fprivate of any feature in bounds.

∀r (
r ∈ (

D(e) ∪ M(e)
) ⇒ F(r) = ⊥ )

∀F (
F ∈ FB(e) ⇒P(F,e,fprivate)

)
(3.24)

Note: The CRG in Figure 3.7 illustrates Case 1. We have declarations a,b,c,d that ref-
erence e. None of a,b,c,d have been assigned to a feature. Then, e can be fprivate of
any feature in FB(e).18

Case 2 (Scenario (iii)). If only declarations in D(e) have been assigned19, and they all are
assigned to the same feature F, and F is a feature in bounds for e, then e can be fprivate
of F.

∃F
(
F ∈ FB(e) ∧ ∀r(

r ∈ AssignedD(e) ⇒ F(r) = F
))

∧ (
AssignedM(e) =; )
P(F,e,fprivate) (3.25)

Table 3.3.
18 Of course, if a user selects e to be fprivate, doing so imposes many constraints on a,b,c,d. But this is

OK, as it is a possibility.
19 There are no methods that reference e, or none of them have been assigned.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 28

e

ab

cd

method(a) ∧ F(a) =⊥
method(b) ∧ F(b) =⊥
field(c) ∧ F(c) =⊥

container(d) ∧ F(d) =⊥

Figure 3.7: fprivate possibilities. Case 1.

Note: The CRG in Figure 3.8 illustrates Case 2. We have declarations a,b,c,d that ref-
erence e. c is a field, and d is a container, and both have been assigned to feature δ.
Declaration a is a method contained in e and has been assigned to feature δ, and b is
a method that references e and has not been assigned to a feature. In this example,
assuming δ ∈ FB(e), a possibility for e is:

P(δ,e,fprivate)

e

ab

cd

method(a) ∧ parent(a) = e ∧ F(a) = δ
method(b) ∧ parent(b) 6= e∧ F(b) =⊥

field(c) ∧ F(c) = δ
container(d) ∧ F(d) = δ

Figure 3.8: fprivate possibilities. Case 2.

Case 3 (Scenarios (v),(viii)). If there are no declarations in D(e) or none of them have been
assigned, and at least one method in M(e) has been assigned, and the latest of their features
is in bounds for e, then e can be fprivate of the range of features in bounds that are larger
or equal than it. This does not affect declarations in M(e) because all of them have the
ability to reference fprivate declarations in the future.(

AssignedD(e) =;)
∧ (

AssignedM(e) 6= ;) ∧ (
latest

{
F(r) : r ∈ AssignedM(e)

} ∈ FB(e)
)

∀F (
F ∈ FB(e) ∨ F ≥ ( latest

{
F(r) : r ∈ AssignedM(e)

}
) ⇒P(F,e,fprivate)

)
(3.26)



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 29

e

ab

cd

method(a) ∧ parent(a) 6= e ∧ F(a) =β
method(b) ∧ parent(b) 6= e ∧ F(b) = γ

field(c) ∧ F(c) =⊥
container(d) ∧ F(d) =⊥

Figure 3.9: fprivate possibilities. Case 3.

Note: The CRG in Figure 3.9 illustrates Case 3. We have declarations a,b,c,d that ref-
erence e. Declarations a and b are methods that reference e and are not contained in
it. a has been assigned to β, and b has been assigned to γ. c is a field, and d is a con-
tainer, and neither have been assigned to a feature. In this example, assuming γ ∈ FB(e),
a possibility for e is:20

P(γ,e,fprivate)

Case 4 (Scenario (ix)). There are assigned declarations in both D(e) and M(e). AssignedD(e)
contains assigned declarations in D(e). AssignedM(e) contains assigned declarations in
M(e). If all declarations in AssignedD(e) have the same feature F and that feature is at or
after the latest feature of declarations21 in AssignedM(e), then e can be fprivate of F.(

AssignedD(e) 6= ;) ∧ (
AssignedM(e) 6= ;)

∧ ∃F
(
F ∈ FB(e) ∧ ∀r(

r ∈ AssignedD(e) ⇒ F(r) = F
)

∧ (
latest

{
F(r) : r ∈ AssignedM(e)

} ≤ F
) )

P(F,e,fprivate) (3.27)

Note: The CRG in Figure 3.10 illustrates Case 4. We have declarations a,b,c,d that
reference e. Declarations a and b are methods that reference e and are not contained
in e. a has been assigned to β, and b has been assigned to γ. c is a field, and d is a
container, and both have been assigned to feature δ. In this example, assuming δ ∈
FB(e), possibility for e is:

P(δ,e,fprivate)22

The following subsection explain how a possibility is validated, using two attributes: Time
Consistency and Visibility.

20 latest(β,γ) = γ.
21 AssignedM(e) contains methods. These can reference any declaration in the future regardless of the dec-

laration’s modifier.
22 (latest(β,γ) = γ) ∧ (γ< δ).



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 30

e

ab

cd

method(a) ∧ parent(a) 6= e ∧ F(a) =β
method(b) ∧ parent(b) 6= e ∧ F(b) = γ

field(c) ∧ F(c) = δ
container(d) ∧ F(d) = δ

Figure 3.10: fprivate possibilities. Case 4.

3.3.3 Possibility Validation

A possibility is valid if all affected edges in a CRG maintain these two properties: Time
Consistency and Visibility. Let src(ed) be the source declaration of edge ed, and dst(ed)
be destination declaration of ed. Edge ed is src(ed) → dst(ed).

Time Consistency. An edge ed is time consistent if dst(ed) is assigned at or before the
same time than src(ed). Except if src(ed) is a method,23 then this time order requirement
is not necessary, as methods can become hooks.

timeConsistency(ed) = (
F(src(ed)) ≥ F(dst(ed))

) ∨ method(src(ed)) (3.28)

Visibility. If dst(ed) is fprivate, then an edge ed is visibility consistent only if both dst(ed)
and src(ed) are in the same feature. Again, an exception occurs if src(ed) is a method, as
it can reference any fprivate declaration in the future.

visibility(ed) = (
fprivate(dst(ed)) ∧ ( (

F(src(ed)) = F(dst(ed))
) ∨ method(src(ed))

) )
∨¬fprivate(dst(ed)) (3.29)

We do not have a mathematical proof for previously stated properties for possibilities cal-
culation. Thus these invariants are maintained by BttF to double-check there are no con-
tradictions on feature assignments.

The following section provide examples that show how possibility calculation and valida-
tion rules are applied.

3.3.4 Example: Assigning a method

We are to assign method_m to a feature. The CRG in Figure 3.11 contains the surrounding
declarations of method_m.

Reference edges are:

23 Suppose src(ed) is a declaration to assign and it is a method. Because of this scenario, in the formula we
say method and not hook. At this point its assignment has not yet been made, thus it is not possible to
determine if it is a hook.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 31

method_m

field_a

field_b

method_c

class_e class_d

field_f

method_g

Figure 3.11: Example: Assigning a method.

• {field_a,field_b,method_c} → method_m

• method_m→ {class_e,field_f,method_g}.

Containment edge is:

• method_m→ class_d. This means that parent(method_m) = class_d.

The type and feature-modifier assignments for each declaration is listed below:

field(field_a) ∧ F(field_a) = ε ∧ fprivate(field_a)

field(field_b) ∧ F(field_b) =⊥ ∧ true

method(method_c) ∧ F(method_c) = δ ∧ fpublic(method_c)

method(method_m) ∧ F(method_m) =⊥ ∧ true

container(class_d) ∧ F(class_d) =β ∧ fpublic(class_d)

container(class_e) ∧ F(class_e) =α ∧ fpublic(class_e)

field(field_f) ∧ F(field_f) = ε ∧ fprivate(field_f)

method(method_g) ∧ F(method_g) =β ∧ fpublic(method_g)

Step 1. Obtain eb(method_m)

The earliest feature bound of a method is determined by its container. method_m’s con-
tainer is class_d, the latter has been assigned to feature β, then eb(method_m) is β.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 32

Step 2. Obtain lb(method_m)

To obtain lb(method_m) we need to obtain the declarations that belong to L(method_m).
These are the set of fields that reference method_m union with the set of fprivate declara-
tions that e references. AssignedL(method_m) contains those declarations in L(method_m)
that have been assigned to a feature.

AssignedL(method_m) = {field_a, field_f}

lb(method_m) is determined by the earliest feature of declarations in AssignedL(method_m),
which is ε, therefore, lb(method_m) is ε. This gives us the following features in bounds for
method_m: β< γ< δ< ε.

FB(method_m) = [ β . . . ε ]

Step 3.1. Calculate fpublic Possibilities

method_m can be fpublic of any feature in bounds:

P(β,method_m,fpublic) (3.30)

P(γ,method_m,fpublic) (3.31)

P(δ,method_m,fpublic) (3.32)

P(ε,method_m,fpublic) (3.33)

Step 3.2. Calculate fprivate Possibilities

The declarations in AssignedD(method_m) and AssignedM(method_m) are listed next.

AssignedD(method_m) = {field_a}

AssignedM(method_m) = {method_c}

Now, we calculate the possibilities for method_m. The union of all possibilities’ rules out-
comes, gives the complete set of possibilities to present to a user.

There are four cases to determine all fprivate possibilities.

Case 1. Since we have declarations in both AssignedD(method_m) and AssignedM(method_m),
this case does not apply.

Case 2. The same explanation for Case 1 applies here. This case does not apply.

Case 3. The same explanation for Case 1 applies here. This case does not apply.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 33

Case 4. We have declarations in both AssignedD(method_m) and AssignedM(method_m).
The field in AssignedD(method_m) has feature ε. The method in AssignedM(method_m):
method_c, is assigned to feature δ. Since δ < ε, then method_c can be fprivate of ε:

P(ε,method_m,fprivate) (3.34)

Possibilities Validation

Tables 3.4 to 3.8 show the validation of the obtained five possibilities. Each table lists the
edges among assigned declarations,24 the feature dependency (FD) of the edge, and vali-
dates both Time Consistency and Visibility properties of the edge. As can be observed, all
the edges for all possibilities are valid. If a user selects possibility (3.30), (3.31) or (3.32),
BttF will identify method_m as a hook.

Edge e FD(e) Time Consistency Visibility
field_a→ method_m ε → β TRUE, ε≥β TRUE, ¬fprivate(method_m)
method_c→ method_m δ → β TRUE, δ≥β TRUE, ¬fprivate(method_m)
method_m→ class_d β → β TRUE, β≥β TRUE, ¬fprivate(class_d)
method_m→ class_e β → α TRUE, β≥α TRUE, ¬fprivate(class_e)
method_m→ field_f β → ε TRUE, method(method_m) TRUE, method(method_m)

∨ fprivate(field_f)
method_m→ method_g β → β TRUE, β≥β TRUE, ¬fprivate(method_g)

Table 3.4: Example 1. Validation of (3.30).

Edge e FD(e) Time Consistency Visibility
field_a→ method_m ε → γ TRUE, ε≥ γ TRUE, ¬fprivate(method_m)
method_c→ method_m δ → γ TRUE, δ≥ γ TRUE, ¬fprivate(method_m)
method_m→ class_d γ → β TRUE, γ≥β TRUE, ¬fprivate(class_d)
method_m→ class_e γ → α TRUE, γ≥α TRUE, ¬fprivate(class_e)
method_m→ field_f γ → ε TRUE, method(method_m) TRUE, method(method_m)

∨ fprivate(field_f)
method_m→ method_g γ → β TRUE, γ≥β TRUE, ¬fprivate(method_g)

Table 3.5: Example 1. Validation of (3.31).

24 Surrounding declarations of method_m that have not been assigned are not considered because they did
not impose any constraint.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 34

Edge e FD(e) Time Consistency Visibility
field_a→ method_m ε → δ TRUE, ε≥ δ TRUE, ¬fprivate(method_m)
method_c→ method_m δ → δ TRUE, δ≥ δ TRUE, ¬fprivate(method_m)
method_m→ class_d δ → β TRUE, δ≥β TRUE, ¬fprivate(class_d)
method_m→ class_e δ → α TRUE, δ≥α TRUE, ¬fprivate(class_e)
method_m→ field_f δ → ε TRUE, method(method_m) TRUE, method(method_m)

∨ fprivate(field_f)
method_m→ method_g δ → β TRUE, δ≥β TRUE, ¬fprivate(method_g)

Table 3.6: Example 1. Validation of (3.32).

Edge e FD(e) Time Consistency Visibility
field_a→ method_m ε → ε TRUE, ε≥ ε TRUE, ¬fprivate(method_m)
method_c→ method_m δ → ε TRUE, method(method_c) TRUE, ¬fprivate(method_m)
method_m→ class_d ε → β TRUE, ε≥β TRUE, ¬fprivate(class_d)
method_m→ class_e ε → α TRUE, ε≥α TRUE, ¬fprivate(class_e)
method_m→ field_f ε → ε TRUE, ε≥ ε TRUE, fprivate(field_f)
method_m→ method_g ε → β TRUE, ε≥β TRUE, ¬fprivate(method_g)

Table 3.7: Example 1. Validation of (3.33).

3.4 BttF Inferences and Examples

BttF performs inferences, described below, in five scenarios. The first and second scenar-
ios occur when a user provides a fact that indicates a declaration is fprivate. The third
applies to declarations assigned to the latest feature of a feature model. The fourth occurs
when only one feature is in bounds for a declaration. The fifth takes care of declarations
that only reference their containers and are not referenced by other declarations.

3.4.1 Inference 1: fprivate Fields and Methods

If e is a field or a method, and it is assigned fprivateof a feature F, declarations in RefTo(e)
that have not been assigned yet, are also automatically assigned to F. Declarations assigned
by BttF do not receive a modifier, because there is no way to infer it and because BttF’s
main goal is to obtain feature assignments, not modifiers.

For this and the following sections, let NoAssignedRefTo(e) be the set of declarations in
RefTo(e) that have not been assigned to a feature.

NoAssignedRefTo(e) = { r | r ∈ RefTo(e) ∧ F(r) = ⊥ } (3.35)

If e is assigned fprivate of a feature F, then declarations in NoAssignedRefTo(e) will also
be assigned to F.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 35

Edge e FD(e) Time Consistency Visibility
field_a→ method_m ε → ε TRUE, ε≥ ε TRUE, fprivate(method_m)

∧ ε= ε
method_c→ method_m δ → ε TRUE, method(method_c) TRUE, fprivate(method_m)

∧ method(method_c)
method_m→ class_d ε → β TRUE, ε≥β TRUE, ¬fprivate(class_d)
method_m→ class_e ε → α TRUE, ε≥α TRUE, ¬fprivate(class_e)
method_m→ field_f ε → ε TRUE, ε≥ ε TRUE, fprivate(field_f)
method_m→ method_g ε → β TRUE, ε≥β TRUE, ¬fprivate(method_g)

Table 3.8: Example 1. Validation of (3.34).

(
method(e) ∨ field(e)

) ∧ fprivate(e) ∧ F(e) = F

∀r (
r ∈ NoAssignedRefTo(e) ⇒ (F(r) = F)

)
(3.36)

Consider CRG in Figure 3.12. Let’s say that e is a field. Declarations a, b and c reference e.
a and b have not been assigned to a feature, therefore they belong to NoAssignedRefTo(e).

NoAssignedRefTo(e) = { a,b } (3.37)

If e is assigned fprivate of δ, then declarations a and b will also get assigned to δ.

e

a

b

c

field(e) ∧ F(e) =⊥
field(a) ∧ F(a) =⊥

method(b) ∧ F(b) =⊥
field(c) ∧ F(c) =α

Figure 3.12: Inference 1. fprivate Propagation

Note: If there are declarations in RefTo(e) that have been already assigned to a feature,
this is considered in possibilities calculation for e. BttF does not allow feature assign-
ment overriding. Feature bounds and possibilities for e prevents a user from choosing
invalid options.

Caveats

Hooks that reference fprivate declarations.
IN Figure 3.12, consider method b. Figure 3.13 shows the CRG corresponding to b. Let
say that b is a hook, and it does not belong to feature δ, however it was assigned to it by
inference.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 36

b

t

e

l

method(b) ∧ F(b) = δ ∧ parent(b) = t

container(t) ∧ F(t) =β
field(e) ∧ F(e) = δ
field(l) ∧ F(l) =⊥

Figure 3.13: Inference 1. fprivate Propagation Caveats

For a method that has been assigned by inference, like in the case of b, BttF determines
whether to keep that assignment or ask a user for b’s assignment. If b has other references
besides the one to a and the one to its parent, t, then BttF would ask for b assignment.
It this case b does have another reference to field f, therefore BttF will remove b’s current
assignment and ask a user about b’s assignment. If there was no other reference, then b

would remain assigned to δ. If a user still considers that b should not be assigned to δ,
then e cannot be assigned fprivate, it would have to be fpublic so it does not affect b’s
assignment. The rule for determining when to remove a method’s by inference assignment
is as follows:

method(b) ∧ F(b) 6=⊥ ∧ ByInference(b)

∧ (
RefFrom(b)− { parent(b) ∪ ByInferenceDec(b) }

) 6= ;
F(b) =⊥ (3.38)

3.4.2 Inference 2: fprivate Containers

If e is an fprivate container of feature F, declarations in NoAssignedRefTo(e) that are not
e’s children are automatically assigned to F without a modifier assignment. And declara-
tions in NoAssignedRefTo(e) that are e’s children are also automatically assigned to F but
with fprivate modifier to continue the assignments recursively.

Let’s partition NoAssignedRefTo(e) into ChildOf(e) and NoChildOf(e). ChildOf(e) con-
tains those declarations in NoAssignedRefTo(e) that have e as parent.25 NoChildOf(e)
contains those declarations in NoAssignedRefTo(e) that do not have e as parent, this means
they reference e but are not contained in e.

NoAssignedRefTo(e) = ChildOf(e) ∪ NoChild(e) (3.39)

ChildOf(e) = { r | r ∈ NoAssignedRefTo(e) ∧ parent(r) = e } (3.40)

NoChildOf(e) = { r | r ∈ NoAssignedRefTo(e) ∧ parent(r) 6= e } (3.41)

Declarations in ChildOf(e) will be assigned fprivate of F, this makes that all levels con-
tained in e get also assigned fprivate of F.26 Declarations in NoChildOf(e) will also be

25 A parent of a declaration is its container.
26 Assignment of a container’s child happens recursively.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 37

assigned to F, but without modifier.

container(e) ∧ fprivate(e) ∧ F(e) = F

∀r (
r ∈ ChildOf(e) ⇒ (

(F(r) = F) ∧fprivate(r)
) )

∧∀q (
q ∈ NoChildOf(e) ⇒ (F(r) = F)

) (3.42)

Note: Consider CRG in Figure 4.9. Suppose e is a container. Declarations a and c

reference e but are not contained in e. Declaration b is a container that is contained in
e. Declaration d is contained in b. We have:

NoAssignedRefTo(e) = { a,b,c }

NoAssignedRefTo(b) = { d }

e

a

b

c

d

container(e) ∧ F(e) =⊥
method(a) ∧ parent(a) 6= e ∧ F(a) =⊥

container(b) ∧ parent(b) = e ∧ F(b) =⊥
field(c) ∧ parent(c) 6= e ∧ F(c) =⊥

method(d) ∧ parent(d) = b ∧ F(d) =⊥
Figure 3.14: Inference 2. fprivate Container

If we divide NoAssignedRefTo(e) and NoAssignedRefTo(b) into their corresponding
ChildOf() and NoChildOf() subsets, we have:

ChildOf(e) = { b }

NoChildOf(e) = { a,c }

ChildOf(b) = { d }

NoChildOf(b) = ;

Suppose container e is assigned fprivate of γ. Then declarations a and c will be as-
signed to γ without modifier. Declaration b will be assigned fprivate of γ, given this d
will also get assigned recursively fprivate of γ.

Caveats

Hooks that reference fprivate declarations.
As with Inference 1, for a method in NoChildOf(e) assigned by inference, like in the case of
declaration a, BttF determines whether to keep that assignment or ask a user for a’s assign-
ment. As a reader may notice this applies only to methods in NoChildOf(e). The inferences
made on ChildOf(e) are not undone by BttF. For method a, if it has other references be-
sides the one to e and the one to its parent, then BttF will remove its current assignment



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 38

and ask a user about a’s assignment. Otherwise, current a’s assignment will remain. The
rule for determining when to remove a method’s by inference assignment in this case is as
follows:

method(a) ∧ F(a) 6=⊥ ∧ ByInference(a) ∧ (
parent(a) 6= ByInferenceDec(a)

)
∧ (

RefFrom(a)− { parent(a) ∪ ByInferenceDec(a) }
) 6= ;

F(a) =⊥ (3.43)

Note: Equation (3.43) is comprehensive of Equation (3.42) in Inference 1 caveats. Equa-
tion (3.42) occurs in an scenario where condition parent(a) 6= ByInferenceDec(a) is
always true. Equation (3.42) is applied when inferences are made based on a fprivate
field or method, which for BttF’s purposes are never containers, therefore neither par-
ents.

Hook that is a child of a fprivate container.
Let say we have a method m that was previously identified as hook but its assignment was
removed because of caveats in Inference 1 or Inference 2, and now its container is assigned
fprivate of a feature F. In this case, method m will be assigned to feature F too, but its
modifier will remain fpublic, hooks are always fpublic.

3.4.3 Inference 3: Declarations in latest feature are always fprivate

References from declarations across features flow from ω, the latest layer, to α, the base
layer. This means that a declaration references other declarations in the same layer or in
earlier layers. The only exception are hooks, that could reference declarations in the future.

The CRG in Figure 3.15 shows how references flow fromω toα. Declarations inωwill not be
referenced by other declarations except for hook methods in earlier features, an example
of the latter is the edge d→ i where d is a hook. Making all declarations in ω fprivate,
increases the number of inferences, and does not affect declarations visibility, declarations
in ω can be referenced by hooks, because they can reference fprivate declarations in the
future.

The rule for a declaration e assigned to ω is:

F(e) =ω

fprivate(e) (3.44)

For recursive partitioning this rule only applies to the latest sub-feature of ω, the latest
feature. Consider recursive feature model in Equation (3.45), for this feature model, dec-
larations assigned to feature Y will always be fprivate. Declarations assigned to Y are
not referenced by declarations in other features, except for hooks, so their visibility is not



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 39

d

a

b

ce

f

g

hi

j

α→β→γ→ω→

Figure 3.15: Inference 3. References flow across features

affected by a fprivate modifier, and yet the amount of BttF’s inferences increases, de-
creasing a user’s input.

P : A B C

A : R S

C : X Y

(3.45)

3.4.4 Inference 4: One Feature in Bounds

If FB(e) contains a single feature, BttF will assign e to it. In this case a user will not be asked
for a modifier. As mentioned before, BttF’s goal is to get feature assignments, and in this
case, a feature assignment can be done without a modifier. Deciding which modifier to
apply to a declaration is a sensitive user task, that could affect a declaration’s visibility. This
decision should be based on a user’s knowledge of the program.

Considering that fprivatemodifier is BttF’s main resource for making inferences, it could
be argued that not asking for a modifier might be a loss of information. But, consider CRG
in Figure 3.16. Suppose FB(a) = [δ,δ]. Further assume that b is not a method27 and FB(b)
will have more than one feature.

ab

Figure 3.16: Simple CRG.

There are two ways to approach this:

(1) Do not ask for a’s modifier. This is BttF’s current approach. The amount of user inputs
required in this case is 1. This can be observed in Table 3.9.

27 As can be observed in previous inferences, methods do not always get assigned by inference.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 40

No. Step User’s input count
1 BttF infers F(a) = δ 0
2 BttF asks for b assignment. 1

Total: 1

Table 3.9: Do not ask for a’s modifier.

(2) Ask for a’s modifier. There are two possible cases here. A user says that a is fprivate.
As shown in Table 3.10, the amount of user inputs required in this case is 2. The other
possible case is that a user says that a is fpublic. As shown in Table 3.11, the amount of
user inputs required in this case is also 2.

No. Step User’s input count
1 BttF infers F(a) = δ. 0
2 BttF asks for a’s modifier. User says fprivate(a). 1
3 BttF assigns F(b) = δ by inference. 0
4 BttF asks b’s modifier. 1

Total: 2

Table 3.10: Ask for a’s modifier. User says fprivate(a).

No. Step User’s input count
1 BttF infers F(a) = δ. 0
2 BttF asks for a’s modifier. User says fpublic(a). 1
3 BttF asks for b’s assignment (feature-modifier assignment). 1

Total: 2

Table 3.11: Ask for a’s modifier. User says fpublic(a).

The comparison of both approaches shows that BttF’s current approach is aligned to its
goal and it also requires less user inputs than the alternative. If a user insists on assigning
modifiers in such cases, it is possible via a declarations assignment file. Details about this
are in Chapter 4.

3.4.5 Inference 5: Declaration with no References

This inference applies for a declaration e that is not referenced by other declarations, and
that only references its container. In this case e is automatically assigned to the same fea-
ture of its container.

RefTo(e) =; ∧ RefFrom(e) = parent(e)

F(e) = F(parent(e)) (3.46)

RefTo(e) = ; means that e is not referenced by other declarations and neither contains
other declarations. And if it only references it container then e is dead code. In this case e’s
assignment will not affect other declarations assignment.



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 41

3.5 Recursive Partitioning

BttF supports the recursive partitioning of a program. By recursive we mean partitioning
a program into a set of features, and then sub-partitioning at least one of the original fea-
tures into sub-features. This process can be repeated any number of times. The following
subsections explain how recursive partitioning in BttF works.

3.5.1 Processing of a Feature Model for Recursive Partitioning

A BttF’s feature model for recursive partitioning has the form of a feature model in Equa-
tion (3.47). P represents the program to partition. A, B and C are its initial features where
A< B< C. B is partitioned into sub-features M< N. C is partitioned into sub-features X< Y.

P : A B C

B : M N

C : X Y

(3.47)

BttF requires a user to partition a program in an ordered manner: from less granular fea-
tures to more granular. Features B and C need to have declarations assigned to them before
they can be sub-partitioned. Since B and C have the same granularity, either of them can be
partitioned in any order; the order is specified by the BttF feature model. Given this, there
are two valid forms to process this feature model partitioning:

Option 1:

1. P : A B C

2. B : M N

3. C : X Y

Or, Option 2:

1. P : A B C

2. C : X Y

3. B : M N

A user first has to partition completely program P into features A, B and C, then s/he can
partition B or C.

BttF works on one line of a feature model at a time. A user picks which line of a feature
model to process next. BttF verifies that a picked line is valid for processing. A line can be
processed if all the following are true:



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 42

1. The parent of a feature to sub-partition has been fully partitioned. For example, fea-
ture B cannot be sub-partitioned if there are declarations in P that have not yet been
assigned to either A, B or C.

2. The feature to sub-partition exists. For example, it is considered that B exists if there
are declarations assigned to it.

If all lines of feature model in Equation (3.47) are processed completely, declarations in
program P will be assigned to one of these features A, M, N, X or Y. At the end there are no
declarations assigned to B or C.

3.5.2 Reassigning Declarations to Sub-Features

For the first line of a recursive partitioning feature model, as for a non-recursive partition-
ing feature model, a user has to assign all declarations in a program’s CRG, this set of dec-
larations is contained in PD. At the initial state, any declaration in PD have been assigned to
a feature:

∀d ( d ∈ PD ⇒ F(d) = ⊥ ) (3.48)

After a user has assigned all declarations according to the first line of a feature model, we
have:

∀d ( d ∈ PD ⇒ F(d) 6= ⊥ ) (3.49)

This holds true for the rest of the partitioning process when there is a recursive feature
model. The process of sub-partitioning a feature G consists of reassigning its declarations
to the sub-features of G, say X< Y. On this scenario BttF creates a view of the declarations
to reassign PD′:

PD′ = { d ∈ PD ∧ F(d) = G } (3.50)

After a user has finished reassigning declarations of G to its sub-features:

∀d(
d ∈ PD ∧ F(d) 6= G

) ∧ ∀d(
d ∈ PD′ ⇒ F(d) = X ∨ F(d) = Y

)
(3.51)

BttF’s Rule Variants for Recursive Partitioning

BttF applies the same rules for declarations in both PD and PD′, except for possibilities
calculation. BttF calculates new feature bounds for a declaration e to be reassigned to a
sub-feature of G. But it does not recalculate modifiers. The current modifier of e remains,



CHAPTER 3. BTTF CLASSIFICATION AND INFERENCE RULES 43

only its feature assignments change. In this way no information is lost.

Let’s say that G is to be partitioned into sub-features X and Y:

G : X Y

And that e is fprivate of G:

(F(e) = G) ∧ fprivate(e)

BttF will calculate which features from X and Y are in bounds for e. If both features are in
bounds, then a user will have these possibilities:

P(X,e,fprivate)

P(Y,e,fprivate)

If only X or Y are in bounds, then BttF will infer e’s assignment keeping e’s fprivate mod-
ifier.

Caveats
If e’s fprivatemodifier is not correct, a user may have to retract this fact in a previous step
of the feature model process. Let’s say that our feature model is:

P : B G T

G : X Y

Suppose e was assigned fprivate of G when a user processed the first line of this feature
model. While processing the second line, a user may realize that e should be fpublic. In
this case, s/he has to go back and select the first line of this feature model for processing,
and retract the fact where it was specified that ewas fprivate of G, and provide the correct
assignment. This, in turn, may trigger feature assignments to other declarations.

BttF allows a user to save her/his work done in a CSV file. In this scenario if a user needs to
retract facts in a previous step, s/he can save her/his work (which is saved with the current
feature granularity level), go and modify the assignments done in a previous step, come
back and upload the assignments file s/he saved. All the assignments that remain valid are
applied, the ones that do not, are notified. More details about uploading an assignments
CSV file are discussed in next chapter.



Chapter 4

BttF Execution

BttF’s can be executed in two modes: As an Eclipse1 plugin (see Figure 4.1) and stan-
dalone2. The Eclipse plugin version is the fullest version of BttF. However, it is available
only for Eclipse Java programs. Table 4.1 shows the differences between both execution
modes.

Plugin Standalone

Program Type Only Eclipse Java programs. Any program.

CRG BttF automatically obtains a pro-
gram’s CRG using Eclipse’s AST
framework [31].

User needs to obtain a program’s
CRG by other means and upload it
to BttF.

Output BttF provides a user with a .csv
containing the list of feature
assignments. Additionally, for SPL
program partitioning, BttF makes
feature annotations in the source
code.

BttF provides a user with a .csv
containing the list of feature
assignments. The source code is
not modified by BttF.

Table 4.1: Differences between BttF’s Execution Modes

4.1 BttF’s Input

After a program’s CRG has been obtained, a user may provide a feature model file, and a
list of declarations’ assignments in a .csv file. BttF asks for a state folder as input, which
should contain a .bttf file that is a feature model in BttF’s accepted format, and a decla-
ration assignment .csv file (BttF.csv). If a user does not provide a valid state folder, he or
she will have to manually input a feature model in BttF’s user interface.

1 Eclipse Neon Version is supported.
2 Executable jar file.

44



CHAPTER 4. BTTF EXECUTION 45

Figure 4.1: BttF as Eclipse’s plugin

An example of a .bttf file is shown in Figure 4.2. The feature model contained in this file
specifies four features: BASE, TABLE, CONSTRAINT and EVAL.

Figure 4.2: A .bttf file.

After a feature model file has been provided manually, BttF gives a user the option to up-
load a BttF.csv file. A user also may upload a BttF.csv file later, after he or she has
started making feature assignments using BttF user interface.

Figure 4.3 shows an example of a BttF.csv file. This file allows a user to provide feature
and modifier information about declarations. A user does not have to provide information
about all declarations. To get a .csv file with the appropriate format for BttF to read it, a
user can download it from BttF’s user interface.

When a user uploads a BttF.csv file, BttF processes it in the following way:



CHAPTER 4. BTTF EXECUTION 46

Figure 4.3: A BttFcsv file.

1. Content structure check. BttF verifies that the contents of the file are structurally
valid. The expected columns should be present and the declaration identifier should
match with columns package, class and member.3 If the file does not pass this veri-
fication, the user is notified and the file’s contents are not read.

2. Content validation. BttF verifies that every declaration with a feature assignment
has a valid identifier, a valid declaration type and a valid feature name. If one of those
are not valid, this declaration assignment is not considered. When a declaration fails
this validation, it is added to the error log file with the corresponding reason.

(a) Feature validation when recursive partitioning. If a program is to be parti-
tioned recursively, and a feature assignment has a feature F that is not found
in the current line of a feature model, then BttF searches feature F containers
until it finds a valid one. If a valid feature cannot be found, this is added to the
error log file. As an example, consider feature model in Equation (4.1). Sup-
pose a user partitions program P, so the line to use is the first one of this feature
model. If a user provides a feature assignment with feature X, BttF will search

3 The identifier is present as a single column, and also decomposed in three columns: package, class and
member. This for easing users’ sorting and filtering activities.



CHAPTER 4. BTTF EXECUTION 47

across the feature model and find the corresponding mapping for X, which is A.

P : A B C

A : S T

S : X Y

(4.1)

3. Declarations sorting. Declarations that passed previous steps are sorted on granu-
larity, from packages to fields.

4. Feature assignment. Two possible scenarios may happen at this point:

(a) Declaration has been already assigned. A declaration may get assigned be-
cause it references a fprivate declaration, or because it already has been as-
signed using BttF user interface. If a user provided assignment is different from
the existing one, the existing one is not overridden and this is added to the error
log file. This means that BttF still asserts that the original feature, not the newly
proposed one, is correct.

(b) Declaration has not been assigned. Feature bounds are calculated for this dec-
laration. If a user assigned feature is in bounds the feature-modifier assignment
is applied. In case of a fprivate assignment, the corresponding propagation is
done. If a user assignment is out of bounds then this is added to the error log
file.

5. Save error log file. All found errors are outputted in a file and notified to the user.
Figure 4.4 shows an example of a BttF’s error log file. This file is notifying a user that
a feature assignment is not valid, and the actual feature assignment that BttF made
with reference to that declaration.

Figure 4.4: A BttF’s error log file.

6. Continue on BttF’s user interface. A user may continue with pending feature assign-
ments in BttF’s user interface.



CHAPTER 4. BTTF EXECUTION 48

4.2 BttF’s User Interface

For this section and the following one, we use as an example, Java program Operations.
Figure 4.5 shows the source code of Operations. This program implements times and
plus operations for integer values. Its CRG has 28 vertices (declarations) and 85 edges. The
program structure can be observed in Figure 4.6.

Figure 4.5: Operations Java Program Source Code



CHAPTER 4. BTTF EXECUTION 49

Figure 4.6: Operations Java Program

Operations was partitioned using BttF’ Eclipse plugin version. Figure 4.7 shows a BttF’s
screen-shot taken while partitioning Operations program. The elements in BttF’s user
interface are explained next.

Figure 4.7: Partition Operations Program

• Bubble 1 indicates the current partitioning task, which in this case is the only line of



CHAPTER 4. BTTF EXECUTION 50

Operations’ feature model:

OPER : BASE EVAL PRINT (4.2)

• Bubble 2 shows the current partitioning status: of a total of 28 declarations, 17 are
still pending to assign, a user has provided 5 facts or assignments, and BttF has made
6 inferences so far.

• Bubble 3 shows the current declaration to assign, it this case is field v from class/type
int. The ‘More information’ button shows a screen that contains current decla-
ration’s code, the list of declarations that reference it, and the list of declarations it
references, it also includes an editable field where a user may input a comment re-
garding to the current declaration. This screen can be observed in Figure 4.8.

Figure 4.8: BttF’s More Information about a Declaration.

• Bubble 4 points to the set of possibilities for field v. Figure 4.9 shows field v’s CRG.
v’s earliest bound is BASE, and its latest bound is PRINT. Therefore, v’s bounds are:

FB(v) = { BASE, EVAL, PRINT } (4.3)



CHAPTER 4. BTTF EXECUTION 51

v can be fpublic of any feature in bounds, except for PRINT which is the latest fea-
ture, therefore all of its declarations are always fprivate.4 None of the fprivate
possibilities cases apply for v. v’s possibilities are:

P(BASE,v,fpublic)

P(EVAL,v,fpublic)

P(PRINT,v,fprivate)

Int.v Int

Int.Int

Int.print

Int.eval

field(Int.v) ∧ parent(Int.v) = Int ∧ F(Int.v) =⊥
container(Int) ∧ F(Int) = BASE

method(Int.Int) ∧ F(Int.Int) =⊥
method(Int.print) ∧ F(Int.print) = PRINT

method(Int.eval) ∧ F(Int.eval) = EVAL

Figure 4.9: Field Int.v’s CRG

• Bubble 5 points to the ‘Assignments log’, which contains the list of facts that a
user has provided and the inferences that BttF has made. A BttF inference can be
identified because the text contains ‘BttF says... ’. If a user double clicks an
element from the list, the ‘More information’ window (see Figure 4.8) is shown
with the corresponding information for the selected declaration. This section of the
user interface has two buttons:

– The ‘Sort’ button orders alphabetically the facts by the name of the declara-
tion.

– The ‘Delete Fact’ button allows a user to retract a fact; it is not available
for inferences. Let us say an assignment log contains four facts and one infer-
ence: fact 1, fact 2, inference 1, fact 3 and fact 4. If fact 2 is deleted,
inference 1, fact 3 and fact 4 will be removed from the list, then BttF’s
next declaration to assign would be that of fact 2. After a user has entered the
corrected assignment, BttFwill make the corresponding inferences, inference
1 might reappear or not, and then BttF will verify if fact 3 is still valid, if it is,
it will be re-entered automatically. The same for fact 4.

• Bubble 6 points to ‘Upload State’button, which allows a user to upload a BttF.csv
file.5

4 See Inference 3.
5 Only a BttF.csv is read at this point.



CHAPTER 4. BTTF EXECUTION 52

• Bubble 7 points to ‘Save State’button, which allows a user to download a BttF.csv
file with current feature assignments, and a feature model file (.bttf). The files gen-
erated are saved in the following path:

< user_home> \Desktop\BttF\ < program_name> \ < yyyyMMdd hh.mm> \

This path format allows a user to store several states of the partitioning process.

• Bubble 9 points to the ‘Annotate code’ button, which is enabled once all declara-
tions have been assigned to a feature. This button executes the modification of the
program code base, feature annotations are added to the code. More details about
this are explained in next section.

The final list of facts and inferences for Operations’ program is contained in Table 4.2. A
user provided 19 facts, BttF inferred the assignment of 9 declarations, 47% of the assign-
ments were inferred by BttF.

BttF also identified two hooks: opl.OPL.main and opl.OPLTest.test. In the inferences
made with fact 4, can be found that BttF identified these hooks and also decided to remove
its current assignment, this according to caveats of Inference 1. In fact 9, a user said that
container opl.OPLTest was fprivate of BASE, assigning hook opl.OPLTest.test to BASE

by inference, this in accordance with caveats of Inference 2. Later, BttF asked about hook
opl.OPL.main’s assignment in fact 15.

4.3 BttF’s Output

For both BttF’s execution modes, a .csv file with feature assignments can be downloaded
by a user from BttF’s user interface. This file contains every declaration contained in a
program’s CRG and its current feature assignment.

For recursive partitioning, a declarations assignment file will be saved according to the
line of the feature model that is in process. For example, consider again feature model in
Equation (4.1). If a user completed assignments according to the first and second line of
this feature model, the assignments file will only present features from this set: {S, T, B, C}.

When BttF’s is executed in its Eclipse plugin mode, BttF is capable to modify a program’s
source code accordingly to a feature assignments. When a program is partitioned for SPL
purposes, BttF presents an option to annotate the program’s source code.

4.3.1 R4 for Java Code Feature Annotation

Java is not feature-aware. But it does have declaration annotations. Kim et al developed R4,
a new plug-in for Eclipse that supports annotation-based Java SPLs and the OO refactoring
of such SPLs [50].



CHAPTER 4. BTTF EXECUTION 53

# Fact/Inference
1 opl is fpublic of BASE
2 opl.Exp is fpublic of BASE
3 opl.Exp.eval() is fprivate of EVAL

opl.OPL.main(String[] args), BttF says since it calls fprivate opl.Exp.eval() THEN it also belongs to EVAL
opl.OPLTest.test(), BttF says since it calls fprivate opl.Exp.eval() THEN it also belongs to EVAL
opl.Plus.eval(), BttF says since it calls fprivate opl.Exp.eval() THEN it also belongs to EVAL
opl.Times.eval(), BttF says since it calls fprivate opl.Exp.eval() THEN it also belongs to EVAL
opl.Int.eval(), BttF says since it calls fprivate opl.Exp.eval() THEN it also belongs to EVAL

4 opl.Exp.print() is fprivate of PRINT
opl.Plus.print(), BttF says since it calls fprivate opl.Exp.print() THEN it also belongs to PRINT
opl.Times.print(), BttF says since it calls fprivate opl.Exp.print() THEN it also belongs to PRINT
opl.Int.print(), BttF says since it calls fprivate opl.Exp.print() THEN it also belongs to PRINT
opl.OPL.main(String[] args), BttF says it’s hook because calls element(s) classified in future features
Hook opl.OPL.main(String[] args), BttF says it calls fprivate elements, its feature needs to be determined
opl.OPLTest.test(), BttF says it’s hook because calls element(s) classified in future features
Hook opl.OPLTest.test(), BttF says it calls fprivate elements, its feature needs to be determined

5 opl.Int is fpublic of BASE
6 opl.Int.v is fpublic of BASE
7 opl.Int.Int(int a) is fprivate of BASE
8 opl.OPL is fpublic of BASE
9 opl.OPLTest is fprivate of BASE

Hook opl.OPLTest.test(), BttF says it’s a child of opl.OPLTest THEN it also belongs to BASE
10 opl.Plus is fpublic of BASE
11 opl.Plus.l is fpublic of BASE
12 opl.Plus.r is fpublic of BASE
13 opl.Plus.Plus(Exp L, Exp R) is fprivate of BASE
14 opl.Times is fpublic of BASE
15 opl.OPL.main(String[] args) is fpublic and hook of BASE
16 opl.Times.l is fpublic of BASE
17 opl.Times.r is fpublic of BASE
18 opl.Times.Times(Exp L, Exp R) is fprivate of BASE
19 test is fprivate of BASE

test.Util, BttF says it’s a child of test THEN it also is fprivate of BASE
test.Util.val(int r), BttF says it’s a child of test.Util THEN it also is fprivate of BASE

Table 4.2: Operations Program Partitioning. Facts and Inferences.

Here is how R4 works: A configuration is a set of features that uniquely specifies a product
of an SPL. R4 uses a Java annotation type called @Feature. Within it defines a boolean
constant for every feature. The value is true if the feature is selected, false otherwise.
Figure 4.10 is a @Featuredeclaration with three features {A,B,C} that encodes configuration
{A,B,¬C}. The legality of a configuration is specified by a feature model [1]. R4 supports the
GUIDSL or FeatureIDE specifications of feature models [4, 96].

Every declaration of an R4 codebase has a @Feature annotation with a feature expres-
sion as an argument. Feature-guarded code blocks are surrounded by if(feature-expr)
statements. If the expression is true for the configuration, that declaration or code block
is included in the target program, otherwise it is removed.

Figure 4.11a is a @Feature-annotated codebase where class foo and field t belong to fea-
ture A. Feature B adds method inc. Feature C adds fields r, s and guards an update to field



CHAPTER 4. BTTF EXECUTION 54

1 @interface Feature {
2 static final boolean A = true;
3 static final boolean B = true;
4 static final boolean C = false;
5

6 boolean value();
7 }

Figure 4.10: The @Feature Annotation Type

r. Figure 4.11b is the projected codebase for configuration {A,B,¬C}. A reader can observe
how the code segments for features A and B are present, but not the code segments for
feature C. R4 uses code folding to accomplish projection. For more details, see [50].

1 @Feature(A)
2 class foo {
3 @Feature(A)
4 int t;
5

6 @Feature(C)
7 int r=0, s=7;
8

9 @Feature(B)
10 void inc(){
11 if(C){
12 r=r+2;
13 }
14 t=t+3;
15 }
16 }

(a) SPL Code base

1 @Feature(A)
2 class foo {
3 @Feature(A)
4 int t;
5

6

7

8

9 @Feature(B)
10 void inc(){
11

12

13

14 t=t+3;
15 }
16 }

(b) Code base for Config A,B,¬C

Figure 4.11: @Feature Annotations and an R4 Projection

4.3.2 BttF’s R4 Application

BttF assigns a feature to every declaration of a program6. We use R4 to @Feature-annotate
each declaration. What we cannot do is automatically introduce if(feature-expr) state-
ments to feature-modularize code within method bodies, such as the body of inc() in
Figure 4.11a. Feature-refactoring method bodies is a difficult problem that requires deep
knowledge of program semantics and must be done manually. For example, in case of
hooks, we identify them, but a programmer must manually feature-refactor them.

In Figure 4.12 is possible to observe our example program Operations, which was parti-
tioned in the previous section. Operations source code now contains R4Feature anno-

6 Identified in a program’s CRG.



CHAPTER 4. BTTF EXECUTION 55

tations according to the assignments made through BttF. A new Java @interface type,
named R4Feature, has also been added to the project. This R4 SPL configuration file has
all existing features selected (BASE, EVAL and PRINT). In Figure 4.13 is also possible to ob-
serve that this @interface has been added to the program. Operations code base has
been converted into an annotated SPL.

Figure 4.12: Operations Java program source code annotated.



CHAPTER 4. BTTF EXECUTION 56

Figure 4.13: Operations Java program structure with added R4Feature.



Chapter 5

BttF Partitioning of Java Programs into
SPLs

5.1 Experimental Setup

Partitioning a Java program into an SPL is the main scenario for which BttF was designed.
To evaluate BttF, we could have used programs that have never been converted into an
SPL. However, we needed existing SPLs as ground truth to validate BttF – to reproduce
existing feature definitions. Even this was not easy as we had to convert their codebases
into plain Java programs. In short, our reasons for selecting these programs were:

• Using programs that were Java SPLs as ground truth, and

• Ensures that our experimental results are reproducible.

We selected seven Java programs to evaluate BttF. Three factors that were influential in
determining which programs to use for this evaluation were:

• They needed to be known Java SPLs. In other words, they were commonly used in
SPLs experiments so that others could more easily reproduce our results.

• Since we needed to convert them from SPLs into plain Java Programs, we picked an-
notated SPLs for which we had access to the source code and its feature assignments.

• When partitioning a program, BttF might find that some provided facts are invalid.
Expert knowledge is required to provide a correction of invalid facts. We chose pro-
grams that either we were well-versed in their design or that we could become ex-
perts.

Table 5.1 lists the programs selected for BttF evaluation.1 Programs are sorted by LOC (Lines

1 The source code for these programs is available in https://github.com/priangulo/BttFTestProjects

57



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 58

of Code)2. # of Features is the number of features contained in a program’s partitioning
feature model. # of Declarations refers to the number of declarations found in a pro-
gram’s CRG. # of Packages and # of Classes refer to the count of these type of declara-
tions.

Program LOC # of Features # of Declarations # of Packages # of Classes
mixin 35489 16 3953 1 501
unmixin 33895 11 3703 1 500
guidsl 16307 25 1818 1 147
bali2jak 12773 9 1220 1 135
Prevayler 7915 7 1210 22 157
Gates 1235 4 146 5 20
Operations 80 3 28 2 7

Table 5.1: Java programs to validate BttF partitioning into SPLs.

5.2 Research questions

BttF is an inferencing engine. Our first two research questions are related to its inferencing
performance. The last question is related to the behavior of the number of possibilities
shown to a user during the partitioning process. Let the inference rate be:

inference rate = # of BttF inferences
# of program declarations

(5.1)

RQ1 In which scenario(s) is BttF’s inference rate the highest?

RQ2 In which scenario(s) is BttF’s inference rate the lowest?

RQ3 Is there a correlation between the assignment time and the number of possibilities?
In other words, does the number of possibilities shrink as more facts are introduced?

The following section presents the results obtained with the performed experiments and
the answers to our research questions.

5.3 Results

For every program used in this evaluation, we obtained a feature model and a full list of
assignments. These assignments were validated by a program expert. BttF’s task was to
ingest facts, report errors, and infer the rest.

Table 5.2 contains general information about the partitioning results obtained with each
program. We performed four experiments on each program:

2 We used JavaLOC tool[24] to obtain the number of lines of code.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 59

1. E1 (Original). For the first experiment we used the feature model provided with each
program.

2. E2 (Top Heavy). For the second experiment we used a feature model with only two
features: BASE and TOP, where all of the original features, except for the first one, were
comprised in TOP.

3. E3 (Base Heavy). For the third experiment we also used a feature model with only
two features: BASE and TOP, where all of the original features, except for the last one,
were comprised in BASE.

4. E4 (Balanced). For the fourth experiment we used the same two-features feature
model. Now, half of the original features were comprised in BASE, and the other half
in TOP.3 4

The fields contained in Table 5.2 are as follows:

• Experiment is the experiment number.

• N is the number of features in the partitioning feature model.

• FP is the number of fprivate facts provided by an expert.

• FP% is the percentage of FP,

FP% = # of fprivate facts
# of program declarations

·100 (5.2)

• wFP% is the weighted percentage of fprivate facts provided by an expert. Not all
fprivate facts produce the same number of inferences. The number of inferences
produced by a fprivate fact depends on the number of declarations that reference
that fprivate declaration. For this reason, it is necessary to have a weighted per-
centage of fprivate facts. The weight is the number of declarations that reference a
declaration d, this concept was previously introduced as RefTo(d). We use RefTo(d)
as a weight because the declarations contained in it would be assigned to d’s feature,
if d is fprivate.

wFP% =
∑

# of fprivate facts weight∑
# of all declarations weight

·100 (5.3)

• I is the overall number of declarations that were inferred. For this scenario, BttF
makes five types of inferences. These are mentioned in later bullet points.

• I% is the percentage of declarations inferred by BttF,

I% = # of BttF inferences
# of program declarations

·100 (5.4)

3 For feature models with an uneven number of features, the largest half was TOP.
4 For Operations program there is no Experiment 4, as Operations original feature model only had three

features, so Experiment 4 would have been the same than Experiment 2 or 3.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 60

• IF is the number of declarations inferred because they reference a fprivatemethod
or field.

• IC is the number of declarations inferred because they belong to a fprivate con-
tainer.

• IL is the number of declarations that were assigned fprivate because they belong
to the last feature in the feature model.

• IO is the number of declarations inferred because they had only one feature in bounds.

• IN is the number of declarations inferred because they have no references other than
to its container.

• H is the number of identified hook methods.

• ANP is the average of number of possibilities seen during the assignment process.

• SNP is the standard deviation of ANP.

5.3.1 RQ1. In which scenario(s) BttF’s inference rate is the highest?

From our experiments, we learned that BttF’s reached its highest inference rates when
more declarations were assigned to the last layer. This corresponds to E2 (Top Heavy).
The average inference rate obtained with E2 experiments is 71.82. The results obtained in
E2 experiments is highlighted in light gray in Table 5.2. Table 5.3 contains the number of
declarations assigned to the last layer, and the inference rate obtained per experiment:

• LS% is the percentage of declarations assigned to the last feature,

LS% = # of program declarations assigned to last feature

# of program declarations
·100 (5.5)

• I% is BttF’s inference rate.

E2 (Top Heavy) was the experiment in which we comprised the declarations originally as-
signed to all features except the first one. As can be observed for E2, the highest the number
of declarations assigned to the last feature, the highest the inference rate obtained.

To statistically support the previous premise, we used the Pearson Correlation Coefficient
(ρ). ρ is a measure of dependency between two variables [58]. ρ can take any value from −1
to +1. 1 represents a total positive linear correlation (as one of the variables increases the
other too increases), 0 is no linear correlation, and −1 represents a total negative linear cor-
relation (as one of the variables increases the other decreases). In this case we are measur-
ing the correlation between LS% and I%. We performed this calculation using R-Project,



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 61

Experiment N FP FP% wFP% I% I IF IC IL IO IN H ANP SNP
mixin
E1 16 8 0.20% 10.02% 30.9% 1222 419 785 18 0 0 9 18.86 11.36
E2 2 0 0.00% 0.00% 82.0% 3540 5 0 3235 0 0 5 1.48 0.75
E3 2 8 0.20% 10.02% 30.9% 1222 419 785 18 0 0 0 2.73 0.45
E4 2 8 0.20% 10.02% 32.1% 1269 424 785 60 0 0 5 2.70 0.46
unmixin
E1 11 113 3.05% 8.43% 28.6% 1061 753 299 9 0 0 5 12.93 7.01
E2 2 0 0.00% 0.00% 84.5% 3128 6 0 3422 0 0 4 1.42 0.71
E3 2 113 3.05% 8.43% 28.6% 1061 753 299 9 0 0 0 2.75 0.43
E4 2 113 3.05% 8.43% 29.5% 1093 759 299 35 0 0 1 2.74 0.44
guidsl
E1 25 7 0.38% 4.26% 16.9% 304 107 174 23 0 0 44 28.21 16.31
E2 2 0 0.00% 0.00% 80.6% 1449 0 0 1449 0 0 0 1.74 0.89
E3 2 7 0.38% 4.26% 16.9% 304 107 174 23 0 0 1 2.84 0.39
E4 2 7 0.38% 4.26% 45.5% 818 183 174 461 0 0 46 2.35 0.79
bali2jak
E1 9 19 1.55% 7.52% 26.1% 319 155 146 18 0 0 27 10.27 5.56
E2 2 0 0.00% 0.00% 67.9% 828 1 0 827 0 0 1 1.67 0.87
E3 2 19 1.55% 7.52% 26.1% 319 155 146 18 0 0 1 2.79 0.40
E4 2 19 1.55% 7.52% 41.8% 510 155 146 209 0 0 6 2.45 0.76
Prevayler
E1 7 0 0.00% 0.00% 37.9% 458 0 0 458 0 0 12 7.87 5.06
E2 2 0 0.00% 0.00% 64.9% 785 21 0 764 0 0 11 1.87 0.90
E3 2 0 0.00% 0.00% 37.9% 458 0 0 458 0 0 1 2.34 0.90
E4 2 0 0.00% 0.00% 45.8% 554 21 0 533 0 0 10 2.17 0.90
Gates
E1 4 3 1.96% 0.47% 18.5% 28 1 2 25 0 0 6 5.52 1.88
E2 2 2 1.32% 0.47% 37.1% 56 7 2 47 0 0 6 2.38 0.64
E3 2 3 1.96% 0.47% 18.5% 28 1 2 25 0 0 0 2.60 0.62
E4 2 3 1.96% 0.47% 22.5% 34 1 2 31 0 0 0 2.54 0.62
Operations
E1 3 6 21.42% 9.41% 35.7% 10 5 2 3 0 0 2 4.21 1.13
E2 2 5 17.85% 3.52% 35.7% 10 1 2 7 0 0 1 2.82 0.47
E3 2 6 21.42% 9.41% 35.7% 10 5 2 3 0 0 2 2.67 0.61

Table 5.2: Java SPLs partitioning results.

which is an environment for statistical computing [81]. The function used to obtain ρ is
cor from the statistical package corrplot [102]. The result obtained is:

ρ(LS%, I%) = 0.93 (5.6)

Since E2 experiments present the lowest numbers of fprivate facts5 (most of them are
zero), then we know that fprivate facts are not a strong factor to determine the inference

5 Please see columns FP and FP% in Table 5.2



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 62

E1 E2 E3 E4
LS% I% LS% I% LS% I% LS% I%

mixin
0.5% 30.9% 89.5% 82.0% 0.5% 30.9% 3.3% 32.1%

unmixin
0.3% 28.6% 92.0% 84.5% 0.3% 28.6% 1.9% 29.5%

guidsl
2.1% 16.9% 85.5% 80.6% 2.1% 16.9% 29.4% 41.8%

bali2jak
2.5% 26.1% 76.1% 67.9% 2.5% 26.1% 19.4% 41.8%

Prevayler
39.5% 37.9% 67.1% 64.9% 39.5% 37.9% 46.4% 45.8%
Gates
19.2% 18.5% 41.7% 37.1% 19.2% 18.5% 25.8% 22.5%
Operations
14.3% 35.7% 32.1% 35.7% 14.3% 35.7% - -

Table 5.3: RQ1. Last feature size vs. BttF’s Inference Rate.

rate obtained with them. This is supported by calculating ρ using only E2 experiments
numbers, the result obtained is:

ρ(LS%, I%) = 0.99 (5.7)

These results indicate a high positive linear correlation between our compared variables
(LS%, I%). This statistically supports that a higher percentage of declarations assigned to
the last feature, leads to a higher BttF’s inference rate.

A visual representation of these results can be observed in Figure 5.1. Figure 5.1a shows
the results when all the experiments are considered. Figure 5.1b shows the results when
only E2 experiments are considered. These charts contain a point per experiment. The
blue trend line marks a total positive correlation (ρ = 1), with a 95% confidence region
highlighted in gray.

In Figure 5.1a it is possible to observe that the experiments corresponding to E1, E3 and
E4 are more apart from the trend line than E2 experiments. The reason for this is because
their inference rates are not completely due to the size of the last layer (LS%). The amount
of fprivate facts were a factor that influenced the inference rate.

In Figure 5.1b is possible to observe that Gates and Operations are at the bottom of the
trend line. For E2 experiments we comprised in TOP feature, all the original features but the
first one, which was assigned as BASE. However, Gates and Operations had most of their
declarations in their first feature. Gates had 58.3% of its declarations in BASE. Operations
had 67.9% of its declarations in BASE. This caused their TOP features to be relatively small,
therefore their inference rate was also low.

The main lesson learned from these results is that to better take advantage of BttF’s infer-
encing capabilities, it is recommendable to partition a program in a recursive manner, two



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 63

features at a time.

(a) All experiments. (b) Only E2 experiments

Figure 5.1: RQ1. Correlation between Last feature size percentage and BttF’s Inference rate.

5.3.2 RQ2. In which scenario(s) BttF’s inference rate is the lowest?

In Table 5.2 we can observe that E1 and E3 experiments obtained the lowest inference rates
in comparison with other experiments. We can also observe that for every program, the
inference rates obtained with E1 and E3 are the same for every program because of two
factors:

• E1 last feature and E3 last feature are the same. They comprised the same declara-
tions. For E1 experiments we used the original feature model, for E3 we comprised
all the features but the last one in BASE, and the last feature was assigned as TOP.
Therefore the amount of inferences obtained thanks to assigning declarations to the
last layer (see IL column in Table 5.2) was the same for both E1 and E3.

• Same effect of fprivate facts. For E1 all fprivate facts were provided for all features
except for the last one, for which is not necessary to provide fprivate facts, as all
the declarations in the last layer are automatically assigned as fprivate by BttF. For
E3 experiments, the BASE feature comprised all the features in the original feature
model, but the last one, then it also contained all the provided fprivate facts.

Therefore, the factors that determine the inference rate were the same for E1 and E3, caus-
ing that their results were the same.

The reason why E1 and E3 inference rates were the lowest is because they mostly depended
on fprivate facts, which were few and with the capacity of impacting a few number of



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 64

other declarations, this capacity being determined by their weight6. This can be observed
in Table 5.2, column wFP%, which shows fprivate facts allowed BttF to infer a feature for:

• 10% of mixin declarations,

• 8% of unmixin declarations,

• 4% of guidsl declarations,

• 7% of bali2jak declarations,

• 0% of Prevayler declarations (because no fprivate facts were provided),

• 1
2% of Gates declarations, and

• 9% of Operations declarations.

Does this mean that fprivate facts are not useful? No. In Table 5.2 in FP and FP%
columns, we can observe the small proportion of fprivate facts provided, in comparison
with the total number of declarations. And yet, for E1 and E3 experiments this fprivate
facts are the main reason for the inference rates obtained.

The main lesson learned from these results is that it would be convenient to provide to a
user the list of declarations sorted by their weight. This way a user might be able to provide
more impactful fprivate facts. However, this does not change the fact that fprivate facts
need to be provided carefully. For example, if a user decided to assign a Java package p as
fprivate of feature F, all the declarations contained in p would recursively be assigned to
F, which might not be a user’s desired intention.

5.3.3 RQ3. Is there a negative correlation between Assignment Time and
Number of Possibilities?

We are looking for a negative correlation between Assignment Time and Number of Pos-
sibilities. Assignment Time refers to the order in which a declaration of a program p was
assigned. The first declaration that is assigned has an assignment time of 1. The last decla-
ration to be assigned has an assignment time of the length of declarations in p. Number of
possibilities refers to the number of options7 that were in bounds when a declaration was
assigned.

To say that we are looking for a negative correlation between Assignment Time and Number
of Possibilities means that we expect that as Assignment Time increases, the Number of
Possibilities decreases.

6 As mentioned before, weight is the number of declarations that reference a declaration d (RefTo(d)), and
thus they would be assigned to d’s feature, if d is fprivate.

7 For more details please see Section 3.3.1.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 65

The Pearson Correlation Coefficient (ρ) is also used for this research question. In this case
we calculate the correlation between declarations’ assignment time (AT) and the number
of possibilities (NP) each of the declarations had at the moment of assignment.

We obtained a ρ per each experiment performed. To obtain an overall result, we cannot
simply average the obtained coefficients, this would lead to an spurious result, because
these coefficients depend on the data variances, and since they were obtained from differ-
ent experiments, they have different variances. In order to average the results, it is neces-
sary to standardize the resulting correlation coefficients variances. To do this standardiza-
tion, we apply Fisher’s Z-transformation to ρ. Fisher’s Z-transformation is a method that
transforms a ρ value to a Z (normal) distribution, therefore allowing to perform aggrega-
tion operations over these coefficients (i.e. getting a mean). The obtained values can then
be averaged. The resulting average then is transformed again into ρ form to provide an
accurate average correlation coefficient for all the experiments [60, 103].

We again performed these calculations using R-Project, which is an environment for sta-
tistical computing [81]. The function used to obtain ρ is cor from the statistical pack-
age corrplot [102]. The function used to transform ρ to a Z distribution is fisherz, and
the function to transform it back to its Pearson correlation form is fisherz2r, both func-
tions belong to the statistical package psych [84]. Table 5.4 contains the ρ coefficients ob-
tained with every experiment (ρ(AT,NP)) and their corresponding fisher-transformed val-
ues (fisherZ(ρ)).

E1 E2 E3 E4
ρ(AT,NP) fisherZ(ρ) ρ(AT,NP) fisherZ(ρ) ρ(AT,NP) fisherZ(ρ) ρ(AT,NP) fisherZ(ρ)

mixin
0.32 0.34 0.20 0.20 0.31 0.32 0.26 0.26

unmixin
0.06 0.06 0.13 0.13 0.03 0.03 0.02 0.02

guidsl
-0.02 -0.02 0.20 0.20 0.24 0.25 0.39 0.42

bali2jak
0.02 0.02 0.58 0.66 0.13 0.13 0.39 0.41

Prevayler
0.50 0.55 0.46 0.50 0.66 0.80 0.61 0.71

Gates
0.24 0.25 0.21 0.22 0.35 0.36 0.26 0.26

Operations
-0.11 -0.11 -0.15 -0.15 -0.33 -0.35 - -

Table 5.4: RQ2. Correlation between Assignment Time and Number of Possibilities.

Those fisher-transformed values were averaged, the result is: 0.2398. As mentioned before,
this average is now converted back into rho, the obtained value is: 0.235, which is the
overall correlation factor observed between Assignment Time and Number of Possibilities
seen across experiments.

8 We used all the digits of the resulting numbers.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 66

0.235 indicates a low positive linear correlation between our compared variables (AT, NP).
We were looking for a negative linear correlation. The interpretation is that a late assign-
ment time of a declaration does not guarantee a fewer number of available possibilities.
In other words, the number of possibilities is not steadily shrinking as more facts are intro-
duced.

The rationale behind this, is that a declaration’s assignment possibilities are affected only
by the assignments of the declarations it references, and not by the overall assignments
made. BttF’s possibilities calculation is in certain way greedy, as it traverses a CRG and
calculates possibilities for one declaration at a time.

Does this mean that feature possibilities are never reduced? No. In Figure 5.2 it can be
observed, for all the experiments, the number of possibilities each declaration had. For
example, the first chart in Figure 5.2a corresponds to mixin’s Experiment 1. The very first
line in that chart represents the first declaration that was assigned, which had 31 possi-
bilities9 The higher the bar the more possibilities, the lower the bar the fewer possibilities.
It is observable that there was a reduction of possibilities for some declarations, but this
reduction was not constant across assignment time, it rather fluctuated.

Tables 5.5 to 5.8 present data that shows the percentage of declarations that had a reduction
on their possibilities. In these tables we have bins to group the number of possibilities that
declarations had (Possibilities bin), the average percentage of declarations that were
on that bin (AVG), and the standard deviation (SD) of that average.

For E1 experiments (shown in Table 5.5) we have four bins:

• Bin 1 contains declarations that had at most one third of all available possibilities.
For example, if for a program the maximum number of possibilities is 9, this bin
would contain those declarations that had at most 3 possibilities.

• Bin 2 contains declarations that had at most two thirds of all available possibilities.

• Bin 3 contains declarations that had over two thirds of all available possibilities, but
less than the maximum number of possibilities.

• Bin 4 contains declarations that had all possibilities. This group had no reduction in
their possibilities.

E2-E4 experiments (shown in Tables 5.6 to 5.8) had the same feature model (P : BASE TOP),
thus, the maximum number of possibilities was 310. For these experiments we have three
bins:

• Bin 1 contains declarations that had only one possibility.

9 mixin’s feature model used in Experiement 1 has 16 features, this multiplied by 2 (fprivate and
fpublic), minus 1 because the last feature only has fprivate as a possibility, gives 31 as the maximum
number of possibilities that could be available for a declaration.

10 The possibilities are: BASE fprivate, BASE fpublic and TOP fprivate



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 67

• Bin 2 contains declarations that had two possibilities.

• Bin 3 contains declarations that had three possibilities. This group had no reduction
in their possibilities.

Possibilities bin AVG SD
1 23.1% 8.5%
2 28.3% 6.8%
3 27.8% 9.7%
4 28.7% 19.8%

Table 5.5: E1. Average of declarations % per Number of Possibilities’ Bin.

Possibilities bin AVG SD
1 44.9% 27.6%
2 18.6% 11.6%
3 36.5% 24.5%

Table 5.6: E2. Average of declarations % per Number of Possibilities’ Bin.

Possibilities bin AVG SD
1 7.6% 11.0%
2 19.0% 6.8%
3 74.5% 7.2%

Table 5.7: E3. Average of declarations % per Number of Possibilities’ Bin.

Possibilities bin AVG SD
1 13.1% 13.0%
2 24.1% 5.9%
3 62.8% 8.8%

Table 5.8: E4. Average of declarations % per Number of Possibilities’ Bin.

For E1 Experiments (Original), on average, over 70% of the declarations had a reduction in
their possibilities. And over 20% of the declarations had at most a third of all possibilities
available.

For E2 Experiments (Top Heavy), on average, over 60% of the declarations had a reduction
in their possibilities. And over 44% of the declarations had one possibility available.

For E3 Experiments (Base Heavy), on average, around 25% of the declarations had a reduc-
tion in their possibilities. Only 7.6% of the declarations had one possibility available.

For E4 Experiments (Balanced), on average, around 27% of the declarations had a reduc-
tion in their possibilities. Only 13.1% of the declarations had a single possibility available.

Even though the number of possibilities are not linearly reducing as more facts are intro-
duced, BttF does provide a reduction of the possibilities for at least 25% of the declarations,
this in the worst case, and up to 70% in the best case.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 68

(a) Assignment Order vs. Number of Possibilities in mixin Experiments

(b) Assignment Order vs. Number of Possibilities in unmixin Experiments

(c) Assignment Order vs. Number of Possibilities in guidsl Experiments

(d) Assignment Order vs. Number of Possibilities in bali2jak Experiments

(e) Assignment Order vs. Number of Possibilities in Prevayler Experiments

(f) Assignment Order vs. Number of Possibilities in Gates Experiments

(g) Assignment Order vs. Number of Possibilities in Operations Experiments

Figure 5.2: Assignment Order vs. Number of Possibilities



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 69

5.4 Related Work

In this section we present three works that are related to BttF. We could not compare nu-
merically these works’ results with PT’s results, for two reasons:

• They partially extract features from a program, instead of fully partitioning a program
into features. Therefore, they have as a concern to measure how much of a feature’s
code was successfully located, whereas for BttF, every declaration is assigned to a
feature, therefore, all code is successfully located.

• They support the process of assigning code to features, however they do not have
formal automatic inferencing, as BttF has. Therefore they do not present inference
rates, or an equivalent concept, that we can compare numerically to. Inference rate
is the main metric that we use to measure BttF’s performance.

These related works use recall and precision as their success measures. In general, recall
refers to the ability of locating relevant material given a topic; precision refers to how much
of the relevant material obtained was correctly classified [97]. What is defined as relevant
or as correctly classified depends on the evaluation approach taken in each of these re-
lated works. Never-the-less, using these definitions of recall and precision, we can assert
that BttF has a 100% recall, and 100% precision. BttF has 100% recall because it finds all
declarations of each feature (not just some of one feature). BttF also has 100% precision
because it guarantees that each declaration is assigned to a correct feature. The following
subsections present these related works in chronological order.

5.4.1 Valente-2012

Valente proposes and describes a semi-automatic approach to annotate the code of op-
tional features [99]. This approach was developed to annotate Java programs. An optional
feature is defined as "a feature that can be safely removed without disrupting the behavior
of the core".

As with BttF, this approach requires of an expert to provide a set of initial facts, which they
call seeds. These seeds behave as BttF’s fprivate facts.

Their approach is composed of two phases:

1. Propagation. Declarations that correspond to the seeds are annotated with the fea-
ture provided with the seed. Also, all the declarations that reference the seeds are
annotated with the feature of the seed. However, they have defined a set of rules to
limit the propagation of the seeds according to their declaration type. Their rules
apply to these Java declaration types: package, class, interface, method, field,
local variable and formal parameter. A similar behavior occurs with BttF’s
fprivate facts, but BttF does not have such specific rules to limit propagation.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 70

2. Expansion. Their algorithm checks whether a feature annotation can be expanded
to its enclosing lexical context. Lexical context means the surrounding code of a code
fragment that has been annotated. This algorithm consists of a loop where semiau-
tomatic expansions are calculated and proposed to a user, a user can either accept
these proposals or reject them. The rules used to determine semiautomatic expan-
sions are as follows:

• Rule E1. The feature of a loop or conditional statement can be expanded to the
statement’s body.

• Rule E2. The feature used in the body of a loop or conditional statement can
be expanded to the statement’s expression, if this expression does not produce
side effects. An expression has a side effect when it updates the program state.

• Rule E3. The feature used in an else statement, must be expanded to include
its clause. Also, the feature used in the expression of a return must be ex-
panded to include its full statement.

• Rule E4. The feature used in the body of a method must be expanded to its
signature.

• Rule E5. The feature used by all members of a class must be expanded to the
class declaration, and to any use of the class.

• Rule E6. The feature used in the left-hand side of an assignment must be ex-
panded to include its right-hand side.

The role of this expansion phase, is similar to some inferences made by BttF, but
applied at a more granular level. BttF does not support the assignment of parts of a
method’s body, or a field’s assignment statement.

To evaluate their approach they used three SPLs. As we did with BttF, they used programs
that were SPLs to have a ground truth:

• Prevayler, they use the monolithic, non-SPL-based version of the program, which has
2974 lines of code11. They extracted 5 optional features12.

• JFreeChart, with 91174 lines of code. They extracted 3 optional features.

• ArgoUML, with 117983 lines of code. They extracted 4 optional features.

They measure recall and precision in their experiments. Recall measures whether their
approach was able to identify all the code of a feature. Precision measures whether their
approach was able to annotate all the relevant code of a feature.

They presented their results per extracted feature of each program, reproduced in Table 5.9.

11 The version of Prevayler they used is different from the version we used to evaluate BttF.
12 Those are the same features we considered when evaluating BttF, plus BASE and TOP



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 71

Feature Precision Recall
Prevayler
Monitor 100% 100%
Censorship 100% 100%
Replication 100% 94%
Snapshot 100% 59%
GZip 100% 100%
JFreeChart
Pie Charts 100% 99%
3D Charts 100% 99%
Statistical Charts 100% 99%
ArgoUML
State Diagram 87% 88%
Activity Diagram 94% 96%
Design Critics 99% 96%
Logging 89% 97%

Table 5.9: Valente’s results.

Their approach reached an average precision of 97%, and an average recall of 94%. With
BttF we have a precision of 100% and a recall of 100%, plus the inferences made by BttF,
which do not require user interaction.

5.4.2 ICFL-2013

Peng et al propose an "Iterative Context-aware approach to automatic Feature Location
(ICFL)" [76]. This work is related to ours on the topic of mapping a set of declarations to
features of a feature model. ICFL measures how likely is the mapping between a feature
and a set of declarations based on their structural and lexical similarity. This work relies
on Information Retrieval (IR), which is a field of study that given a search query, finds data
that is related or relevant in a large collection of unstructured data sources, for example,
text files [20].

Structural similarity measures how much of a feature model structure can be mapped to a
program’s declarations. By feature model structure they refer to the dependencies, contain-
ments, and interactions13 among features in a feature model. Their goal is to map a feature
F, which has interactions and dependencies with other features, to a part of a program,
that resembles these same interactions and dependencies with other parts of the program.
In turn, these other parts of the program would have to satisfy the structures of the features
they are being mapped to.

Lexical similarity measures the similarity between a feature description and the source

13 Feature F depends on feature G, if it requires of G. Feature F contains feature H if H is a subfeature of F. There
is an interaction between feature F and feature M, if one of them modifies the other’s behavior, or if they are
alternative features (one or the other).



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 72

code of a declaration, this similarity is computed using IR techniques. A feature description
is an attribute that ICFL captures, which contains a description about a feature.

ICFL is fed with already established feature-element mapping pairs, these are equivalent to
the facts that BttF obtains from an expert, then it fills in the remaining assignments. They
evaluated their approach by performing experiments on two programs:

• Linux kernel is an open source operating system kernel written in C. It has 12 million
lines of code and 700 features.

• DirectBank is a proprietary program provided by their industry partner. It has 30
thousand lines of code, and 71 features.

They measure recall and precision on their experiments. Recall measures the ability to
identify declarations that should belong to a feature of a feature model, for all features.
Precision measures if a declaration was assigned to the right feature.

Their results show a high recall and low precision. For DirectBank, the best precision ob-
tained was 58% with a recall of 91%. This means they identified 91% of the declarations
that should be mapped to the features of a feature model, and from those declarations,
they mapped 58% of them to a correct feature. For Linux kernel the best precision obtained
was 29% with a recall of 66%.

They start with the premise that not all of a program’s declarations necessarily belong to
a feature.14 We, on the contrary, partition a program and assign every declaration to a
feature. Therefore, BttF’s recall is 100%.

For BttF’s evaluation, all declarations were assigned to a correct feature, therefore our pre-
cision is always 100%. What is there to measure for BttF is its inference rate. The number
of facts that ICFL receives, or how they impact the rest of the declarations assignment, is
not stated, therefore we cannot numerically compare their results with ours.

5.4.3 LEADT-2014

Kästner, Dreiling, and Ostermann present LEADT (Location, Expansion, And Documenta-
tion Tool) [48]. LEADT is a semiautomatic tool for extracting features from a legacy Java
program. LEADT works by extracting a feature at a time.

The use of LEADT requires an expert to provide a feature model and initial seeds, which
are equivalent to the facts provided to BttF. However, LEADT receives a single seed per
feature. LEADT supports the location of code fragments of a feature, by recommending
probable code fragments from the legacy Java program. They describe it as guiding a user
into looking in the right location to find all fragments of a feature.

LEADT is therefore a recommendation system. It recommends code fragments that are
likely to belong to the searched feature. It relies on three recommendations mechanisms:

14 In effect, their BASE is not considered a feature.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 73

• Type System. This is their key recommendation mechanism. It looks up references
within the source code. A reference represents a relationship between two code frag-
ments, it has a source and a target, for example a method invocation is the source,
whereas this same method’s declaration is the target. If the target t of a reference
is annotated with a feature F, but the source s of that same reference has not been
annotated with F, their Type System would issue a prioritized recommendation to
annotate s with F.

• Topology Analysis. As we did with BttF, they also produce a graph to represent a
program’s declarations and their relationships. As BttF’s CRG, LEADT’s graph also is
created using Abstract Syntax Trees (ASTs) provided by Eclipse. They adapted Robil-
lard’s topology analysis [85] to follow their graph representation of a program and
produce a ranked list of code fragments that are likely to belong to the searched
feature. To produce these ranks they use the metrics specificity and reinforcement.
Specificity ranks higher those declarations that refer to (or are referred from) only a
single declaration, and ranks lower those declarations that refer to (or are referred
from) many elements. Reinforcement ranks higher those declarations that refer to
(or are referred from) many already annotated declarations, this based on the idea
that they are probably part of a cluster of feature code.

• Text Comparison. They implemented their own text comparison mechanism to de-
termine the similarity of a feature’s vocabulary and a declaration’s vocabulary. A dec-
laration’s vocabulary is obtained by tokenizing all the words contained in a declara-
tion’s name. A feature’s vocabulary is composed of all of its declarations’ vocabular-
ies. For example, if many declarations of feature F contain in their names the word
lock, then their text comparison recommendation system would recommend other
code fragments that contain that word.

For each declaration, LEADT obtains an overall recommendation priority w by merging
the recommendations obtained with its three recommendation mechanisms. LEADT pro-
duces a list of declarations ordered by w. This list shows, in order of recommendation, the
declarations that are more likely to belong to the searched feature. Every time a user ac-
cepts a recommendation to add a declaration to the searched feature, LEADT recalculates
its recommendation list.

To evaluate LEADT, four SPLs were used. As we did with BttF, they used programs that
were SPLs to have a ground truth:

• Prevayler, with 8009 lines of code and 5 features15.

• MobileM, with 4653 lines of code and 7 features.

• Lampiro, with 44584 lines of code and 10 features, although for LEADT evaluation
they searched only for 2 features.

15 We also used Prevayler to evaluate BttF. The version we found of Prevayler had slightly less lines of
code. The feature model that we used to partition Prevayler had 7 features, the original 5 features, plus
BASE and TOP.



CHAPTER 5. BTTF PARTITIONING OF JAVA PROGRAMS INTO SPLS 74

• Sudoku, with 1975 lines of code, and 5 features.

They measure recall and precision in their experiments. Recall measures which percentage
of all the code of a feature was located. For example, if a feature had 10 declarations, and
they found 9, their recall would be 90%. Precision measures which percentage of the rec-
ommendations was correct. LEADT overall results are an average recall of 97%, this means
97% of all code per feature was located; and an average precision of 42%, which means
that 42% of all the recommendations given were correct. BttF fully partitions a program
into features, which means our recall is 100%. And as mentioned before, our precision is
also 100%.

LEADT shares with BttF the use of Eclipse’s ASTs to produce a graph representation of a
program in question, and also the use of facts provided by an expert.

LEADT supports a user’s decision to add or not a declaration to a feature. BttF not only
guides a user in assigning every declaration to a feature, it reduces a user’s work by infer-
encing assignments.



Chapter 6

BttF Refactoring a Program into a
Framework and Plug-in

6.1 Introduction

We use the term framework to denote an Object Oriented (OO) application framework,
which is a reusable and semi-complete application that can be specialized to produce cus-
tom applications. Frameworks are targeted to specific application domains [37].

Frameworks are a popular and effective software reuse technique. Some examples of well-
known or currently popular application frameworks are: .NET1, Spring2 and Java AWT3.
Creating a framework requires extensive understanding of the application domain where
it would be applied, and intensive design experience writing programs in this domain.

Frameworks can be classified according to the technique used to extend them. They range
from purely white-box to black-box. A white-box framework relies heavily on OO inheri-
tance and other OO features. To extend a white-box framework, classes from the frame-
work need to be inherited and extended, and methods that serve as hooks in the frame-
work, have to be overridden. A black-box framework supports extensibility by defining in-
terfaces that allow to plug components into the framework using object composition [37].

Designing and implementing a framework is a non-trivial task. Most of the challenges
in creating an application framework are related to determine how generic a framework
should be. The more generic a framework, the more work is required to implement an ex-
tension. The more concrete a framework, the less work is required to implement an exten-
sion [10]. And perhaps it would require more maintenance to keep adapting it to possible

1 .NET is a framework for developing applications that leverage Microsoft technologies and services, https:
//www.microsoft.com/net/.

2 Spring is a framework for enterprise application development based on Java, http://projects.spring.
io/spring-framework/.

3 Java AWT is a framework for creating user interfaces for Java programs, https://docs.oracle.com/
javase/9/docs/api/java/awt/package-summary.html.

75

https://www.microsoft.com/net/
https://www.microsoft.com/net/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
https://docs.oracle.com/javase/9/docs/api/java/awt/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/awt/package-summary.html


CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 76

changes in its domain [15].

We used BttF as a support tool to partition Java programs into a white-box framework and
a plug-in. We use the term plug-in to refer to a framework extension. At a first glance, par-
titioning a program into a framework and plug-in is the same than partitioning it into two
features: FRAMEWORK and PLUGIN. However, to have a program transformed into a frame-
work and a plug-in requires structural changes: it requires the separation of framework code
from plug-in code. Examples of structural changes are: move a class from a package to
another, modify a declaration’s modifiers, and so on.

These structural changes impose new constraints that are not present when partitioning
a program into a SPL. The transformation of a program into a SPL can be made via anno-
tations, which are not as invasive as the changes required to transform a program into a
framework and plug-in. Given this, BttF needed to consider the constraints imposed by a
structural transformation of a program into a framework and plug-in.

This is the first work that automates almost all tasks in the partitioning of Java program
into framework and plug-in. The following sections present how this was achieved, the
constraints that we needed to take into consideration, and the obtained results.

6.2 Java Constraints for Framework and Plug-in Refactor-
ing

We discovered four constraints when partitioning and transforming Java programs into a
framework and plug-in. They were added to BttF as rules and are explained next.

C1 Superclasses cannot be partially in the framework and in the plug-in.
A superclass, or non-terminal class, is a class that is extended by at least another class
in the program4. Please observe the class diagram in Figure 6.1a. It contains two
classes A and B. A has two members, field d and method m. B has three members,
field f, and methods m and p. B extends A, therefore A is a superclass. Let say a user
makes the following assignments:

• A.d is assigned to FRAMEWORK.

• A.m is assigned to PLUGIN.

• B.f is assigned to FRAMEWORK.

• B.m is assigned to FRAMEWORK.

• B.p is assigned to PLUGIN.

Given these assignments, both classes A and B are partially in the framework and in
the plug-in. A class in this situation is transformed into a framework and plug-in

4 This also applies to Java interfaces.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 77

structure by following these general steps5, we use class A to explain these steps:

(a) An abstract class A is created in the framework package, call it fw.A.

(b) The original class A is moved to the plug-in package, call it pl.A.

(c) Class pl.A extends class fw.A.

(d) The members of A that were assigned to the framework are pulled-up into fw.A,
in this case this member is field d, and all other members remain in pl.A.

When the previous steps are applied to A and B, we get the result of Figure 6.1b.
Since A is a superclass that got partially assigned to the framework and the plug-in,
it caused an undesired dependency: fw.B extends pl.A — that is, a framework class
extends a plug-in class. The framework cannot have such a dependency in an exten-
sion. Therefore, to prevent this situation, a superclass has to either fully belong to
the framework or to the plug-in, it cannot be partially in both. We implemented this
as a rule in BttF when partitioning a program into framework and plug-in.

(a) Before partitioning. (b) After partitioning.

Figure 6.1: C1. Problem with partitioning superclasses.

C2 Annotations and Enums cannot be partially in the framework and in the plug-in.
A Java annotation is a form of metadata. It provides data about a declaration or a
code segment [70]. A Java enum is a data type that represents a fixed set of constants
[69]. As mentioned in C1, when a class C is partially in the framework and in the plug-
in, it has to be divided into two classes: an abstract counterpart in the framework
fw.C, and another class in the plug-in pl.C, which extends fw.C. Java annotations
and enums do not support extends, therefore, they have to either fully belong to the
framework or to the plug-in, they cannot be partially in both. We implemented this
as a rule in BttF when partitioning a program into framework and plug-in6.

5 Section 6.5.2 provides full details about the rules and process for transforming a program into framework
and plug-in.

6 For SPLs, features are denoted via Java annotations, therefore this constraint does not apply for SPL par-
titioning of enums and annotations.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 78

C3 Static methods cannot be hooks.
Java static is a modifier. When it is applied to a method, the method can be invoked
without the need of creating an instance of its declaring class [71].

If BttF identifies method m from class C as hook7, then it would be transformed into
a framework and plug-in structure by following these steps:

(a) An abstract method m is created in the framework counterpart of C, this method
is now fw.C.m. This new method has the same signature than original m plus an
abstract modifier.

(b) Method m in plug-in counterpart of C, pl.C.m, overrides fw.C.m.

(c) The original implementation of m is now contained in pl.C.m8.

It is not possible in Java to have a method with both static and abstractmodifiers,
therefore, staticmethods cannot be hooks and cannot be transformed accordingly.
To handle this situation, if a static method m is assigned to the FRAMEWORK fea-
ture, BttF infers that all the declarations that m references should also belong to the
FRAMEWORK.

C4 Methods of non-terminal classes in the FRAMEWORK cannot be hooks.
A hook method forces a class to be partially in the framework and in the plug-in. If
method m of class C is a hook, it has to have an abstract signature in C’s framework
counterpart fw.C, while C’s plug-in counterpart pl.C contains m original implemen-
tation.

Because of constraint C1, a superclass or non-terminal class in the framework can-
not be partially in the framework and in the plug-in, therefore, if superclass C is
assigned to the FRAMEWORK feature, and one of its members method m is identified by
BttF as a hook, then BttF infers that all the declarations that m references should also
belong to the FRAMEWORK.

6.3 Experimental Setup

To evaluate BttF as a support tool to partition a Java legacy program into a framework and a
plug-in, we selected programs that were known in framework and design pattern research
community.

We selected six Java programs to evaluate BttF. Four were taken from Schmidt’s LiveLessons
course [91]9. The other two were taken from Batory’s undergrad course on Software Design

7 A hook is a method that references declarations introduced in a later feature. In this scenario we have only
two features FRAMEWORK and PLUGIN, therefore all hooks would be in FRAMEWORK.

8 A manual task after BttF is done is for a programmer to decide what fraction of each concrete hook method
is to be moved into the framework.

9 The four programs we used are used in his undergrad course of Patterns and Frameworks.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 79

[7]: Gates10, and Calc. We used Gates earlier to evaluate BttF on partitioning a program
into a SPL. Calc is a small calculator program that was designed to be partitioned into
framework and plug-in.

Table 6.1 lists the programs selected for BttF evaluation11. Programs are sorted by LOC

(Lines of Code)12. # of Declarations refers to the number of declarations found in a pro-
gram’s CRG. # of Packages and # of Classes refer to the count of these type of declara-
tions.

Program LOC # of Declarations # of Packages # of Classes
ExpressionTree 4793 555 1 84
ImageStreamGangApp 2630 211 3 36
ImageTaskGangApplication 2457 232 1 33
Gates 1235 141 5 19
SearchTaskGang 1058 91 1 12
Calc 476 66 3 5

Table 6.1: Java programs to validate BttF partitioning into Framework and Plug-in.

6.4 Research Questions

For the scenario of partitioning a program into a framework and plug-in, we formulated
two research questions. The first is related to BttF’s inference rate and the second evaluates
the possibility of automatically transforming a program into framework and plug-in using
the assignments obtained with BttF.

RQ1 Is BttF’s inference rate better for framework and plug-in partitioning, than for the
best scenario in SPL partitioning?

This question compares the inference rate obtained with framework and plug-in par-
titioning, versus the best scenario obtained with SPL partitioning. The best scenario
would be experiments E2, for which all programs were partitioned using a two fea-
tures feature model: BASE and TOP, with a top heavy configuration13.

RQ2 Is it possible to automatically transform a Java program into a framework and plug-in
structure?

With framework and plug-in structure, we refer to the separation of a framework’s
code fragments from a plug-in’s code fragments.

10 We used a version of Gates that had no annotations.
11 The source code for these programs is available in https://github.com/priangulo/BttFTestProjects
12 We used JavaLOC tool [24] to obtain the number of lines of code.
13 Top heavy means most of the declarations were assigned to the TOP feature.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 80

6.5 Results

To partition the programs listed in Section 6.2 into framework and plug-in, we became
familiar with their code, classes hierarchies and declarations dependencies. We aimed for
a top heavy framework, we tried to assign most of the declarations to FRAMEWORK feature14.

For the programs we took from LiveLessons [91], we defined which part of the source code
should go to the framework and which to the plug-in, based on:

• The class diagrams, which served as a footprint to draw a line among the classes and
identify which functionality could be core and therefore part of the framework.

• Comments and naming conventions were useful to identify framework and exten-
sion code segments.

In the case of Gates, it originally has four features: BASE, TABLE, CONSTRAINT and EVAL.
We comprised BASE and TABLE in the framework, and the rest on plug-in. For Calc, which
is a small program, we used its class hierarchy to define what should belong to framework,
and what to plug-in.

Table 6.2 contains general information about the partitioning results obtained with each
program. The fields of this table are:

• Program is the name of the program.

• FN is the number of declarations assigned to FRAMEWORK feature.

• PN is the number of declarations assigned to PLUGIN feature.

• FP is the number of fprivate facts provided by an expert.

• FP% is the percentage of FP,

FP% = # of fprivate facts
# of program declarations

·100 (6.1)

• I is the overall number of declarations that were inferred. The types of inferences
BttF makes in this scenario are mentioned in later bullet points.

• I% is the percentage of declarations inferred by BttF,

I% = # of BttF inferences
# of program declarations

·100 (6.2)

• IF is the number of declarations inferred because they reference a fprivatemethod
or field.

14 FRAMEWORK feature is equivalent to BASE feature in SPL partitioning.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 81

• IC is the number of declarations inferred because they belong to a fprivate con-
tainer.

• IL is the number of declarations that were assigned fprivate because they belong
to the last feature in the feature model.

• IO is the number of declarations inferred because they had only one feature in bounds.

• IN is the number of declarations inferred because they have no references other than
to its container.

• NT is the number of declarations that belong to a non-terminal class and BttF over-
rode their assignments, because their declaring class cannot be partitioned so some
of their members are in the framework, and the rest in the plug-in15, 16.

• AE Is the number of declarations that belong to a Java annotation, or a Java enum.
These types cannot have some members in the framework and the rest on the plug-
in17, 18.

• SM is the number of declarations that are referenced by a static method of a frame-
work class. Since this method cannot be a hook all the declarations it references must
belong to the framework too19.

• NM is the number of declarations that are referenced by a method of a non-terminal
framework class. Since this method cannot be a hook all the declarations it references
must belong to the framework too20.

• H is the number of identified hook methods.

Program FN PN FP FP% I% I IF IC IL IO IN NT AE SM NM H
ExpressionTree 372 183 1 0.2% 32.9% 183 0 0 154 9 0 0 0 13 7 0
ImageStreamGangApp 152 59 0 0.0% 34.1% 72 0 0 45 1 0 0 6 17 3 0
ImageTaskGangApplication 103 129 0 0.0% 48.7% 113 0 0 107 1 0 0 0 0 5 0
Gates 107 34 0 0.0% 44.0% 62 0 0 28 1 0 0 0 29 4 1
SearchTaskGang 79 12 14 15.4% 44.0% 40 6 21 10 0 0 0 0 0 3 0
Calc 32 34 0 0.0% 33.3% 22 7 0 15 0 0 0 0 0 0 9

Table 6.2: Java Framework and Plug-in partitioning results.

15 For more details please see Section 6.2.
16 If a user’s original assignment did not go against this rule, BttF does not override it, and therefore it does

not count as NT.
17 For more details about this rule please see Section 6.2.
18 If a user’s original assignment did not go against this rule, BttF does not override it, and therefore it does

not count as AE.
19 For more details about this rule please see Section 6.2.
20 For more details about this rule please see Section 6.2.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 82

6.5.1 RQ1. Is BttF’ s inference rate better for framework and plug-in par-
titioning than for the best scenario in SPL partitioning?

The highest inference rate obtained when evaluating BttF on SPL partitioning, was with E2

experiments21. These experiments were performed with a feature model containing two
features: BASE and TOP. Most of the declarations were assigned to the TOP feature, we refer
to E2 experiments as top heavy.

This research question compares the inference rate obtained with framework and plug-in
partitioning (FWPL-results), versus the inference rate obtained with E2 experiments (SPL-
E2-results). For framework and plug-in partitioning we aimed for a top heavy framework
configuration, most of the declarations assigned to FRAMEWORK feature22. This would be
equivalent to a base heavy configuration, which is the opposite from what we had in E2 ex-
periments. However, for framework and plug-in partitioning we had additional constraints
that could increase the number of inferences, therefore, this research question.

To compare FWPL-results with SPL-E2-results, we need to perform a hypothesis test. A
simple comparison of results’ means is not enough, as the results come from different ex-
periments. Hypothesis testing is a "decision-making process for evaluating claims about
a population", this claims are usually related to statistical means and proportions about a
population. A hypothesis test uses data obtained from a sample to make a decision about
whether a claim can be accepted or rejected [14, p. 400–430]. In this case we are claiming
that FWPL-results are better than SPL-E2-results.

The formula to use on hypothesis testing depends on the attributes of the data that we
have as a result from our experiments. We have two samples23, one that represents FWPL-
results, and another that represents SPL-E2-results.

Our samples are considered small, for FWPL-results we have six values, and for SPL-E2-
results, seven. Given this, we need to use t-test as our statistical test [27, p.357, 358]. We
compare the means of both samples. And our claim is that FWPL-results mean is greater
than SPL-E2-results mean. The formal enunciation is:

H0 :µ= 64.67, results obtained with SPL E2 experiments

Ha :µ> 64.67, claim based on results obtained with FWPL

To perform this hypothesis test we used R-Project, which is an environment for statistical
computing [81]. The function we used is t.test from R’s core package stats [82]. We
provided this function with the values for H0 (SPL-E2-results) and Ha (FWPL-results), and
specified that we were conducting a greater comparison, which evaluates if Ha’s mean µ is

21 For more details please see Section 5.3.
22 In Table 6.2 note that for all the programs we used in this evaluation, the number of declarations assigned

to FRAMEWORK (FN field) is greater than the number of declarations assigned to PLUGIN (PN field); except for
ImageTaskGangApplication, which the source code contained several plug-ins, which we comprised in
PLUGIN feature, therefore, in this case PLUGIN was larger than FRAMEWORK.

23 We say samples, because we did not conduct exhaustive experimentation, which would imply testing with
every existing Java program, which is impossible.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 83

greater than H0’s mean µ. By default, this test is performed with a confidence value (α) of
0.05%. This means that we have 95% certainty over the decision we make about rejecting
(or not) our H0 hypothesis.

The result obtained was:
p-value = 0.991 (6.3)

The p-value (probability value) is the probability of obtaining Ha results when H0 is true.
In this case, it is the probability of obtaining the mean stated in Ha when the true popu-
lation mean is the one stated in H0. P-value measures the probability of Ha results being
sufficiently evident and consistently better to disprove the results obtained with H0. To
interpret a p-value we follow these rules [14, p. 418]:

p-value <α, reject H0
p-value ≥α, do not reject H0

Since our p-value 0.991 is greater than our confidence value α 0.05, we cannot reject H0.
This means that we do not have enough evidence to state that the results obtained with
FWPL-results are better than the results obtained with SPL-E2-results.

Are they equivalently good? This means, are our FWPL-results as good as the one obtained
with SPL-E2-results? This question can be answered by performing another hypothesis
test, with the following theorems:

H0 :µ= 64.67, this is the claim, we want to assert this remains true

Ha :µ 6= 64.67

We again perform this hypothesis test using R-Project. We use the same function t.test
from stats package [82]. We provided the same values for H0 (SPL-E2-results) and Ha
(FWPL-results), but now, we specified that we were conducting a two-sided comparison,
which evaluates if Ha’s mean µ is different than H0’s mean µ. By default, this test is per-
formed with a confidence value (α) of 0.05%. This means that we have 95% certainty over
the decision we make about rejecting (or not) our H0 hypothesis.

The result obtained was:
p-value = 0.017 (6.4)

Since our p-value 0.017 is less than our confidence value α 0.05, we have evidence to reject
H0. This means that we do not have enough evidence to state that the results obtained
with FWPL-results are as good as the results obtained with SPL-E2-results.

Despite the constraints imposed on framework and plug-in partitioning, the inference rate
obtained is not better than the inference rate obtained with E2 experiments on SPL parti-
tioning. This shows clear evidence that the size of the last feature (TOP or PLUGIN) is the
main contributor to BttF’s inference rate, and the constraints imposed on framework and
plug-in partitioning did not produce a considerable improvement over a top heavy frame-



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 84

work24 configuration, to make it as good as the results obtained with a heavy top configu-
ration, as the one had with SPL E2 experiments.

These hypothesis tests could be performed again with a larger sample, more programs. A
larger set of experiments would allow to have a more accurate perspective. However, these
results provide an indication that the size of the last feature (TOP or PLUGIN) most directly
affects BttF’s inference rate.

6.5.2 RQ2. Is it possible to automatically transform a Java program into
a framework and plug-in structure?

With framework and plug-in structure, we refer to the separation of a framework’s code
fragments from a plug-in’s code fragments. In this case we are separating them into differ-
ent Java packages. The purpose of this research question was to find and implement an
automated process to separate a program into a framework and a plug-in, ensuring that
the framework has no dependencies towards the plug-in source code, and that it compiles.

It is possible to use tools to modify the source code of a program. For Java programs,
Eclipse offers automated refactorings. A refactoring is "the process of changing the struc-
ture of software while preserving its external behavior" [62]. These refactoring operations
range from simple ones, as renaming a declaration, to more complex ones, like extracting
an interface from a class25. However, to achieve our desired results, we needed to per-
form a large number of refactoring operations, systematically, for which Eclipse provides
no tool that could achieve this.

The R3 Java refactoring engine, developed by Kim et al, addresses this need of invoking
refactorings programmatically [51]. We collaborated with R3 creators to develop a script
and the required set of operations that would allow to transform a Java program into a
framework and plug-in structure. With BttF we obtained a road map of the structural
changes that needed be performed on a program, and through R3we executed those trans-
formations. A description of the resulting implementation is explained next, among with
the results obtained from it.

Transforming a Java program into framework and plug-in using R3

R3 can execute refactoring scripts, where a script is a Java method. A developer can specify
a set of refactoring operations to be applied to a program’s source code, and R3 performs
them without affecting the integrity of the source code. This is achieved by R3 through the
creation of an internal database that reflects a Java program’s contents [51]:

• Program declarations (i.e. classes, methods, fields), their

24 Equivalent to heavy base in SPL partitioning.
25 For a full list of available Eclipse refactoring operations see [32].



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 85

• Containment relationships, and

• Java language features such as inheritance and modifiers.

In order to use R3 as our transformation engine and apply the set of assignments discov-
ered with BttF, we created an R3 script that could perform the steps required for this trans-
formation. In this case, R3 was used as a transformation engine and not a refactoring en-
gine, to see the differences please see Appendix A. The code of this script can be found in
Appendix B; it is an order of magnitude larger than any prior R3 script. As a reader could
observe, the script is essentially a (big) method in the Java language. Our script is a Java
program which makes use of R3’s API. The steps performed on this script are described
next:

Step 1. Packages.
We create framework package fwp, and rename original package to plp. The original pack-
ages is now plug-in package.

Step 2. Factories.
We create an empty framework abstract factory class fwp.factory, and an empty plug-in
concrete factory class plp.factory, where plp.factory extends fwp.factory.

Step 3. Populate framework.
We populate fwp with the classes and other types that were assigned to it. We do as follows
depending on the type:

3a A concrete class in the framework cannot invoke a constructor of an abstract class in
the framework, the Java compiler will throw an error, therefore, we need to make this
class abstract. See Step 4 later.

3b A class C with only some members that belong to the framework:

(a) Create an abstract class in the framework package, fwp.C.

(b) Extend the new abstract class fwp.C with the current extends of the concrete
class plp.C.

(c) Make the concrete class plp.C extend the new abstract class fwp.C.

3c An interface I with only some members that belong to the framework:

(a) Create an interface in the framework package, fwp.I.

(b) Extend the new interface fwp.Iwith the current extends of the original interface
plp.I.

(c) Make the original interface plp.I extend the new interface fwp.I.

Step 4. Lift constructor calls.
Replace constructor calls with calls to local factories. We apply this to members of types



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 86

1 class A {
2 void m(Y b){
3 new Z(4); //constructor call
4 new Y(); //constructor call
5 }
6 }

(a)

1 class A {
2 void m(Y b){
3 new Factory().newZ(4); //factory call
4 new Factory().newY(); //factory call
5 }
6 }
7

8 class Factory {
9 public Z newZ(int x){

10 return new Z(x);
11 }
12 public Y newY(){
13 return new Y();
14 }
15 }

(b)

Figure 6.2: Lift constructor calls.

that entirely or partially belong to the framework. In every member m of a class, replace
every constructor call to abstract framework classes, with calls to local factory methods.

Consider method m of class A in Figure 6.2a. This method has two constructor calls: Z(int)
and Y(). In this case Z and Y are framework abstract classes, therefore, we create a factory
class Factory, which contains the factories that would replace the direct constructor calls.
Factory is shown in Figure 6.2b along with the rewritten method m, which no longer calls
directly constructors Z(int) and Y(), but their factories.

We do not apply this to methods identified by BttF as hooks because programmers need
to refactor them manually. A BttF hook is a method m that is to undergo a manual tem-
plate method refactoring, where a template (framework-bound) method is factored out of
m plus a set of hook methods which are to remain in the plug-in and have abstract method
counterparts in the framework.

To exemplify why we do not automatically refactor BttF’s hooks, please observe Figure 6.3,
method mof class Cbelongs to FRAMEWORK and it is a hook, it references method print_value1
from class X (line 4) that belongs to PLUGIN. These facts can be detected by BttF, however,
line 8 also belongs to PLUGIN, but since this line does not reference other declaration, there
is no way for BttF to automatically detect this. Cases like this show that template method
refactoring requires a manual intervention to refactor it correctly.

Step 5. Pull classes and interfaces apart.
We move to the framework the declarations that belong to it:

5a If an entire type belongs to framework, we move it to fwp.

5b Pull apart a class or interface that partially belongs to the framework. Do as follows
with its members:



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 87

1 public class C{
2 public void m(int val){
3 if(val > 2){
4 System.out.println("Ext1: " + X.print_value1(val)); //PLUGIN
5 }
6 if(val > 5){
7 val = val + 2;
8 System.out.println("Ext2:" + (val + 3)); //PLUGIN
9 }

10 }
11 }
12

13 public class X {
14 static int print_value1(int val){
15 return val + 1;
16 }
17 }

Figure 6.3: Problem refactoring a hook method.

(a) For a method m identified by BttF as hook, create an abstract method in the
framework. The original code of m remains in the plug-in. A developer must
decide later how to restructure its contents. Figure 6.4a shows method m, which
has been identified by BttF as a hook. In Figure 6.4b m is rewritten. An ab-
stract method m is now defined in the abstract framework counterpart of class
A, fwp.A. The original contents of m remain in concrete method plp.A.m.

(b) For a public constructor, create a factory method in the concrete factory plp.factory.
Lift the return and parameter types of this new factory method and create a cor-
responding abstract factory method in the framework abstract factory fwp.factory.

Figure 6.5a shows a public constructor A.A, class A belongs to the framework,
therefore, a factory needs to be created for A.A. Figure 6.5b shows both frame-
work factory class fwp.Factory, and plug-in factory class plp.Factory. fwp.Factory
has an abstract factory method that returns an instance of A. plp.Factory has
a concrete factory method that creates an instance of A. Both the concrete and
the abstract factories have their return and parameter types lifted: they specifi-
cally return fwp.A, and expect fwp.X as parameter.

(c) For the rest of a class or interface members, that belong to the framework, lift
the types they reference and promote them to their corresponding framework
abstract class or interface.

Modifying the code that would correspond to an application calling a framework and plug-
in, was out of the scope of this partitioning and refactoring process. The code that would
correspond to the application part was comprised in the plug-in, and was no subject to
application refactoring [10].

We applied this refactoring script to the six programs we used for evaluation. The changes



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 88

1 class A {
2 void m(int value){ //m is a hook
3 if (value == 2) {
4 ...
5 }
6 }
7 }

(a)

1 package fwp;
2 abstract class A {
3 abstract void m(int value);
4 }
5

6 package plp;
7 class A extends fwp.A {
8 void m(int value){
9 if (value == 2) {

10 ...
11 }
12 }
13 }

(b)

Figure 6.4: Framework+Plugin structure of a hook method.

1 package fwp;
2 class A {
3 public A(X x){
4 ...
5 }
6 }

(a)

1 package fwp;
2 abstract class Factory {
3 abstract public fwp.A newA(fwp.X x);
4 }
5

6 package plp;
7 class Factory extends fwp.Factory {
8 public fwp.A newA(fwp.X x){
9 ...

10 }
11 }

(b)

Figure 6.5: Framework+Plugin structure for a public constructor.



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 89

these programs underwent can be observed in their class diagrams, which are in Appendix C26,
for every program we have a class diagram that shows its original structure and another
class diagram that shows the new structure obtained after applying our R3 framework and
plug-in transformation script.

We successfully applied our transformation script to all six evaluation programs. To verify
these programs we ran regression tests:

• ExpressionTree program did not have regression tests implemented, we created
seven regression tests, to verify each of the available operations.

• ImageStreamGangApp, ImageTaskGangApplication and SearchTaskGangprograms
had a test class implemented. The tests ran successfully before and after applying the
transformations.

• Gates and Calchad JUnit[89] tests, which ran successfully before and after applying
the transformations.

The execution time of this refactoring script is almost instantaneous, the maximum time
observed was approximately 2 seconds. Performing these refactoring operations one a
time until arriving to the desired structure is extraordinarily time consuming and error
prone for even the smallest programs [51]. For a program of the size of ExpressionTree,
it could easily take several days of person-work. Specifics about the increased speed seen
by using refactoring scripts versus manually applying refactoring operations, can be seen
in the work of Kim et al [51].

As an answer to this research question, we can assert that it is possible to automatically
transform a Java program into a framework and plug-in structure.

6.6 Related Work

As mentioned earlier, this is the first work that nearly fully automates the tasks required
to partition and restructure a Java program into framework and plug-in. Therefore, this
section contains the cornerstone research done by Opdyke[68] and others, that provided
with the means to make possible work like ours. Then we mention other research that aim
to locate pieces of code that could be generalized.

6.6.1 Cornerstone Research

Twenty-five years ago (1992), William Opdyke completed the first thesis on OO refactorings
[68]. The title of his thesis was “Refactoring Object Oriented Frameworks”. His research

26 The original source code for these programs is available in https://github.com/priangulo/BttFTestProjects.
The refactored code resulting of applying our transformation script can be found in
https://github.com/priangulo/BttFResults/tree/master/FWPl



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 90

compiled a list of refactorings that were used in refactoring (Smalltalk) frameworks in the
Choices operating system, largely to pull them apart into more manageable modules.

Opdyke introduced the concept of ’refactorings’: automatic, semantics preserving program
transformations. His thesis did not include a refactoring tool that would automate the
refactorings he identified. Therefore, there was no script, and no analysis, by which declar-
ations of Smalltalk programs would be assigned to a framework or to a plug-in. There was
no automatic tool to partition a legacy program into a framework or plug-in.

It may come as a surprise that the first really useful refactoring engines appeared in the
early 2000s; Eclipse version 1.0 included these refactoring operations: extract method,
rename, and move [39, 106]. Eclipse matured over the next 15 years, but still there was no
mainstream refactoring engine (such as Eclipse) that supported refactoring scripts. There
had been many attempts previously (see [49] for a detailed history), but the first tool that
could be used by common programmers or undergraduate students was R2 in 2015 [49].
In that paper, it was shown that many design patterns simply could not be fully imple-
mented by Eclipse refactorings, which were never designed to be called programmatically
in scripts. The basic problems were:

• lack of separation of concerns (move method refactorings were coupled with opti-
mizations that removed unneeded parameters – but creating visitors required no
such optimizations be invoked);

• the need for more general refactorings (the Eclipse inline refactoring was found to
be too restrictive to be useful in scripts, and Eclipse move method refactorings were
unable to move methods that invoked super, where in fact, move methods-with-
super is useful);

• Eclipse refactorings are slow: each takes about 1/2 second. When hundreds of refac-
torings are invoked, wait times are simply too long to be interactive; and

• Eclipse refactorings are bug-infested [49, 51].

The necessary tools to script refactorings/transformations in Java appeared only recently.
Program transformation systems were certainly available in this time frame, such as Strat-
ego [107] and DMS [13]. These systems are monuments of engineering prowess, their
learning curves are measured in weeks or months (which actually is no different than learn-
ing the Eclipse refactoring engine) [49]. Other work on Domain-Specific Languages, which
attempt to provide lighter-weight language front-ends to manipulate abstract syntax trees
still have overhead and have a limited following – Eclipse plugins, which R3 and X15 are
examples, seem to be more popular.

6.6.2 Generalization Research

Given that tools to script refactorings/transformations in Java appeared only recently, the
related work we mention in here is directed to the topic of when and where to refactor



CHAPTER 6. BTTF REFACTORING A PROGRAM INTO A FRAMEWORK AND PLUG-IN 91

programs to give them better structure. With no exceptions that we are aware, these pa-
pers were not accompanied or built-upon existing refactoring engines, so any claims to
demonstrable automation are extraordinarily rare.

A recent observation by someone in the refactoring community supports this viewpoint [8]:

“The refactoring community focused on solving problems from a slightly different
perspective:

1. Migrating large OO applications into component-based ones,

2. Migrating Java legacy apps into micro-services and SOAs, and

3. Migrating Java legacy apps into aspect-oriented ones.

All these problems require similar steps to migrate Java legacy apps to OO frame-
works and plug-ins. One of the main reasons could be the urgent needs to migrate,
based on refactorings, towards new emerging domains (since these domains did not
exists more than 20 years ago) such as SOA, aspect-oriented systems, etc. That could
be a nice example on how the refactoring "objectives" evolved and changed over
time... (for example, nowadays the objectives of refactoring mobile apps are different
than refactoring regular applications since there is much more emphasize on energy
consumption, memory usage, etc.)”

We agree with these observations, but the lack of scripting tools really puts many of these
objectives (and results) out of reach for most practitioners.

Works like [90, 34] acknowledge the need to restructure or refactor a program in order to
generalize some part of the programs and make it reusable. However, they lacked support
from an automated tool to apply all the code changes required to obtain a correct general-
ization.

Another representative paper, [35], proposes an approach to automatically identify a set
of abstractions that could be made from program declarations. This research is motivated
by ”comprehension improvement through more abstract constructs, re-architecture of ex-
isting systems to improve their maintenance, or migration to new paradigms”. Their ap-
proach is based on software clustering, which consists on identifying groups of program
declarations that may correspond to more abstract artifacts. They applied their cluster-
ing approach to ten C programs. This works presents the formulation of their approach,
however there is no evidence of any refactorings or transformations being applied.



Chapter 7

BttF Partitioning of Non-OO Programs
(GAML) into SPLs

7.1 Introduction

Multi-Agent Systems (MAS) concepts and prototypes date back 20 years. Compared with
Software Engineering, MAS is a rather young field. MAS aims to support future software-
intensive societies by “enabling cooperation, coordination, and evolution of large-scale
mixed human-machine systems” [61].

MAS are complex systems conformed by agents. An agent is a program and its key charac-
teristic is autonomy, which it displays by taking actions over the environment within it is
deployed. The actions are determined by an agent’s goals [109, pp. 15, 16]. In a MAS, the
main or global goal is accomplished in a distributed way, every agent contributes with its
actions and interacts with other agents in order to achieve a system’s goal [100]. A MAS is
decentralized by nature, agents have partial knowledge and control over the environment
they are deployed in [44].

MAS can be used to represent and investigate artificial and natural phenomena. They are
used in a large range or research areas, like computer games, economics, health care, ur-
ban planning and social sciences. However, the development of agent platforms is usually
driven by the domain of use each research community has. This has lead to numerous
MAS platforms [52]. However, this diversity of MAS platforms has lead to a “lack of proven
methodology and industrial-strength toolkits for creating agent-based systems” [40].

Among the research topics to advance MAS engineering, is the effort to combine MAS and
SPL approaches: Multi-Agent Systems Product Lines (MAS-PL) [75]. Most of the research
in MAS-PL is in methodological aspects, although there has also been some tool develop-
ment. None of this work has tried to partition a MAS into features. In this case, we use BttF
as a partitioning tool for a set of MAS programs, specifically MAS simulators developed in
GAMA platform. A following section describe this platform and its programming language.

92



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 93

The motives that made us apply BttF as a partitioning tool in this case were:

• While working on developing simulators in GIS1 & Agent-based Modeling Architec-
ture (GAMA), it became evident that GAMA lacks high level reuse. Which, in our
experience, is a common situation among MAS simulators development platforms.

• The way a MAS simulator is built tends to have a cross-cutting design. A functionality
is weaved through the code of every modeled entity. We consider that this design
is very agreeable with SPL concepts [11]. Each functionality added to a simulator
needs to be reflected across entities. There is a clear mapping from implemented
functionality and a SPL feature.

Later sections explain how we applied BttF in this case, the results we obtained, and cur-
rent related work.

7.2 GAMA Platform and GAML Language

GAMA is an open source modeling and simulation platform. It is a “complete modeling
and simulation environment for building rich spatially explicit agent-based simulations”
[30].

GAMA development started in 2007; it is based on Eclipse and Xtext.2 It provides tools
to develop and experiment highly complex models by the integration of “agent-based pro-
gramming, geographical data management, flexible visualization tools and multi-level rep-
resentation”. GAMA has been successfully used in several projects related to “environmen-
tal decision-support systems, urban design, water management, biological invasions, cli-
mate change adaptation or disaster mitigation” [42].

GAMA simulations are programmed in the GAma Modeling Language (GAML), which is an
agent-oriented modeling language [42]. A GAML program is called a model, its containing
file has the gaml extension. Figure 7.1 shows GAMA IDE; bubble 1 shows the list of models,
bubble 2 shows the code editor, bubble 3 points to the available experiments configured
for the model on screen, in this case, there is only one experiment named test.

Figure 7.2 shows a basic GAML model structure, which is composed of the following main
declarations [77]:

• Model Name. A model starts with its name declaration.

• Imports. It is possible to import other models. Imports are optional.

1 Geographic Information System.
2 Xtext is an open-source framework for development of programming languages.https://www.
eclipse.org/Xtext/

https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/


CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 94

Figure 7.1: GAMA IDE.

• Global. A global declaration contains attributes and methods declarations that are
visible and modifiable from any part of the model. In GAML, methods have two fla-
vors: actions and reflexes; an action is executed by an explicit call statement, like
an OOP method; a reflex is executed automatically on each tick while the simula-
tion is running.

• Species. A specie is used to define types of agents, it usually maps to an entity, for
example, in a predator-prey model, a specie could be the predator and another
specie the prey. Any number of instances of a species can be deployed in a sim-
ulation. A specie definition comprises attributes, actions and reflexes. A specie

is similar to an OO class, it is encapsulated from the rest of the model segments, how-
ever its attributes are visible and modifiable from any other part of the model, and
its actions can also be executed from any other part of the model.

• Experiment. An experiment contains the simulation parameters and the definition
of the output. An output for example could be a graphical display. A model can
contain any number of experiments. There are two types of experiments, gui or
batch; gui experiments allows to display a graphical interface in which a user could
set values for the input parameters; a batch experiment allows to execute numerous
successive simulation runs.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 95

1 model name_of_the_model
2

3 import "relative_path_to_a_model_file"
4

5 global {
6 // definition of global attributes , actions , and reflexes
7 }
8

9 species my_specie {
10 // definition of attributes , actions , and reflexes
11 }
12

13 experiment my_experiment type: gui //type is gui or batch
14 {
15 // definition of input parameters
16 output {
17 // outputs definition
18 }
19 }

Figure 7.2: The @Feature Annotation Type

7.3 Obtaining a CRG from a GAML Program

BttF uses Eclipse’s Java Abstract Syntax Tree (AST) support to obtain a CRG for Java pro-
grams. However, ASTs are not exclusive to Java programs. Programming languages devel-
oped with Xtext rely on Eclipse Modeling Framework (EMF).3 Through EMF, a program-
ming language created using Xtext can produce ASTs [110].

GAML was created using Xtext, therefore it is possible to obtain ASTs for the models or
programs developed with this language. However, GAMA platform and IDE do not have
an implemented option to traverse a GAML model’s AST, and print the data we require to
generated a PT’s CRG. Therefore, we had to modify the source code of GAMA platform to
implement a functionality that would traverse a model’s AST and output what we required
to compute a CRG.

The GAMA platform is an open source project. Its source code in available in GitHub4. We
cloned GAMA platform repository on August 2016, the version we obtained was a beta ver-
sion of GAMA 1.7. After exploring and understanding the architecture and implementation
of GAMA platform, we were able to implement a model’s AST traversal method that would
output a CSV file with the data required to generate a BttF’s CRG.

We added our implementation to an existing functionality. Figure 7.3 shows the contextual
menu shown for a model, which has an option named Refresh metadata. We added in-

3 Eclipse Modeling Framework supports the creation of building tools (i.e. programming languages and
IDEs), http://www.eclipse.org/modeling/emf/

4 GAMA platform source code repository is in https://github.com/gama-platform/gama/.

http://www.eclipse.org/modeling/emf/
https://github.com/gama-platform/gama/


CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 96

structions to the implementation of the method executed by this option. When Refresh

metadata option is executed, the AST of the selected model is traversed, and BttF’s CRG
required data is obtained and saved in a CSV file (CRGcsv). The details about this modifi-
cation and an example of a CRGcsv are contained in Appendix D.

Figure 7.3: GAMA refresh metadata option.

A CRGcsv is basically a list of all the declarations’ references found in a program, in this
case, in a GAML model. Each line of the file contains a reference, these are the required
attributes for a reference:

• Identifier of the declaration making a reference to another declaration, we named
this call_from.

• Identifier of the declaration that is referenced, we named this call_to.

• call_from declaration type.

• call_to declaration type.

For GAML, we have these declaration types:

• Declaration. This is a field declaration.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 97

• Action. This is a method that is executed by an explicit call in the model.

• Reflex. This also is a method, but is automatically executed on every tick of a simu-
lation.

• Specie. Equivalent to a Java class. In can contain attributes and methods.

In Chapter 4 we mentioned the possibility of executing BttF as a standalone program (as
opposite of its Eclipse plug-in execution mode). The standalone version of BttF allows a
user to input a CRGcsv. This file is read by BttF, and parsed into a CRG. As part of this pro-
cess, BttF maps declaration types to the types that are known to it: classes, methods, fields,
etc.5 Currently BttF is capable of performing this mapping for GAML and Java languages.
As BttF was originally conceived to partition Java programs, the mapping process for this
language is a natural fit. For GAML we have these declaration types mapping:

GAML declaration type BttF declaration type
Declaration Field

Action Method
Reflex Method
Specie Class

Experiment Class

Table 7.1: GAML declarations’ types mapping to BttF’s declaration types.

7.4 Experimental Setup

Like the experiments in previous chapters, expert knowledge is also required in order to
partition a GAML model. For this evaluation we used six GAML models that we were part
of their development. These models implement electrical smart grid related simulations
using intelligent agents that participate in a combinatorial auction to buy power from the
electrical grid [16].

Table 7.2 lists the programs selected for this evaluation.6 Programs are sorted by LOC (Lines
of Code).7 # of Features is the number of features contained in a program’s partitioning
feature model. # of Declarations refers to the number of declarations found in a pro-
gram’s CRG.

5 BttF’s declaration types are described in ??.
6 The source code for these programs is available in https://github.com/priangulo/
BttFTestProjects/tree/master/smartGridSim/models

7 Lines of code in this case are the number of lines contained in a model’s file.

https://github.com/priangulo/BttFTestProjects/tree/master/smartGridSim/models
https://github.com/priangulo/BttFTestProjects/tree/master/smartGridSim/models


CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 98

Program LOC # of Features # of Declarations
sg_scheduling_dtp 1612 3 217
sg_auctions_dtp 1597 3 204
sg_auctions 1588 2 194
sg_scheduling 1559 2 207
sg_nonsmart_dtp 593 2 112
sg_nonsmart 544 2 101

Table 7.2: GAML programs to partition into SPLs with BttF.

7.5 Research Questions

For this scenario of partitioning a GAML model into a SPL, we formulated one research
question. We want to compare the inference rates obtained with this experiments versus
the inference rates obtained with Java programs partitioned into SPL.

RQ1 How similar are the inference rates obtained when partitioning GAML models into
SPLs, to the inference rates obtained when partitioning Java programs into SPLs?

To have a correct assessment, we need to compare each GAML model partitioning
inference rate, with the average inference rate obtained in an equivalent set of exper-
iments. For example, if a GAML model was partitioned using a feature model with
configuration base heavy,8 then we have to compare its obtained inference rate with
the average inference rate obtained with the Java experiments that were partitioned
with the same configuration.

7.6 Results

Every program used in this evaluation was partitioned into a SPL using BttF. Four of the
programs had two features in their feature model, the other two programs had three fea-
tures in their feature model. For the programs with a two-feature feature model, we per-
formed a single experiment. The results of these experiments are to be compared with the
equivalent type of Java SPL partitioning experiments. For the programs with a three-feature
feature model, we performed two experiments:

E1 We used the original three-feature feature model. We cannot compare these results
with JAVA SPL partitioning experiments9, therefore we defined the next type of ex-
periment,

8 Base heavy means most of the declarations are assigned to BASE feature.
9 This comparison would lead to spurious results. For a correct comparison it is necessary that the set of

experiments that are being compared, are performed on similar conditions.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 99

E2 We combined the second and the last feature into a single one, aiming for a top heavy
configuration10.This way we could compare with Java E2 (top heavy) SPL partitioning
experiments.

Table 7.3 contains the general results obtained with these experiments. The fields in this
table are as follows:

• Type is the experiment type name:

– Original. The original feature model was used. We used this type of experiment
for sg_scheduling_dtp and sg_auctions_dtp programs, their feature model
contained three features.

– TH. A top heavy11 configuration was used. We used this type of experiment
for sg_scheduling_dtp and sg_auctions_dtp programs, we comprised their
second and third feature into a single feature TOP.

– Original (TH). The original feature model was used and it turned out to be a
top heavy configuration. We used this type of experiment for programs with a
two-feature feature model.

– Original (BH). The original feature model was used and it turned out to be a
base heavy12 configuration. We used this type of experiment for programs with
a two-feature feature model.

• N is the number of features in the partitioning feature model.

• F1 is the number of declarations contained in the first or BASE feature.

• F2 is the number of declarations contained in the second feature. For the experi-
ments with a two-feature feature model, this feature was the last of TOP.

• F3 is the number of declarations contained in the third feature, if there was a third
feature in the feature model.

• FP is the number of fprivate facts provided by an expert.

• FP% is the percentage of FP,

FP% = # of fprivate facts
# of program declarations

·100 (7.1)

• I is the overall number of declarations that were inferred. For this scenario, BttF
makes five types of inferences. These are mentioned in later bullet points.

10 A top heavy top configuration assigns most of the declarations to the TOP or last feature.
11 Top heavy means most of the declarations were assigned to the TOP or last feature.
12 Base heavy means most of the declarations were assigned to the BASE or first feature.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 100

• I% is the percentage of declarations inferred by BttF,

I% = # of BttF inferences
# of program declarations

·100 (7.2)

• IF is the number of declarations inferred because they reference a fprivatemethod
or field.

• IC is the number of declarations inferred because they belong to a fprivate con-
tainer.

• IL is the number of declarations that were assigned fprivate because they belong
to the last feature in the feature model.

• IO is the number of declarations inferred because they had only one feature in bounds.

• IN is the number of declarations inferred because they have no references other than
to its container.

• H is the number of identified hook methods.

Type N F1 F2 F3 FP FP% I% I IF IC IL IO IN H
sg_scheduling_dtp
Original 3 63 20 134 0 0% 21.2% 46 0 0 46 0 0 1
TH 2 62 155 - 0 0% 25.8% 56 0 0 56 0 0 0
sg_auctions_dtp
Original 3 75 12 117 0 0% 32.8% 67 2 0 65 0 0 2
TH 2 73 131 - 0 0% 32.8% 67 0 0 67 0 0 0
sg_auctions
Original (TH) 2 88 106 - 0 0% 26.3% 51 0 0 51 0 0 0
sg_scheduling
Original (TH) 2 69 138 - 0 0% 22.7% 47 0 0 47 0 0 0
sg_nonsmart_dtp
Original (BH) 2 109 3 - 0 0% 55.4% 62 0 0 0 62 0 0
sg_nonsmart
Original (TH) 2 47 54 - 0 0% 33.6% 34 0 0 25 9 0 0

Table 7.3: GAML SPLs partitioning results.

7.6.1 RQ1. How similar are the inference rates obtained when partition-
ing GAML models into SPLs, to the inference rates obtained when
partitioning Java programs into SPLs?

To answer this question, we need to separate the experiments in two groups:



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 101

• Top heavy experiments. Five of the programs were partitioned with a top heavy con-
figuration. We can compare this group with Java E2 (top heavy) SPL partitioning ex-
periments, because they were partitioned using a similar configuration.

• Base heavy experiment. One of the experiments, sg_nonsmart, was partitioned us-
ing a feature model with a base heavy configuration. Let us refer to this experiment’s
result as r, we need to determine the probability of r of being part of the results ob-
tained with Java E3 (base heavy) SPL partitioning experiments. This means we need
to evaluate the likelihood of rhappening if we were partitioning a Java program using
a base heavy configuration.

Top Heavy Experiments

To compare GAML top heavy experiments results (GTH-results) with Java top heavy exper-
iments results (JTH-results), we need to perform a hypothesis test. A simple comparison
of results’ means is not enough, as the results come from different experiments. As men-
tioned in a previous chapter, Hypothesis testing is a process that allows to evaluate claims
about a population. A hypothesis test uses data obtained from a sample to make a deci-
sion about whether a claim can be accepted or rejected [14, p. 400–430]. In this case we are
claiming that GTH-results are equal than JTH-results. We claim this, because both types of
experiments used the same type of feature model configuration for partitioning.

The formula to use on hypothesis testing depends on the attributes of the data that we have
as a result from our experiments. We have two samples13, one that represents GTH-results,
and another that represents JTH-results.

Our samples are considered small, for GTH-results we have five values, and for JTH-results,
seven. Given this, we need to use t-test as our statistical test [27, p.357, 358]. We compare
the means of both samples. And our claim is that GTH-results mean is equal than JTH-
results mean. The formal enunciation is:

H0 :µ= 64.67, this is the mean obtained with JTH-results,

we claim that this mean remains true for GTH-results

Ha :µ 6= 64.67

To perform this hypothesis test we used R-Project, which is an environment for statistical
computing [81]. The function we used is t.test from R’s core package stats [82]. We pro-
vided this function with the values for H0 (JTH-results) and Ha (GTH-results), and specified
that we were conducting a two-sided comparison, which evaluates if Ha’s mean µ is dif-
ferent than H0’s mean µ. By default, this test is performed with a confidence value (α) of
0.05%. This means that we have 95% certainty over the decision we make about rejecting
(or not) our H0 hypothesis.

13 We say samples, because we did not conduct exhaustive experimentation, which would imply testing with
every existing Java program, which is impossible.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 102

The result obtained was:
p-value = 0.0029 (7.3)

The p-value (probability value) is the probability of obtaining Ha results when H0 is true.
In this case, it is the probability of obtaining the mean stated in Ha when the true popu-
lation mean is the one stated in H0. P-value measures the probability of Ha results being
sufficiently evident and consistently better to disprove the results obtained with H0. To
interpret a p-value we follow these rules [14, p. 418]:

p-value <α, reject H0
p-value ≥α, do not reject H0

Since our p-value 0.0029 is less than our confidence value α 0.05, we have evidence to
reject H0. This means that we do not have evidence to support that the results obtained
with GTH-results are similar or equivalent to the results obtained with JTH-results.

For a reader comparing the inference rates obtained with JTH-results, and the inference
rates obtained with GTH-results, it could be obvious that GTH-results were much lower
than JTH-results.

The question now is why this difference in the inference rates? Both set of experiments
were performed with a similar configuration. The difference in these results lies on the
number of references among the declarations in the TOP layer. For Java programs, assigning
a declaration to TOP feature had as a common effect dragging at least one more declaration
to be part of the TOP feature14. For GAML programs we found that most of the declarations
assigned to the TOP feature had references to the BASE feature, and very few of them would
reference another declarations in the TOP feature. This situation reduced the impact that
inferences for referencing a declaration in the last feature had. For GAML programs it was
observed that declarations in the TOP feature had few references among each other.

Base Heavy Experiment

For this case we have a single base heavy GAML experiment (GBH-result). We need to ob-
tain the probability of having this result if we were performing base heavy Java experiments
(JBH-results). This posses a challenge, we do not know all the possible results that could
be obtained when partitioning a program using a base heavy configuration15, therefore,
we need a way of measuring how likely is for GBH-result to be a value of a distribution that
represents JBH-results.

To obtain this probability we performed two steps:

14 For the Java programs we used for evaluation in SPL partitioning, it was rare to find isolated declarations,
or declarations with few references. It could be said that Java programs CRG was a dense graph[105], it
had more edges than vertices. When a declaration d is assigned to the TOP feature, it is set as fprivate,
therefore, declarations that reference d are subject to be assigned to TOP feature too.

15 To obtain all the possible results we would have to partition every possible Java program and every possible
GAML program or model, which is impossible.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 103

Step 1. Obtain JBH-results distribution. Since JBH-results is composed of a small number of
values, it is likely to pass a normality test, which asserts that a sample has a normal
distribution. The adequate test for this case is Shapiro-Wilk test for normality. This
normality test applies to small samples, of size 50 or less[83].

To perform this normality test we used R-Project, which is an environment for statis-
tical computing [81]. The function we used is shapiro.test from R’s core package
stats [82]. We provided this function with the values for JBH-results. By default, this
test is performed with a confidence value (α) of 0.05%. This means that we have 95%
certainty over the normality of the sample.

The result obtained was:
p-value = 0.777 (7.4)

For shapiro.test, this p-value is interpreted as follows:

p-value <α, do not passed normality test

p-value ≥α, passed normality test

Since 0.777 is greater than 0.05 (α), we can assert that JBH-results appears to have a
normal distribution. Since our sample passed the normality test, we can proceed to
the next step16.

Step 2. Given that JBH-results follows a normal distribution, now we have to determine what
is the probability of GBH-result to be part of this distribution. In this case we need to
perform a statistical test that evaluates the probability of GBH-result to be inside the
distribution curve of JBH-results. The formula and procedure to perform this were
taken from [14, p. 427-429]:

• Convert GBH-result into a t-value, this is similar to normalizing a value, the
formula for this is:

t= X−µ
s/
p
n

where,

X= Observed value to convert, in this case GBH-result

µ= Mean of the values in JBH-results

s= Standard deviation of the values in JBH -results

n= Number of observations in JBH-results

16 If our sample wouldn’t have passed the normality test, we would have had to perform other statistical tests
to determine which statistical distribution our sample has.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 104

• Obtain the p-value, this is the probability of our t-score to be inside the desired
distribution curve. This is the formula =

p−value= 2∗pt(−abs(t),df)

where,

pt= Is the distribution function for t statistic, it returns a p-value.

abs(t) = Absolute value of t, which we obtained in the previous step

df= Degrees of freedom, n−1

This formula makes use pt, which is the distribution function for t statistic. This
function provides the probability of a t−value to be under the t distribution
curve. A reader might notice that this formula multiplies by 2 the probability
obtained, this is because the formula considers both tails of the curve.

We executed these steps in R-Project, which is an environment for statistical com-
puting [81]. For pt function, we used R’s core package stats, which has a pt imple-
mentation [82]. We provided this function with the required values, as stated in the
formula. The result obtained was:

p-value = 0.00028 (7.5)

By defaultα in this case in 0.05, therefore our confidence interval is 95%. The p-value
obtained is interpreted as follows:

p-value <α, t does not belong to that distribution curve

p-value ≥α, t belongs to that distribution curve

Our p-value (0.00028) is less than ourα (0.05), this means that there is no evidence, or
support of GBH-result belongs to the same distribution curve that JBH-results have.
Therefore, GBH-result is not similar to JBH-results.

As a reader might observe, the inference rated obtained with GBH-result (55.4%) is
higher than the inference rates obtained with JBH-results, (37.9% was the highest ob-
tained). Table 7.3 shows that actually the highest inference rate obtained with GAML
experiments was precisely with this experiment (sg_nonsmart_dtp) model. For Java
SPL partitioning experiments, E3 (base heavy) experiments had the worst inference
rate, as opposite to what we observed for GAML. For this experiment, all the infer-
ences made were because there was only one feature in bounds, this kind of infer-
ence was rare in Java SPL partitioning. It could be said that for GAML programs, BttF
has a higher inference rate when the partitioning is made with a base heavy con-
figuration, however, we only have one example of this behavior. More experiments
would have to be performed to assert the validity of this affirmation.



CHAPTER 7. BTTF PARTITIONING OF NON-OO PROGRAMS (GAML) INTO SPLS 105

7.7 Related Work

Many papers have been written on MAS product lines. Keep in mind that there is no
tool or prior work directly comparable to BttF in migrating legacy MAS systems to MAS
product lines. The research we cite in this section are contributions on MAS-PL develop-
ment methodologies. They focus on the modeling phase when developing a MAS-PL from
scratch, not on partitioning an existing MAS into a MAS-PL, which is the focus of BttF.
Their contributions are useful for the analysis and design phases of a MAS-PL.

There are three main MAS-PL methodologies that support the modeling of a MAS-PLs:

• MAS PASSI + SPL PLUS. [54] first proposed a generative approach to develop MAS
systems using aspect oriented techniques. In their proposed process they support
MAS design using these modeling languages: Agent−DSL[53] and aSideML[19]. Both
specifications are used for modeling variabilities and commonalities. In this work
AspectJ17 was used to support the implementation of their approach.

Later, to overcome limitations of existing MAS modeling languages with regards to
express variability (as required when modeling a SPL), [66, 65] proposed an agent
variability modeling language that extended PLUS (Product Line UML-based Soft-
ware Engineering) notation language [41] with the MAS PASSI (Process for Agent So-
cieties Specification and Implementation) [22] design methodology. This research
work details the challenges of correctly modeling commonalities and variabilities for
a MAS-PL, which is critical for defining any SPL. They also describe specific prob-
lems that need to be addressed on MAS, that do not exist when designing a SPL for
OO systems.

• Gaia-PL. [25, 26] proposed and created Gaia-PL methodology, which extends MAS
Gaia methodology[111] to document variability per agent roles18. Gaia is the most
commonly used methodology to guide the process of developing a MAS[18].

• MaCMAS. [73, 74] presents the MaCMAS methodology, and describes its application
in a case study where a MAS-PL is developed. This methodology supports modeling
complex MAS and focuses on multi-role interactions, interactions among agents.

Some of these papers presented examples of a product line derivation; all used AOP19as
their derivation technique.

17 AspectJ is Eclipse’s aspect oriented implementation for Java programs [80].
18 A MAS is usually designed around the agents that are to be developed and the role they will play in the

system.
19 Aspect oriented programming (AOP) is a paradigm that adds modularity to a program without modifying

the source code structure, by adding instructions that allow the separation of cross-cutting concerns [104].



Chapter 8

Conclusions and Future Work

Partitioning a program, into an SPL or into a framework and plug-in, is hard. If performed
manually, it is not only tedious, but prone to errors. The consistently good results we ob-
tained with BttF shows its usefulness as a tool to support the correct feature partitioning
of a program, and therefore, we consider that it is the right path to reduce the adoption
barrier SPL technologies currently have.

We successfully applied BttF in three different scenarios, with results never obtained be-
fore with related research:

• Partitioning of a Java program into an SPL. This was our main evaluation scenario;
BttF was designed with this scenario on mind. For the best set of experiments we
obtained an average inference rate of 64.7%; the highest inference rate obtained with
these experiments was 84.5%, this means that for that specific experiment, a user
only did 15.5% of the assignment work, and BttF did the rest.

• Partitioning of a Java program into a framework and plug-in. For this scenario,
BttF’s average inference rate was lower than for its main scenario, 39.5%. However,
we integrated two state-of-the-art tools, BttF and R3, to perform an almost fully au-
tomated1 transformation of a Java program into a framework and plug-in structure.
This kind of work has never been performed before.

• Partitioning of a GAML programs into an SPL. MAS development is currently an
active research area. This has lead to the creation of numerous MAS development
platforms [52], however, these platforms are not yet as mature as OO development
platforms. One of the topics that recently got attention is the usage of SPL technolo-
gies on MAS, most of this research covers methodological challenges. BttF is the first
tool used to identify features in MAS programs. The best inference rate obtained with
this scenario evaluation was 55.4%.

1 Only those methods identified by BttF as hooks were not transformed, this remains as a task that needs
to be performed manually by developers. However, we found that hook methods tend to be rare; the
maximum number of hook methods we identified with our experiments, was nine.

106



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 107

Related work that aim to extract features from a program [48, 76, 99] do not fully partition a
program into features; instead, they extract one feature at a time, or a set of features that do
not fully cover a program’s codebase. This forces their evaluations to focus on the precision
and recall of their results. In our case, our tool fully partitions a program’s codebase, and
our CRG-based approach asserts the correctness of the partitioning, therefore precision
and recall are not relevant. Our focus was to reduce the amount of work a developer needs
to perform. This is the reason why our main success metric is inference rate.

8.1 Future Work

We envision three additions we consider would improve BttF:

• Add a pre-partitioning step to help a developer get better acquainted with a pro-
gram to partition. Even if a developer is an expert on a program codebase, s/he may
struggle to remember the dependencies and affiliations of every declaration. We per-
sonally experienced this situation. We consider adding an extra tool to run searches
over a program’s source code; this tool would allow to search for keywords, naming
conventions and patterns, to help group declarations in a way that would aid feature
assignment.

• Allow a user to provide assignments, not only by following our designed assignment
main path2 , but also by order of the amount of declarations that reference a decla-
ration. This way a developer could assign first those declarations that would have a
larger impact in the partitioning process, even more if the declaration being assigned
is fprivate.

• The analysis of BttF is based on a notion of time: that feature α was built before
β, γ was built after β, etc. This information is available in Version Control Systems
(VCSs). If the VCS repository of program could be mined, we could gather a tremen-
dous amount of information – like when features were developed, and the coinci-
dence of the introduction of declarations at that time. This is often the information
that BttF asks of its users and that users have a hard time to provide. This, we believe,
may have a great impact on raising BttF inference rates in the future.

With these additions, we believe BttF could be used to partition even larger programs, and
ideally, commercial programs that are in need to adopt SPL technologies.

2 BttF’s main path is described in Section 3.2.7



Appendix A

Refactorings versus Transformations

A refactoring script starts with a program s and applies a series of refactorings to produce

a restructured program e. At each step of the refactoring process, preconditions are evalu-

ated to verify the legality of that refactoring; if any precondition fails, the refactoring fails,

and so too does the script. Figure A.1 illustrates how every refactoring r applied to a pro-

gram s yields a program that is semantically equivalent to s.

Figure A.1: Refactoring process

Another approach to restructure a program s into e, is a transformation script, which is

less restrictive. The only guarantee is that given input program s, the end program e will

be behaviorally equivalent to s. The steps that are taken are transformations that do not

necessarily preserve program behavior. This approach is similar to a database transaction,

which preserves database consistency at the end of the transaction, but no guarantees are

offered for any state of the database during the execution of the transaction. Consider

Figure A.2, we start at program s. We apply transformations t1, t2, t3, t4 in this order to

produce end program e. Note that the intermediate programs (denoted by red dots) are not

behaviorally equivalent to s. It is even possible that these programs will not even compile.

It is only the end result, program e, in which we are interested.

108



APPENDIX A. REFACTORINGS VERSUS TRANSFORMATIONS 109

Figure A.2: Transformation process

This second approach may seem odd, as one would like to guarantee the semantic equiv-

alence of s and e. A refactoring engine on its own could perform transformations (not

refactorings), but not guarantee that program e is behaviorally equivalent to program s.

However, in this case, we have BttF which analyzes s, and plots the sequence of transfor-

mations to map s to e. We do not need to use refactorings (with their precondition checks)

because, in effect, BttF’s analysis is taking care of this. There is no need for the refactoring

engine to duplicate (or complicate or verify) what BttF has already done. This approach

is well-known, for example, in taking a single-threaded legacy application and rewriting

its code into a multi-threaded application. The refactoring engine is really being used as a

transformation engine. The tool that does the single-threaded-to-multi-threaded mapping

performs the required analysis .

BttF supports this mapping process from s to e. BttF applies a set of rules to correctly

determine the new location of declarations in the new structure of program e, and only

needs a transformation engine to accomplish its code restructuring.



Appendix B

R3 framework and plug-in transformation
script

1 package r3forBttf;
2

3 import java.util.ArrayList;
4 import java.util.stream.Collectors;
5 import bttf.Element;
6 import bttf.ElementType;
7 import bttf.FWPlBelongLevel;
8 import bttf.Partition;
9 import bttf.PartitionHelper;

10 import gui.GuiConstants;
11 import gui.InputFile;
12 import p.actions.*;
13 import java.awt.Frame;
14

15 public class RefactoringScript {
16 Partition partition;
17 ArrayList<String> notFound = new ArrayList<String>();
18 ArrayList<String> lifted = new ArrayList<String>();
19 private String start_path = System.getProperty("user.home") + "\\Desktop\\BttF";
20

21 public void applyBttFrefactorings() {
22 InputFile inputFile = new InputFile();
23 Frame parentWindow = new Frame("Bttf-R3");
24

25 String file_name = InputFile.getFileFromFileDialog(parentWindow, start_path,
GuiConstants.CSV_EXTENSION, "");

26 this.partition = inputFile.get_elements_from_csv_file_nocheck(file_name);
27

28 // FW is the list of plugin classes and interfaces that will belong to the
framework

29 ArrayList<RType> FW = new ArrayList<RType>();
30

31 ArrayList<Element> packages = (ArrayList<Element>)
partition.get_elements().stream()

32 .filter(e -> e.getElement_type().equals(ElementType.ELEM_TYPE_PACKAGE))

110



APPENDIX B. R3 FRAMEWORK AND PLUG-IN TRANSFORMATION SCRIPT 111

33 .collect(Collectors.toList());
34

35 for(Element packag : packages){
36 RPackage original = RProject.getRPackage(packag.getIdentifier());
37

38 RPackage frame = null; // framework package
39 RPackage plugn = null; // plugin package
40 RClass abstractFactory = null; // (abstract) factory class of the framework
41 RClass concreteFactory = null; // (concrete) factory class of the plugin
42

43 // Step 1: create framework package and rename original
44 RPackage parent = original.getParent(); //get parent package
45 String origName = original.getName();
46 String pluginName = origName+"_plugin";
47 String frameName = origName+"_framework";
48

49 original.rename(pluginName);
50 frame = parent.makePackage(frameName);
51 plugn = original;
52

53 // Step 2: create an empty framework abstract factory class and empty
54 // plugin concrete factory class that have a subclassing relationship
55 abstractFactory = frame.makeAbstractClass("Factory");
56 concreteFactory = plugn.makeSubClass("Factory", abstractFactory);
57

58 // Step 3: populate FW with original/plugin classes
59 for (RPackageMember pm : plugn.getMembers()) { //pm could be a class, interface,

enum, @Interface, package
60

61 Element pm_bttf = getBttFElementFromR3PM(pm, origName, pluginName, frameName);
62

63 if(pm_bttf != null && pm_bttf.getIdentifier() != null){
64 boolean fully_belongs_to_framework =

pm_bttf.belongLevelFW().equals(FWPlBelongLevel.FULLY_BELONGS_FW);
65 boolean only_parts_belong_to_framework =

pm_bttf.belongLevelFW().equals(FWPlBelongLevel.PARTIALLY_BELONGS_FW);
66

67

68 // Step 3.a: if members of a FW concrete class have constructor calls,
69 // the class must be processed as it partially belongs to the framework
70 // so we can apply liftConstructorCalls later
71 if((fully_belongs_to_framework == true)
72 && !pm.isInterface()
73 && pm.isConcrete()
74 && pm_bttf.needsLocalConstructor()
75 ){
76 fully_belongs_to_framework = false;
77 only_parts_belong_to_framework = true;
78 }
79

80 // Step 3.b: create abstract classes for classes that partially
81 // belongs to the framework
82 if (only_parts_belong_to_framework == true) {
83 if (!pm.isInterface()) {



APPENDIX B. R3 FRAMEWORK AND PLUG-IN TRANSFORMATION SCRIPT 112

84 System.out.println("make FW abstract class: " + pm.getName());
85 RClass ac = frame.makeAbstractClass(pm.getName());
86

87 if(pm.getExtends() != null){
88 System.out.println("current extends of pm: " + pm.fullName + " " +

pm.getExtends().fullName);
89 }
90 if(ac.getExtends() != null){
91 System.out.println("current extends of ac: " + ac.fullName + " " +

ac.getExtends().fullName);
92 }
93

94 ac.makeExtends(pm.getExtends());
95 pm.makeExtends(ac);
96 FW.add((RType)pm);
97 }
98 else if (pm.isInterface()) {
99 RInterface i = frame.makeInterface(pm.getName());

100 i.makeExtends(pm.getExtends());
101 pm.makeExtends(i);
102 FW.add((RType)pm);
103 }
104 else if (pm instanceof REnum || pm instanceof RAnnotation) {
105 //BTTF DOES NOT ALLOW THIS because @interface and enum cannot extend
106 }
107 }
108 }//END OF if(pm_bttf != null && pm_bttf.getIdentifier() != null){
109

110

111 // Step 4: lift constructor calls
112 for (RType t : FW) {
113 for(RTypeMember m : t.getMembers()){
114 Element m_bttf = getBttFElementFromR3PM(m, origName, pluginName, frameName);
115 if(m_bttf != null && m_bttf.getIdentifier() != null){
116 if(!m_bttf.isIs_hook()){
117 m.liftConstructorCalls(FW); //this method does the hard work
118 }
119 }
120 }
121 }
122 }//END OF for (RPackageMember pm : plugn.getMembers()) {
123

124

125 // Step 5: move or pull apart types that partially belong to the framework
126 for (RPackageMember pm : plugn.getMembers()) {
127 Element pm_bttf = getBttFElementFromR3PM(pm, origName, pluginName, frameName);
128 if(pm_bttf != null && pm_bttf.getIdentifier() != null){
129 boolean fully_belongs_to_framework =

pm_bttf.belongLevelFW().equals(FWPlBelongLevel.FULLY_BELONGS_FW);
130 boolean only_parts_belong_to_framework =

pm_bttf.belongLevelFW().equals(FWPlBelongLevel.PARTIALLY_BELONGS_FW);
131

132 if((fully_belongs_to_framework == true)
133 && !pm.isInterface()



APPENDIX B. R3 FRAMEWORK AND PLUG-IN TRANSFORMATION SCRIPT 113

134 && pm.isConcrete()
135 && pm_bttf.needsLocalConstructor()
136 ){
137 fully_belongs_to_framework = false;
138 only_parts_belong_to_framework = true;
139 }
140

141

142 if(fully_belongs_to_framework == true){
143 lifted.add(pm.getFullName());
144 pm.liftAllTypes(FW);
145

146 //move all contents to framework package
147 pm.move(frame);
148 pm.setPublic();
149 for(RTypeMember m : pm.getMembers()){
150 if(m.isConstructor()){
151 m.setPublic();
152 }
153 else if(!m.isProtected()){
154 m.setPublic();
155 }
156 }
157 continue;
158 }
159

160 if (only_parts_belong_to_framework == true){
161 RType absT = pm.getParent(); //created previously
162 for(RTypeMember m : pm.getMembers()){
163 Element m_bttf = getBttFElementFromR3PM(m, origName, pluginName, frameName);
164 if(m_bttf != null && m_bttf.getIdentifier() != null){
165 boolean m_fully_belongs_to_framework =

m_bttf.belongLevelFW().equals(FWPlBelongLevel.FULLY_BELONGS_FW);
166 if(m_fully_belongs_to_framework){
167 if(!m.isConstructor() && ( m_bttf.isIs_hook() || m.isLocalFactory()) ){
168 if(!m.isPrivate() && !m.isProtected() && !m.isPublic()){
169 m.setProtected();
170 }
171 absT.makeAbstractMethodWithLiftedSignatureTypes(m,FW);
172 }
173 else if(m.isConstructor()){
174 m.setPublic();
175 RMethod f = concreteFactory.makeFactoryWithLiftedSignatureTypes(m, FW);
176 abstractFactory.makeAbstractMethod(f);
177 lifted.add(pm.getFullName());
178 abstractFactory.liftAllTypes(FW);
179

180 absT.addConstructor((RMethod)m);
181 }
182 else {
183 lifted.add(m.getFullName());
184 m.liftAllTypes(FW);
185 m.promote();
186 if(!m.isProtected()){



APPENDIX B. R3 FRAMEWORK AND PLUG-IN TRANSFORMATION SCRIPT 114

187 m.setPublic();
188 }
189 }
190 }//END OF if(m.fully_belongs_to_framework){
191 else{
192 lifted.add(m.getFullName());
193 m.liftAllTypes(FW);
194 }
195 }//END OF if(m_bttf != null && m_bttf.getIdentifier() != null){
196 }//END OF for(RTypeMember m : pm.getMembers()){
197 if(absT != null){
198 lifted.add(absT.getFullName());
199 absT.liftAllTypes(FW);
200 }
201 pm.liftAllTypes(FW);
202 }//END OF if (pm.only_parts_belong_to_framework == true){
203

204

205 }//END OF if(pm_bttf != null && pm_bttf.getIdentifier() != null){
206 }//END OF for (RPackageMember pm : plugn.getMembers()) {
207

208 }//END OF for(Element packag : packages){
209 printNotFound();
210 printLifted();
211 }
212

213 private Element getBttFElementFromR3PM(RPackageMember pm, String origPName, String
plPName, String fwPName){

214 Element pm_bttf = null;
215 String fullName = null;
216

217 if (pm instanceof RType){
218 fullName = ((RType)pm).fullName;
219 }
220 else if (pm instanceof REnum){
221 fullName = ((REnum)pm).fullName;
222 }
223 else if (pm instanceof RAnnotation){
224 fullName = ((RAnnotation)pm).fullName;
225 }
226 else{
227 fullName = pm.fullName;
228 }
229

230 if(fullName.startsWith(plPName + ".") && !fullName.startsWith(origPName + ".")){
231 fullName = fullName.replaceFirst(plPName + ".", origPName + ".");
232 }
233 pm_bttf = PartitionHelper.get_element_from_string(partition.get_elements(),

fullName);
234

235 if(pm_bttf == null){
236 addToNotFound(fullName);
237 }
238 return pm_bttf;



APPENDIX B. R3 FRAMEWORK AND PLUG-IN TRANSFORMATION SCRIPT 115

239

240 }
241

242 private Element getBttFElementFromR3PM(RTypeMember tm, String origPName, String
plPName, String fwPName){

243 String fullName = null;
244

245 if (tm instanceof RMethod){
246 fullName = ((RMethod)tm).getSignature();
247 fullName = fullName.replace("\\n\\r", " ");
248 fullName = fullName.replace("\\r\\n", " ");
249 fullName = fullName.replace("\\r", " ");
250 fullName = fullName.replace("\\t", " ");
251 if(fullName.contains(" throws ")){
252 int endIndex = fullName.lastIndexOf(")", fullName.indexOf(" throws "));
253 fullName = fullName.substring(0, endIndex+1);
254 }
255

256 fullName = fullName.replaceAll("(\\s+\\()", "(");
257 fullName = fullName.replaceAll("(\\(\\s+)", "(");
258 fullName = fullName.replaceAll("(\\s+\\))", ")");
259 fullName = fullName.replaceAll("(\\s+,\\s{0})", ", ");
260 fullName = fullName.replaceAll("(\\s){2,}", " ");
261

262 fullName = fullName.trim();
263

264 String parentFullName = ((RMethod)tm).getRType().fullName;
265 if(!fullName.startsWith(parentFullName)){
266 fullName = parentFullName + "." + fullName;
267 }
268 }
269 else if (tm instanceof RFieldDeclaration){
270 fullName = ((RFieldDeclaration)tm).getFullName();
271 String parentFullName = ((RFieldDeclaration)tm).getRType().fullName;
272 if(!fullName.contains(parentFullName)){
273 fullName = parentFullName + "." + fullName;
274 }
275 }
276 else{
277 fullName = tm.getFullName();
278 }
279

280 if(fullName.startsWith(plPName + ".") && !fullName.startsWith(origPName + ".")){
281 fullName = fullName.replaceFirst(plPName + ".", origPName + ".");
282 }
283 Element tm_bttf =

PartitionHelper.get_element_from_string(partition.get_elements(), fullName);
284 if(tm_bttf == null){
285 addToNotFound(fullName);
286 }
287 return tm_bttf;
288 }
289

290 private void addToNotFound(String fullName){



APPENDIX B. R3 FRAMEWORK AND PLUG-IN TRANSFORMATION SCRIPT 116

291 if(!notFound.contains(fullName)){
292 notFound.add(fullName);
293 }
294 }
295

296 private void printNotFound(){
297 for(String s : notFound){
298 System.out.println("Not found in BttF: " + s);
299 }
300 }
301

302 private void printLifted(){
303 for(String s : lifted){
304 System.out.println("liftAllTypes(): " + s);
305 }
306 }
307

308 }



Appendix C

Class diagrams of framework and plug-in
programs

Figure C.1: Calc Java Program. Original class diagram.

117



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 118

Figure C.2: Calc Java Program. Class diagram after framework and plug-in transformation.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 119

Figure C.3: ExpressionTree Java Program. Original class diagram.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 120

Figure C.4: ExpressionTree Java Program. Class diagram after framework and plug-in
transformation.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 121

Figure C.5: Gates Java Program. Original class diagram.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 122

Figure C.6: Gates Java Program. Class diagram after framework and plug-in transforma-
tion.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 123

Figure C.7: ImageStreamGangApp Java Program. Original class diagram.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 124

Figure C.8: ImageStreamGangApp Java Program. Class diagram after framework and plug-
in transformation.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 125

Figure C.9: ImageTaskGangApplication Java Program. Original class diagram.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 126

Figure C.10: ImageTaskGangApplication Java Program. Class diagram after framework
and plug-in transformation.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 127

Figure C.11: SearchTaskGang Java Program. Original class diagram.



APPENDIX C. CLASS DIAGRAMS OF FRAMEWORK AND PLUG-IN PROGRAMS 128

Figure C.12: SearchTaskGang Java Program. Class diagram after framework and plug-in
transformation.



Appendix D

GAMA platform source code modification

We cloned GAMA platform source code from their open source GitHub repository1 on

August 2016. The class we modified is GamlModelBuilder, located in /msi.gama.lang.
gaml/src/msi/gama/lang/gaml/resource/ path. The final source code of this class can

be observed in Listing D.1. We made the following changes:

• Located in line 156 is method getInfo. This method is executed when a user clicks

on Refresh metadata option, in a model’s contextual menu. We added a call to

method bttf_getCRG in line 171. bttf_getCRG is one of the new methods we im-

plemented in this class.

• From line 211 to the end of the file, a reader can found the methods we implemented

to traverse a model’s AST, get information about its declarations and their relation-

ships, and finally save them in a CSV file. Figure D.1 shows an example of this CSV

output file. It contains all the reference relationships found in a GAML model. This

contents serve as input for BttF, which processes them to create a CRG.

These changes were made to our local repository copy, and were not pushed to Gama plat-

form repository.

Listing D.1: GamlModelBuilder class source code.

1 /******************************************************************************
2 *
3 *
4 * ’GamlResourceBuilder.java’, in plugin ’msi.gama.lang.gaml’, is part of the source

code of the
5 * GAMA modeling and simulation platform.
6 * (c) 2007-2014 UMI 209 UMMISCO IRD/UPMC & Partners
7 *
8 * Visit https://code.google.com/p/gama-platform/ for license information and

developers contact.

1 https://github.com/gama-platform/gama/

129

https://github.com/gama-platform/gama/


APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 130

9 *
10 *
11 *******************************************************************************/
12 package msi.gama.lang.gaml.resource;
13

14 import java.io.*;
15 import java.util.*;
16 import org.eclipse.emf.common.util.*;
17 import org.eclipse.emf.ecore.EAttribute;
18 import org.eclipse.emf.ecore.EObject;
19 import org.eclipse.emf.ecore.resource.Resource;
20 import org.eclipse.xtext.resource.XtextResourceSet;
21 import gnu.trove.set.hash.TLinkedHashSet;
22 import msi.gama.common.interfaces.IKeyword;
23 import msi.gama.kernel.model.IModel;
24 import msi.gama.lang.gaml.gaml.*;
25 import msi.gama.lang.gaml.gaml.impl.ActionDefinitionImpl;
26 import msi.gama.lang.utils.EGaml;
27 import msi.gama.util.file.GAMLFile;
28 import msi.gaml.compilation.*;
29 import msi.gaml.descriptions.*;
30

31 /**
32 * Class GamlResourceBuilder.
33 *
34 * @author drogoul
35 * @since 8 avr. 2014
36 *
37 */
38 public class GamlModelBuilder implements IModelBuilder {
39

40 XtextResourceSet buildResourceSet = new XtextResourceSet();
41

42 GamlResource fakeResource;
43 static URI fakeURI = URI.createURI("temp_builder.gaml", false);
44

45 // private static GamlModelBuilder instance = new GamlModelBuilder();
46 //
47 // public static GamlModelBuilder getInstance() {
48 // return instance;
49 // }
50

51 public GamlModelBuilder() {
52

53 buildResourceSet.setClasspathURIContext(GamlModelBuilder.class);
54 };
55

56 /**
57 * Validates the GAML model inside the resource and returns an ErrorCollector

(which can later be probed for
58 * internal errors, imported errors, warnings or infos)
59 * @param resource must not be null
60 * @return an instance of ErrorCollector (never null)
61 */



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 131

62 @Override
63 public ErrorCollector validate(final Resource resource) {
64 GamlResource r = (GamlResource) resource;
65 r.validate(resource.getResourceSet());
66 return r.getErrorCollector();
67 }
68

69 @Override
70 public ErrorCollector validate(final URI resource) {
71 try {
72 GamlResource r = (GamlResource) buildResourceSet.createResource(resource);
73 return validate(r);
74 } finally {
75 buildResourceSet.getResources().clear();
76 }
77 }
78

79 /**
80 * Builds an IModel from the resource.
81 * @param resource must not be null
82 * @return an instance of IModel or null if the validation has returned errors (use

validate(GamlResource) to
83 * retrieve them if it is the case, or use the alternate form).
84 */
85 @Override
86 public IModel compile(final Resource resource) {
87 return compile(resource.getURI());
88 }
89

90 @Override
91 public IModel compile(final URI uri) {
92 return compile(uri, new ArrayList());
93 }
94

95 /**
96 * Builds an IModel from the resource, listing all the errors, warnings and infos

that occured
97 * @param resource must not be null
98 * @param a list of errors, warnings and infos that occured during the build. Must

not be null and must accept the
99 * addition of new elements

100 * @return an instance of IModel or null if the validation has returned errors.
101 */
102 @Override
103 public IModel compile(final Resource resource, final List<GamlCompilationError>

errors) {
104 return compile(resource.getURI(), errors);
105 }
106

107 @Override
108 public IModel compile(final URI uri, final List<GamlCompilationError> errors) {
109 try {
110 GamlResource r = (GamlResource) buildResourceSet.createResource(uri);
111 return r.build(r.getResourceSet(), errors);



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 132

112 } finally {
113 buildResourceSet.getResources().clear();
114 }
115 }
116

117 /**
118 * Creates a model from an InputStream (which can represent the contents of a file

or a string. Be aware that all the context will be lost when using this
method, i.e. paths relative to the model

119 * being compiled will be resolved against the a fake URI
120 * @see msi.gama.common.interfaces.IModelBuilder#compile(java.io.InputStream,

java.util.List)
121 */
122

123 @Override
124 public IModel compile(final InputStream contents, final List<GamlCompilationError>

errors) {
125 try {
126 getFreshResource().load(contents, null);
127 return compile(fakeResource, errors);
128 } catch (Exception e1) {
129 e1.printStackTrace();
130 return null;
131 }
132 }
133

134 private synchronized GamlResource getFreshResource() {
135 if ( fakeResource == null ) {
136 fakeResource = (GamlResource) buildResourceSet.createResource(fakeURI);
137 } else {
138 fakeResource.unload();
139 }
140 return fakeResource;
141 }
142

143 @Override
144 public ModelDescription buildModelDescription(final URI uri, final

List<GamlCompilationError> errors) {
145 try {
146 GamlResource r = (GamlResource) buildResourceSet.createResource(uri);
147 return r.buildDescription(r.getResourceSet(), errors);
148 } finally {
149 buildResourceSet.getResources().clear();
150 }
151 }
152

153 // private static final Set<String> EXTS =
GamaFileType.extensionsToFullType.keySet();

154

155 @Override
156 public GAMLFile.GamlInfo getInfo(final URI uri, final long stamp) {
157 /* Synchronized */XtextResourceSet infoResourceSet = new /* Synchronized

*/XtextResourceSet();
158 try {



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 133

159

160 GamlResource r = (GamlResource) infoResourceSet.createResource(uri);
161 r.load(Collections.EMPTY_MAP);
162 TreeIterator<EObject> tree = r.getAllContents();
163 Set<String> imports = new TLinkedHashSet();
164 Set<String> uses = new TLinkedHashSet();
165 Set<String> exps = new TLinkedHashSet();
166

167 /*
168 * BttF code
169 * This method has been embedded in the "Refresh metadata" option for a GAML

program
170 */
171 bttf_getCRG(r);
172

173

174 while (tree.hasNext()) {
175 EObject e = tree.next();
176 if ( e instanceof StringLiteral ) {
177 String s = ((StringLiteral) e).getOp();
178 if ( s.length() > 4 ) {
179 URI u = URI.createFileURI(s);
180 String ext = u.fileExtension();
181 if ( GamaBundleLoader.HANDLED_FILE_EXTENSIONS.contains(ext) ) {
182 uses.add(s);
183 }
184 }
185 } else if ( e instanceof S_Experiment ) {
186 String s = ((S_Experiment) e).getName();
187 Map<String, Facet> f = EGaml.getFacetsMapOf((Statement) e);
188 Facet typeFacet = f.get(IKeyword.TYPE);
189 if ( typeFacet != null ) {
190 String type = EGaml.getKeyOf(typeFacet.getExpr());
191 if ( IKeyword.BATCH.equals(type) ) {
192 s = GAMLFile.GamlInfo.BATCH_PREFIX + s;
193 }
194 }
195 exps.add(s);
196 } else if ( e instanceof Import ) {
197 imports.add(((Import) e).getImportURI());
198 tree.prune();
199 }
200 }
201

202 return new GAMLFile.GamlInfo(stamp, imports, uses, exps);
203 } catch (IOException e1) {
204 e1.printStackTrace();
205 return null;
206 } finally {
207 infoResourceSet.getResources().clear();
208 }
209 }
210

211 /*



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 134

212 * BttF related methods implementation starts here...
213 */
214 private void bttf_getCRG(GamlResource codeResource){
215 boolean debug = false;
216

217 String program_name =
bttf_getModelName(codeResource.getAbsolutePath().toOSString());

218 ArrayList<BttF_Declaration> dec_list = new ArrayList<BttF_Declaration>();
219 ArrayList<Bttf_Reference> ref_list = new ArrayList<Bttf_Reference>();
220

221 bttf_getMainContainmentTree(
222 codeResource.getAllContents(),
223 "",
224 dec_list,
225 ref_list);
226

227 bttf_getReferencesFile(program_name, dec_list, ref_list);
228

229 if(debug){
230 System.out.println("***********************************************");
231 System.out.println(program_name);
232 System.out.println("Start getting tree");
233 System.out.println(dec_list.toString());
234 System.out.println(ref_list.toString());
235 System.out.println("End getting tree");
236 }
237 }
238

239 private String bttf_getModelName(String abs_path){
240 int idxSlash = abs_path.lastIndexOf(’\\’);
241 int idxDot = abs_path.lastIndexOf(’.’);
242 if (idxSlash != -1 && idxDot != -1 && idxSlash < idxDot){
243 return abs_path.substring(idxSlash+1, idxDot);
244 }
245 return "";
246 }
247

248 private void bttf_getMainContainmentTree(TreeIterator<EObject> tree, String parent,
ArrayList<BttF_Declaration> dec_list, ArrayList<Bttf_Reference> ref_list){

249 while (tree.hasNext()) {
250 EObject e = tree.next();
251 if ( e instanceof S_Global ){
252 bttf_getElement((S_Global)e, parent, dec_list, ref_list);
253 } if ( e instanceof S_Species ){
254 bttf_getElement((S_Species)e, parent, dec_list, ref_list);
255 } if ( e instanceof S_Experiment ) {
256 bttf_getElement((S_Experiment)e, parent, dec_list, ref_list);
257 } if ( e instanceof Import ) {
258 bttf_getElement((Import)e, parent, dec_list, ref_list);
259 }
260 }
261 }
262

263 private void bttf_getContainmentTree(TreeIterator<EObject> tree, String parent,



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 135

ArrayList<BttF_Declaration> dec_list, ArrayList<Bttf_Reference> ref_list){
264 while (tree.hasNext()) {
265 EObject e = tree.next();
266 if ( e instanceof S_Global ){
267 bttf_getElement((S_Global)e, parent, dec_list, ref_list);
268 } if ( e instanceof S_Species ){
269 bttf_getElement((S_Species)e, parent, dec_list, ref_list);
270 } if ( e instanceof S_Reflex ) {
271 bttf_getElement((S_Reflex)e, parent, dec_list, ref_list);
272 } if ( e instanceof S_Action ) {
273 bttf_getElement((S_Action)e, parent, dec_list, ref_list);
274 } if ( e instanceof S_Var ) {
275 bttf_getElement((S_Var)e, parent, dec_list, ref_list);
276 } if ( e instanceof S_Declaration ) {
277 bttf_getElement((S_Declaration)e, parent, dec_list, ref_list);
278 } if ( e instanceof S_Experiment ) {
279 bttf_getElement((S_Experiment)e, parent, dec_list, ref_list);
280 } if ( e instanceof Import ) {
281 bttf_getElement((Import)e, parent, dec_list, ref_list);
282 }
283 }
284 }
285

286 private void bttf_getReferenceTree(TreeIterator<EObject> tree, String fromWCont,
ArrayList<Bttf_Reference> ref_list){

287 while (tree.hasNext()) {
288 EObject e = tree.next();
289 if ( e instanceof VariableRef ) {
290 bttf_getReference((VariableRef)e, fromWCont, ref_list);
291 } if ( e instanceof SkillRef ) {
292 bttf_getReference((SkillRef)e, fromWCont, ref_list);
293 } if ( e instanceof ActionRef ) {
294 bttf_getReference((ActionRef)e, fromWCont, ref_list);
295 }
296 }
297 }
298

299

300 private void bttf_getElement(S_Global e, String parent, ArrayList<BttF_Declaration>
dec_list, ArrayList<Bttf_Reference> ref_list){

301 bttf_getContainmentTree(e.eAllContents(), parent + "global" + ".", dec_list,
ref_list);

302 }
303

304 private void bttf_getElement(S_Species e, String parent,
ArrayList<BttF_Declaration> dec_list, ArrayList<Bttf_Reference> ref_list){

305 if(e != null && e.getName() != null){
306 String codeName = e.eContainer().hashCode() + "." + e.getName();
307

308 //System.out.println("S_Species," + parent + "." +e.getName() + "," + codeName);
309 BttF_Declaration dec = new BttF_Declaration("S_Species", parent + e.getName(),

codeName);
310 dec_list.add(dec);
311



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 136

312 bttf_getContainmentTree(e.eAllContents(), parent + e.getName() + ".", dec_list,
ref_list);

313 bttf_getReferenceTree(e.eAllContents(), codeName, ref_list);
314

315 }
316 }
317

318 private void bttf_getElement(S_Reflex e, String parent, ArrayList<BttF_Declaration>
dec_list, ArrayList<Bttf_Reference> ref_list){

319 if(e != null && e.getName() != null){
320 String codeName = e.eContainer().hashCode() + "." + e.getName();
321

322 //System.out.println("S_Reflex," + parent + "."+ e.getName() + "," + codeName);
323 BttF_Declaration dec = new BttF_Declaration("S_Reflex", parent + e.getName(),

codeName);
324 dec_list.add(dec);
325

326 bttf_getReferenceTree(e.eAllContents(), codeName, ref_list);
327 }
328 }
329

330 private void bttf_getElement(S_Action e, String parent, ArrayList<BttF_Declaration>
dec_list, ArrayList<Bttf_Reference> ref_list){

331 if(e != null && e.getName() != null){
332 String codeName = e.eContainer().hashCode() + "." + e.getName();
333

334 //System.out.println("S_Action," + parent + "." + e.getName() + "," + codeName);
335 BttF_Declaration dec = new BttF_Declaration("S_Action", parent + e.getName(),

codeName);
336 dec_list.add(dec);
337

338 bttf_getReferenceTree(e.eAllContents(), codeName, ref_list);
339 }
340 }
341

342 private void bttf_getElement(S_Var e, String parent, ArrayList<BttF_Declaration>
dec_list, ArrayList<Bttf_Reference> ref_list){

343 if(e != null && e.getName() != null){
344 String codeName = e.eContainer().hashCode() + "." + e.getName();
345

346 //System.out.println("S_Var," + parent + "." + e.getName() + "," + codeName);
347 BttF_Declaration dec = new BttF_Declaration("S_Var", parent + e.getName(),

codeName);
348 dec_list.add(dec);
349

350 }
351 }
352

353 private void bttf_getElement(S_Declaration e, String parent,
ArrayList<BttF_Declaration> dec_list, ArrayList<Bttf_Reference> ref_list){

354 if(e != null && e.getName() != null
355 &&

e.getClass().getName().equals("msi.gama.lang.gaml.gaml.impl.S_DefinitionImpl")){
356 String codeName = e.eContainer().hashCode() + "." + e.getName();



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 137

357

358 //System.out.println("S_Declaration," + parent + "." + e.getName() + "," +
codeName);

359 BttF_Declaration dec = new BttF_Declaration("S_Declaration", parent +
e.getName(), codeName);

360 dec_list.add(dec);
361 }
362 }
363

364

365 private void bttf_getElement(S_Experiment e, String parent,
ArrayList<BttF_Declaration> dec_list, ArrayList<Bttf_Reference> ref_list){

366 if(e != null && e.getName() != null){
367 String codeName = e.eContainer().hashCode() + "." + e.getName();
368

369 //System.out.println("S_Experiment," + parent + "." + e.getName() + "," +
codeName);

370 BttF_Declaration dec = new BttF_Declaration("S_Experiment", parent + e.getName(),
codeName);

371 dec_list.add(dec);
372

373 bttf_getContainmentTree(e.eAllContents(), parent + e.getName() + ".", dec_list,
ref_list);

374 bttf_getReferenceTree(e.eAllContents(), codeName, ref_list);
375 }
376 }
377

378 private void bttf_getElement(Import e, String parent, ArrayList<BttF_Declaration>
dec_list, ArrayList<Bttf_Reference> ref_list){

379 if(e != null && e.getName() != null){
380 String codeName = e.eContainer().hashCode() + "." + e.getName();
381

382 //System.out.println("Import," + parent + "." + e.getName() + "," + codeName);
383 BttF_Declaration dec = new BttF_Declaration("Import", parent + e.getName(),

codeName);
384 dec_list.add(dec);
385 }
386 }
387

388 private void bttf_getReference(VariableRef e, String fromWCont,
ArrayList<Bttf_Reference> ref_list){

389 if(fromWCont != null && e != null && e.getRef()!= null){
390 if (e.getRef() instanceof S_Species){
391 bttf_getReference("VariableRef-S_Species", fromWCont, e.getRef(), ref_list);
392 }
393 else if (e.getRef() instanceof S_Reflex){
394 bttf_getReference("VariableRef-S_Reflex", fromWCont, e.getRef(), ref_list);
395 }
396 else if (e.getRef() instanceof S_Action){
397 bttf_getReference("VariableRef-S_Action", fromWCont, e.getRef(), ref_list);
398 }
399 else if (e.getRef() instanceof S_Var){
400 bttf_getReference("VariableRef-S_Var", fromWCont, e.getRef(), ref_list);
401 }



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 138

402 else if (e.getRef() instanceof S_Declaration){
403 if(!(e.getRef().getClass().getName()
404 .equals("msi.gama.lang.gaml.gaml.impl.S_LoopImpl"))){
405 bttf_getReference("VariableRef-S_Declaration", fromWCont, e.getRef(),

ref_list);
406 }
407 }
408 }
409 }
410

411 private void bttf_getReference(String refDesc, String fromWCont, VarDefinition r,
ArrayList<Bttf_Reference> ref_list){

412 if(fromWCont != null && r != null && r.getName() != null){
413

414 /*System.out.println(refDesc
415 + "," + from + " -> " + r.getName()
416 + "," + fromWCont + " -> " + r.eContainer().hashCode() + "." + r.getName());*/
417

418 Bttf_Reference ref = new Bttf_Reference(fromWCont, r.eContainer().hashCode() +
"." + r.getName());

419 if(!ref_list.contains(ref)){
420 ref_list.add(ref);
421 }
422 }
423 }
424

425 private void bttf_getReference(SkillRef e, String fromWCont,
ArrayList<Bttf_Reference> ref_list){

426 if(fromWCont != null && e != null && e.getRef()!= null){
427 /*System.out.println("SkillRef"
428 + "," + from + " -> "+ e.getRef().getName()
429 + "," + fromWCont + " -> " + e.getRef().eContainer().hashCode() + "." +

e.getRef().getName());*/
430

431 Bttf_Reference ref = new Bttf_Reference(fromWCont,
e.getRef().eContainer().hashCode() + "." + e.getRef().getName());

432 if(!ref_list.contains(ref)){
433 ref_list.add(ref);
434 }
435 }
436 }
437

438 private void bttf_getReference(ActionRef e, String fromWCont,
ArrayList<Bttf_Reference> ref_list){

439 if(fromWCont != null && e != null && e.getRef()!= null &&
440 !(e.getRef().getClass().getName()
441 .equals("msi.gama.lang.gaml.gaml.impl.ActionDefinitionImpl")) ){
442

443 /*System.out.println("ActionRef"
444 + "," + from + " -> " + e.getRef().getName()
445 + "," + fromWCont + " -> " + e.getRef().eContainer().hashCode() + "." +

e.getRef().getName());*/
446

447 Bttf_Reference ref = new Bttf_Reference(fromWCont,



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 139

e.getRef().eContainer().hashCode() + "." + e.getRef().getName());
448 if(!ref_list.contains(ref)){
449 ref_list.add(ref);
450 }
451 }
452 }
453

454 class Bttf_Reference{
455 String from;
456 String to;
457

458 public Bttf_Reference(String from, String to) {
459 this.from = from;
460 this.to = to;
461 }
462

463 @Override
464 public String toString() {
465 return from + " -> " + to + "\n";
466 }
467

468 @Override
469 public boolean equals(Object object)
470 {
471 if (object != null && object instanceof Bttf_Reference)
472 {
473 if( this.from.equals( ((Bttf_Reference)object).from) && this.to.equals(

((Bttf_Reference)object).to) ){
474 return true;
475 }
476 }
477

478 return false;
479 }
480

481

482

483 }
484

485 class BttF_Declaration{
486 String type;
487 String name;
488 String code_name;
489

490 public BttF_Declaration(String type, String name, String code_name) {
491 this.type = type;
492 this.name = name;
493 this.code_name = code_name;
494 }
495

496 @Override
497 public String toString() {
498 return "BttF_Declaration [type=" + type + ", name=" + name + ", code_name=" +

code_name + "]\n";



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 140

499 }
500

501

502 }
503

504

505 private void bttf_getReferencesFile(String program_name,
ArrayList<BttF_Declaration> dec_list, ArrayList<Bttf_Reference> ref_list){

506 String file_path = System.getProperty("user.home") + "/Desktop/" + program_name +
".csv";

507 String header =
"call_from,call_to,call_from_type,call_to_type,call_from_mod,call_to_mod,"

508 + "call_from_code,call_to_code,call_from_isterminal,call_to_isterminal\r\n";
509

510 BufferedWriter writer = null;
511

512 try{
513 //write feature model - partition task
514 writer = new BufferedWriter(new FileWriter(file_path, false));
515 writer.append(header);
516 for(Bttf_Reference r : ref_list){
517 BttF_Declaration from = bttf_findDeclaration(r.from, dec_list);
518 BttF_Declaration to = bttf_findDeclaration(r.to, dec_list);
519 writer.append(getCsvReferenceLine(from, to));
520 }
521 writer.flush();
522 System.out.println("CRG csv file saved on: " + file_path);
523 }catch (IOException e){
524 e.printStackTrace();
525 }
526 finally{
527 try{
528 if ( writer != null)
529 writer.close( );
530 }catch ( IOException e){
531 e.printStackTrace();
532 }
533 }
534 }
535

536 private BttF_Declaration bttf_findDeclaration(String code_name,
ArrayList<BttF_Declaration> dec_list){

537 for(BttF_Declaration d : dec_list){
538 if(d.code_name.equals(code_name)){
539 return d;
540 }
541 }
542 return null;
543 }
544

545 /*
546 * required fields
547 * gotten from bttf.Reference class
548 * private String call_from;



APPENDIX D. GAMA PLATFORM SOURCE CODE MODIFICATION 141

549 private String call_to;
550 private ElementType call_from_type;
551 private ElementType call_to_type;
552 private String call_from_mod;
553 private String call_to_mod;
554 private String call_from_code;
555 private String call_to_code;
556 private boolean call_from_isterminal;
557 private boolean call_to_isterminal;
558 */
559 private String getCsvReferenceLine(BttF_Declaration from, BttF_Declaration to){
560 if(from != null && to != null){
561 StringBuffer sb = new StringBuffer();
562 sb.append("default." + from.name + ","); //call_from
563 sb.append("default." + to.name + ","); //call_to
564 sb.append(from.type + ","); //call_from_type
565 sb.append(to.type + ","); //call_to_type
566 sb.append(","); //call_from_mod
567 sb.append(","); //call_to_mod
568 sb.append("NA,"); //call_from_code
569 sb.append("NA,"); //call_to_code
570 sb.append("TRUE,"); //call_from_isterminal
571 sb.append("TRUE\r\n"); //call_to_isterminal
572 return sb.toString();
573 }
574 return "";
575 }
576

577 /*
578 * BttF related NOTES:
579 * TypeRef is a reference to a primitive type
580 * S_Entities instances weren’t found
581 * S_Environment instances weren’t found
582 * Function instanced didn’t make sense
583 */
584 }

Figure D.1: CSV output example for a GAML model.



Bibliography

[1] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Soft-

ware Product Lines. Springer, 2013.

[2] Sven Apel, Christian Kästner, and Christian Lengauer. Featurehouse: Language-

independent, automated software composition. In ICSE, 2009.

[3] Sven Apel, Sergiy Kolesnikov, Jörg Liebig, Christian Kästner, Martin Kuhlemann, and

Thomas Leich. Access control in feature-oriented programming. Science of Com-

puter Programming, 2012.

[4] D. Batory. Feature Models, Grammars, and Propositional Formulas. In SPLC,

September 2005.

[5] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools for implementing domain-

specific languages. In ICSR, 1998.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE

Trans. Softw. Eng., June 2004.

[7] Don Batory. Software design course. Last visited on 10/11/2017.

[8] Don Batory. Private conversation with Marouane Kessentini, 2017.

[9] Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-oriented frameworks

and product lines. In Software Product Lines, 2000.

[10] Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-oriented frameworks

and product lines. In Software Product Line Conference, pages 227–247. Springer,

2000.

[11] Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder. Achieving exten-

sibility through product-lines and domain-specific languages: A case study. ACM

Trans. Softw. Eng. Methodol., April 2002.

142



BIBLIOGRAPHY 143

[12] Don Batory and Sean O’Malley. The design and implementation of hierarchical soft-

ware systems with reusable components. ACM Trans. Softw. Eng. Methodol., October

1992.

[13] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. Dms®: Program transfor-

mations for practical scalable software evolution. In ICSE, 2004.

[14] Allan G Bluman. Elementary statistics. McGraw Hill Publishers, 2000.

[15] Jan Bosch. Object-oriented frameworks: Problems & experiences, 1997.

[16] Ramon F Brena, Carl W Handlin, and Priscila Angulo. A smart grid electricity mar-

ket with multiagents, smart appliances and combinatorial auctions. In Smart Cities

Conference (ISC2), 2015 IEEE First International, pages 1–6. IEEE, 2015.

[17] Catalog of software product lines. http://www.sei.cmu.edu/productlines/
casestudies/catalog/index.cfm.

[18] Luca Cernuzzi, Thomas Juan, Leon Sterling, and Franco Zambonelli. The gaia meth-

odology. In Methodologies and Software Engineering for Agent Systems, pages 69–88.

Springer, 2004.

[19] Christina Chavez. A model-driven approach for aspect-oriented design. PhD thesis,

Pontifícia Universidade Católica do Rio de Janeiro, 2004.

[20] D Manning Christopher, Raghavan Prabhakar, and SCHÜTZE Hinrich. Introduction

to information retrieval. An Introduction To Information Retrieval, 151:177, 2008.

[21] Wim Codenie, Koen De Hondt, Patrick Steyaert, and Arlette Vercammen. From cus-

tom applications to domain-specific frameworks. CACM, October 1997.

[22] Massimo Cossentino and Colin Potts. Passi: A process for specifying and implement-

ing multi-agent systems using uml. Citeseer 2002, 2002.

[23] M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting software product lines: A

case study using conditional compilation. In CSMR, 2011.

[24] John Dalbey. Java lines of code counter. Last visited on 10/11/2017.

[25] J Dehlinger and RR Lutz. A product-line requirements approach to safe reuse in

multi-agent systems. ACM SIGSOFT Software Engineering Notes, 30(4):1–7, 2005.

[26] J Dehlinger and RR Lutz. Gaia-PL: A product line engineering approach for efficiently

designing multiagent systems. ACM Transactions on Software Engineering and Meth-

odology, 20(4):Article 17, 2011.

http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm
http://www.sei.cmu.edu/productlines/casestudies/catalog/index.cfm


BIBLIOGRAPHY 144

[27] Jay L Devore. Probability and Statistics for Engineering and the Sciences. Cengage

learning, 2011.

[28] Edsger W. Dijkstra. The structure of the &ldquo;the&rdquo;-multiprogramming sys-

tem. In SOSP, 1967.

[29] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature lo-

cation in source code: a taxonomy and survey. Journal of Software: Evolution and

Process, 2013.

[30] Alexis Drogoul, Edouard Amouroux, Philippe Caillou, Benoit Gaudou, Arnaud Grig-

nard, Nicolas Marilleau, Patrick Taillandier, Maroussia Vavasseur, Duc-An Vo, and

Jean-Daniel Zucker. Gama: multi-level and complex environment for agent-based

models and simulations. In Proceedings of the 2013 international conference on Au-

tonomous agents and multi-agent systems, pages 1361–1362. International Founda-

tion for Autonomous Agents and Multiagent Systems, 2013.

[31] Eclipse. Abstract syntax tree.

[32] Eclipse. Refactor actions Java development user guide. Last visited on 10/10/2017.

[33] Eclipse Java development tools (JDT). eclipse.org/jdt/.

[34] Stephan Erb. A survey of software refactoring tools. Master’s thesis, Baden-

Wrttemberg Cooperative State University, Karlsruhe, 2010.

[35] Martin Faunes, Marouane Kessentini, and Houari Sahraoui. Deriving high-level ab-

stractions from legacy software using example-driven clustering. In Proceedings of

the 2011 Conference of the Center for Advanced Studies on Collaborative Research,

pages 188–199. IBM Corp., 2011.

[36] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks.

CACM, October 1997.

[37] Mohamed Fayad and Douglas C Schmidt. Object-oriented application frameworks.

Communications of the ACM, 40(10):32–38, 1997.

[38] Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT Press, 1993.

[39] R. Fuhrer, Markus Keller, and A. Kiezun. Advanced refactoring in the eclipse jdt: Past,

present, and future. In ECOOP Workshop on Refactoring Tools (WRT), 2007.

[40] NR Genza and ES Mighele. Review on multi-agent oriented software engineering

implementation. International Journal of Computer and Information Technology,

2(03):511–520, 2013.

eclipse.org/jdt/


BIBLIOGRAPHY 145

[41] H Gomaa and ME Shin. Variability Modeling in Model-Driven Software Product Line

Engineering. In 2nd International Workshop on Model-driven Product Line Engineer-

ing (MDPLE 2010), pages 25–36, Paris, France, 2010.

[42] Arnaud Grignard, Patrick Taillandier, Benoit Gaudou, Duc An Vo, Nghi Quang

Huynh, and Alexis Drogoul. Gama 1.6: Advancing the art of complex agent-based

modeling and simulation. In International Conference on Principles and Practice of

Multi-Agent Systems, pages 117–131. Springer, 2013.

[43] A. N. Habermann, Lawrence Flon, and Lee Cooprider. Modularization and hierarchy

in a family of operating systems. CACM, May 1976.

[44] Nicholas R. Jennings and Michael Wooldridge. Agent-Oriented Software Engineer-

ing. ARTIFICIAL INTELLIGENCE, 117:277–296, 2000.

[45] Ralph Johnson and Bryan Foote. Designing reusable classes. Journal of Object-

Oriented Programming, June/July 1988.

[46] Ralph E Johnson. Frameworks=(components+ patterns). Communications of the

ACM, 40(10):39–42, 1997.

[47] Christian Kastner, Alexander Dreiling, and Klaus Ostermann. Variability mining:

Consistent semi-automatic detection of product-line features. IEEE TSE, January

2014.

[48] Christian Kästner, Alexander Dreiling, and Klaus Ostermann. Variability mining:

Consistent semi-automatic detection of product-line features. IEEE Transactions on

Software Engineering, 40(1):67–82, 2014.

[49] Jongwook Kim, Don Batory, and Danny Dig. Scripting parametric refactorings in java

to retrofit design patterns. In ICSME, 2015.

[50] Jongwook Kim, Don Batory, and Danny Dig. Refactoring java software product lines.

SPLC, 2017.

[51] Jongwook Kim, Don Batory, Danny Dig, and Maider Azanza. Improving refactoring

speed by 10x. In Proceedings of the 38th International Conference on Software Engi-

neering, pages 1145–1156. ACM, 2016.

[52] Kalliopi Kravari and Nick Bassiliades. A survey of agent platforms. Journal of Artifi-

cial Societies and Social Simulation, 18(1):11, 2015.

[53] Uirá Kulesza, Alessandro Garcia, and Carlos Lucena. An aspect-oriented generative

approach. In Companion to the 19th annual ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications, pages 166–167. ACM,

2004.



BIBLIOGRAPHY 146

[54] Uirá Kulesza, Alessandro Garcia, Carlos Lucena, and Paulo Alencar. A generative ap-

proach for multi-agent system development. In International Workshop on Software

Engineering for Large-Scale Multi-agent Systems, pages 52–69. Springer, 2004.

[55] Jörg Liebig, Andreas Janker, Florian Garbe, Sven Apel, and Christian Lengauer. Mor-

pheus: Variability-aware Refactoring in the Wild. In ICSE, 2015.

[56] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander Egyed. Variability

extraction and modeling for product variants. Software & Systems Modeling, 2016.

[57] Marcus Eduardo Markiewicz and Carlos JP de Lucena. Object oriented framework

development. Crossroads, 7(4):3–9, 2001.

[58] Wolfram MathWorld. Correlation coefficient, 2017.

[59] Marcilio Mendonca, Andrzej Wąsowski, and Krzysztof Czarnecki. Sat-based analysis

of feature models is easy. In Proceedings of the 13th International Software Product

Line Conference, pages 231–240. Carnegie Mellon University, 2009.

[60] G. S. Mudholkar. Fisher’s z-transformation. In Encyclopedia of Statistical Sciences.

John Wiley and Sons, 2006.

[61] Jörg P Müller and Klaus Fischer. Application impact of multi-agent systems and tech-

nologies: A survey. In Agent-oriented software engineering, pages 27–53. Springer,

2014.

[62] Emerson Murphy-Hill and Andrew P Black. Refactoring tools: Fitness for purpose.

IEEE software, 25(5), 2008.

[63] Sarah Nadi and et al. Mining configuration constraints: Static analyses and empirical

results. In ICSE, 2014.

[64] NetBeans 8.0.2. https://netbeans.org/.

[65] I Nunes, U Kulesza, and C Nunes. Extending PASSI to Model Multi-agent Systems

Product Lines. In SAC ’09 Proceedings of the 2009 ACM symposium on Applied Com-

puting, pages 729–730, 2009.

[66] I Nunes, U Kulesza, C Nunes, and CJP Lucena. A domain engineering process for de-

veloping multi-agent systems product lines. In AAMAS ’09 Proceedings of The 8th In-

ternational Conference on Autonomous Agents and Multiagent Systems, pages 1339–

1340, Budapest, Hungary, 2009.

[67] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, U. of Illi-

nois Urbana-Champaign, 1992.

https://netbeans.org/


BIBLIOGRAPHY 147

[68] William F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University

of Illinois at Urbana-Champaign, Champaign, IL, USA, 1992.

[69] Oracle. Enum types. The Java Tutorials. Last visited on 09/26/2017.

[70] Oracle. Lesson: Annotations. The Java Tutorials. Last visited on 09/26/2017.

[71] Oracle. Understanding class members. The Java Tutorials. Last visited on

09/26/2017.

[72] Leonardo Teixeira Passos, Jesús Padilla, Thorsten Berger, Sven Apel, Krzysztof Czar-

necki, and Marco Tulio Valente. Feature scattering in the large: a longitudinal study

of linux kernel device drivers. In Modularity, 2015.

[73] J Pena, MG Hinchey, and M Resinas. Managing the Evolution of an Enterprise Arch-

itecture Using a MAS-Product-Line Approach. In IWSSAâĂŹ06 5th International

Workshop on System/Software Architectures, 2006.

[74] J Pena, MG Hinchey, M Resinas, Roy Sterrittc, and James L. Rashb. Designing and

managing evolving systems using a MAS product line approach. Science of Computer

Programming, 66(1):71–86, 2007.

[75] J Pena, MG Hinchey, and A Ruiz-Cortés. Multi-agent system product lines: chal-

lenges and benefits. Communications of the ACM, 49(12):82–85, 2006.

[76] Xin Peng, Zhenchang Xing, Xi Tan, Yijun Yu, and Wenyun Zhao. Improving feature

location using structural similarity and iterative graph mapping. Journal of Systems

and Software, 86(3):664–676, 2013.

[77] GAMA Platform. Organization of a model. Last visited on 10/24/2017.

[78] Klaus Pohl, Günter Böckle, and Frank Van der Linden. Software Product Line Engi-

neering: Foundations, Principles, and Techniques. Springer-Verlag, Berlin/Heidel-

berg, 2005.

[79] Wolfgang Pree. Design Patterns for Object-oriented Software Development. ACM

Press/Addison-Wesley Publishing Co., 1995.

[80] Eclipse project. AspectJ. Last visited on 10/28/2017.

[81] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2013.

[82] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2016.



BIBLIOGRAPHY 148

[83] Nornadiah Mohd Razali, Yap Bee Wah, et al. Power comparisons of shapiro-wilk,

kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of statistical mod-

eling and analytics, 2(1):21–33, 2011.

[84] William Revelle. psych: Procedures for Psychological, Psychometric, and Personality

Research. Northwestern University, Evanston, Illinois, 2016. R package version 1.6.9.

[85] Martin P Robillard. Topology analysis of software dependencies. ACM Transactions

on Software Engineering and Methodology (TOSEM), 17(4):18, 2008.

[86] Julia Rubin and Marsha Chechik. A survey of feature location techniques. In Domain

Engineering, Product Lines, Languages, and Conceptual Models, 2013.

[87] Andrew Rubinger and Bill Burke. Enterprise JavaBeans 3.1, 6th Edition. O’Reilly Me-

dia, 2010.

[88] Ruby on Rails. http://rubyonrails.org/.

[89] David Saff, Kevin Cooney, Stefan Birkner, and Marc Philipp. JUnit test tool,

http://www.junit.org. Last visited on 10/17/2017.

[90] Han Albrecht Schmid. Systematic framework design by generalization. Communi-

cations of the ACM, 40(10):48–51, 1997.

[91] Douglas C. Schmidt. Java source code. LiveLessons: Design Patterns in Java. Last

visited on 10/11/2017.

[92] Yannis Smaragdakis and Don Batory. Mixin layers: An object-oriented implementa-

tion technique for refinements and collaboration-based designs. ACM TOSEM, 2002.

[93] Yannis Smaragdakis and Don Batory. Mixin layers: An object-oriented implementa-

tion technique for refinements and collaboration-based designs. ACM Trans. Softw.

Eng. Methodol., April 2002.

[94] Yannis Smaragdakis and Don S. Batory. Implementing layered designs with mixin

layers. In ECOOP, 1998.

[95] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition of

product lines. In Proceedings of the 6th international conference on Generative pro-

gramming and component engineering, pages 95–104. ACM, 2007.

[96] Thomas Thüm and et al. Featureide: An extensible framework for feature-oriented

software development. Sci. Comput. Program., January 2014.

[97] Kai Ming Ting. Precision and Recall, pages 781–781. Springer US, Boston, MA, 2010.

http://rubyonrails.org/


BIBLIOGRAPHY 149

[98] M. T. Valente, V. Borges, and L. Passos. A semi-automatic approach for extracting

software product lines. IEEE TSE, July 2012.

[99] Marco Tulio Valente, Virgilio Borges, and Leonardo Passos. A semi-automatic ap-

proach for extracting software product lines. IEEE transactions on Software Engi-

neering, 38(4):737–754, 2012.

[100] Jose M. Vidal. Fundamentals of Multiagent Systems. Unpublished, 2006.

[101] Kathy Walrath, Mary Campione, Alison Huml, and Sharon Zakhour. The JFC Swing

Tutorial: A Guide to Constructing GUIs, Second Edition. Addison-Wesley, 2004.

[102] Taiyun Wei and Viliam Simko. corrplot: Visualization of a Correlation Matrix, 2016.

R package version 0.77.

[103] Eric W. Weisstein. Fisher’s z-transformation. From MathWorld—A Wolfram Web Re-

source.

[104] Wikipedia. Aspect-oriented programming. Last visited on 10/28/2017.

[105] Wikipedia. Dense graph. Last visited on 10/27/2017.

[106] Wikipedia. Eclipse (software).

[107] Wikipedia. Stratego/xt.

[108] WikiPedia Software Design Patterns. https://en.wikipedia.org/wiki/
Software_design_pattern.

[109] M Wooldridge. An introduction to multiagent systems. John Wiley & Sons, 2008.

[110] Xtext. Integration with emf. Last visited on 10/25/2017.

[111] Franco Zambonelli, Nicholas R Jennings, and Michael Wooldridge. Developing mul-

tiagent systems: The gaia methodology. ACM Transactions on Software Engineering

and Methodology (TOSEM), 12(3):317–370, 2003.

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern




Published Papers

Priscila Angulo-Lopez and Guillermo Jimenez-Perez. Collaborative Agents Framework for
the Internet of Things. In Workshop Proceedings of the 8th International Conference on
Intelligent Environments, vol. 13, p. 191. IOS Press, 2012.

Ramon F. Brena, Carl W. Handlin, and Priscila Angulo. A Smart Grid Electricity Market with
Multiagents, Smart appliances and Combinatorial Auctions. In Smart Cities Conference
(ISC2), 2015 IEEE First International, pp. 1-6. IEEE, 2015.

Priscila Angulo, Claudia Cristina Guzman, Guillermo Jimenez, and David Romero. A Ser-
vice Oriented Architecture and its ICT-Infrastructure to support Eco-Efficiency Performance
Monitoring in Manufacturing Enterprises. International Journal of Computer Integrated
Manufacturing, vol. 30, no. 1, p. 202. Taylor & Francis, 2016.





Curriculum Vitae

Priscila Angulo López was born in Mazatlán, México, on February 1, 1987. She earned the
Computer Systems bachelor’s degree from the Universidad de Occidente, Mazatlán Cam-
pus in November 2008. After graduating, she worked for three years in a software develop-
ment company in Monterrey, México.

She was accepted in the graduate program in Information Technologies and Communica-
tions in December 2011. She is currently working at Microsoft for Windows division.

Her research interests include graph theory, intelligent systems and high level reuse and
customization through feature-oriented programming and software product lines.


	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Layers and Features
	Object Oriented Layering
	Legacy Programs Telescope OO Layers
	OO Layers, Packages, and Features
	Feature Modifiers

	The Challenge and Relevance of SPLs
	Framework and Plug-in Concepts
	Partitioning L into F + P
	R3 Refactoring Scripts


	BttF Classification and Inference Rules
	Introduction
	BttF Concepts
	Declaration Types
	Feature Modifiers
	Facts
	Containment Reference Graph (CRG)
	A BttF Feature Model
	Feature Dependency
	Partitioning Process
	Notation, Predicates, and Rules
	Hooks

	Feature Bounds and Possibilities Calculation 
	Importance and Definition of Feature Bounds
	Possibility Calculations Process
	Possibility Validation
	Example: Assigning a method

	BttF Inferences and Examples
	Inference 1: fprivate Fields and Methods
	Inference 2: fprivate Containers
	Inference 3: Declarations in latest feature are always fprivate
	Inference 4: One Feature in Bounds
	Inference 5: Declaration with no References

	Recursive Partitioning
	Processing of a Feature Model for Recursive Partitioning
	Reassigning Declarations to Sub-Features


	BttF Execution
	BttF's Input
	BttF's User Interface
	BttF's Output
	R4 for Java Code Feature Annotation
	BttF's R4 Application


	BttF Partitioning of Java Programs into SPLs
	Experimental Setup
	Research questions
	Results
	RQ1. In which scenario(s) BttF's inference rate is the highest?
	RQ2. In which scenario(s) BttF's inference rate is the lowest?
	RQ3. Is there a negative correlation between Assignment Time and Number of Possibilities?

	Related Work
	Valente-2012
	ICFL-2013
	LEADT-2014


	BttF Refactoring a Program into a Framework and Plug-in
	Introduction
	Java Constraints for Framework and Plug-in Refactoring
	Experimental Setup
	Research Questions
	Results
	RQ1. Is BttF' s inference rate better for framework and plug-in partitioning than for the best scenario in SPL partitioning?
	RQ2. Is it possible to automatically transform a Java program into a framework and plug-in structure?

	Related Work
	Cornerstone Research
	Generalization Research


	BttF Partitioning of Non-OO Programs (GAML) into SPLs
	Introduction
	GAMA Platform and GAML Language
	Obtaining a CRG from a GAML Program
	Experimental Setup
	Research Questions
	Results
	RQ1. How similar are the inference rates obtained when partitioning GAML models into SPLs, to the inference rates obtained when partitioning Java programs into SPLs?

	Related Work

	Conclusions and Future Work
	Future Work

	Refactorings versus Transformations
	R3 framework and plug-in transformation script
	Class diagrams of framework and plug-in programs
	GAMA platform source code modification
	Bibliography
	Published articles
	Curriculum Vitae

