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ABSTRACT

Software Product Lines (SPLs) are highly configurable systems. This

raises the challenge to find optimal performing configurations for

an anticipated workload. As SPL configuration spaces are huge,

it is infeasible to benchmark all configurations to find an optimal

one. Prior work focused on building performance models to predict

and optimize SPL configurations. Instead, we randomly sample

and recursively search a configuration space directly to find near-

optimal configurations without constructing a prediction model.

Our algorithms are simpler and have higher accuracy and efficiency.
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1 INTRODUCTION

Software Product Lines (SPLs) are highly configurable systems. This

raises the challenge to find a configuration that has near-optimal

performance. An SPL configuration space is often astronomical in

size (exponential in terms of features – increments in program func-

tionality), and searching it efficiently is hard [35]. There are many

reasons: (1) A feature’s influence on performance is not easy to

determine, because (2) feature interactions introduce performance

dependencies with other features [5, 31]. (3) Techniques for true

random sampling of configuration spaces are not known; approxi-

mations to true random sampling are used instead. And (4) how few
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samples can be taken for performance models to have acceptable

accuracy?

This paper focuses on a fundamental problem in SPLs to find

acceptable configurations whose performance is near-optimal. We

do not create a performance prediction model, which then requires

an optimizer (e.g. using a genetic algorithm [27]) to find good con-

figurations. Instead, we use BDDs to count the number of valid

configurations in a configuration space, thereby enabling true ran-

dom sampling of the space. Doing so allows us to prove theoretically

tight bounds on sampling results. Further, we identify features that

are statistically certain to improve or degrade program performance

[11]. We use these features to recursively constrict the configura-

tion space towards near-optimal configurations. The advantages

in doing so are (a) we use simpler algorithms to accomplish what

more complicated algorithms do now, (b) our accuracy is better

than existing algorithms, and (c) we use fewer samples.

The novel contributions of our paper are:

• True random sampling of valid configurations in an SPL;

• Theoretical bounds on search accuracy from uniform random

sampling of configurations;

• A way to progressively shrink a configuration space by ex-

ploiting its shape and statistical reasoning;

• Analyses of real systems that shows our approach outper-

forms prior work in accuracy and the number of samples

needed; and

• A demonstration of the scalability of our work to huge con-

figuration spaces.

2 BIG PICTURE OF PRIORWORK

To predict performance of SPL products (programs), a mathemat-

ical performance model is created. Historically, such models are

developed manually using domain-specific knowledge [1, 12]. More

recently, emphasis has been on general approaches from which

performance prediction models are learned or deduced from per-

formance measurements of sampled configurations. Such a perfor-

mance model is then given to an optimizer, which not only can find

near-optimal configurations, but also near-optimal configurations

that observe user-imposed feature constraints (e.g. configuration

predicates that exclude feature F and include feature G).

Prediction models estimate the performance of valid config-

urations [14, 25, 29, 31, 37]. They are deduced from performance

measurements of sampled configurations. The goal is to use as few

samples as possible to yield a model that is ‘accurate’. Finding a

good set of samples to use is one challenge; another is minimizing

the variance in predictions.

Given an SPL feature model [3], properties of features and their

interactions, and user-imposed feature constraints, an optimizer can
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derive valid configurations that satisfy one or more performance

objectives using a general search strategy [15, 16, 27, 28, 35].

Let C be the set of all legal SPL configurations. 1st -order per-

formance models have the following form: $Pc is the estimated

performance of an SPL product Pc with configuration c∈C, where c
is a set of selected features and $Fi is the performance contribution

of feature Fi :
1

$Pc =
∑
i ∈c

$Fi (1)

Linear models are inaccurate as they do not consider feature in-

teractions. Let $Fi j denote the performance contribution of the

interaction of features Fi and Fj , which requires both Fi and Fj
to be present in a configuration; $Fi j=0 if Fi�c ∨ Fj�c . 2nd -order
models take into account 2-way interactions:

$Pc = �
�

∑
i ∈c

$Fi�
�
+
��
�

∑
i ∈c

∑
j ∈c

$Fi j
��
�

(2)

andmore generally,n-way interactions addmore nested-summation

terms to Eq. (2) [31].
When compared to manually-developed performance models

[1, 6, 12], an important difference becomes apparent. A manually-

developed model:

• Identifies operations {O1 . . .} invoked by system clients,

• Defines a function $Oi to estimate the performance of each

operation Oi ,

• Encodes system workloads in terms of operation execution

frequencies, where νi is the frequency of Oi , and

• Expresses performance $P of a program P as a weighted sum

of frequency times operation cost:

$P =
∑
i

νi ·$Oi (3)

Features complicate the cost function of each operation, where

configuration c∈C becomes an explicit parameter:

$Pc =
∑
i

νi ·$Oi (c ) (4)

The key observation is that manual performance models include

workload variances in their predictions, whereas current SPL perfor-

mance models use a fixed workload. Workload variations play a

significant role in the performance of SPL products and should not

be omitted.

Random sampling. Optimizers and prediction models [14–16,

25, 27, 28, 37] rely on ‘random sampling’, but the samples used

are not provably random. True random sampling would, in effect,

enumerate all n legal configurations, randomly choose a number

k ∈ {1..n}, and use the kth configuration – but this is not done

because n could be astronomically large.

One popular alternative is to randomly select features to create

a configuration, followed by a filter to eliminate invalid configura-

tions [14, 15, 25, 28, 37]. The drawback of this approach is that it

creates too many invalid configurations [16]. Another approach

uses SAT solvers to generate valid configurations [16, 27], but this

produces configurationswith similar features due to theway solvers

enumerate solutions. Further, SAT solvers count the number of solu-

tions by enumeration, which is inefficient [7, 8]. Although Henard

1 $Fi need not be a constant; it could be a sophisticated expression [14].

et al. [16] mitigated these issues by randomly permuting the pa-

rameter settings in SAT solvers, true random sampling was not

demonstrated.

The top path of Figure 1 summarizes prior work: the configura-

tion space is pseudo-randomly sampled to derive a performance

model; samplings are interleaved with performance model learning

until a model is ‘sufficiently’ accurate. That model is then used by

an optimizer, along with user-imposed feature constraints, to find

a near-optimal performing configuration.

Figure 1: Different ways to find good configurations.

Our approach is different. First, we do not use performance mod-

els or optimizers. We find good configurations by randomly prob-

ing the configuration space directly, measuring the performance of

these samples under the required workload. User-imposed feature

constraints simply reduce the space that we probe.

Second, we use true random sampling. We encode feature mod-

els as Binary Decision Diagrams (BDDs) [2], for which counting

the number of legal configurations is straightforward. Given the

number of legal configurations n, we can randomly select a number

k∈{1..n}, and traverse a BDD to find the kth configuration. This

allows us to create accurate mathematical models based on true

random selection.

Third, we progressively constrict the configuration space by

determining statistically significant features (or their absence) that

contribute to good performance. Selecting these features focuses

on progressively smaller regions of the configuration space that

have near-optimal configurations.

The bottom path of Figure 1 summarizes our approach: we use

true random sampling of a constrained configuration space and

measure the performance of selected configurations for a given

workload. We continue sampling until we reach a configuration

that exhibits a satisfactory ‘accuracy’. We demonstrate later that

our technique is more efficient than prior work in the number of

samples used, andmore accurate than predictionmodels.Only when

prediction models with fixed workloads are reused will they be less

costly – but not necessarily more accurate – than our approach.

3 SEARCH BY RANDOM SAMPLING

3.1 Counting Binary Decision Diagrams

Two tools are commonly used to analyze propositional formulas:

SAT(isfiability) solvers [13] and BDDs. SAT relies on a Conjunctive

Normal Form (CNF) representation of a formula to find a solution

efficiently. In contrast, a BDD is a data structure that encodes a

disjunction of formula solutions, i.e. Disjunctive Normal Form (DNF).

BDD tools convert non-DNF formulas into BDDs.

Figure 2 shows how a given feature model (feature diagram

+ cross-tree constraints) can be transformed into a propositional
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formula [4], then into a BDD.2 For now, ignore the integer labels

on edges. The name of each node is a variable v; its dashed-line
child denotes a false or 0 assignment to v and its bold-line child

is a true or 1 assignment. A terminal node of a BDD is a 0 or 1

box. A path from the root to a box assigns values to variables. A

path terminating at the 1 box means that the variable assignments

are satisfiable. Path (1, 1, 1, 0,−) means that all configurations with

root = 1,A = 1,C = 1, and D = 0 (the remaining variable B is don’t

care) are valid solutions of this model.3

Figure 2: Transforming a Feature Model into BDD.

BDDsmake it fast and easy to count the valid configurations for a

given feature model and user-imposed feature constraints. The inte-

ger on each edge in Figure 2 indicates the number of solutions with

those variable assignments. We call this a Counting BDD (CBDD).

The path (1, 0,−,−,−) has zero solutions; path (1, 1, 0,−,−) has
one solution. The root or path (−,−,−,−,−) has three solutions,
the sum of edges from the root.

Here is why CBDDs are important: CBDDs solve an open prob-

lem of how to randomly and uniformly select configurations from

a valid configuration space. We can quickly count the size n of a

configuration space, generate a random number k∈{1..n} (where
all numbers in {1..n} are equally likely), and convert k into an SPL

configuration by a CBDD traversal. In contrast, SAT solvers count

solutions by enumeration; for a large configuration spaces, enumer-

ation is impractical. The downside of BDDs is that when formulas

are large, BDD creation time may exceed user patience or storage

requirements of available memory [2].

An algorithm to create and traverse a CBDD that maps a num-

ber to a configuration is straightforward and is presented in [22].

A simple extension includes user-imposed feature constraints. In

short, our algorithm creates a CBDD and counts solutions to feature-

constrained configuration spaces to sample configurations.

3.2 Performance Stairs in Configuration Spaces

Exploiting the ‘shape’ of a configuration space is key to searching

it efficiently. We may not find the optimal configuration Ω – the

configuration with the optimal performance – but if we can come

provably close to Ω, that will do nicely.

Let C be set of all legal SPL configurations. Let c∈C and $(c )
denote the measured or predicted performance of configuration

c . A performance configuration space (PCS ) is the set of all (config,

2This is an ordered BDD, where Boolean variables are encountered from root-to-
terminals in the same order.
3This is a reduced BDD, meaning unnecessary nodes/variables whose values
are immaterial to a solution are eliminated. Otherwise a BDD would contain
2number of var iables nodes.

performance) pairs:

PCS = { (c, $(c )) | c ∈ C } (5)

where configuration Ω ∈C has the best performance $(Ω).
Now, sort the pairs of PCS from worst-performance to best and

plot configurations along the X-axis and performance along the

Y-axis. We call this a PCS graph. We expected a continuous graph

such as Figure 3a, where high-valued $ is bad (worst performance is

at the far left) and low-valued $ is good (best performance is at the

far right). Ω anchors the far-right point on X-axis of PCS graphs.

Figure 3: PCS Graphs.

Interestingly, Marker et al. [18] discovered that PCS graphs are

staired, as in Figure 3b. Stairs arise from discrete feature decisions;

some features are highly-influential in performance while others

have little or no impact. Consequently, a few critical feature de-

cisions define the performance characteristics of a segment of a

PCS graph (the configuration membership of a stair) while less

important feature decisions alter the performance of nearby config-

urations only slightly (giving a stair its width and slope). In short,

the configurations of a stair share major design decisions [18].

Figure 4 illustrates two common situations. First, like a fractal,

stairs have substairs, recursively. Substairs within different stairs

repeat because the same less significant decisions are applied within

each stair (see Figure 4a). Second, distinct stairs can overlap because

they have similar performance, making it difficult to distinguish

common decisions. We use the term pollution when the superposi-

tion of distinct stairs (forming a downward trending shelf ) arises.

Figure 4b is the basic shape of a PCS graph that we believe is

common in SPLs and will exploit in this paper.

Figure 4: Stairs within Stairs.

3.3 Random Selection in PCS Graphs

Let N be the interval of integers [1, |C|], one per configuration in C.

Randomly sampling n integers from this interval can be regarded

as a combinatorial problem. As we are interested in finding Ω, the
probability that the largest selected integer, cbest , is i units away
from |C| is:

p |C |,n (i ) =
(|C| − i − 1

n − 1
)
/

(|C|
n

)
(6)
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The expected value of i , or the mean distance cbest is to |C|, is:

E |C |,n =
|C |−n∑
i=0

i · p |C |,n (i ) (7)

As we are interested in huge configuration spaces, we can gen-

eralize this analysis by replacing N with the real unit interval I =

[0, 1], with:

• Dividing each number in N=[1, |C|] by |C| to yield NN =

[ 1
|C | , 1], and

• Taking the limit lim |C |→∞NN to produce I.

Every PCS graph is monotonically decreasing. If we randomly

select n points in I, cbest will be closest to 1. The cumulative prob-

ability distribution function for cbest is:
4

pn (X ≤ x ) =

∫ x

0
n · xn−1 · dx = xn (8)

The average error En , or the mean distance cbest is to 1, is:

En =

∫ 1

0
(1 − x ) · n · xn−1 · dx = 1

n + 1
(9)

That is, n randomly selected points partition I on average into n+1
uniform intervals of length 1

n+1 . Eq. (9) tells us a simple way to

search for a good configuration in a PCS graph: randomly select

n configurations and evaluate the performance of each. The best

performing selection, cbest , is on average a distance 1
n+1 from the

best performance at x=1.

Other useful statistics of pn are En , the second-moment of En ,
and σn , its standard deviation:

En =

∫ 1

0
(1 − x )2 · n · xn−1 · dx = 2

(n + 1) · (n + 2) (10)

σn =

√
En − E2n =

√
2

(n + 1) · (n + 2) −
(

1

n + 1

)2
(11)

Figure 5 compares the result of Eq. (7) and Eq. (9), sampling

20, 60, and 100 numbers on spaces with different size |C|, shown
on the X-axis. To compare two equations, the results of Eq. (7)
were normalized by the size of |C|, so that both equations indicate

normalized distances to 1, shown on the Y-axis.

Figure 5: Comparing E |C |,n and En .

For small spaces (|C| ≤ 2000), Eq. (7) predictions are slightly
lower than Eq. (9). When |C| ≥ 2000, there is no difference between

Eq. (7) and Eq. (9). As we are more interested in huge configuration

spaces, we resort to Eq. (9) for the rest of this paper.

4xn−1 ·dx is the probability that the first n−1 selections are in the interval [0, x ] and
dx is the probability that the last selection is at x ; n is the normalization constant.
Eq. (8) is an instance of the Beta function [9].

Figure 6: En and σn .

Figure 6 plots En and σn as

percentages in an infinite-size

configuration space; En and σn
values are virtually identical as

they lie on top of each other.

Here is what Figure 6

means: If we randomly select

n=100 points, cbest will be 1%
away from 1 on the I-axis with

a standard deviation of 1%. If

we select n=50 points, cbest
will be 2% away from 1 with a standard deviation of 2%. As n
increases, the interval [En−σn ,En+σn] shrinks. We will see later

that these numbers are good; they say that we do not need many

random selections to find a good performing point.

3.4 Axes of Projections and Main Conjecture

Figure 7: Axes of Projections.

Consider the PCS graph of I×$
plane of Figure 7. In the last

section, we analyzed the per-

formance of selecting n points

along the I axis and choosing

the point closest to 1.

We are more interested in

the PCS graph of plane C×$.
Each point in I has an equal

probability of being selected.

As the CBDDmapping is 1-to-1,

each point alongC axis also has

an equally probability of being selected. We still have to measure

$(c ) for each selected configuration c , but the theoretical results of
Eq. (8)−(11) about error distances from cbest to 1 in I are transferred
to error distances from cbest to Ω in C.

Here is our main conjecture: there is a correspondence between

being q% from Ω along X-axis and q% from $(Ω) along Y-axis in a

PCS graph for small q. Suppose a PCS graph is defined by $k (x ):

$k (x ) = 1 − xk (12)

Figure 8a plots graphs for k ∈ {1/5, 1/3, 1, 3, 5}. We say k is the

curvature of a PCS graph.

Figure 8: PCS Graphs and Their Critical Zones.

Let’s focus on the interval [.96,1], which contains all configura-

tions whose X-axis value is within 4% of Ω. We call this the critical

zone; 4% within optimal is a ball-park setting for prior work. Fig-

ure 8b shows the critical zone of Figure 8a. The Y-axis plots the
%-distance from the best-performance at y=0, namely $(Ω).

Although the PCS graphs in Figure 8a are non-linear, the cur-

vature k reduces to the graph’s slope at x=1 in the critical zone.
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Figure 9: PCS Graphs of Different SPLs.

This slope is the first derivative, d
dx

(1 − xk)=−k · xk−1, and in the

limit, limx→1 − k · xk−1=−k. That is, the slope of a PCS graph in

the critical region is negative k. Observe:

• When k=1, the PCS graph $k (x ) is a line. If we are q% away

from Ω on the X-axis we are also precisely q% away from $(Ω)
on the Y-axis.
• When k<1 the graph is convex. If we are q% from Ω, we know
that performance is k·q% away from $(Ω). A convex PCS

graphmeans thatΩ lies on a flat shelf where any configuration

on that shelf is near-optimal.

• When k>1 the graph is concave. If we are q% away from Ω, we
are k·q% away from $(Ω). A concave PCS means that Ω does

not lie on a flat shelf and further searching may be warranted.

At this point, we need to look at actual PCS graphs to examine

their shape and curvature.

3.5 PCS Graphs of Actual SPLs

Four SPLs were analyzed by Siegmund et al. [30], which were

extensively used as the test set for prediction models.5 Figure 9

shows their PCS graphs. Each is described briefly:

• LLVM is a compiler infrastructure, written in C++. It has 11

features and 1024 configurations, where test suite compilation

times were measured.

• X264 is a video encoder library for H.264/MPEG-4 AVC for-

mat, written in C. It has 16 features and 1152 configurations;

Sintel trailer encoding times were measured.

• BerkeleyDBC is an embedded database system, written in C.

It has 18 features and 2560 configurations where benchmark

response times were measured.

• Apache is an open-source Web server. It has 9 features with

192 configurations, where the maximum server load size was

measured through autobench and httperf.
Figure 10 shows their PCS graphs in the critical zone. Most

have k<1; this means that as cbest approaches Ω on the X-axis, we
know its performance is very close to $(Ω). The reason is that all

configurations lie on a flat shelf whose performance differences are

minimal. Choosing any configuration on this shelf will do.

SPLs whose PCS graphs where k>1 pose more of a challenge.

Their configurations do not lie on a flat shelf; performance notice-

ably improves as one gets closer to Ω. If we know the curvature k of

a PCS graph, we can estimate how far we are from $(Ω). Examples:

5Among 6 available datasets, we used only systems that had all legal configurations
measured. Our analyses of systems with incomplete datasets we felt were misleading,
although they exhibited similar performance to systems with complete dataset. Note
that gathering the performance data of all systems took 2 months of CPU time [30].

LLVM has a curvature of k=2. If we believe our best sample is q%
from Ω, we can infer that we are 2·q% from $(Ω).

From the above, a key metric that determines when to stop

sampling or if more sampling is needed is to estimate a PCS graph’s

curvature k. More on this in Section 4.2.

Figure 10: PCS Graphs of SPLs in the Critical Zone.

4 RECURSIVE SEARCHING

The best configuration cbest out of 10 random samples will have

an average error/distance of 9% = 1
11 along the X-axis from Ω.

100 random samples (or 10× the previous number) are needed to

find cbetter that reduces the error to 1%= 1
101 . Note that approx-

imately 90% of the additional 90 samples will not perform better

than cbest . This is wasteful. We call this Non-Recursive Searching

(NRS) to distinguish it from our upcoming approach.

Random sampling with recursion offers improvement. Ideally,

10 samples of the original configuration space can identify the best

10% of this space, and another 10 samples can constrict this smaller

space by another 10% to the best 1% for a total cost of 20 samples.

This is better; this is recursive searching.

The key driver for recursion is performance stairs. As stairs have

different average performances due to different feature decisions,

finding the best performing stair that contains Ω improves the

result of sampling.

Consider the PCS graph of LLVM in Figure 9. This graph looks

almost linear with no stairs. However, stairs become visible as con-

figurations are analyzed based on features they have in common. In

each graph of Figure 11, configurations are partitioned by whether

they include a particular feature or not, which is done recursively.

The most influential feature (or its negation) is selected to partition

the configurations. Then, from the remaining features, the most in-

fluential feature (or its negation) regarding the partition that better

performs in overall is selected as the next feature to partition.

Each graph in Figure 11 clearly shows the effect of performance

stairs, where one partition is constricted by the next via the selection
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of a ‘good-performing’ or ‘noteworthy’ feature. Each such feature

defines a ‘stair’. Thus, devising an algorithm that finds a good stair

on which to recurse is the crucial next step. We use the Statistical

Recursive Searching (SRS) algorithm defined next.

Figure 11: Recursive Stairs of LLVM.

4.1 Statistical Recursive Searching (SRS)

There are at least two basic approaches to find a good stair. One

directly focuses on the feature decisions that are expected to form

the best stair by using common feature decisions in the k-best
sampled configurations. Another exploits how stairs are recursively

formed, observing feature influence on performance from samples.

We discovered the k-best approach has drawbacks: finding a

good k value is hard. Small k often yields highly variant and inac-

curate results. Larger k requires more samples to collect as fewer

commonalities are found among them.

Similarly, we discovered the second approach also has drawbacks:

feature interactions and constraints often led to misinterpreting a

feature’s influence by making decisions inconsistent with Ω.
SRS combines the advantages of both approaches while minimiz-

ing their disadvantages. SRS utilizes the k-best approach by setting

k=2. Then SRS identifies features that are common to the k=2 best
– and here’s the difference – identifying noteworthy features among

them – those features (or their negation) that statistically are certain

to improve performance [11]. SRS then constricts the search space

to configurations that comply with noteworthy features decisions,

and the SRS algorithm recurses; see Algorithm 1.

4.1.1 Recursion Logic. At each recursive step, n random sam-

ples are taken. The performance influence of feature decision d is

determined as follows:

• $(d ) measures the average performance over the n samples

that have feature d . $(¬d ) measures the average performance

of the n samples that do not have d .
• Δ(d )=$(d ) − $(¬d ) is the performance influence of feature

d . The sign of Δ(d ) indicates whether d improves (negative

value) or degrades (positive value) average performance.

• t-Test (d ) is the result of Welch’s t-test [34] on whether $(d )
is better than $(¬d ) with 95% confidence.

Welch’s t-test evaluates the hypothesis that the mean of one

sample group is higher than the other [34]. That is, it determines

whether the Δ(d ) from samples is reliable to distinguish whether d
or ¬d is a noteworthy feature. Noteworthy features constrict the

configuration space for the next recursion by becoming additional

constraints that samples must satisfy at the next recursive step.

4.1.2 Termination Logic. Recursion terminates when no new

noteworthy features are discovered. SRS assumes that the configu-

ration space cannot be reduced further, so that random sampling on

this region yields a good configuration. If the size of the constricted

configuration space is smaller than n, all configurations in the space

are measured.6

Algorithm 1: SRS algorithm

1 Procedure SRS(n, FM , dSet):
Input :n (number of samples per recursion)

FM (feature model propositional formula)

dSet (set of feature decisions (initially empty))

Output :cbest (best configuration found (set of features))

2 samples ← sample n configs. from FM ∧ dSet ;
3 sort samples so that samples[0] has best performance;

4 commons ← common feature decisions in samples[0] and

samples[1];

5 for each decision in commons do

6 if (Δ(decision) < 0) ∧ tT est (decision) then
7 add decision to dSet ;

8 if dSet unchanged from previous recursion then

9 return samples[0];

10 else

11 return SRS (n, FM , dSet );

4.2 Estimating PCS Graph Curvature k

Let Δx (r ) denote the size of a stair in terms of the number of

configurations at the r th recursion, where Δx (1) = the number

of configurations in the original space. Δx (r ) decreases with in-

creasing r . Using CBBDs, we can compute Δx (r ) with pin-point

accuracy.

There are two ideal values – values that cannot be computed un-

less performance data for the entire configuration space is available.

Let δx (r ) be the error (distance) from the best sampled configura-

tion cbest to Ω along the X-axis at r -th recursion:

δx (r ) =
$(cbest ) ≤ # conf iдs ≤ $(Ω)

total #of conf iдs
+ (13)

And let δy (r ) be the relative performance difference between the

best configuration cbest and Ω at r -th recursion as:

δy (r ) =
$(cbest ) − $(Ω)

$(Ω)
(14)

We estimate δx (r ) and δy (r ) from random samples by making the

following best-case assumptions:

• Samples are
Δx (r )
n+1 away from each other on X-axis.

• Recursion always finds the best stair that contains Ω.
• Pollution is negligible between cbest and Ω.

6SRS mostly avoids local minima by searching a PCS graph, which is monotonically
decreasing [36]. This is elaborated in [22].
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Figure 12 depicts how δx (r ) and δy (r ) can be estimated with these

assumptions.

• E (δx (r )), our estimate of δx (r ), is based on the size of the

current stair and number of samples:

E (δx (r )) =
Δx (r )

Δx (1)
· 1

(n + 1)
(15)

where cbest is
Δx (r )
n+1 configurations from Ω along X-axis.

• We compute the slope or curvature k of a stair using the right-

most 1
3 of its samples. We found 1

3 works well, computed by

a standard least squares method [9].

• E (δy (r )), our estimate of δy (r ), is a linear extrapolation of

$(cbest ), using slope k to estimate $(Ω):

E ($(Ω)) = $(cbest ) + k · Δx (r )
n + 1

(16)

Then E (δy (r )) is:

E (δy (r )) =
$(cbest ) − E ($(Ω))

E ($(Ω))
(17)

Figure 12: Estimating δx (r ) and δy (r ).

At each recursion, we report [E (δx (r )),E (δy (r )), k] triples to the
user to decide whether the best solution found so far is accurate

enough, thereby stopping the recursion before Algorithm 1 stops

itself and eliminating the need for further costly sampling. The

results of the next section are based on Algorithm 1 stopping itself.

5 EVALUATION

Five research questions evaluate our work:

RQ1 : Does our sampling theory for NRS match observations?

RQ2 : Is SRS more efficient than NRS?

RQ3 : Why does SRS work?

RQ4 : Is SRS better than existing approaches?

RQ5 : Do NRS and SRS scale to large configuration spaces?

To answer these questions, we used the data by Siegmund et al. [30]

as ground-truth, presented in Section 3.5.

5.1 RQ1: Does Our Sampling Theory for NRS
Match Observations?

We compared the theoretical predictions of NRS using En , Eq. (9),
with the average of measured values for δx (1), Eq. (13). For Apache,
Eq. (7) was used instead as the configuration space is tiny. We

performed 100 experiments for each value of n. For each system, the

experiments started with n at 10 to 100 incremented by 10, plotted

for comparison with En ; see Figure 13. These graphs confirm a close

agreement between NRS theory and observations: their differences

are imperceptible.

For RQ1, our sampling theory matches empirical observations.

Figure 13: NRS Theory vs. Empirical Observations.

5.2 RQ2: Is SRS More Efficient than NRS?

We compared the accuracy of SRS and NRS using an equal number

of samples and collected the following data:

• δx is the true X-axis accuracy of SRS when it terminates;

• n is the number of samples per recursion;

• N is the total number of samples taken by SRS; and

• EN is the theoretical accuracy of NRS assuming N configura-

tions are randomly sampled.

Note: We do not report δy values here. A decrease in δx is

never matched by an increase in δy in a PCS graph. δy values

are important but only when comparing SRS with existing

approaches, which we do in RQ4.

Figure 14 plots averages of 100 experiments with different n
values. While both δx and EN decrease sharply with increasing n,
δx is on average better than EN .

Figure 14: Comparison between SRS and NRS.

For RQ2, SRS is more efficient than NRS when the number of

samples per recursion n exceeds 15.
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5.3 RQ3: Why Does SRS Work?

We collected the following measurements to understand how SRS

performs, all taken at SRS termination:

• N the total # of samples taken,

• d is the total # of noteworthy features selected,

• ρ is the % of noteworthy features that belong to Ω, and
• r is depth of recursion.

Figure 15 plots these measures w.r.t. n for all 4 systems. Reinforc-

ing the results of RQ2, the d , ρ, and r saturate at n=15; indicating
that recursion works as desired. As n increases, accuracy increases

at the cost of a linearly increasing N .

Figure 15: Results of SRS Recursion.

For RQ3, SRS works because it requires relatively few samples

per recursion, it accurately predicts features that belong to Ω, and
relatively few recursions are needed.

5.4 RQ4: Is SRS Better than Existing Approaches?

We determined the best configuration that can be returned by exist-

ing prediction models, and derived their δy value with respect to the

total number of samples N used to construct the prediction model.

We compared our results with the best results to date, Sarkar2015

[25] and Siegmund2012 [31],7 which had their tool and generated

prediction models available at [26, 30].

5.4.1 Comparison with Sarkar2015. Sarkar2015’s predictionmodel

uses a Classification And Regression Tree (CART) of features, based

on how randomly-sampled configurations can be partitioned by

features. Each leaf node of the CART is a group of sampled config-

urations that share the same decisions (feature selections). The tree

does not cover all features, but only the ones that are significant to

performance. When a configuration is queried, CART is traversed

to find a leaf that matches its decisions. The average performance

7It is unclear to us on how to compare our results to a newer version of Sigmund2012
[29], as they extend their work with numerical features (features whose values are
within a range of real numbers); simply ignoring numerical features was not possible.

of the sampled configurations within the leaf is returned as the

predicted performance.

To compare with SRS, the leaf with the smallest average per-

formance was regarded as the predicted performance of the best

configuration. δy was derived as the relative error between $(Ω)
and this value. Using their tool, 20 prediction models were created

to derive δy and averaged, for different sample sizes.

Figure 16 plots δy of SRS over N , as well as the values derived

from Sarkar2015, plotted as squares. The graphs show that SRS

obtained the same δy value with fewer samples (N ) and found better

δy values with same N , except when N<10, where statistical rea-
soning is not meaningful. For example, in BerkeleyDBC, Sarkar2015

used 110 samples to obtain an accuracy of δy=20% (see point �� in

Figure 16). SRS needs 20 samples to produce this accuracy. And

when SRS uses 110 samples, it obtains an accuracy of δy≤0.5%.
Further, their results did not show a clear trend over the number

of samples, as larger N did not necessarily lead to a smaller δy . In
contrast, SRS clearly shows a decrease of δy as N increases.

Here is why: CART takes the average performance of configura-

tions as predicted performance, which cannot be better than the

best sampled configuration among them. Instead, SRS searches the

space directly to find the best-performing configuration it can.

Figure 16: Comparison with Sarkar2015 and Siegmund2012.

5.4.2 Comparison with Siegmund2012. Siegmund2012’s predic-

tion model assigns performance values to key features and their

interactions using configuration measurements and linear program-

ming. The resulting model can predict the performance of any legal

configuration. We defined δy for this prediction model as follows:

δy =
$(cpredicted best ) − $(Ω)

$(Ω)
(18)

where $(cpredicted best ) is the actual, not predicted, performance

of cpredicted best , the best performing configuration according to

their prediction model. To build their model, Siegmund2012 used

different strategies to select configurations. As different strategies
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used different numbers of samples, we measured δy for different

strategies. Figure 16 plots the prediction model results of Sieg-

mund2012 as triangles.

As with Sarkar2015, SRS obtained the same δy value with fewer

samples (N ) and found better δy values with the same N . For ex-

ample, Siegmund2012 used 62 samples to obtain an accuracy of

δy=4% for LLVM (see see point 
� in Figure 16). SRS needed only 17

samples to produce this accuracy. And when SRS uses 62 samples,

it obtained an accuracy of δy=0.2%.
Like Sarkar2015, more samples did not guarantee a better δy

value, nor was there consistency across systems, as greatly different

δy and N values were observed. SRS clearly shows a decrease of

δy as N increases.

For RQ4, SRS outperforms existing prediction models, even as-

suming an optimizer always finds the best configuration based on

the prediction model.

5.5 RQ5: Do NRS and SRS Scale to Large
Configuration Spaces?

Zhang et al. [37] created large configuration spaces by×-composing

multiple SPLs (see Table 1). Configurations from each SPL are com-

bined by taking the union of their features and summing their

performance values.

Table 1: Combined SPLs for Scalability Evaluation

Combined Systems # of Features # of Configs.

Apache × LLVM × BerkeleyDBC 38 503,316,480

Apache × X264 × BerkeleyDBC 51 566,231,040

LLVM × X264 × BerkeleyDBC 53 3,019,898,880

Apache × X264 × LLVM × BerkeleyDBC 62 579,820,584,960

Demonstrating the scalability of NRS is simple: Eq. (9) defines
NRS performance for configuration spaces of size 2000 to infinity.

Figure 13 showed how SPLs of size up to 2560 match the predic-

tions of Eq. (9). Averaging 100 experiments for each value of n,
Figure 17 shows how the two smaller composite SPLs of Table 1,

which are 200K times larger than the biggest (2560 of BerkeleyDBC)

in Figure 13, match Eq. (9). (Extending Figure 17 for n = 10, 20 was

infeasible, as ≥3.5% of these huge spaces exceeded the memory

capacity of our machines).

Figure 17: NRS Theory vs Observations on Large Spaces.

Demonstrating the scalability of SRS is similar. Performance

graphs for composite SPLs should all have the same shape and

should match those of SPLs with small configuration spaces, as in

Figure 14. Figure 18 shows this isomorphism in all four composites.

Note that SRS performs better than NRS in large spaces than in

small; we believe that the initial noteworthy features SRS selects are

the most effective candidates for each individual SPL in a composite,

hence the percentage improvement appears better. So this might

be an artifact of using composite SPLs.

For RQ5, NRS and SRS scale to large configuration spaces. As

before with smaller spaces, SRS outperforms NRS.

Figure 18: δx of Large Configuration Spaces.

5.6 Threats to Validity

Internal Validity. We used ground-truth data of [30] which are

measurements of real systems. While there may be errors in mea-

surements, this dataset was utilized by other researchers [14, 25, 29,

31, 37].We believe that the threat of comparing different approaches

was sufficiently controlled.

To control the randomness of sampling, we performed 100 ex-

periments and averaged the results. While there are outliers that

threaten our results, δx for both NRS and SRS followed a Beta-

distribution, indicating that they are marginal and can be controlled.

External Validity. We evaluated our approach based on 6 real-

world systems with different domains and numbers of features. We

provided a mathematical argument on the system-independence

of NRS, statistical reasoning of SRS may depend on the number of

features and their influence on performance. We are aware that SRS

performance may not generalize to all systems due to this, identical

trends from our evaluations across systems and their combinations

gives confidence that our conclusions should hold for other SPLs.

6 RELATEDWORK

Section 3 placed our research in perspective with prior work. We

elaborate key topics in more detail below.

6.1 Performance Prediction Models

A performance prediction model is a function Φ(c ) that returns an
estimate of the expected performance of an SPL configuration c , for
all legal configurations. Aside from the two approaches described in
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Section 5.4, Sarkar et al. [25] used projective sampling to minimize

the cost of constructing a CART model for performance prediction.

Projective sampling attempts to find the optimal sample size by

approximating the learning curve of the prediction model’s accu-

racy. Siegmund et al. [29] extended their previous work [31] with

numeric features and an iterative process to build performance-

influence models, which we do not cover yet. Zhang et al. [37] used

Fourier transformation to create a prediction model that not only

predicts performance, but also estimates its accuracy; it is unclear

if this approach scales beyond 30 features. All of these works are

not directly comparable with SRS, as their evaluation measured the

average prediction accuracy over multiple test configurations and

do not provide means for finding the near-optimal configurations.

6.2 Optimizers

An optimizer finds configurations that satisfy multiple performance

constraints from a given feature model and properties of each

feature. White et al. [35] proposed an approach based on linear

programming, which transforms the given feature model with bud-

get constraints into a knapsack problem. Guo et al. [15] applied

a genetic algorithm to search for the optimal configuration. From

randomly selected configurations, they crossover good perform-

ing configurations for mutation and modify invalid configurations.

Sayyad et al. [27, 28] elaborated on Indicator-Based Evolutionary

Algorithm (IBEA) for selecting optimal features regarding multi-

ple objectives, which outperformed other evolutionary algorithms.

They also proposed a heuristic that uses precomputed valid config-

urations as a seed for the evolutionary algorithm, to improve the

scalability of the approach. Henard et al. [16] extended IBEA with

SAT solver to generate random configurations and filter out the

invalid configurations from mutations, to improve scalability.

These evolutionary approaches perform randomized mutation

of configurations, which often leads to invalid configurations. They

require significant effort to find suitable parameter settings, which

are system-specific and require more than 100 initial samples [23].

6.3 Counting Configurations

Counting configurations is known as the model counting problem,

which is regarded as a more complicated problem than checking

the satisfiability [8]. SAT solvers were extended to exactly [32] or

approximately [10] count the number of solutions from a given

propositional formula. BDDs can count the number of solutions via

their construction. This is advantageous when multiple queries are

made to a single formula, as the BDD can be reused [8].

Benavides et al. and Pohl et al. [7, 24] compared CSP, SAT, and

BDD solvers on counting configurations, where BDD was much

faster than the others, given enough memory. Mendonca et al. [20]

provided a reasoning and configuration engine SPLOT, which uses

BDD to count the number of valid configurations. Mendonca et

al. [21] proposed heuristics to reduce the size of BDD through

variable ordering inferred from a feature model, which improves

the scalability up to 2000 features.

6.4 Sampling Configurable Systems

Efficient testing strategies for configurable systems rely on sam-

pling. Liebig et al. [17] compared different sampling algorithms

with regards to scalability. Random sampling was considered infea-

sible as most samples were invalid when features are randomly

selected, due to feature constraints. Medeiros et al. [19] also com-

pared different sampling algorithms for fault detection capability.

Their work randomly selected features, eliminating invalid config-

urations. But again, random sampling features does not guarantee

random sampling of configurations [14, 15, 25, 28, 37].

In contrast, we randomly sample from a set of valid configura-

tions. #SAT solvers [10, 32] are SAT solvers that also can count the

number of solutions. The key to using #SAT is to determine how to

uniquely map a given number to a specific configuration. CBDDs

provide this capability directly [8, 33].

7 CONCLUSIONS

Creating performance models that can predict the performance of

any SPL configuration is a worthy goal; it must be used with an

optimizer that knows how to search a large configuration space

efficiently. But it is also an expensive approach, as the performance

model must be reused in different situations to amortize the cost of

its development. A key assumption in this line of work is measuring

performance for a fixed workload; should that workload change, a

new performance model may need to be created.

We eliminated the middle-men of performance models and opti-

mizers by random sampling the configuration space directly and

using sampled configurations to progressively constrict the space.

Our paper makes five contributions:

(1) We showed how true random sampling of a SPL configuration

space can be achieved by Counting BDDs (CBDDs). Prior

work relied on pseudo-random sampling;

(2) We explained how configuration spaces can be searched by

using n random samples and returning the best-performance-

in-n. We called this approach Non-Recursive Sampling (NRS),

which has theoretically good performance;

(3) We demonstrated that information gleaned from sampled con-

figurations yields noticeably better performance than NRS

using Statistical Recursive Searching (SRS) at a minimal in-

crease in algorithm complexity;

(4) We compared SRS to prior work and showed that SRS con-

sistently found better-performing configurations using fewer

samples; and

(5) We demonstrated how our approach scales to huge spaces.

We believe that our work advances and simplifies the state-of-

the-art in finding near-optimal configurations in large SPL configu-

ration spaces.
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