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Quickly find SPL configurations with 

near-optimal performance for a given workload

• Configuration space is often huge: 𝑛 features ≤ 2𝑛 configurations

( 273 optional features: 1082 products, one for every atom in universe )

• Searching for the optimal configuration is daunting,

as benchmarking all configurations is infeasible

• Find a way to get good enough configurations with practical effort
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I want a hybrid car with laser headlight, 
but cheap and light as possible.

Now 273/275 options left to decide…  



Big Picture
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Contributions

• Allow true random sampling of configurations

• Provide statistical bounds on searching by sampling

• Directly search the space for any given workload
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Search by Random Sampling
which we describe next…



• To randomly sample configurations 

from uniform distribution:

– Identify valid configuration space

– Select a random number in [ 1, total # of configs ]

– Return the configuration with matching number

• Binary Decision Diagram (BDD):

– Compile prop. formula into graph structure

– Derive all possible solutions (configs)

– Allows efficient sampling from traversing BDD

Random Sampling with BDD
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(𝑟𝑜𝑜𝑡 ↔ 𝑡𝑟𝑢𝑒)
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Randomly sample from space of all valid 

configurations, not space of all features



• 𝑛 random numbers over unit range [0,1], 𝑥 as the number closest to 1

Analyze the distance between 𝑥 and 1, (1 − 𝑥)

• C.D.F. of 𝑥 over 𝑛:   𝑝𝑛 𝑋 ≤ 𝑥 = 0׬
𝑥
𝑛 ⋅ 𝑥𝑛−1 ⋅ 𝑑𝑥 = 𝑥𝑛

• Average distance from 𝑥 to 1: 𝐸𝑛 = 0׬
1
1 − 𝑥 ⋅ 𝑛 ⋅ 𝑥𝑛−1 ⋅ 𝑑𝑥 =

𝟏

𝒏+𝟏

(Equations for sampling over discrete space on Section 3.3 of the paper)

Statistics of Random Sampling (1)
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• Correspondences:

– Selection of numbers in [ 0,1 ]   ► Selection in [ 1, total # of configs ]

– Closeness to 1                           ► Closeness to the best configuration, Ω

Statistics of Random Sampling (2)
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On average, sample with the best performance has 

top 
𝟏𝟎𝟎

𝒏+𝟏
% performance among all configurations
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Statistical Recursive Searching (SRS)

• Can search better than 99 samples for 1% by random sampling

• Feature selection:

– Makes some configs perform better

– Constrict config space

• Search within smaller and better 

config space by feature selection

• Find most influential features by:

– Performance difference

– Welch’s t-Test
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Use samples to recursively constrict the search space
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Use samples to recursively constrict the search space
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Use samples to recursively constrict the search space
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Use samples to recursively constrict the search space
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Statistical Recursive Searching (SRS)
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Use samples to recursively constrict the search space
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4 features excluded:

- 1/16 of entire space,

- Better overall performance 



EVALUATION
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ICSE 2012



Evaluation Method

• Use ground truth data from Siegmund et al. (http://fosd.de/SPLConqueror)

• Measured accuracy of search:

– 𝜹𝒙 :  % of configurations better than the best config found so far

– 𝜹𝒚 : % performance difference to Ω

• Averaged from 100 searches per different conditions

• Full result is available in Section 5 of the paper
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SPL Type # features # configs Performance

LLVM Compiler infrastructure 11 1024 Test suite compilation time

BerkeleyDBC Database system 18 2560 Benchmark response time

X264 Video encoder 16 1152 Video encoding time

Apache Web server 9 192 Maximum server load



𝜹𝒙: Theory vs. Actual
• 𝛿𝑥 from randomly sampling different # of samples 

vs. theoretical value derived using same # of samples 
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Theory matches observations
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𝜹𝒙 : SRS vs. Random Sampling 
(non-recursive)

• 𝛿𝑥 of SRS over different # of samples per recursion

vs. theoretical 𝛿𝑥 of random sampling with same total # of samples (𝑁)
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SRS is more efficient than random sampling alone

𝐸𝑁 (Theoretical)



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100 120 140 160 180

BerkeleyDBC

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 20 40 60 80 100

LLVM

𝜹𝒚: SRS vs. Performance Models (1)

• 𝛿𝑦 over total # of samples in SRS vs. 

𝛿𝑦 of perf. models assuming an ideal optimizer (always finds best predicted config)
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SRSSarkar2015 Siegmund2012

SRS needs many fewer samples for same accuracy, and

yields much better accuracy for same number of samples
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𝜹𝒚: SRS vs. Performance Models (2)

• 𝛿𝑦 over total # of samples in SRS vs. 

𝛿𝑦 of performance models assuming an ideal optimizer
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SRSSarkar2015 Siegmund2012

In SRS, more samples yields better accuracy
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𝜹𝒙: Scalability of Searching
• Combine SPLs to simulate

larger configuration spaces 

• Measure 𝛿𝑥 for SRS and

non-recursive searching
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Conclusions and Contributions

1. True random sampling of configuration spaces

2. Guaranteed tight statistical bounds on finding good configurations

3. Can recursively search through configuration space for more efficient searching

4. Scalable search method - accuracy independent of the configuration space size
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Thank You !
Finding Near-Optimal Configurations in Product Lines by Random Sampling

Jeho Oh, Don Batory, Margaret Myers, Norbert Siegmund
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Supplemental Slides 
from Now On
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Statistics of Random Sampling

• 𝑛 random numbers over unit range [0,1], 𝑥 is the number closest to 1
Analyze the distance between 𝑥 and 1, (1 − 𝑥)

• C.D.F. of 𝑥 over 𝑛:

𝑝𝑛 𝑋 ≤ 𝑥 = 0׬
𝑥
𝑛 ⋅ 𝑥𝑛−1 ⋅ 𝑑𝑥 = 𝑥𝑛

• Average distance from 𝑥 to 1:

𝐸𝑛 = 0׬
1
1 − 𝑥 ⋅ 𝑛 ⋅ 𝑥𝑛−1 ⋅ 𝑑𝑥 =

𝟏

𝒏+𝟏

• Standard deviation:
ത𝐸𝑛 = 0׬

1
1 − 𝑥 2 ⋅ 𝑛 ⋅ 𝑥𝑛−1 ⋅ 𝑑𝑥 =

1

(𝑛+1)(𝑛+2)

𝜎𝑛 = ത𝐸𝑛 − 𝐸𝑛
2 =

𝟏

(𝒏+𝟏)(𝒏+𝟐)
−

𝟏

𝒏+𝟏 𝟐

23

0%

2%

4%

6%

8%

10%

10 20 30 40 50 60 70 80 90 100

En

sn

𝐸𝑛

𝜎𝑛

D
is

ta
n

c
e
 t

o
 𝟏

# of random numbers



PCS Graphs of Real Systems

• All configuration measurements sorted by performance (descending order)
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Statistical Recursive Searching
(SRS)
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Use samples to recursively reduce the config space to focus
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1. Random sample from config space

2. From best 2 configs, get common decisions 𝑑

3. For each common decision 𝑑, measure:

𝛿𝑑 = Avg. perf. of samples with 𝑑

𝛿¬𝑑 = Avg. perf. of samples without 𝑑

Δ𝑑 = 𝛿𝑑 − 𝛿¬𝑑

4. If a Δ𝑑 indicates performance improvement,

perform Welch’s T-test to evaluate its certainty

5. Use features certain to improve performance

to constrain the configuration space to recurse

Finding Features to Recurse
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Decisions to recurse: 𝑓1

𝜙 = 𝐹𝑀

𝑐2 𝑐1
Ω0

𝑐2 = {𝑓1, 𝑓2, ¬𝑓3, 𝑓4, ¬𝑓5, 𝑓7, ¬𝑓8}

𝑐1 = {𝑓1, 𝑓2, 𝑓3, ¬𝑓4, 𝑓5, 𝑓7, ¬𝑓8}

𝑑 = {𝑓1, 𝑓2, 𝑓7, ¬𝑓8}

Common Decisions 𝑓1 𝑓2 𝑓7 ¬𝑓8

Δ𝑑 improves perf. Yes No No Yes

𝜙 = 𝐹𝑀 ∧ 𝑓1
Ω0

Welch’s T-test Pass - - Fail


