Finding Near-Optimal Configurations
in Product Lines by Random Sampling

Jeho Oh Don atory Margaret yers Norbert Siegmund

TEXAS
The University of Texas at Austin

Quickly find SPL configurations with

near-optimal performance for a given workload

\
I want a hybrid car with laser headlight,
but cheap and light as possible.

Now 273/275 options left to decide...

J

Configuration space is often huge: n features < 2™ configurations
(273 optional features: 1082 products, one for every atom in universe)

Searching for the optimal configuration is daunting,
as benchmarking all configurations is infeasible

Find a way to get good enough configurations with practical effort

The University of Texas at Austin 2

Big Picture

Performance Model Approach

1 feature constraints

Our Approach ,

I I
I I
| /\ |
I I
I learn I
| sample R use
: : performance > . |
I configurations optimizer I
model
near-optimal
feature ______________________________ N T T T erforpm|n
model | L™ = T T T T T T T T T T T eee—— P . .g
I configuration
! N
: randomly sample on M
I configuration space for N
1 . . . - 1 \
| near-optimal configurations |€---__ _ 1 user-imposed
|
I

[am) : . .
The University of Texas at Austin

Contributions

 Allow true random sampling of configurations
 Provide statistical bounds on searching by sampling

 Directly search the space for any given workload

Search by Random Sampling

which we describe next...

The University of Texas at Austin a

Random Sampling with BDD

 To randomly sample configurations Feature Model | Prop. Formula
from uniform distribution: (root © true)
A (root & A)
A (B = root)

— Identify valid configuration space
— Select a random number in [1, total # of configs]
— Return the configuration with matching number ;

A(C o (An-D))
A(D e (AN=0))
A (D - B)

 Binary Decision Diagram (BDD):
— Compile prop. formula into graph structure
— Derive all possible solutions (configs)
— Allows efficient sampling from traversing BDD

Randomly sample from space of all valid
configurations, not space of all features

The University of Texas at Austin 5

Statistics of Random Sampling (1)

« nrandom numbers over unit range [0,1], x as the number closest to 1
Analyze the distance between x and 1, (1 — x)

(Equations for sampling over discrete space on Section 3.3 of the paper)

The University of Texas at Austin 6

Statistics of Random Sampling (2)

LLVM (Compiler infrastructure, 11 features, 1024 configs)

260 O —x .
250 . E, =——=0.125 Monotonic graph:.
%240 . 1024 _.-~Closer to Q (x-axis),
S ! : l __-=""better perf. (y-axis)
£230] ! ! | s
& : 1 ! : I &~
220 | | .- Sorted config space
210 : ! . i ! -7

200

300 600 900 : -
0 Sorted configurations) <- Best performing config

 Correspondences:
— Selection of numbersin[0,1] » Selectionin [1, total # of configs]
— Closeness to 1 » Closeness to the best configuration, £)

On average, sample with the best performance has

100 : :
top m% performance among all configurations

The University of Texas at Austin 7

Statistical Recursive Searching (SRS)

Can search better than 99 samples for 1% by random sampling

: LLVM
» Feature selection: 270

— Makes some configs perform better 2s0
— Constrict config space

N
(O]
o

N
5
o

 Search within smaller and better
config space by feature selection

Performance

N
w
o

N
N
o

 Find most influential features by:
— Performance difference o
_ Welch’s t_TeSt 0 200 400 600 800 1000

Sorted configurations

Use samples to recursively constrict the search space

The University of Texas at Austin 8

210

Statistical Recursive Searching (SRS)

Can search better than 99 samples for 1% by random sampling

LILVM(1) — entire space

» Feature selection: 270
— Makes some configs perform better e fiem
. . * Tlicm
— Constrict config space 250 N

N
=
o

 Search within smaller and better
config space by feature selection

Performance

N
w
o

220

 Find most influential features by: 210
— Performance difference 200
— Welch's t-Test ° 0 sonedconfigurations

Sorted configurations

Use samples to recursively constrict the search space

The University of Texas at Austin 9

Statistical Recursive Searching (SRS)

Can search better than 99 samples for 1% by random sampling

LLVM(2) with —licm

» Feature selection: 270
— Makes some configs perform better 260 svn
. . ® 1gvn
— Constrict config space . 250
L §240
 Search within smaller and better 5 :
config space by feature selection g 23
220
 Find most influential features by: 210
— Performance difference 200
_ Welchss t'TeSt 0 200 400 600 800 1000

Sorted configurations

Use samples to recursively constrict the search space

The University of Texas at Austin 10

Statistical Recursive Searching (SRS)

Can search better than 99 samples for 1% by random sampling

LILVM(3) with —licm A —~gvn

» Feature selection: 270
— Makes some configs perform better 260 e
° Inine
— Constrict config space 250

N
=
o

 Search within smaller and better
config space by feature selection

‘s

220 \

Performance

N
w
o

[

 Find most influential features by: 210 b
— Performance difference 200 \
_ Welchas t'TeSt 0 200 400 600 800 1000

Sorted configurations

Use samples to recursively constrict the search space

The University of Texas at Austin 11

Statistical Recursive Searching (SRS)

Can search better than 99 samples for 1% by random sampling

LLVM(4) with —licm A —=gvn A —inline

» Feature selection: 270
— Makes some configs perform better 60 instcombine
. . * Tlinstcombine
— Constrict config space 250

N
Y
o

 Search within smaller and better
config space by feature selection

Performance

N
w
o

220

: . , 4 features excluded:
 Find most influential features by: 210 | - 1/16 of entire space, ~<_ e
: - =3
— Performance difference - Better overall performance \
— Welch’s t-Test 0 200 400 600 800 1000

Sorted configurations

Use samples to recursively constrict the search space

The University of Texas at Austin 12

ICSE 2012

Predicting Performance via Automated Feature-Interaction Detection

Norbert Siegmund,* Sergiy S. Kolesnikov,| Christian Kistner,f Sven Apel,T
Don Batory,(§ Marko Rosenmiiller,* and Gunter Saake*
* University of Magdeburg, Germany
University of Passau, Germany
4 Philipps University Marburg, Germany
8 University of Texas at Austin, USA

Abstract—Customizable programs and program families pro-
vide user-selectable features to allow users to tailor a program
to an application scenario. Knowing in advance which feature
selection yields the best performance is difficult because a direct
measurement of all possible feature combinations is infeasible.
Our work aims at predicting program performance based on
selected features. However, when features interact, accurate
predictions are challenging. An interaction occurs when a
particular feature combination has an unexpected influence
on performance. We present a method that automatically
detects performance-relevant feature interactions to improve
prediction accuracy. To this end, we propose three heuristics
to reduce the number of measurements required to detect
interactions. Our evaluation consists of six real-world case stud-
ies from varying domains (e.g., databases, encoding libraries,
and web servers) using different configuration techniques (e.g.,
configuration files and preprocessor flags). Results show an
average prediction accuracy of 95 %.

EVALUATION

The University of Texas at Austin

features, called a configuration, that yields a valid program.
However, finding rhe best configuration efficiently is a hard
task. There can be hundreds of features resulting in myriads of
configurations: 33 optional and independent features yields a
configuration for each human on the planet, and 320 optional
features yields more configurations than there are estimated
atoms in the universe. To find the configuration with the best
performance for a specific workload requires an intelligent
search; brute-force is infeasible,

We aim at predicring a configuration’s non-functional
properties for a specific workload based on the user-selected
features [3][4]. That is, we aggregate the influence of each
selected feature on a non-functional property to compute the
properties of a specific configuration. Here, we concentrate
on performance predictions only. Unfortunately, the accuracy

13

Evaluation Method

» Use ground truth data from Siegmund et al. (http://fosd.de/SPLConqueror)

SPL Type # features # configs Performance
LLVM Compiler infrastructure 1 1024 Test suite compilation time
BerkeleyDBC Database system 18 2560 Benchmark response time
X264 Video encoder 16 1152 Video encoding time
Apache Web server 9 192 Maximum server load

» Measured accuracy of search:
— &, . % of configurations better than the best config found so far
— &, : % performance difference to ()

 Averaged from 100 searches per different conditions

» Full result is available in Section 5 of the paper

The University of Texas at Austin 14

8, Theory vs. Actual

« 4, fromrandomly sampling different # of samples
vs. theoretical value derived using same # of samples
10%
9% &
8%

7%

R

w

56% X LLVM

o O X264

= 5%

o O BerkeleyDBC
g 4% A Apache
3% — E, (Eq. (9)

....... E Eqg. (7), Apache
s 1920 (EQ. (7), Ap)

1%
0%

10 20 30 40 50 60 70 80 90 100
of random samples (n)

Theory matches observations

The University of Texas at Austin 15

0, SRS vs. Random Sampling
(hon-recursive)

» §, of SRS over different # of samples per recursion
vs. theoretical &,, of random sampling with same total # of samples (N)

LLVM BerkeleyDBC X264
12% 16% 14%

10% 14% 12%
12% 10% |

< 10%

8%

6%

4%

2% 2%

2]
X
29

8%
6%
6%

oO
4% 4%

Distance to Q (8,)
Distance to Q (8,)

Distance to Q

2%

v
o

0% e 0% 0% t———e—
5 15 25 35 5 15 25 35 5 15 25 35
of samples per recursion (n) # of samples per recursion (n) # of samples per recursion (n)

—x— Ey (Theoretical) —o— &, (Measured)

SRS is more efficient than random sampling alone

The University of Texas at Austin 16

6,: SRS vs. Performance Models (1)

* 4, over total # of samples in SRS vs.
d,, of perf. models assuming an ideal optimizer (always finds best predicted config)

20% LLVM 90% BerkeleyDBC
—~~ A —~~
> 18% > T
S 16%
S 440
@ 14%
§ 12%
% 10%
S 8%
S 6o
S 6%
E 4%
h=
S 2%
[a

0%

(] 20 40 60 80 100 0 20 40 60 80 100 120 140 160 180
Total # of samples (N) Total # of samples (N)
B Sarkar2015 A Siegmund2012 = SRS

SRS needs many fewer samples for same accuracy, and

yields much better accuracy for same number of samples

The University of Texas at Austin 17

6,: SRS vs. Performance Models (2)

* 4, over total # of samples in SRS vs.
8,, of performance models assuming an ideal optimizer

9 LLVM) BerkeleyDBC X264

20% 90% 164% A A A
Pamn) A Pamn)

‘ST 18% @ 80% 162%

16% S 70%
14%
12%
10%
8%
6%
4%
2%
0%

18%
16%
14%
12%
10%
8%
6%
4%
2%
0%

Performance difference to Q
Performance difference to Q (6,)

0 20 40 60 80 100 0 20 40 60 80 100 120 140 160 180 0
Total # of samples (N) Total # of samples (N) Total # of samples (N)
B Sarkar2015 A Siegmund2012 — SRS

In SRS, more samples yields better accuracy

The University of Texas at Austin 18

8.+ Scalability of Searching

« Combine SPLs to simulate Combined Systems # of Features # of Confgs.

larger configuration spaces ~ Apache x LLVM x BerkeleyDBC 38 503,316,480

e Measure § for SRS and Apache x X264 x BerkeleyDBC 51 566,231,040
X

non-recu rsive searching LLVM x Apache x X264 x BerkeleyDBC 62 579,820,584,960

Theory vs. Actual 1 Apache x LLVM x BerkeleyDBC Apache x X264 x BerkeleyDBC ApachexX264xLLVMxBerkeleyDBC
3.5% I 12% 12% 12%
X ApacheH264)
3.0% BerkeleyDBC I 10%
= 2.5% o ApakchIeLngll | -
Q Z. B DB
< (] er;ey : I 38%
8 1.5% I 8
= S 4%
% 1.0% ' g 4%
a ! a
0.5% l 2%
|
0.0% I 0%
30 50 70 90 110 | 5 15 25 35 5 15 25 35 5 15 25 35
of random samples I # of samples per recursion (n) # of samples per recursion (n) # of samples per recursion (n)

Accuracy is independent of the size of the configuration space

The University of Texas at Austin 19

Conclusions and Contributions

1. True random sampling of configuration spaces
2. Guaranteed tight statistical bounds on finding good configurations
3. Can recursively search through configuration space for more efficient searching

4. Scalable search method - accuracy independent of the configuration space size

The University of Texas at Austin 20

Thank You |

Finding Near-Optimal Configurations in Product Lines by Random Sampling
Jeho Oh, Don Batory, Margaret Myers, Norbert Siegmund

21

Supplemental Slides
from Now On

22

Statistics of Random Sampling

« mrandom numbers over unit range [0,1], x is the number closest to 1
Analyze the distance between x and 1, (1 — x)

10%

« C.D.F. of x over n:
pn(X < x) Zf(icn'xn_l-dx:x”

 Average distance from x to 1:
E, =f01(1—x) n-x o dy = ——

Distance to 1

0%

° Standard deviation: 10 20 30 40 50 60 70 80 90 100

of random numbers

F o= (Y1 =2)2 -n.-x"1.dy = 1
En—fo(l x)? -n-x" dX—(n+1)(n+2)

= 1 1
O-n=VEn_E121=\/

m+1)(n+2) (n+1)2

B— : 23
The University of Texas at Austin

PCS Graphs of Real Systems

 All configuration measurements sorted by performance (descending order)

Apache (9, 192) BerkeleyDBC (18, 2560)
50
S S 30
£ 1.8K £
£ L 20 ==
S 1.3K 3 10 —
0.8K (] =
(] 50 100 150 0 500 1000 1500 2000 2500
Sorted configurations Sorted configurations
LLVM (11, 1024) X264 (16, 1152)
800
260
8 8
& 240 < 600
£ E
£ 220 £ 400
[<5) D
o [a
200 200
(] 200 400 600 800 1000 0 200 400 600 800 1000
Sorted configurations Sorted configurations

* System Name (# of features, # of configs)

The University of Texas at Austin

24

Statistical Recursive Searching
(SRS)

BerkeleyDBC
45 HAVE_CRYPTO ~ HAVE_CRYPTO
:]
! |
40
35 N :PS32K, -~HAVE_HASH
PS32K, HAVE_HASH

30
b}
e PS16K, HAVE_HASH
g2 / PS16K, ~HAVE_HASH
S N
= 20
a PS8K, - HAVE_HASH

15 PS8K, HAVE_HASH

/ PS4K, - HAVE_HASH
10 — / PS4K, HAVE, HASH
— PS1K, -~ HAVE_HASH
> :PSlK, HAVE_HASH
0 1
0 500 1000 1500 2000 2500

Configurations sorted by performance

Use samples to recursively reduce the config space to focus

The University of Texas at Austin 25

Finding Features to Recurse

1. Random sample from config space

2. From best 2 configs, get common decisions d

c1 = {fv fo f3 2 fa f5, f7, 1 fs}

04 = Avg. perf. of samples with d d = {1 far 7, fs}
&_4 = Avg. perf. of samples without d

3. For each common decision d, measure:

Common Decisions | f; 12 fz —fs

Ad — 6d _5—|d Ag improves perf. | Yes No No Yes

Welch’s T-test Pass - - Fail
4. If a Ay indicates performance improvement,

perform Welch’s T-test to evaluate its certainty Decisions to recurse: f;
.) ¢ =FMAf,
5. Use features certain to improve performance DA

to constrain the configuration space to recurse

The University of Texas at Austin 26

