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ABSTRACT
Refactoring is a staple of Object-Oriented (OO) program develop-
ment. It should be a staple of OO Software Product Line (SPL) de-
velopment too. X15 is the first tool to support the refactoring of
Java SPL codebases. X15 (1) uses Java custom annotations to encode
variability in feature-based Java SPLs, (2) projects a view of an SPL
product (a program that corresponds to a legal SPL configuration),
and (3) allows programmers to edit and refactor the product, prop-
agating changes back to the SPL codebase. Case studies apply 2316
refactorings in 8 public Java SPLs and show that X15 is as efficient,
expressive, and scalable as a state-of-the-art feature-unaware Java
refactoring engine.
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1 INTRODUCTION
Refactoring has been a staple in Object-Oriented (OO) programming
for at least a quarter century [24, 45], and a standard tool in Inte-
grated Development Environments (IDEs) for at least a decade [19].
Software Product Lines (SPLs) have an equally long and rich history
[2, 29]. Despite progress, there are no tools – research prototypes
[3, 6, 32, 37] or commercial tools [14, 38, 48] – that can refactor OO
SPLs. In this paper, we present X15, the first tool to refactor Java
SPLs.

An SPL is a family of related programs [2]. Amortizing the cost
to design and maintain their commonalities makes SPLs economical
[2]. Programs of an SPL are distinguished by features — increments
in program functionality. Each program, henceforth product, in an
SPL is defined by a unique set of features called a configuration [2].
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Variability in an SPL codebase relies on presence conditions, a
predicate expressed in terms of features that indicates when a frag-
ment of code, declaration, file or package is to be included in an
SPL product. A typical use-case is with #if-#endif preprocessor
constructs: if the presence condition of #if is true for a configura-
tion, the content that is enclosed by #if-#endif is included in the
product; otherwise it is erased [2]. The Linux Kernel is a huge SPL,
consisting of 8M LOC and over 10K features [42, 54]. It uses the
C-preprocessor (CPP) to remove code to produce the C codebase for
a configuration.

The presence or absence of a feature in Java can be encoded by a
global static boolean declaration; the Java compiler can evaluate
feature predicates to remove unreachable code in if(feature_exp)
statements. But removing entire declarations such as packages,
types, fields, and methods is not possible with existing Java con-
structs. So Java SPLs are hacked in some manner to achieve this
additional and essential effect.

Preprocessing is the standard solution [28, 47, 55], although
officially Java shuns preprocessors [18]. Another way is to copy and
assemble code fragments from an SPL codebaseP to produce an SPL
product PC where C is PC’s configuration [3, 6, 32, 38]. Both create
a separate codebase for PC that a programmer edits to improve,
tune, and repair PC. Doing so exposes two critical problems in SPL
tooling.

First, given an edited product PC, how are its edits propagated
back to P, the SPL codebase? Early SPL tools [6, 38] had back-
propagation capabilities. Now there are more sophisticated tools to
back-propagate edits (see [57, 60] for surveys). But none correctly
propagates changes from PC to P made by refactorings. Why? Here
is a simple example: renaming a field in PC is easy, but not all
references of the field reside in PC; other references exist in P that
are not in PC. Thus, back-propagating edits will rename some, but
not all, references to a field, breaking P. In short, refactorings are
incompatible with SPL back-propagation tools.

Second, conditional compilation removes all vestiges of vari-
ability from a CPP-infused SPL codebase. In contrast, to refactor a
codebase with variability requires the exact knowledge that con-
ditional compilation erases. Variability-aware compilers (VACs) –
compilers that integrate CPP constructs into the grammar of a host
language – are the current solutions to this impasse [11, 16, 33, 61].
VACs generate AST nodes with presence conditions and variability-
aware control-flow graphs which are needed for both precondition
checks and code transformations of SPL refactorings [40]. But writ-
ing a VAC – even for the C-language – is daunting [10, 23, 33]. We
are aware of only one VAC for a mainstream OO language, C++ [11].
And even if a VAC exists, we would still need to create a companion
refactoring engine for this compiler – yet another daunting task.

We present X15, the first feature-aware refactoring engine for
Java that solves the above problems. X15 (i) uses a standard Java
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compiler, (ii) relies on Java custom annotations to encode SPL vari-
ability in a simple and intuitive way, (iii) incorporates code folds
of an SPL codebase to produce a ‘view’ of an SPL product that
programmers can edit and refactor, and (iv) behind the curtains X15
applies corresponding edits and feature-aware refactorings to the
SPL codebase.

The novel contributions of this paper are:
• The X15 tool for editing, projecting, and refactoring Java SPLs;
• Identifying preconditions that must become feature-aware; and
• Case studies that apply 2316 refactorings in 8 Java SPLs and show
X15 is as efficient, expressive, and scalable as a state-of-the-art
feature-unaware refactoring engine R3 [36].

2 THE R3 REFACTORING ENGINE
R3 is a new refactoring engine for Java [36]. It is an improvement
over the Eclipse Java Development Tools (JDT) refactoring engine
as (a) it allows programmers to write refactoring scripts — program-
matic sequences of refactoring invocations — and (b) it executes
these scripts 10× faster. R3 uses a form of reflection similar to Java
reflection.

Java reflection provides an OO façade to inspect Java bytecode
files. Classes, fields, and methods defined in Java bytecode are
presented as Class, Field, and Method objects in Java. Semantic
information on these objects, such as access modifiers of a method
declaration, can be harvested through method calls.

R3 does something analogous: it provides an OO façade to inspect
parse trees of Java programs. Classes, fields, and methods defined in
parse trees are presented as RClass, RField, and RMethod objects in
Java. Information on these objects can be harvested via R3methods.

Unlike Java reflection, R3 allows objects to be created and up-
dated, permitting direct manipulation and restructuring of Java
programs. Example: RClass methods are methods to refactor Java
classes (e.g., to rename or move) or methods to find related objects
(e.g., RField and RMethod objects belonging to that RClass). This
enables many Gang-of-Four Design Patterns [20] to be partially or
fully automated, written as simple Java methods [35, 36].

Consider the adapter pattern. An Adapter is a class that imple-
ments all methods of a Target interface by invoking methods of
an Adaptee class. The R3 makeAdapter method of Fig. 1 works by
(1) retrieving the package of Target, (2) creating a class named
adapterClassName as a concrete class of Target in this package,
(3) creating a field named ‘adapteeFieldName’ of type Adaptee,
(4) creating a constructor with an argument that initializes this
field, (5) for all methods of Target, create a method stub (which
has programmer /*TO DOs*/ for that method), and (6) returning
the created Adapter to the makeAdapter caller. Because there are
/*TO DOs*/, the adapter pattern is partially automatable [35, 36].

1 // A Member of RInterface class; Target interface is 'this'
2 RClass makeAdapter(RClass adaptee , String adapterClassName) {
3 RPackage pkg = getPackage ();
4 RClass adapter = pkg.newClass(adapterClassName);
5 RField f = adapter.addField(adaptee , "adapteeFieldName");
6 adapter.addConstructor(f);
7 for (RMethod m : getAllMethods ())
8 adapter.addMethodStub(m);
9 adapter.setInterface(this);
10 return adapter;
11 }

Figure 1: An R3 makeAdapter Method.

There are many variations of the Adapter pattern; Fig. 1 is one of
several offered by R3. R3 implements 18 of the 24 Gang-of-Four
design patterns and 34 distinct pattern-directed refactorings [36].

R3, like other Java refactoring engines, is feature-unaware. As
X15 is built on top of R3, it inherits the speed of R3 and the ability
of its users to write refactoring scripts to retrofit design patterns
into Java codebases.

3 X15 ENCODING OF JAVA SPLS
Every feature-based SPL has a feature model (FM) that defines the
features of an SPL and their relationships. It is well-known that
FMs can be mapped to a propositional formula where features are
the boolean variables [2, 5]. Each solution to this formula — a true
or false assignment to every variable — defines a combination
of features that uniquely identify a product in an SPL. A common
name for a solution is a configuration.

@interface Feature {
static final boolean X = true;
static final boolean Y = true;
static final boolean Z = false;
boolean value();

}

Figure 2: The Feature Annota-
tion Type

X15 uses the Java cus-
tom annotation type Feature
to encode a configura-
tion file. Every feature F
of an SPL has a static
boolean variable F de-
clared inside Featurewhose
value indicates whether F
is selected (true) or not
(false). Fig. 2 shows a Feature declaration with three features
X, Y, and Z where X and Y are selected and Z is not. The specified
configuration is {X,Y}. Feature.java is generated by a feature
model configuration tool [2, 5].

X15 uses Java’s built-in annotations to encode variability that
complies with the standard Java grammar. Let P denote the code
base of a Java SPL. Every Java declaration (class, method, field, con-
structor, initializer) in P has an optional Feature annotation with
a boolean expression of Feature variables.1 If the expression is
true for a configuration, the declaration is present in that configu-
ration’s product; otherwise it is not. If a declaration has no Feature
annotation, it is included in every product of the SPL.

Fig. 3a shows three declarations: Graphics, Square, and Picture.
Interface Graphics belongs to every program of the SPL as it has
no Feature annotation. Square is added by feature X. Picture is
added whenever a pair of features, Y and Z, are both present.

interface Graphics {}

@Feature(X)
class Square implements Graphics {}

@Feature(Y && Z)
class Picture implements Graphics {}

(a)

@Feature(X)
int i, j, k;

(b)

@Feature(X)
int i, j;

@Feature(Y)
int k;

(c)
Figure 3: Feature Annotations

Fig. 3b shows a declaration of three integer fields i, j, k, all belong-
ing to feature X; the Feature annotation is for the entire line. If
fields i and j belong to feature X, and k to feature Y, Fig. 3c is used.

Variability in executable code is written using if(feature_exp)
statements. For example, it is common to have different bodies
1Package-level annotations in Java are placed in a package-info.java file.
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for a single method in an SPL. Suppose features X and Y are never
both selected. Fig. 4a is a CPP encoding that introduces at most one
declaration of method m in any program; Fig. 4b shows the cascading
if-else statements used in X15 to encode the same variability
inside one declaration of m.

#if(X) int m() {return 1;}
#elif(Y) int m() {return 2;}
#else int m() {return 0;}
#endif

(a)

int m() {
if(X) return 1;
else if(Y) return 2;
else return 0;

}

(b)
Figure 4: Encoding Different Method Bodies

Here’s the trick on how X15 works: X15’s Feature annotations
have different semantics than vanilla Java annotations because X15
can remove Java declarations. X15 parses P and looks for the parse
tree of Feature.java, from which X15 extracts the boolean value
for each feature. These values define the current configuration C.

Let PC be the source of the SPL product with configuration C.
Fig. 5 sketches the parse tree of a Feature-annotated class dec-
laration of P. X15 sees the Feature annotation and evaluates the
feature expression knowing the current configuration. If the ex-
pression is true then X15 pretty-prints the parse tree including
Feature annotations (minus code fragments that are configuration-
disqualified). If the expression is false, X15 does not pretty-print
the parse tree, effectively erasing the declaration. This is how X15
projects P w.r.t. C to produce PC. X15 never changes a parse tree
during a projection.

TYPE

Y Z

&&Feature

NAME INTERFACE 
TYPES

Graphics

BODY 
DECLARATIONS

Source: @Feature(Y && Z)

class Picture implements Graphics {}

PictureANNOTATION

MODIFIER

VALUETYPE

Parse Tree:

Figure 5: A Parse Tree with an Feature Annotation.

X15 uses two different projections. One projection is sent to
the Java compiler to produce bytecodes. The second projection
relies on the standard IDE functionality of ‘code folding’, where
code that is not part of PC is hidden in a code fold. A code fold
indicates the location of a variation point (VP) — where code in
some SPL product is known to exist, but is not present in PC [2].
Code folds also provide a practical way for programmers to edit
code that is visible (i.e., code that belongs to PC). Programmers can
inspect, but not edit, folded code. Fig. 6a shows P, Fig. 6b shows PC
when BLUE=false folding BLUE’s code, and Fig. 6c shows PC with
unfolded code when BLUE=false.2

2Of course, there are situations where to correctly edit PC , programmers must edit P.
Suppose a programmer wants to provide a new body to an existing method. To do so,
s/he must edit P to achieve the desired projection. X15 offers a GUI button for users to
toggle between editing P and PC , should the need arise. [57] has other examples.

15

(a) 
SPL Codebase

(b) 
BLUE = false (folded)

(c) 
BLUE = false (expanded)

(a) SPL Codebase (b) BLUE = false (folded) (c) BLUE = false (expanded)

Figure 6: Code Folding in X15.

Together, both projections provide a useful end-user function-
ality: an X15 user can see and edit a ‘view’ (projection) of PC, the
SPL product of the current configuration. Further, s/he can compile
PC and debug it through the code-folded projection, giving the im-
pression that the X15 user is editing, debugging, and developing a
single product PC, even though behind the curtains edits are being
made directly to P.

3.1 Refactorings Are Not Edits
If refactoringswere just text edits, wewould be done. A programmer
invokes a refactoring on product PC, the code of PC is changed and
the edits are copied to P. End of story.

The problem is that refactorings are more than text edits. Con-
sider the SPL codebase P of Fig. 7a. The separate codebase PX for
configuration {X} is Fig. 7b. Fig. 7c shows PX after renaming Grafix
to Graphics. The problem is evident in Fig. 7d: propagating text
changes made to PX back to P breaks P because not all occurrences
of Grafix in P are renamed to Graphics — the program for con-
figuration {Y} no longer compiles.

4

(b) Codebase PX

abstract class Grafix {...}

@Feature(X)

class Square 

implements Grafix {...}

(c) Rename-refactored PX

abstract class Graphics 

{...}

@Feature(X)

class Square 

implements Graphics {...}

abstract class Graphics 

{...}

@Feature(X)

class Square 

implements Graphics {...}

@Feature(Y)

class Picture 

implements Grafix {...}

(d)  Code-backpropagation to ℙ

(a) Codebase ℙ

abstract class Grafix {...}

@Feature(X)

class Square 

implements Grafix {...}

@Feature(Y)

class Picture 

implements Grafix {...}

Figure 7: Problems in Refactoring Separate Codebases.

In a nutshell, back-propagation of text edits is incompatible with
refactorings; refactorings make changes to P that are not part of the
codebase of a single product PX. Dig and Johnson demonstrated an
analogous problem for version control [13]. A new approach is
needed to solve this problem, which is discussed next.

4 ALGEBRAS OF FEATURE COMPOSITIONS
Features have long been recognized as the conceptual building
blocks of SPL products. Early research (AHEAD [6], FeatureHouse
[3], DOP [51]) developed algebras for feature compositions to de-
fine the abstract properties of features. Tools were then built to
implement these algebras to demonstrate a scientific way to com-
positionally construct SPL programs. Further, these tools invented
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OO language extensions to define concrete feature modules. The
ideas behind these language extensions — role-based program-
ming, mixin-layers, and context-oriented programming — have
been widely explored. Other research demonstrated how annotated
SPL codebases could be mapped to feature modules, and vice versa
[2, 30, 31], effectively demonstrating the Turing-equivalence of fea-
ture modules and feature annotation implementations of SPLs. In
short, any theorem that can be proven using feature algebras should
hold for all feature-based SPL implementations.

In the following sections, we sketch known ideas and then
present the insight that made X15 possible.

4.1 Sum and Projection of Feature Modules
A feature module Fi encapsulates the implementation of feature
i. Product PC with configuration C is produced by summing the
modules of its features [3, 6, 51]. Thus, if C = {X, Y, Z} where X, Y,
and Z are features, product PC is:

PC =
∑
i∈C

Fi = FX + FY + FZ (1)

Let F be the set of all features. The codebase P of an SPL is:3

P =
∑
i∈F

Fi (2)

Projection, as discussed in Section 3, is a complementary op-
eration to summation because it eliminates feature modules. The
C-projection of P yields PC:

ΠC(P) = PC (3)

Let C1 and C2 be different sets of features from the same SPL (i.e.,
C1, C2 ⊆ F). An axiom that relates projection and summation is:

ΠC1 (
∑
i∈C2

Fi) =
∑

i∈C1∩C2

Fi (4)

Equation (1) follows from (2), (3), and (4):

PC = ΠC(P) // (3)

= ΠC(
∑
i∈F

Fi) // (2)

=
∑

i∈C∩F

Fi // (4)

=
∑
i∈C

Fi // where C ⊆ F

As said in Section 3, X15 implements projection in two different
ways: Πfold

C code-folds P to expose only the code of PC for viewing,
editing and refactoring. Πcomment

C comments-out unnecessary code
which is then fed to the Java compiler to produce bytecodes for PC;
this compiled version enables programmers to execute, debug, and
step-through the code folded version of PC.

4.2 Theorem for Refactoring SPLs
Let R be a refactoring. If we R-refactor PC, we get PRC :

R( ΠC(P) ) = R(PC) = PRC (5)

3A common name for P is a 150% design – it includes all possibilities.

As R changes PC, R must also change P. But how? Our conjecture
and theorem is this: PRC can be computed by the R-refactoring of P
followed by a C-projection:

ΠC( R(P) ) = PRC (6)

ℙ 𝑃𝐶

𝑃𝐶
ℰℙℰ′

Π𝐶

Π𝐶

ℰ′ ℰ

(a)

𝑃𝐶
ℰ = Π𝐶 ℰ′ ℙ

= ℰ Π𝐶 ℙ

(b)

Π𝐶
ℙ 𝑃𝐶

𝑃𝐶
ℛℙℛ

Π𝐶

ℛ ℛ

Figure 8:
Theorem of SPL
Refactoring.

Equivalently, (6) is the commuting dia-
gram of Fig. 8 where the operations
of projection and refactoring commute
[46].

SPL programmers must realize that
refactoring an SPL codebase P has more
constraints than just refactoring a single
product PC. We explain in Section 5.2
that the preconditions to R-refactor P
imply the preconditions to R-refactor PC.
Our proof of (6) assumes the precondi-
tions to R-refactor P are satisfied. There-
fore in (6), R represents the code transformation that is made by an
R-refactoring; R cannot be applied if any of its preconditions fail.

Here is our key insight about refactoring SPLs: common refac-
torings are largely oblivious to feature module boundaries. That
is, when a program P = A + B is R-refactored, one expects both
modules A and B to be modified by R, namely PR = AR+ BR.

Example: Method m in Fig. 9 is defined in class/feature A.
Class/Feature B calls m. When m is renamed to n, both features
A and B are modified to AR and BR.

@Feature(A)
class A {

void m() {}
}

@Feature(B)
class B {

void foo(A a) { a.m(); }
}

(a) Before

@Feature(A)
class A {

void n() {}
}

@Feature(B)
class B {

void foo(A a) { a.n(); }
}

(b) After Renaming m to n

Figure 9: Rename-Method Refactoring

This insight translates into a new axiom for feature algebras: The
R-refactoring of a sum of feature modules A and B equals the sum
of the R-refactored modules:

R(A + B) = R(A) + R(B) (7)

The proof of (6) follows from (5) and (7):

ΠC( R(P) ) = ΠC( R(
∑
i∈F

Fi) ) // by (2)

= ΠC(
∑
i∈F

R(Fi)) // by (7)

=
∑
i∈C

R(Fi) // by (4)

= R(
∑
i∈C

Fi) // by (7)

= R(PC) // by (5)

= PRC // by (5)

Equation (6) tells us how to translate refactorings of SPL products,
namely refactorings to PC, to refactorings of the SPL codebaseP.When
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an X15 user applies a refactoring R to PC, s/he sees R(PC) = PRC as
the result. But behind the curtains, X15 is really applying R to P,
and taking its C-projection to present PRC to the programmer.4

Example: An X15 user renames Grafix to Graphics in PX of
Fig. 7. X15 applies this refactoring to the entire codebase P. The
result is that all references to Grafix are renamed to Graphics
and that the resulting projection (view) of PX is correct as in
Fig. 7c. X15 updates all programs in an SPL that are affected by
this rename, thus keeping P consistent.

5 REFACTORING PRECONDITIONS
We begin by reviewing a fundamental SPL analysis, and then show
how this analysis is relevant to refactoring preconditions.

5.1 Safe Composition
Safe Composition (SC) is a common SPL analysis. It is the verification
that every program of an SPL compiles without error [2, 12, 33, 34,
44, 58].

Suppose that field x is added by feature X, field y is added by
feature Y, and statement “x = y;” is added by feature F. This rela-
tionship is expressed by the presence condition ψ := (F⇒ X∧Y).
That is, when statement “x = y;” appears in a product, so too must
the declarations for x and y.

Let ϕ be the propositional formula of the SPL’s FM [2, 5]. If
ϕ∧¬ψ is satisfiable, then at least one SPL product does not satisfy
ψ and hence will not compile [12]. Similarly, dead code is source
that appears in no SPL product. Let δ be the presence condition for
code fragment ℓ. If ϕ∧δ is unsatisfiable, then ℓ is dead code.

X15 culls P for all distinctψ and δ and verifies that no program
in the SPL violates either constraint. We say P satisfies SC if no
presence conditionψ is violated and P is dead code free if no dead
code fragments are found. X15 uses GUIDSL of the AHEAD tool
suite [6], which in turn uses SAT4J [49], to solve SAT problems.

5.2 Preconditions for SPL Refactorings
Theorem (6) assumes the preconditions for R-refactoring P are
satisfied. But what are these preconditions? Consider this example:

class A {
void foo() {}

@Feature(X)
void bar() {}

}

Figure 10:
Renaming foo
to bar Fails

A programmer wants to refactor the base
product Pbase whose SPL codebase P is
Fig. 10. Method bar is invisible to the pro-
grammer as it belongs to unselected feature
X. If the programmer tries to rename foo to
bar, the rename fails since there is at least
one product in the SPL (any configuration
with X) where this rename fails, even though
renaming foo to bar in Pbase is legal. We use
the rule of Liebig, et al. [40]:AnR-refactoring
of an SPL fails if R fails on any product of that SPL.

X15 reports precondition failures of a refactoring R by citing a
condition or SPL configuration where it fails. This is done by ‘lifting’
a refactoring precondition to a SC constraint ψ and verifying all
SPL products satisfyψ . (By definition the lifted constraint implies
the precondition on program PC.) R3 supports 34 different primitive
refactorings and uses 39 distinct primitive precondition checks,
4Equation (6) also tells us that algebras for feature summation and refactoring are ele-
gant. The name of this algebraic structure is a ‘left M-semimodule over a monoid’ [26].

where each R3 refactoring uses a subset of these 39 checks. X15
supports all of R3’s primitive refactorings and preconditions.

We expected most R3 preconditions would be feature-aware, but
were surprised when only 5 of the 39 required lifting. Why?
(1) Java annotations cannot be attached to any code fragment, such

as a Java modifier. Thus, preconditions dealing with modifiers
are not lifted, and thus remain identical to their unlifted R3
counterparts. And

(2) Some preconditions are feature-independent, such as Declaring
Type5 and Constructor,6 so lifting them is unnecessary.

Here are the preconditions that required lifting:
• Binding Resolution. Before a method is moved, a lifted check
is performed: Let ρ(e) be the presence condition for program
element e. Then, ρ(A.m) is the presence condition for method A.m,
and ρ(B.m) is the presence condition for m after it is moved to
class B. For every reference r to A.m before the move we know
ρ(r) ⇒ ρ(A.m). The condition to verify after the move is for
every reference r: ρ(r) ⇒ ρ(B.m). In Fig. 11, ρ(r) = YELLOW,
ρ(A.m) = BLUE ∧ GREEN and ρ(B.m) = RED ∧ GREEN. A similar
lifted check verifies that all declarations referenced in A.m are
still present for B.m to reference.

@Feature(BLUE)
class A {

@Feature(GREEN)
void m(B b) {}

}

@Feature(RED)
class B {
}

@Feature(YELLOW)
class C {

void n(A a, B b) {
a.m(b) // r

}
}

(a) Before

@Feature(BLUE)
class A {
}

@Feature(RED)
class B {

@Feature(GREEN)
void m(A a) {}

}

@Feature(YELLOW)
class C {

void n(A a, B b) {
b.m(a) // r

}
}

(b) AfterMoving A.m to B.m
Figure 11: Binding Resolution Constraint

• Execution Flow. Fig. 12a shows a feature-unaware class A. It is
illegal to inline method n due to the return statement inside n,
as the i++ statement of method m would never be executed after
refactoring. In contrast, inlining is allowed in class A of Fig. 12b,
provided that feature BLUE implies ¬ RED. Although this example
seems artificial, we did encounter it in Section 6.

class A {
int i = 0;

void m() {
n();
i++;

}

void n() {
i = 1;
return;

}
}

(a) Without Features

class A {
int i = 0;

void m() {
if(BLUE) n();
if(RED) i++;

}

void n() {
i = 1;
return;

}
}

(b) With Features
Figure 12: Inlining Constraint

5A method cannot be moved if its enclosing type is an annotation or interface.
6A constructor cannot be moved.
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• Variable Capture. Renaming field B.j to B.i in Fig. 13a inter-
cepts the binding to inherited variable A.i and an error is reported.
In Fig. 13b, capture does not arise if features BLUE and RED are
mutually exclusive [40].

class A {

int i = 0;
}

class B extends A {

int j = 1;

void m() { i++; }
}

(a) Without Features

class A {
@Feature(BLUE)
int i = 0;

}

class B extends A {
@Feature(RED)
int j = 1

@Feature(BLUE)
void m() { i++; }

}

(b) With Features
Figure 13: Variable Capturing Constraint

• Explicit Super Invocation. Default constructors are needed in
class inheritance hierarchies. Consider Fig. 14a. If feature BLUE is
unselected, Java generates an error because class A has no default
constructor.

• SingleConstructorCall.A singleton design pattern refactoring
introduces a single static instance of a class A, and replaces the
only constructor call to A in a program with a reference to this
instance. The program in Fig. 14b satisfies the singleton constraint
provided that features BLUE and RED are mutually exclusive.

class A {
A(int i) {}

@Feature(BLUE)
A() {}

}

class B extends A {}

(a) Non-Default
Constructor Constraint

class A {
A(){ /*do something */ }

@Feature(BLUE)
A a = new A();

@Feature(RED)
String s = new A().toString ();

}

(b) Singleton Constraint

Figure 14: Other Constraints

5.3 Implementation Notes
Feature models of SPLs are rather static; they do change but slowly.
X15 culls P for constraints which are translated to a large number
of SAT problems to solve. From experimental results in Section 6,
a crude estimate is about 1 SAT check per every 2 lines of source.
A saving grace is that the number of unique SAT checks is small,
possibly orders of magnitude smaller than the crude estimate [58].

X15 leverages the stability of an SPL’s feature model by caching
the results of SAT checks. That is, a set of (SC ψ or δ , boolean-
validity) pairs is stored. When a feature-aware condition arises, X15
identifies the unique SAT checks to verify, and looks in its SAT
cache. Only when a previously unseen SAT check is encountered
will a SAT solver be invoked, and of course, its result is henceforth
cached. The cache is clearedwhenever the featuremodel is updated.

6 EVALUATION
We evaluated R3 by demonstrating that its scripts could retrofit
design patterns into real-world programs [36]. The focus of the
evaluation was on patterns/scripts that (a) were the hardest to
manually create and that (b) executed the most refactorings and

the greatest number of different types of refactorings. These were
the makeVisitor and inverseVisitor scripts.

Tomotivate inverseVisitor, one can imagine creating a Visitor
to inspect a family of related methods as part of some debugging
process, where some visit methods are updated. Eventually, the
Visitor is removed and the updated methods are returned to their
original classes. inverseVisitor is not a rollback (which would
remove all method updates); rather, it is a refactoring script that
preserves method updates in a Visitor removal [35, 36].

We use these same makeVisitor and inverseVisitor scripts to
compare X15’s performance w.r.t.R3. X15 has the same expressivity
as R3 — except of course in an SPL context. Like R3, X15 supports
18 of the 23 design patterns in the Gang-of-Four text [20]; the other
5 patterns do not benefit from automation [36].

We answer three research questions:
• RQ1: Can X15 refactor Java SPLs?
• RQ2: How fast is X15 compared with R3?
• RQ3: How is performance improved by caching SAT checks?

6.1 Experimental Set-Up
We selected 8 public Java SPLs for our studies that are widely-used
for product-line analyses [56]. Column Applications of Table 1
lists the eight target SPLs along with their lines of code, number
of regression tests, and number of features. Three SPLs (AHEAD,
Calculator, and Elevator) had regression tests that could validate
X15 refactorings. Two (Notepad and Sudoku) lacked regression
tests but could be checked by manually invoking their GUIs before
and after running X15 scripts to verify behavior preservation. The
remaining three (Lampiro,MobileMedia, and Prevayler) also lacked
regression tests. We did not know how to execute these programs,
so we could only verify that they compiled without errors before
and after refactoring.

Table 1: Applications
Applications ID LOC # of Tests # of Features

AHEAD Mixin A 26K 56 16
Calculator C 312 17 6
Elevator E 973 6 6

Notepad N 1192 21* 27
Sudoku S 1975 22* 6

Lampiro L 44K 0 16
Mobile Media M 4653 0 7
Prevayler P 8009 0 5

– * indicates the regression tests done by invoking
user interface operations manually.

We used an Intel CPU i7-2600 3.40GHz, 16 GB main memory,
Windows 7 64-bit OS, and Eclipse JDT 4.4.2 (Luna) in our work.
Execution times were measured by VisualVM (ver. 1.3.8) [59]. Each
experiment was executed five times and the average is reported.

6.2 Results
6.2.1 Table Organization. Table 2 shows the results of make-

Visitor, a refactoring that introduces a visitor pattern by mov-
ing identical-signature methods in a class hierarchy into a newly-
created visitor class (see [20, 36] for details). Each row is an experi-
ment that creates a Visitor for a particular method; different rows
use different methods. These methods are simply identified by a
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Table 2: makeVisitor Results

M# #
of
Refs

R3 X15 Time (sec) Overhead
Time Pred Use SAT Caching?
(sec) Coll No Yes No Yes No Yes
(R3T) (α ) Ext Prec (γ ) Tot (X15T) X15T-R3T

A1 54 2.01 0.09 [104] 0.03 [2] 3.07 3.01 1.05 1.00
A2 56 1.91 0.07 [56] 0.03 [2] 2.96 2.91 1.04 0.99
A3 58 2.28 0.96 0.11 [133] 0.04 [9] 3.36 3.29 1.07 1.00
A4 124 2.07 0.08 [128] 0.03 [3] 3.13 3.07 1.05 0.99
A5 552 3.64 0.17 [287] 0.04 [3] 4.77 4.64 1.13 1.00
C1 4 0.23 0.03 [17] 0.03 [3] 0.31 0.31 0.08 0.07
C2 4 0.25 0.04 0.03 [4] 0.03 [4] 0.33 0.33 0.07 0.07
C3 4 0.24 0.02 [3] 0.03 [3] 0.31 0.32 0.07 0.07
E1 4 0.36 0.02 [3] 0.03 [2] 0.46 0.47 0.10 0.11
E2 4 0.35 0.08 0.02 [4] 0.03 [2] 0.46 0.47 0.11 0.11
E3 4 0.36 0.02 [3] 0.02 [2] 0.47 0.46 0.11 0.10

N1 4 0.59 0.06 [28] 0.03 [3] 0.78 0.75 0.19 0.16
N2 4 0.69 0.13 0.03 [2] 0.03 [2] 0.85 0.85 0.16 0.16
N3 4 0.67 0.03 [5] 0.03 [3] 0.83 0.84 0.16 0.16
S1 4 0.38 0.03 [8] 0.03 [1] 0.57 0.56 0.19 0.18
S2 4 0.38 0.15 0.03 [18] 0.04 [1] 0.57 0.57 0.19 0.19
S3 6 0.39 0.04 [47] 0.03 [2] 0.59 0.58 0.20 0.18

L1 16 3.28 0.09 [147] 0.03 [1] 4.04 3.97 0.75 0.69
L2 26 2.86 1.16 [937] 0.05 [3] 4.69 3.57 1.82 0.71
L3 26 3.33 0.66 0.10 [207] 0.03 [1] 4.10 4.02 0.76 0.69
L4 32 2.89 0.87 [723] 0.05 [1] 4.43 3.60 1.53 0.71
L5 42 3.62 1.16 [1294] 0.06 [2] 5.44 4.34 1.82 0.72
M1 6 0.65 0.07 [79] 0.03 [2] 0.87 0.82 0.21 0.17
M2 6 0.63 0.04 [16] 0.03 [3] 0.81 0.80 0.18 0.17
M3 6 0.63 0.14 0.04 [14] 0.03 [3] 0.81 0.80 0.18 0.17
M4 8 0.65 0.07 [76] 0.02 [2] 0.86 0.81 0.21 0.16
M5 34 0.75 0.19 [432] 0.06 [18] 1.08 0.95 0.33 0.20
P1 10 0.92 0.04 [26] 0.03 [1] 1.28 1.27 0.36 0.35
P2 10 0.92 0.03 [26] 0.03 [1] 1.28 1.27 0.36 0.35
P3 10 0.95 0.32 0.03 [22] 0.04 [3] 1.31 1.31 0.36 0.36
P4 16 0.95 0.03 [17] 0.02 [1] 1.31 1.30 0.35 0.34
P5 16 0.95 0.03 [17] 0.03 [1] 1.31 1.30 0.36 0.35

–M# is an identifier of a method from Application ID M in Table 1.
– N of [N] is the # of SAT problems solved for extra precondition checks.

number (M#).7 The second column, # of Refs, is the total number
of refactorings executed to make a Visitor for that experiment.

Each of our SPLs has a ‘max’ configuration – all features are
selected. We let R3 execute the same refactoring script on the ‘max’
configuration product of each SPL to estimate the overhead of X15
w.r.t. R3. The average execution time for R3 is R3 Time (R3T).

The columns below list the computation times for feature-aware
refactorings in X15:
• Pred Coll (α ): time to collect presence conditions on all declara-
tions and references.

• Ext Prec (γ ): time spent on feature-aware precondition checks
(with/without SAT-caching), including the time for caching SAT
solutions.

• Tot (X15T): the total X15 execution time, (R3T)+(α )+(γ ), with-
/without SAT-caching.

By comparing the total times using R3 and X15, we estimate the
overhead of feature-aware refactorings in our experiments, the
subject of the last column:
• Overhead: the overhead difference (X15T) − (R3T) in terms of
execution time with/without caching.
Table 3 lists the results of inverseVisitor in an identical tab-

ular structure. Although the total number of refactorings needed

7Each method name of M# is getAST_Exp, getBlock, checkForErrors, getQName,
printorder, polishCLI, printSupportedOps, getEvalResult, getExecutedActions, check-
OnlySpecification, isAbortedRun, neW, print, fCenter, setFieldPrivate, updateSudoku-
Views, trySolve, setDirty, packetReceived, getHeight, paint, keyPressed, resetRecord-
Store, getByteFromMediaInfo, getMeiaArrayOfByte, goToPreviousScreen, handleCom-
mand, executeAndQuery*, executeAndQuery*, receive, close, createTestConnection.
*These methods are distinct but have identical names.

Table 3: inverseVisitor Results

M# #
of
Refs

R3 X15 Time (sec) Overhead
Time Pred Use SAT Caching?
(sec) Coll No Yes No Yes No Yes
(R3T) (α ) Ext Prec (γ ) Tot (X15T) X15T-R3T

A1V 54 1.99 0.91 0.14 [208] 0.02 [2] 3.04 2.93 1.05 0.93
A2V 56 1.92 0.92 0.09 [112] 0.03 [2] 2.94 2.87 1.02 0.95
A3V 58 2.24 0.91 0.12 [191] 0.04 [7] 3.28 3.19 1.03 0.95
A4V 124 1.95 0.87 0.16 [254] 0.03 [3] 2.98 2.85 1.03 0.90
A5V 552 3.08 0.69 0.35 [841] 0.05 [3] 4.13 3.84 1.04 0.75
C1V 4 0.21 0.02 0.04 [19] 0.03 [3] 0.27 0.26 0.06 0.05
C2V 4 0.23 0.02 0.04 [9] 0.03 [4] 0.30 0.28 0.06 0.05
C3V 4 0.22 0.04 0.03 [4] 0.03 [3] 0.30 0.30 0.08 0.07
E1V 4 0.33 0.07 0.03 [6] 0.02 [2] 0.43 0.42 0.10 0.09
E2V 4 0.33 0.07 0.03 [6] 0.03 [2] 0.43 0.43 0.10 0.10
E3V 4 0.33 0.05 0.03 [6] 0.02 [2] 0.42 0.42 0.08 0.08

N1V 4 0.54 0.12 0.06 [28] 0.04 [4] 0.73 0.71 0.18 0.16
N2V 4 0.30 0.12 0.03 [3] 0.03 [3] 0.46 0.46 0.15 0.16
N3V 4 0.33 0.12 0.04 [6] 0.04 [3] 0.49 0.49 0.16 0.16
S1V 4 0.39 0.17 0.03 [9] 0.03 [1] 0.59 0.59 0.20 0.20
S2V 4 0.39 0.17 0.03 [9] 0.03 [1] 0.60 0.60 0.20 0.21
S3V 6 0.43 0.17 0.05 [65] 0.03 [3] 0.65 0.64 0.22 0.20

L1V 16 3.28 0.63 0.08 [90] 0.02 [1] 3.99 3.94 0.71 0.66
L2V 26 2.87 0.63 0.24 [552] 0.05 [3] 3.75 3.56 0.88 0.68
L3V 26 3.32 0.63 0.10 [165] 0.03 [1] 4.06 3.99 0.74 0.67
L4V 32 2.93 0.63 0.30 [780] 0.05 [1] 3.86 3.61 0.93 0.68
L5V 42 3.73 0.66 0.39 [1020] 0.05 [1] 4.79 4.45 1.05 0.71
M1V 6 0.64 0.15 0.07 [92] 0.03 [6] 0.86 0.82 0.22 0.18
M2V 6 0.60 0.16 0.05 [18] 0.03 [6] 0.82 0.80 0.21 0.19
M3V 6 0.62 0.15 0.04 [18] 0.03 [6] 0.81 0.80 0.19 0.18
M4V 8 0.66 0.16 0.09 [93] 0.04 [2] 0.91 0.86 0.25 0.20
M5V 34 0.82 0.15 0.26 [549] 0.06 [20] 1.24 1.03 0.41 0.21
P1V 10 0.80 0.37 0.04 [37] 0.02 [1] 1.21 1.19 0.41 0.39
P2V 10 0.80 0.36 0.04 [37] 0.03 [1] 1.20 1.19 0.40 0.39
P3V 10 0.86 0.39 0.03 [27] 0.03 [3] 1.28 1.28 0.42 0.42
P4V 16 0.89 0.35 0.04 [27] 0.03 [1] 1.28 1.27 0.39 0.38
P5V 16 0.86 0.36 0.04 [27] 0.03 [1] 1.26 1.25 0.40 0.39

–M#V is the application where a visitor is to be removed to reproduceM#
of Table 2.
– N of [N] is the # of SAT problems solved for extra precondition checks.

for inverseVisitor is equal to that of makeVisitor, the set of
refactorings invoked and corresponding X15 scripts are different
and the number of SAT problems to solve for inverseVisitor is
slightly larger than that of makeVisitor.

6.2.2 Answers to ResearchQuestions. RQ1: Can X15 refactor
Java SPLs? X15 successfully retrofitted 64 design pattern instances
on our SPLs using a total of 2316 refactorings: 32 experiments
added a visitor pattern and 32 removed a visitor. The most chal-
lenging experiment, A5, executed 552 primitive refactorings. Other
experiments required fewer as their visitor class had fewer ‘visit’
methods.

Our conclusion: X15 can indeed refactor SPL codebases.

RQ2: How fast is X15 compared with R3? To answer this ques-
tion, we used three measures:
(1) Consider the execution times for X15 for all makeVisitor and

inverseVisitor experiments. The largest execution time for
X15, experiment A5, took 4.64 seconds using cached SAT solu-
tions. The comparable experiment using R3 took 3.64 seconds.
(For a perspective on R3’s improvement over the Eclipse JDT en-
gine, a comparable refactoring to A5 took Eclipse 298 seconds
to execute, a speedup of over 100× [36].)
Without caching, row L5 took 5.44 seconds; the compara-
ble experiment using R3 took 3.62 seconds. The numbers for
inverseVisitor in Table 3 are similar. For less demanding
scripts — remember: rows are not individual refactorings — all
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X15 executions complete in under 1.4 seconds; the correspond-
ing R3 executions finish in under 1 second. On average across
all experiments, X15 was 0.5 seconds slower than R3 per experi-
ment.

(2) R3 harvests information from P before it executes a script. X15
must collect more information; specifically feature presence
predicates (see column α of Table 2 and Table 3). This adds
one more second of execution time for the largest SPLs. For
a perspective, between the time a user clicks the Eclipse GUI
and the list of available scripts is displayed, both R3 and X15
harvesting can be done with time to spare.

(3) Over 80% of Eclipse refactoring execution time is consumed
by checking preconditions [36]. In contrast, R3 precondition
checking is almost instantaneous [36]. X15 takes advantage of
R3’s speed, but spends extra time for feature-aware precon-
dition checks (see column (γ )). In the largest SPLs, this adds
another 1.2 seconds without SAT-caching. For smaller SPLs,
the additional time is unnoticeable.

Our conclusion: X15 refactors SPLs at comparable speeds to R3, a
state-of-the-art feature-unaware refactoring engine.

RQ3: How is performance improved by caching SAT checks?
To answer this question, we used two measures:
(1) The average overhead for checking feature-aware precondi-

tions in the makeVisitor experiment was 0.52 seconds with-
out caching SAT solutions. With caching, the average overhead
dropped to 0.40 seconds. For a perspective, experiment L5
spent 1.16 seconds proving 1,294 SAT problems, a vast ma-
jority of which were duplicates. With caching, only one extra
theorem required a SAT proof, taking 0.06 seconds.

(2) Table 4 shows the time and number of SAT problems for dead
code and SC checks on the SPLs in Table 1. Again, we took two
different approaches (non-caching and caching) to measure how
much time X15 can save by reusing SAT solutions. On average
for our experiments, caching increased the speed of dead code
checks by 1.03× and SC by 15×. SC benefits from caching much
more than dead code because SC solves a larger number of SAT
problems so it more likely reuses SAT solutions.

Table 4: Dead Code and Safe Composition Check Results
App No-caching (seconds) Caching (seconds) Speed Up
ID DC SC DC SC DC SC

A 1.18 [182] 94.68 [19,811] 1.13 [176] 4.21 [62] 1.04 (6) 22.46 (19,749)
C 0.11 [42] 0.14 [108] 0.10 [39] 0.08 [9] 1.10 (3) 1.75 (99)
E 0.23 [158] 0.26 [676] 0.23 [155] 0.13 [16] 1.00 (3) 1.97 (660)

N 0.38 [188] 0.50 [635] 0.47 [188] 0.24 [86] 0.81 (0) 2.07 (549)
S 0.29 [79] 0.43 [854] 0.30 [64] 0.25 [14] 0.95 (15) 1.70 (840)

L 0.78 [138] 6.74 [29,501] 0.68 [62] 1.26 [11] 1.15 (76) 5.35 (29,490)
M 0.36 [125] 0.87 [1,976] 0.27 [87] 0.22 [25] 1.34 (38) 3.95 (1,951)
P 0.45 [94] 1.24 [3,329] 0.47 [88] 0.47 [12] 0.95 (6) 2.65 (3,317)

– [N] is the # of SAT checks solved.
– (N) is the # of SAT checks whose solution was found in the cache.
– DC stands for Dead Code checks.

On average, the overhead for feature-awareness in inverseVisitor
refactorings was 0.45 seconds without caching and 0.38 seconds
with caching, which is miniscule. The results of inverseVisitor
are no different than those of makeVisitor.

Readers may be surprised at the low execution time for SAT
checks. This is because the feature models of our SPLs are relatively
simple; all have a small number of features.

Our conclusion: caching solutions to SAT checks does indeed
improve performance and will be even more important for complex
feature models.

6.3 Converting SPL Codebases to X15 Format
Every SPL tool today uses a unique means to encode variability.8
In order to use these SPLs in our experiments, we had to modify
them to use X15 annotations.

SPLs that used AHEAD [6] and FeatureHouse [3], namelyMixin,
Calcuator and Elevator, were partially translated by tools – manual
work was still needed. The remaining five applications (Notepad,
Sudoku, Lampiro, MobileMedia, and Prevayler) used CIDE [32],
which could be transformed into javapp automatically, and then
into X15 form.

#ifdef X
package p;
import q.B;
class A { B b; }
#endif

(a)

package p;
import q.B;

@Feature(X)
class A { B b; }

(b)

package p;

@Feature(X)
class A { q.B b; }

(c)
Figure 15: Translation javapp to @Feature Annotations

In Section 6.1, we said that the four applications in Table 1 used
javapp to specify features [28]. In order to use them, we had to
reformat javapp to Java custom annotations by hand. We did our
best to keep the original feature specification but there were some
code fragments that required special care. Example: Fig. 15a shows
a compilation unit belonging to optional feature X using javapp.
As imports cannot be annotated in Java, we assigned feature X to
the class declaration A in Fig. 15b. However, in case class B belongs
to X which is unselected, Fig. 15b violates SC: it is an error in Java
to import a non-existent class. Our solution was to use the fully
qualified name instead as shown in Fig. 15c.

7 RELATEDWORK
7.1 A Survey of SPL Tools
Future tools for Java SPLs should have the following properties:

(1) Support the refactoring of SPL codebase P,
(2) Do not create a separate code base for PC,
(3) Propagate text edits from PC back to P,
(4) Propagate refactorings of PC back to P.

because refactorings are central to Java program development; and
manual propagation of changes is laborious and error prone [6, 38].

If SPL tools create a separate codebase for PC, it is possible to
automatically propagate edits in PC to P. But not the edits made
by refactorings. Why? Recall the Rule of Liebig et al [40]: An R-
refactoring of an SPL fails if R fails on any product of that SPL.
Refactoring PC as an isolated codebase will not account for other
products of the SPL where that refactoring’s precondition fails.
Thus, unless a separate codebase for PC also keeps track of all other
products in P, back-propagating of refactorings will fail.
8Even variability-aware compilers require source adjustments to be used [34, 40]; there
is no free lunch to use any existing SPL tool.
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Table 5: Comparing Capabilities of SPL Tooling

Tool
Supports OO Does NOT create Back- Back-
refactorings separate codebase propagates propagates
of Java SPLs for products edits refactorings

AHEAD ✗ ✗ ✓ ✗
CIDE ✗ ✗ ✗ ✗
DeltaJ ✗ ✗ ✗ ✗

DOPLER ✗ ✗ ✗ ✗
Gears ✗ ✗ ✓ ✗

FeatureHouse ✗ ✗ ✗ ✗
Pure::Variants ✗ ✗ ✓ ✗

X15 ✓ ✓ ✓ ✓

Table 5 categorizes the properties of X15 with seven well-known
SPL tools (AHEAD [6], CIDE [32], DeltaJ [37], DOPLER [14], Gears
[38], FeatureHouse [3], and pure::variants [48]9). X15 is unique
among existing SPL tools in that it supports all key properties.

7.2 Variation Control Systems
Variation Control Systems (VarCSs) are tools that project a reconfig-
urable codebase P to produce a separate codebase called a ‘view’.
The view is edited and its changes are back-propagated to P by an
update tool. AHEAD and Gears, mentioned earlier, are VarCSs [60].

The most advanced VarCSs [57, 60] to our knowledge are based
on the Choice Calculus [16] and rely on the edit isolation principle
(EIP), which says that all edits made to a view are guaranteed not
to effect code that was hidden by projection. X15 follows the EIP
as long as refactorings are not performed; refactorings violate EIP.
We showed that propagation tools for text edits are inadequate to
deal with the changes refactorings make. Never-the-less, empiri-
cal results by Stanciulescu et al. show VarCSs are feasible to edit
and maintain real-world SPLs [57]. VarCS ideas offer additional
improvements to X15.

7.3 Other Java Variabilities
Consider the Java code of Fig. 16a. Parameter a is Feature-annotated,
suggesting that it is removed if X is not a feature of the target config-
uration. Fig. 16b shows the projected result when ¬X holds. There
are SPL tools that support such variability [16, 32, 40].

(a) void m( @Feature(X) A a ) {...} (b) void m() {...}

Figure 16: Parameter Removal by Projection

X15 presently ignores Feature annotations on parameters of meth-
ods and generics. We are unconvinced that parameter projection is
a good idea as it encourages unscalable SPL designs: if method m
has 2 parameters in some SPL programs, 3 in others, and 4 in the
remainder, it quickly becomes confusing to know which version
to use and when. If there are many such methods, an SPL code-
base becomes difficult to understand. There is no technical reason
that precludes parameter projection in X15 other than increased
complexity; we leave its necessity for others to decide and add.

Java annotations have room for improvement. Cazzola et al. [9]
presented @Java, an extension to Java language, that can annotate
finer-grained code fragments such as blocks and expressions that
cannot be annotated by Java. The atjava tool translates @Java
annotations to Java-compilable code and then inserts custom at-
tributes into bytecode instead of the translated code. @Java could
9pure::variants has a tool that updates SPL products when P is changed [8]; this is
forward-propagation P→ PC of changes, not back-propagation PC → P of X15.

improve X15 when atjavac (i) provides the start and end of each
annotated code fragment, (ii) preserves the original @Java anno-
tation’s value expression (i.e., feature expression in X15), and (iii)
keeps the annotated expression if it exists. atjavac now supports
(i) and (iii), and can be customized to do (ii).

7.4 Variability-Aware Compilers
Conditional compilation in Java has taken two forms: One is OO
language-extensions to support type safe variability, such as [4,
15, 27]. These latter papers are elegant proposals to extend OO
languages with conditionals to enable static variability and type
safety using generics.

The other uses preprocessors, such as [28, 47, 55], which leads
to work on VACs [7, 16, 33, 40, 61]. Developing tools to parse C-
with-CPP source to analyze the impact of feature variability is
difficult [10, 23, 33], but unavoidable if CPP-infused SPL codebases
are to be analyzed. Creating a VAC for C++ is far more difficult
[11]. Most of the effort in developing VACs deals with the artificial
complexity that CPP constructs add to host languages [21, 22]. And
using VACs is not without effort – the codebase must use disciplined
annotations [41].

In contrast to the above research, X15 requires no changes to Java
or its compiler. X15 directly supports feature-variability for view
editing, view compilation, and view refactoring, capabilities that
existing SPL tools lack.

7.5 Refactoring Variability-Aware Codebases
Fenske et al. [17] and Schulze et al. [52] report experiences on inte-
grating FeatureHouse [3] with a pair of refactorings: a rename and
a pull-up-to-common-feature that partitions large features into
a composition of smaller features. Schultz et al. report difficulties on
refactoring SPLs when physical feature modularity is used. A delib-
erate design decision of ours was to use an annotative (or implicit
feature modularity) approach to avoid these problems. X15 relies on
pure Java, not a custom extension of Java. We argued in Section 4
that theorems of feature algebras hold in all feature-based SPL im-
plementations — including those that rely on special languages to
support feature modularity. But to do so requires building a cus-
tom compiler and a custom refactoring engine, which is daunting.
Never-the-less our results can be transferred to other languages
and feature modularity approaches.

There are other useful kinds of feature ‘refactoring’. Schulze et
al. [53] presented module refactorings such as rename, merge, and
remove for SPLs based on Delta-Oriented Programming (DOP). Code
smells were proposed to identify refactoring opportunities in DOP
[50]. These are potential future extensions of X15.

Kuhlemann et al. [39] proposed Refactoring Feature Modules
(RFMs). Just as we use the term feature modules to mean building-
blocks of SPL products, an RFM is a feature module or a single
product refactoring (not a refactoring script). An RFM refactoring
is feature-unaware and is applied to a feature-unaware product to
adapt it for use in a legacy application. Although RFMs have a name
that is suggestive of our work, it does not deal with feature-aware
refactorings. Nevertheless, subsequently refactoring an SPL pro-
gram for adaption is a good idea because it separates the concerns
for SPL product development and creation from later adaptation.
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Aspect-aware refactorings [1, 25, 43, 62] are a counterpart to
feature-aware refactorings. The technical issues and solutions ex-
plored were specific to AspectJ (e.g., pointcuts and wild-cards), and
are distant topics to OO refactoring feature-based Java SPLs.

8 CONCLUSIONS
Refactoring is a staple of Java software development. It should be a
staple of Java SPL development too. X15 is a tool that brings critical
OO refactoring support to Java SPL codebases. X15 also avoids
two vexing problems: (1) the impossibility of refactoring individual
SPL products and correctly propagating changes back to the SPL
codebase, and (2) not using a special variability-aware compiler for
Java SPL; X15 uses the standard Java compiler. In addition, (i) X15 is
a mere 10K Java LOC, (ii) it inherits the benefits of R3: the ability to
write and execute refactoring scripts, (iii) efficiently executes scripts
(10× faster than the Eclipse JDT refactorings), and (iv) the reason
why X15 works – and why any SPL refactoring engine works – is
because of a distributivity property of refactorings over feature
summations/compositions.

We believe that X15 advances and simplifies the state-of-the-art
in SPL tooling.
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