
X15: A Tool For Refactoring Java Software Product Lines
Jongwook Kim

Iona College
jkim@iona.edu

Don Batory
University of Texas at Austin

batory@cs.utexas.edu

Danny Dig
Oregon State University

digd@eecs.oregonstate.edu

ABSTRACT
X15 is the first tool that can apply common object-oriented refac-
torings to Java Software Product Lines (SPLs). X15 is also the first
tool that programmers can write custom scripts (to call refactorings
programmatically) to retrofit design patterns into Java SPLs. We
motivate and illustrate X15’s unique capabilities in this paper.

CCS CONCEPTS
• Software and its engineering→ Software product lines;

KEYWORDS
refactoring, software product lines
ACM Reference format:
Jongwook Kim, Don Batory, and Danny Dig. 2017. X15: A Tool For Refacto-
ring Java Software Product Lines. In Proceedings of SPLC ’17, Sevilla, Spain,
September 25-29, 2017, 4 pages.
https://doi.org/10.1145/3106195.3106201

1 INTRODUCTION
Refactoring is a cornerstone of modern Java software development
[11]; it should be a cornerstone of modern Java Software Product
Lines (SPLs) development too. Surprisingly this is not the case as of
2017.

In 2015, the first refactoring engine for SPLs appeared, called
Morpheus [17]. It supported SPLs coded in C with embedded C Pre-
processor (CPP) directives, and offered three refactorings: function
inline, lift function, and rename.

Why did it take until 2015? There are many reasons; one is
that Morpheus requires a variability-aware compiler (VAC). A VAC
integrates CPP directives into the grammar of a host language, in
this case C. Let’s call this new language C&CPP. Writing a VAC for
C&CPP is not simple. And there is the non-trivial challenge to write
a refactoring engine for C&CPP.

Now imagine the difficulty of building a VAC for Java&JPPwhere
JPP stands for the Java Preprocessor [3, 10, 13],1 and then writing
a refactoring engine for it (where Java easily supports an order
of magnitude more refactorings than the C language). We suspect
such a compiler+refactoring tool will never be built because of its
difficulty.
1Or choose your preferred preprocessor.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’17, September 25-29, 2017, Sevilla, Spain
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5221-5/17/09. . . $15.00
https://doi.org/10.1145/3106195.3106201

X15 is the first refactoring engine for Java SPLs. It uses a standard
Java compiler and Java custom annotations to express CPP-like
directives. X15 leverages a radically new refactoring engine for
Java, R3 [16], which currently supports over 30Object-Oriented (OO)
refactorings. R3 enables programmers to write refactoring scripts
– programmatic invocations of refactorings – to retrofit classical
design patterns [12]. A robust set of benchmarks showed that R3
performed at least 10× faster than the Eclipse Java Development
Tools (JDT) refactoring engine [16]. X15 inherits these capabilities
and is minimally slower than R3.

This paper explains the unique capabilities of X15. Its technical
innovations are explained in our SPLC 2017 paper [15].

2 BACK-PROPAGATION CONSIDERED
HARMFUL

All SPL tools that we are aware of perform a “projection” operation
Πc on an SPL codebase P to produce a separate codebase Pc for
the product with configuration c. That is, Πc removes code in P
that is irrelevant to c (or composes required code fragments in P to
produce Pc [2, 5, 18]):

Πc(P) = Pc (1)

Today’s SPL tools expect Pc to be compiled, run, and edited to make
repairs. With back-propagation tools, modifications to Pc can be
propagated back automatically to P, thereby updating all products
that share features/code with c. Without such tools, changes must
be propagated manually.

Refactorings break this paradigm. Figure 1(a) shows an SPL code-
base P expressed in terms of CPP. When P is projected (preproces-
sed) for configuration c that defines feature F, a separate codebase
Pc for product c is produced (see Figure 1(b)). Refactoring Pc, such
as renaming variable i to j, modifies Pc to Figure 1(c). When chan-
ges to Pc are back-propagated to P, the binding of reference j breaks
when feature F is undefined (Figure 1(d)).

#ifdef F
int i = 0;
#else
int i = 1;
#endif

int m() { i++; }

(a) SPL Codebase P

int i = 0;

int m() { i++; }

(b) Product Pc with Feature F∈c

int j = 0;

int m() { j++; }

(c) Rename i to j in Pc

#ifdef F
int j = 0;
#else
int i = 1;
#endif

int m() { j++; }

(d) Back-propagation of Pc to P

Figure 1: Refactoring-Unaware Back-Propagation.

https://doi.org/10.1145/3106195.3106201
https://doi.org/10.1145/3106195.3106201

SPLC ’17, September 25-29, 2017, Sevilla, Spain Jongwook Kim, Don Batory, and Danny Dig

In a nutshell, refactorings of SPL products are not edits. As the
above example shows, if a programmer wants to R-refactor the
codebase of an SPL product Pc, a corresponding R-refactoring must
be applied to P to update all references to refactored entities. This
requirement is captured by the following algebraic identities:

R(Pc) = R
(
Πc(P)

)
= Πc

(
R(P)

)
(2)

That is, R-refactoring codebase Pc must equal a c-projection of
R-refactored codebase P. More on this in Section 3.3.

3 FEATURES AND CAPABILITIES OF X15
X15 has 3 key advances that make the refactoring of Java SPLs
possible:

(1) Encoding variability in Java using custom annotations,
(2) Editing and viewing individual SPL products without crea-

ting separate codebases, and
(3) Implementing the identities in equation (2).

Each is discussed in turn in the following subsections.

3.1 Variability using Java Custom Annotations
X15 uses Java custom annotations in a simple and intuitive way to
encode feature variability.

Figure 2(a) shows an X15 configuration file, where Feature is a
reserved word in X15. Each feature of the SPL is declared as a unique
static boolean variable. A value is assigned to each feature of an
SPL to define an SPL configuration. In this example, feature BLUE
is selected and RED is not.

(a)

(b)

(c)

(d)

Figure 2: An X15-annotated Java SPL.

Next, every Java package, class, interface, field, and method
declaration is annotated with a Feature expression to define its
presence condition (in terms of features) when that declaration is
to appear in an SPL product [1]. The class Square in Figure 2(c)
appears in every SPL product whose configuration includes feature
RED. If an annotation is absent, the declaration belongs to all SPL
products. The Graphic class of Figure 2(b) is an example.

Statement blocks are variability-aware if they are enclosed in an
if (feature_expression) statement. In Figure 2(d), the statement

“width *= rate;” appears in an SPL product whose configuration
includes feature RED.2 X15 infers Feature annotations to simplify
variability specification. The precise set of rules X15 follows is given
in Appendix A.

Of course, X15 needs a feature model for each SPL. X15 currently
uses guidsl of the AHEAD tool suite [5]; other classical feature
modeling tools could have been used [9].

3.2 Projection as Code Folding
All SPL tools have a projection operation (Πc) that removes code
from P that is irrelevant to a product with configuration c. X15 uses
code folding, a standard IDE functionality [7], to display (project)
the code of a product. In Figure 3, code folding hides code fragments
of unselected features.

SPL Codebase

code
folding

View of an SPL
Product

relevant
to product

irrelevant
to product

Figure 3: Code Folding reveals Pc.

How is this done? The standard Java compiler generates ASTs
that include subtrees for Java annotations. X15 determines the cur-
rent configuration c by harvesting boolean values from the AST
of declaration @Feature. Knowing c, X15 evaluates the boolean
expressions of @Feature annotations; if true the annotated AST
is pretty-printed, otherwise, the contents of the AST are hidden.

In this way, X15 folds declarations and statements that are irrele-
vant to Pc. An extra benefit, that we will see later, is that variation
points (VPs) within an SPL codebase are clearly marked by code
fold markers (⊕ meaning folded code and ⊖ indicating expanded
code). An X15 programmer will see where VPs exist in a codebase,
and can view – but not edit – code-folded regions.

X15 has a second projection operation that comments-out ir-
relevant contents of P – this version of Pc is not viewable by a
programmer, but is consumed directly by the Java compiler to pro-
duce byte codes for Pc. This allows X15 users to debug a code-folded
view of Pc, using the commented-out version compiled by javac.

Finally, customer-specific adaptations of SPL products are oc-
casionally useful. The question is: should X15 create a separate
codebase for a product (thereby opening a can of worms requiring
back-propagation) or should customer-specific adaptations be inte-
grated into the SPL codebase P as special features? Currently, we
opt for the latter solution.

3.3 Implementing Equation (2)
X15 follows a common path in SPL tool development: feature alge-
bras axiomatize the semantics of feature composition operations.
Tools are then developed to implement these algebras [2, 5, 18].
2Due to the nesting of Feature references, the presence condition for statement
“width *= rate;” is RED ∧ BLUE. That is, statement “width *= rate;” appears iff its
method resize is present (BLUE is selected) and if RED is also selected (the statement
variability qualifier).

X15: A Tool For Refactoring Java Software Product Lines SPLC ’17, September 25-29, 2017, Sevilla, Spain

We started with a known feature algebra [4] and recognized a
new axiom that distributes refactorings over sums of features. This
axiom was used in the proof of Equation (2) [15].

X15 implements Equation (2) in the following way: every X15
user is always modifying the entire SPL codebase P. Views merely
restrict edits to a computable subset of P. When a programmer in-
vokes a refactoring R, the preconditions of R are applied to all SPL
products, using standard SAT analysis techniques (see Section 4.1).
If no violations occur, the code transformation of R is applied to
P to produce R(P). By Equation (2), a c-projection of R(P) yields
the desired result, R(Pc). The variability-aware refactoring pre-
conditions that X15 uses is documented in our SPLC 2017 paper
[15].

Of course, programmers can refactor P directly, not requiring a
view of a product.

4 DEMONSTRATION

Figure 4: User Interface
Operations of X15.

X15 offers four user-interface ope-
rations:

(1) checking dead code,
(2) checking safe composition,
(3) code folding to view an SPL

product, and
(4) executing X15 refactorings

on an SPL.
The operations are integrated with
X15’s Eclipse JDT plug-in (Figure 4).

4.1 X15 Analyses
X15 relies on a standard analysis to locate dead code – code frag-
ments that belong to no SPL product [1]. X15 displays a pop-up for
any dead code instance found.

X15 uses a similar standard analysis to guarantee all products
of an SPL are type-safe (i.e., compilation is error-free) [8, 19]. X15
displays a pop-up, much like dead code, for any violation found.

Both are SAT analyses [1], which are leveraged by X15 to verify
refactoring preconditions.

4.2 Viewing an SPL Product
As said earlier, X15 uses code folding to view an SPL product. In
Figure 5(a), an if statement is folded in class Rectangle because
its expression RED is false. Figure 5(b) shows an expanded view
of Rectangle.

For the same reason that RED is unselected, class Square is folded
in Figure 5(c). Figure 5(d) reveals the folded code. X15 users can
fold (or unfold) by clicking either markers ⊕ or ⊖ on the left-hand
side of a code fragment. Folded code cannot be edited. Of course,
occasionally when a programmer needs to edit folded code, s/he
can exit the code-fold mode of X15 and edit the entire SPL codebase
as necessary.

4.3 Refactoring of SPL Products
X15 inherits the R3’s ability to allow programmers to write refac-
toring scripts that automatically retrofit design patterns into a
codebase [16]. Figure 6 is an X15/R3 script that creates a visitor

(a)

(b)

(d)

(c)

Figure 5: Code Folding as A View of an SPL Product.

given one of the methods that are to be moved into the created
visitor class.3

1 // member of RMethod class
2 RClass makeVisitor(String N) {
3 RPackage pkg = this.getPackage ();
4 RClass v = pkg.newClass(N);
5 RField singleton = v.addSingleton ();
6
7 RRelativeList relatives = this.getRelatives ();
8 relatives.rename("accept");
9
10 int index = relatives.addparameter(singleton);
11 relatives.moveAndDelegate(index);
12
13 v.getAllMethods ().rename("visit");
14
15 return v;
16 }

Figure 6: X15/R3 makeVisitor Method.

Figure 7 shows the SPL codebase of Figure 2 where a Visitor pat-
tern is retrofitted for the method resize [12]. The Visitor design
pattern moves all methods with the same signature in a class hierar-
chy to a visitor class, leaving delegates behind. The moved methods
are renamed to visit and delegates are renamed to accept.

Figure 7(d) shows a visitor that has three visit methods which
are moved from classes Graphic, Rectangle, and Square, respecti-
vely. Note that method resize of class Square is also moved to
the Visitor although it does not exist (i.e., its code was folded) in
the SPL product (Figure 5(d)). That shows X15 applies refactorings
to the entire SPL codebase, not a single product as explained in
Section 3.3.

3R3 scripts can be used without change with X15. That is, a script that can be applied
to a Java program can also be applied to an X15 Java SPL.

SPLC ’17, September 25-29, 2017, Sevilla, Spain Jongwook Kim, Don Batory, and Danny Dig

(a)

(b)

(d)

(c)

Figure 7: A Visitor Pattern.

5 RECAP
Modern OO design is at least 20 years old [6]. Refactorings and
design patterns have been an integral part of modern OO design
for at least that long. SPL development is also about 20 years old,
but it lacks tools to refactor OO SPL codebases.

X15 is a step forward toward improved tools for OO SPL deve-
lopment. It follows and leverages a history of prior work that is
detailed in our SPLC 2017 paper [15].

Acknowledgments.We gratefully acknowledge support for this
work by NSF grants CCF-1212683, CCF-1439957 and CCF-1553741.
We also thank the referees for their helpful comments.

REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product

Lines. Springer, 2013.
[2] S. Apel, C. Kästner, and C. Lengauer. FEATUREHOUSE: Language-Independent,

Automated Software Composition. In ICSE, 2009.
[3] J. A. Bank, A. C. Myers, and B. Liskov. Parameterized Types for Java. In POPL,

1997.
[4] D. Batory, P. Höfner, and J. Kim. Feature Interactions, Products, and Composition.

In GPCE, 2011.
[5] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE

TSE, June 2004.
[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison Wesley, 1998.
[7] Code Folding. https://en.wikipedia.org/wiki/Code_folding.
[8] K. Czarnecki and M. Antkiewicz. Mapping features to models: A template

approach based on superimposed variants. In GPCE, 2005.
[9] Databases and S. E. Workgroup. Featureide. http://wwwiti.cs.uni-magdeburg.de/

iti_db/research/featureide/, 2016.
[10] B. Emir, A. Kennedy, C. Russo, and D. Yu. Variance and Generalized Constraints

for C# Generics. In ECOOP, 2006.
[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving

the Design of Existing Code. Addison-Wesley, 2000.
[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.
[13] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing Java with Safe Type

Conditions. In AOSD, 2007.
[14] J. Kim, D. Batory, and D. Dig. Refactoring and Retrofitting Design Patterns in

Java Software Product Lines, 2016.
[15] J. Kim, D. Batory, and D. Dig. X15: A tool for refactoring java software product

lines. In SPLC, 2017.
[16] J. Kim, D. Batory, D. Dig, and M. Azanza. Improving Refactoring Speed by 10X.

In ICSE, 2016.

[17] J. Liebig, A. Janker, F. Garbe, S. Apel, and C. Lengauer. Morpheus: Variability-
aware Refactoring in the Wild. In ICSE, 2015.

[18] I. Schäfer, L. Bettini, F. Damiani, and N. Tanzarella. Delta-Oriented Programming
of Software Product Lines. In SPLC, 2010.

[19] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product Lines.
In GPCE, 2007.

A ANNOTATION RULES OF X15
Figure 8 lists the declaration types that can be annotated in Java.
X15 allows all annotations except those on formal parameters of
methods [14].

Package (declared in package -info.java)
Type declaration (i.e., class , interface , enum)
Annotation declaration
Method declaration
Constructor declaration
Field declaration (including enum constant)
Formal and exception parameter
Local variable (including loop variable of for statement

and resource variable of try -with -resources statement)

Figure 8: Java Entities that Allow Annotations.

X15 infers annotation(s) for unannotated entities. (Inferred an-
notations are not added to the source code.) The purpose of infe-
rencing is to avoid annotating every declaration repeatedly when
successive annotations are identical. Here are the rules for applying
annotations in X15. A rule with a lower # has higher priority.

Rule #1. Use the annotation(s) of the current declaration.
Rule #2. If Rule #1 is not applicable, use the annotation(s) of the closest

preceding declaration in the same scope.
Rule #3. If Rule #2 is not applicable, use the annotation(s) of the closest

enclosing declaration.
Rule #4. If Rule #3 is not applicable, use a default feature, which is

BASE, whose contents is present in every SPL product.
X15 uses if (feature_expression) {block} to conditionally in-
clude the codeblock block in a product; feature_expression
must be true for inclusion to occur; otherwise block is erased
along with the if statement. This action is independent of the
above rules.

https://en.wikipedia.org/wiki/Code_folding
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

	Abstract
	1 Introduction
	2 Back-Propagation Considered Harmful
	3 Features and Capabilities of X15
	3.1 Variability using Java Custom Annotations
	3.2 Projection as Code Folding
	3.3 Implementing Equation (2)

	4 Demonstration
	4.1 X15 Analyses
	4.2 Viewing an SPL Product
	4.3 Refactoring of SPL Products

	5 Recap
	References
	A Annotation Rules of X15

