
Seville-1

Don Batory
Department of Computer Science

University of Texas at Austin

Thank SPLC
Steering committee!

Seville-2

For the 1st

SPLC Test of
Time Award!

The Paper

• Feature Diagrams (FDs)

• Not just any grammar – there are restrictions… more later
Seville-3

Trump4ADay : [charming] Russia+ WorldAffairs OrangeHair ;
Russia : disavows | blamesMedia ;
WorldAffairs : knowsNothing | knowsLittle ;

are context-free grammars
fundamental concept in CS

showed

Productions:

The Paper Showed

• FDs & grammars could also be mapped to propositional formulas – yet another fundamental CS concept

Seville-4

Trump4ADay ⟺ (Russia ∧ WorldAffairs ∧ OrangeHair)
∧ Charming ⟹ Trump4ADay;

WorldAffairs ⟺ choose1(knowsNothing,knowsLittle);

Russia ⟺ disavows ∨ blamesMedia;

Trump4ADay : [charming] Russia+ WorldAffairs OrangeHair ;
Russia : disavows | blamesMedia ;
WorldAffairs : knowsNothing | knowsLittle ;

∧

∧

∧

Trump4ADay

The Paper continued

• Cross Tree Constraints (CTC) – can be any propositional formula involving features

• Basic identity:

• Now use off-the-shelf SAT technology to analyze 𝜌𝜌 𝐹𝐹𝐹𝐹

Seville-5
key contribution

charming ∨ blamesMedia ⟹ knowsNothing

𝜌𝜌 𝐹𝐹𝐹𝐹 = 𝜌𝜌 𝐹𝐹𝐹𝐹 ∧ 𝜌𝜌(𝐶𝐶𝐶𝐶𝐶𝐶)

Still not
Standard

The Paper continued

• Provide explanations for inferred features a proof

Seville-6

The Paper continued

• Provide explanations for inferred features a proof

Seville-7

Still not
Standard

The Paper continued

• Debugging FMs – Unit tests for FMs

Seville-8

The Paper continued

• Debugging FMs – Unit tests for FMs

Seville-9

Still not
Standard

Personal Perspective

• Influential technical papers tend to be 1 of 3 kinds:

idea papers – keep researchers busy for years
breakthrough papers – stars must align as breakthroughs are rare
who gets there first – known ideas waiting to be put together

• This paper was of the kind:

Seville-10

Who gets there first

salute to contemporaries

• Benavides CAISE 2005 “Automated Reasoning on Feature Models”
• FMs with attributes ⇒ 0-1 optimization problems
• gateway to using CSP solvers today SMT solvers

• Czarnecki’s GPCE 2006 “Verifying Feature-Based Model Templates”
• gateway to verify type-safety of all products in SPL

• Schoebben’s ReqE 2006 “Feature Diagrams: A Survey and
A Formal Semantics” MIP ReqE 2016

• defined a formal semantics that unified existing FMs

Seville-11Forgive me if I am missing you

My work Influenced By...

• Perry’s ISSTA 89 “Logic of Propagation in Inscape”
• fundamental contribution for verifying compositions of

components in plug-and-play architectures
• basis for Genesis’s DaTE 1990 (FM tool)

» 1st? feature modeling tool in academics
» dealt with replicated features
» dealt with multi product lines

• Kang et al FODA Feasibility Study 1990

Seville-12

what kind of grammar ?

• Aliakbar Safilian, PhD Thesis McMaster University, 2016
• FDs are grammars but even simpler than that!

• Still context sensitive constraints. Formalism admits replicated features, multi product lines

Seville-13

Regular
Expressions

Trump4ADay ∶ [Charming](disavows|blamesMedia)+
(knowsNothing|knowsLittle) OrangeHair ;

Significant follow-on work

• Not in any order

• family based verification of type safety for all products

• model checking of product lines

• using SAT and beyond to analyze Linux

Seville-14
Forgive me if I’m missing you

Claussen, Legay, Schoebbens, et al.

Nadi et al.

Apel, Kästner, et al.

Czarnecki et al.

Significant follow-on work

• Not in any particular order

• family based verification of type safety for all products

• model checking of product lines

• using SAT and beyond to analyze Linux

Seville-15

Forgive me if I’m missing you
all above are impressive

Claussen, Legay, Schoebbens, et al.

Nadi et al.

Apel, Kästner, et al.

Czarnecki et al.

So again

Thank you !

Seville-16

Conjectures
on the

future of SPLs

3 observations

Have you observed...

1. Quality of software seems to be getting worse?
• maybe 10× more complex than it was 10 years ago
• I’m seeing more problems than ever before

2. knowledge about SPLs is more widespread
• why is refereeing become “awful” or “unpredictable”?
• reviews are off-base, punitive – how can we fix this?

3. Importance of SPLs is established

Seville-17

Adam
Kilvans
AI, Theory, ML

and more shallow

, but where might SPLs be in next 20 years?

Have you observed...

1. Quality of software seems to be getting worse?
• maybe 10× more complex than it was 10 years ago
• I’m seeing more problems than ever before – ex: Skype

2. knowledge about SPLs is more widespread
• why is refereeing become “awful” or “unpredictable”?
• statements by referees are off-base, punitive

3. Importance of SPLs is established

Seville-18

Adam
Kilvans
AI, Theory, ML

and more shallow

, but where might SPLs be in next 20 years?

I admit I don’t know the answers
but...

I admit I don’t know the answers
but...

I know their answers are related

background

Now past Hyper-Inflation

Seville-20

We are
here

In the Beginning 40s-50s

• Universe of Software Science was small
• It grew fast from virtually nothing

21

software
engineering

databases

programming
languages

compilers

operating
systems

• Limitations of humans
• Field of vision is volume of knowledge that person understands
• Different people have different fields of vision, different depths of knowledge

Laws of this artificial Universe

22

field of vision

ex: We are naturally near-sighted limited capacity to absorb & understand

Dr. Bunsen Honeydew Beaker

Implications

• In close proximity, both know what the other is doing
• When they go beyond each other’s “horizon”, no longer in touch,

can’t see what the other is doing and know little or nothing about each other’s research

23

In the 60s-70s

• Some researchers kept up on advances far outside their area
• Dijkstra worked in Operating Systems, Distributed Computing, and Software Design!
• Others virtually all of us were near-sighted and happy

24

1980s-2000s

• Universe kept growing – but our ability to
stay on-top of multiple disciplines did not
scale

• Lose track of what others
are doing and are typically
unaware of their results

• Personal experience: ICSE’89

databases

software
engineering

Today

• Software Engineering is now so big that I can’t see across it
• As time goes on, expect to see continued Balkanization….

software
engineering

Consequences

• Generally, researcher knowledge is becoming more specialized
• gradual dilution of ‘big picture’ knowledge
• recent SE grads or SPL experts think they know a lot, but what they know is shallow

• That was me! And maybe you too!

27

SPLs

last 4-8 years of
publications

Not
Enough !

Consequences

• Generally, researcher knowledge is becoming more specialized
• gradual dilution of ‘big picture’ knowledge
• recent SE grads or SPL experts think they know a lot, but what they know is shallow

• That was me! And maybe you too!
• I was proud at how much I knew after my PhD 1980
• 6 years later, I was amazed at how much more I had learned

and how comparatively little I had known after my PhD
• 6 years later, I was amazed at how much more I had learned,

and looked forward to my next 6 years
• … in short, I began appreciating progressively bigger universes of knowledge and

their relationships… my field of vision was increasing with time 28

it takes time
and effort

Have you noticed that there are child prodigies
in mathematics, music, gymnastics –
but not in surgery?

Have you noticed that there are child prodigies
in mathematics, music, gymnastics –
but not in surgery?

Reason: surgery, like most areas of Science, are
not innate. Their complexities must be learned
and understood over long periods of time.

Dijkstra Observation

Seville-29

Seville-30

#2 improve
Refereeing and

#3 continue success
of SPLs

• Pack program committee with real experts – or “experts” review the reviews
1. referees who have actually programmed SPLs, not just written about it
2. referees who appreciate theory AND practice
3. open mind, not an axe to grind
4. refereeing is NOT a blood sport; attitude should be a note

written to a close colleague

• WHY? Ultimate goal: attract more and better researchers to SPLs
• don’t discourage students having referees say “you didn’t do it MY way”
• build a sense of true scholarship in this area
• results should be good science more on this

#1 Improve Refereeing in general
not specific to SPLC

Seville-31

Step up our Game
More ideas offline

obvious

#2 Writing Papers

• Common for “smaller problems” to be addressed
• that’s what people know and understand, much less so than bigger-picture issues
• easier to explain to others and have them appreciate it
• because that’s what many of us are doing too…
• common mistake for those who have a vision –

doing too much in a single paper – referees won’t get it

32

Doing fine

• Back in the late 60s-early 70s Software Science
we had a “Newton”

• “Wow…”

33

Donald
Knuth

Visionaries of the past

Knuth’s work is another way of Saying

• Interesting, important, innovative work is between galaxies or worlds
• Progressively harder for referees to adequately judge such work

• What can I tell you?
• My greatest scientific achievements would not have been funded by NSF

I had to build it before I would have been funded

Personal Story #1

• Last 4 years I focused on Refactoring
• 2011 had an idea of how to improve refactoring engines
• Danny Dig, THE person in refactoring today, said “I don’t believe it will work”
• Fortunately he earlier asked me to be on a 4-year NSF project 2012-16

on adding transformations as 1st-class entities to Eclipse

• Fast forward to 2016: It Works!
• CS undergraduates can write refactoring scripts – automate design patterns
• complex script 5min execution time → down to 2 seconds, 141× factor increase
• 6K LOC Java total, does not require 700K LOC Eclipse infrastructure other than

compilation – don’t need a classical program transformation system to do this

Seville-35

Personal Story #1

• Last 4 years I focused on Refactoring
• 2011 had an idea of how to improve refactoring engines
• Danny Dig, THE person in refactoring today, said “I don’t believe it will work”
• Fortunately he earlier asked me to be on a 4-year NSF project 2012-16

on adding transformations as 1st-class entities to Eclipse

• Fast forward to 2016: It Works!
• CS undergraduates can write refactoring scripts – automate design patterns
• complex script 5min execution time → down to 2 seconds, 141× factor increase
• 6K LOC Java total, does not require 700K LOC Eclipse infrastructure other than

compilation – don’t need a classical program transformation system to do this

Seville-36

I was lucky to be
in the right place
at the right time

it is because I knew nothing
about Software Engineering or its concerns at the time”

Personal Story #2

• In 1995 I was invited by Charles Simonyi to a workshop at MS on Intentional Programming
• I had just completed GenVoca + was ½ way to AHEAD

• First met Mary Shaw – then famous with David Garlan on architectural styles.
Standard-bearer of Software Engineering Community

• “If ever I am successful in my research,

Seville-38

SPL

software
engineering

databases

Feature-based
SPLs

because SE interests
were orthogonal

to make SPLs successful
balkanize

SE Considered Harmful

Prediction

• Today’s SE / SPL papers are “simple” compared to what papers 20 years from today

• Compare DB papers (SIGMOD, VLDB) in 1986 to those of 2000 and today
• vast difference in sophistication and use of mathematics

• If you only know SPL engineering, you’ll be blown out of the water

Seville-39

Seville-40

More background
to address ...

#1 Why is software seem to be
getting worse ?

#3 Where might SPL research
be in 20 years ?

WHAT DOES THE NIGHT SKY OF
SOFTWARE SCIENCE LOOK LIKE ?

Seville-41

Seville-42

• Stars are results of humans
• Dim stars are perceived insignificant
• Bright stars automatically attract attention

• Some results grow in significance over time
• Where others decline or disappear (AOP)
• Others sprout around key papers

• Just because you see stars doesn’t mean that the problems or results are fundamental
• could be – or they might be “fads” of no significance

Seville-43

Fundamental problems are
dark matter – can’t see it

but you’re convinced you’re close

Seville-44

• Look at deep space – where is nothing
• Incremental results soon populate sky
• Numbers increase over time

• Not how science proceeds Pierre Schoebbens
• Mature science abhors singleton results
• Theory reduces disparate results to a small

set of axioms from which these and other
results can be derived

Seville-45

• Look at deep space – where is nothing
• Incremental results soon populate sky
• Numbers increase over time

• Not how science proceeds Pierre Schoebbens
• Mature science abhors singleton results
• Theory reduces disparate results to a small

set of axioms from which these and other
results can be derived

Good theories
Systematize
knowledge

Practical Value of a good Theory or
a tool based on a good theory or

experiments that lead to good theories

Seville-46

Applause for
Graphics, Please

Seville-47

This is what a
test in time award
should recognize

Good Theories
greatly accelerate

expansion of the universe

Practical Value of a Theory or
a tool based on a good theory or

experiments that lead to good theories

Seville-48

#1 Why is software seem to be
getting worse ?

#3 Where might SPL research
be in 20 years ?

• The characteristic hallmark of great science – finding foundations for different phenomena

• This is also the characteristic hallmark of SPLs – finding foundations of families of systems
Seville-49

Distilling instances to a theory

• Is clearer in SPLs than anywhere else in Software Science
• every time you build an SPL, you are postulating a theory or engineering proof of concept

of how customized software construction can be automated in a domain
• incremental step from there to understand the basics of compositional programming
• incremental step to understand verification in compositional programming

Seville-50

Expert
Engineering

Mathematical
Theory

ReallY
Useful

Grand Challenges in
Software Science

There may be science in designing
1-of-a-kind Systems ... but

• How many times in last 30 years have you heard that the real gold is in the domain itself?
• SPL Modularity is fundamentally different than Object-Oriented modularity – Features

• SPL galaxy centers on building families of products incrementally one feature at a time
• uninteresting to SPLs if only one product is built this way
• small sub-universe is interesting to a vast majority of people in SE & CS, though

Seville-51

Not taking enough
advantage of this

𝐹𝐹1

𝑂𝑂 𝑛𝑛

Pragmatics

• Of incremental development, building a program one feature
increment of functionality at a time

• Each feature is at most 𝑂𝑂 𝑛𝑛2 complexity

Seville-52

𝐹𝐹2

𝑂𝑂(𝑛𝑛1+𝜖𝜖)

𝐹𝐹𝑝𝑝

𝑂𝑂(𝑛𝑛1+𝜖𝜖)

cost of incrementally
building a program is
additive 𝑂𝑂(𝑝𝑝 ⋅ 𝑛𝑛1+𝜖𝜖)

𝑂𝑂(𝑛𝑛2)𝑂𝑂(𝑛𝑛1+𝜖𝜖)

more likely 𝑶𝑶(𝒏𝒏𝟏𝟏+𝝐𝝐)

• Of incremental development, building a program one feature
increment of functionality at a time

• Each feature is at most 𝑂𝑂 𝑛𝑛2 complexity more likely 𝑶𝑶(𝒏𝒏𝟏𝟏+𝝐𝝐)

𝐹𝐹1

𝑂𝑂 𝑛𝑛

Pragmatics

Seville-53

𝐹𝐹2

𝑂𝑂(𝑛𝑛1+𝜖𝜖)

𝐹𝐹𝑝𝑝

𝑂𝑂(𝑛𝑛1+𝜖𝜖)𝑂𝑂(𝑛𝑛2)𝑂𝑂(𝑛𝑛1+𝜖𝜖)

𝐹𝐹1 ⋅ 𝐹𝐹2 ⋅ … ⋅ 𝐹𝐹𝑝𝑝

𝑂𝑂(𝑛𝑛𝑝𝑝⋅ 1+𝜖𝜖)

cost of building
a monolithic program is

multiplicative 𝑂𝑂(𝑛𝑛𝑝𝑝⋅(1+𝜖𝜖))

cost of incrementally
building a program is
additive 𝑂𝑂(𝑝𝑝 ⋅ 𝑛𝑛1+𝜖𝜖)

Have you noticed...

• The complexity of software is growing at an ever-increasing rate?
• low exponential in 2009 FSWC_final_report – most complex systems tend to fail

Seville-54

Have you observed...

• The complexity of software is growing at an ever-increasing rate?
• low exponential in 2009 FSWC_final_report – most complex systems tend to fail

Seville-55

Look
familiar ?

Phenomenon has a name ...

• Of incremental development, building a program one feature
increment of functionality at a time

• Each feature is at most 𝑂𝑂 𝑛𝑛2 complexity more likely 𝑶𝑶(𝒏𝒏𝟏𝟏+𝝐𝝐)

𝐹𝐹1

 𝑂𝑂 𝑛𝑛

Pragmatics

Seville-51

𝐹𝐹2

𝑂𝑂(𝑛𝑛1+𝜖𝜖)

𝐹𝐹𝑝𝑝

𝑂𝑂(𝑛𝑛1+𝜖𝜖)𝑂𝑂(𝑛𝑛2)𝑂𝑂(𝑛𝑛1+𝜖𝜖)

𝐹𝐹1 ⋅ 𝐹𝐹2 ⋅ … ⋅ 𝐹𝐹𝑝𝑝

𝑂𝑂(𝑛𝑛𝑝𝑝⋅ 1+𝜖𝜖)

cost of building
a monolithic program is

multiplicative𝑂𝑂(𝑛𝑛𝑝𝑝⋅(1+𝜖𝜖))

cost of incrementally
building a program is
additive𝑂𝑂(𝑝𝑝 ⋅ 𝑛𝑛1+𝜖𝜖)

Seville-56

Featuritis

Featuritis

Seville-57

we should be THE experts on how
to deal with Featuritis !!

software is awful because programmers
Can’t understand codebase whose

complexity is beyond their comprehension

-- a corollary to limited Field of vision

SPLs can make a fundamental
contribution to Software Science

• Why?
• more advanced modularization
• better control of program complexity
• promote an important and practical form of compositional programming
• lay groundwork for verification in compositional programming

Seville-58

but will researchers
in SPLs ?

Where are things Going ?

• We know how to build SPLs (mostly) – and we know how to build products automatically –
and we know the benefits of SPLs now.

• How do we restructure legacy applications (with tool support) into SPLs?
• automate knowledge of program experts
• how do we encode expert knowledge for machine application?

• How do we address autonomic systems – systems that know how to repair themselves?
• must have some build-in notion of ‘feature model’ in these systems
• how to encode knowledge of how to optimize/reconfigure a system automatically?

Seville-59

What we are manually doing
now in SPLs will be (semi) automated

Seville-60

Concluding
remarks

Concluding Remarks

• I’ve sketched several futures of SPLs & SPLC that I think is possible

• I’ve made recommendations for the community to
• reach out and get the best students/engineers that we can
• remain practical and better appreciate role of theory
• give our community a name for being visionary

• Because if we don’t, we are in trouble...

Seville-61

our work is cut out for us
but it will be fun !

Concluding Remarks

• We’ve gone through a hyper-inflationary period of growth in Software Science
• universe is now gargantuan in size and we can’t see all of it or even a small part of

• Software Science is now more like traditional, mature science
• now exhibits all the problems of a mature science

• There are things that SPL researchers can clearly do to improve the lot of many

Seville-62

hope next generation can
meet this challenge

Thank SPLC
Steering committee!

Seville-63

For the 1st

SPLC Test of
Time Award!

	Don Batory�Department of Computer Science�University of Texas at Austin
	Thank SPLC �Steering committee!
	 The Paper
	The Paper Showed
	The Paper continued
	The Paper continued
	The Paper continued
	The Paper continued
	The Paper continued
	Personal Perspective
	salute to contemporaries
	My work Influenced By...
	what kind of grammar ?
	Significant follow-on work
	Significant follow-on work
	Slide Number 16
	Have you observed...
	Have you observed...
	Consequences of the Big Bang of �software Science
	Now past Hyper-Inflation
	In the Beginning 40s-50s
	Laws of this artificial Universe
	Implications
	In the 60s-70s
	1980s-2000s
	Today
	Consequences
	Consequences
	Dijkstra Observation
	Slide Number 30
	#1 Improve Refereeing in general�not specific to SPLC
	#2 Writing Papers
	Visionaries of the past
	Knuth’s work is another way of Saying
	Personal Story #1
	Personal Story #1
	Personal Story #2
	Personal Story #2
	Prediction
	More background�to address ...��#1 Why is software seem to be�getting worse ?��#3 Where might SPL research�be in 20 years ?
	What does The Night Sky of�Software Science look like ?
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Practical Value of a good Theory or �a tool based on a good theory or experiments that lead to good theories
	Practical Value of a Theory or �a tool based on a good theory or experiments that lead to good theories
	#1 Why is software seem to be�getting worse ?��#3 Where might SPL research�be in 20 years ?
	Slide Number 49
	Distilling instances to a theory
	There may be science in designing�1-of-a-kind Systems ... but
	Pragmatics
	Pragmatics
	Have you noticed...
	Have you observed...
	Featuritis
	Featuritis
	SPLs can make a fundamental contribution to Software Science
	Where are things Going ?
	Slide Number 60
	Concluding Remarks
	Concluding Remarks
	Thank SPLC �Steering committee!

