
Should Future Variability Modeling Languages Express
Constraints in OCL?

Don Batory
University of Texas at Austin

batory@cs.utexas.edu

ABSTRACT
Since the mid-2000s, Propositional Logic (PL) has been the de facto
language to express constraints in Feature Models (FMs) of Software
Product Line (SPLs). PL was adequate because product configura-
tions were formed by binary decisions including or not including
features in a product. Inspired by both prior research and practical
systems (eg., SPLs that use KConfig), future FMs must go beyond
PL and admit numerical (and maybe even text) variables and their
constraints.

The Object Constraint Language (OCL) is a general-purpose
declarative constraint language forModel Driven Engineering (MDE),
which admits virtually any kind of variable and constraint in meta-
models. We should expect future FMs to be examples of MDEmeta-
models. This raises a basic question: ShouldOCL be used to express
constraints of future variability modeling language(s)?

In this talk, I outline the pros and cons for doing so.

ACM Reference Format:
Don Batory. 2019. Should Future Variability Modeling Languages Express
Constraints in OCL?. In 23rd International Systems and Software Product
Line Conference - Volume B (SPLC ’19), September 9–13, 2019, Paris, France.
ACM, New York, NY, USA, 1 page. https://doi.org/10.1145/3307630.3342406

1 INTRODUCTION
I am no fan of theObject Constraint Language (OCL) and never have
been. I find it inelegant and bloated. Using Eclipse OCL years ago,
I recall different OCL implementations did not agree on syntax and
covered theOCL standard (at that time) with varying fidelity. (Note:
The current 2.0 standard is a behemoth 262 page document [5]!) I
tried to teach OCL to my undergrads, and that was an unpleasant
experience for both me and my students. OCL and related tools
were simply too complicated. As mentioned in [1], Eclipse tools:

(1) Were unappealing—they were difficult to use even for simple
applications.

(2) Fostered a medieval mentality in students to use incantations
to solve problems. Point here, click that, something happens.
From a student’s perspective, this is gibberish. Although I
could tell themwhat was happening, this mode of interaction
left a vacuum where a deep understanding should reside.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6668-7/19/09. . . $15.00
https://doi.org/10.1145/3307630.3342406

(3) Have a steep entry cost to use, teach, and learn – too high
for my comfort (and I suspect my student’s as well).

I’m not alone with these opinions [2].
From a distance, I have also watched various attempts to gen-

eralize Feature Models (FMs) to address next generation Software
Product Line (SPL) concerns – such as admitting replicated fea-
tures, features with attributes, numerical features, and expressing
constraints. I recoiled at the complexity of these attempts, and the
use of OCL as the language to express constraints.

I do not profess to know what future SPL Variability Modeling
Languages will be and how constraints in such languages will be
expressed. But I do believe the answer will be guided by:

• Simplicity! PL was chosen for classical FM constraints
because it was a simple mathematical standard. I’m not sure
there is a formal grammar (language) to which all classical
FM tools agree, but it is hard to screw-up writing PL con-
straints. Next-generation FM constraints should be equally
straightforward to write.

• Don’t Invent, Reuse! Do we really need a new constraint
language for future FMs? Clearly we need more than PL.
But are we good enough as language engineers to create a
new constraint language without making a complete mess of
it? Shouldn’t we reuse existing languages or sub-languages
of existing languages? Our expertise is in SPLs, not in lan-
guage engineering. If you want an example of (IMO) a failed
custom constraint language, it is OCL. Re-read the 2nd sen-
tence of this Introduction.

• Circularity Avoidance! Generalizing beyond hierarchi-
cal relationships of classical FMs, we’re not far away from
UML class diagrams [4] andModel Driven Engineeringmeta-
models [3] – which are class diagrams + constraints. And
constraints for class diagrams beg the use of OCL.

In this talk, I offer and demonstrate a way out of this circular
conundrum. My solution does not eliminate all problems, but it
does diminish key problems about OCL standards, OCL tooling,
reducing the need for yet-another-language, minimizing long-term
tool maintenance, and keeping constraint languages both familiar
and simple to SPL programmers, practitioners, and researchers.
Acknowledgments.Batory is supported by NSF grant CCF1212683.
REFERENCES
[1] D. Batory and M. Azanza. Teaching model-driven engineering from a relational

database perspective. Softw. Syst. Model., May 2017.
[2] J. Cabot and M. Gogolla. Object constraint language: A definitive guide. https:

//www.slideshare.net/jcabot/ocl-tutorial.
[3] K. Czarnecki, Chang Hwan, P. Kim, and K. T. Kalleberg. Feature models are views

on ontologies. In SPLC, 2006.
[4] M. Fowler and K. Scott. UML Distilled: Applying the Standard Object Modeling

Language. Addison-Wesley Longman Ltd., 1997.
[5] About the object constraint language specification version 2.4. https://www.omg.

org/spec/OCL/About-OCL/, 2019.

1

https://doi.org/10.1145/3307630.3342406
https://doi.org/10.1145/3307630.3342406
https://www.slideshare.net/jcabot/ocl-tutorial
https://www.slideshare.net/jcabot/ocl-tutorial
https://www.omg.org/spec/OCL/About-OCL/
https://www.omg.org/spec/OCL/About-OCL/

	Abstract
	1 Introduction
	References

