
a roadmap to revolutionize
spl technology by 2025

don batory
department of computer science

university of texas at austin
May19-Dagstuhl-1

in 2007
• I began studying the relationship of VCS and SPLs
• Lots of possibilities: propagating changes from one clone-and-own to another

• My 1st thought was to make a VCS as the engine to produce products of an SPL
• a VCS has the entire SPL codebase to build a product, why not?

Interesting variation on DOP
• is clone-and-own a good idea??

need could be reduced by a variability-aware VCS

May19-Dagstuhl-2

back then as now…
• I was coding a lot to build an MDE tool suite in Java

• a large part of my task was constantly refactoring my codebase
• recalled desperately wanting to refactor AHEAD and other SPLs

log ago, and knew an entirely new generation of SPL tools –
(not based on preprocessors) was needed

• That’s when it dawned on me that future SPL technologies required
a pair of fundamental advances. Namely, integration with:

May19-Dagstuhl-3

why??
• Need I remind you of the today’s state of SPL tools

• preprocessor based – last century technology
• you can’t refactor without type information
• industrial SPL technology is about 10-15 years behind Research

• This is why SPLs are not “standard” (SPLs are still an oddity)
• using CPP and all of its bad practices
• little or no IDE support for SPLs
• no refactoring (except in last 4 years)
• with nothing-special VCSs

May19-Dagstuhl-4

lesson #1:

Danny Dig’s PhD Thesis, Nov 2007

Batory keynote at ETAPS April 2007

May19-Dagstuhl-5

refactorings are not edits!

http://dig.cs.illinois.edu/papers/Thesis.pdf
http://www.cs.utexas.edu/ftp/predator/ETAPSCC07.pdf

refactorings are a problem for vcs
• Check out a module from a project and refactor

class A {
int X;

}

Blass B {
A a = …

a.X =
}

class X {
A a = …

a.X =
}

class A {
int X;

}

class B {
A a = …

a.X =
}

rename
X→Y

class A {
int Y;

}

class B {
A a = …

a.Y =
}

class C {
A a = …

a.X;
}

May19-Dagstuhl-6

class A
{

int X;
}

class B {
A a =
a.X =

}

a partial solution
• Check-out the entire repository, refactor, and check-in. That works…
• But really it doesn’t!

rename
X→Y

class A
{

int Y;
}

class B {
A a =
a.Y =

}

class X {
A a = …
a.X;

}

class C {
A a = …
a.X;

}

class A
{

int X;
}

class B {
A a =
a.X =

}

May19-Dagstuhl-7

danny dig’s 2007 solution
• Make VCS refactoring aware!

• I found a way to explain one of his results using a preliminary
version of a feature-algebra

• Danny liked my explanation and used it in his thesis

• See Dig Thesis (2 chapters) or my ETAPS 2007 keynote

May19-Dagstuhl-8

http://dig.cs.illinois.edu/papers/Thesis.pdf
http://www.cs.utexas.edu/ftp/predator/ETAPSCC07.pdf

lesson #2:

Kim, Batory, Dig SPLC 2017

May19-Dagstuhl-9

refactorings are not edits!

http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf

refactorings are a problem for spls
• Build a product of a SPL, refactor it, and back-propagate edits

class A {
int X;

}

Blass B {
A a = …

a.X =
}

class X {
A a = …

a.X =
}

class A {
int X;

}

class B {
A a = …

a.X =
}

rename
X→Y

class A {
int Y;

}

class B {
A a = …

a.Y =
}

class C {
A a = …

a.X;
}

May19-Dagstuhl-10

my 2017 solution
• Make SPL tools refactoring aware!

X15 paper SPLC 2017

• An spl product is a view of a 150% SPL codebase
• Code folding hides irrelevant parts of an SPL codebase
• User can edit SPL program (view) and refactor

• behind curtains, refactoring is applied to entire code base
• code folding makes it look as if only the SPL program was refactored

• Correctness: verified by feature algebras extended with distributivity
axiom about refactorings

May19-Dagstuhl-11

Postdates
Apel’s Morpheus 2015

http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf
https://www.researchgate.net/publication/308834361_Morpheus_Variability-Aware_Refactoring_in_the_Wild

x15… briefly…
• Does not repeat the mistakes of last century – using CPP to encode variability

• Reinterpret Java annotations

configuration file as a
Custom Java annotation

annotate classes, fields, methods

May19-Dagstuhl-12

significant benefit
• State of art: build a variability-aware compiler

• host language’s grammar (Java) and integrate CPP constructs
• build compiler, type checker, etc.

• X15 use Plain Old Java compiler

Feature
Annotated

Java Program

Standard
Java

Compiler
Front-end

Java
AST

has parsed feature
configuration file +
all java annotations

Walk AST
extract
config,

projection

SPL
program

May19-Dagstuhl-13X15

Standard
Java

Compiler

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.4186&rep=rep1&type=pdf

key: x15 does not back-propagate edits!
• Treating refactorings as edits yields the problems of the previous slides

refactorings are a problem for spls
• Check out a program from a SPL and refactor

10

class A {
int X;

}

Blass B {
A a = …

a.X =
}

class X {
A a = …

a.X =
}

class A {
int X;

}

class B {
A a = …

a.X =
}

rename
X→Y

class A {
int Y;

}

class B {
A a = …

a.Y =
}

class C {
A a = …

a.X;
}

May19-Dagstuhl-14

refactorings are a problem for spls

Check out a program from a SPL and refactor

10

class A {

 int X;

}

Blass B {

 A a = …

 a.X =
}

class X {

 A a = …

 a.X =
}

spl code

base

class A {

 int X;

}

class B {

 A a = …

 a.X =
}

rename
XY

class A {

 int Y;

}

class B {

 A a = …

 a.Y =
}

class C {

 A a = …

 a.X;

}

consistency of spl

codebase is broken

not all references
to X were renamed

image1.png

image2.png

random thoughts
• Why not extend Eclipse refactoring engine (ERE)?

• ERE is broken beyond repair (ICSE 2016)
• Roach infested
• Slow – 300 refactorings took 5 minutes to execute
• X15 – 4 seconds for 300 refactorings (10x-100x faster)

• May you have better luck
with version control systems

May19-Dagstuhl-15

foundational concepts
for this integration

May19-Dagstuhl-16

to explain
Dig’s results

and show
the theory
underlying

VCS and SPLs
and refactoring

basic category theory

• Raise your hand if you know basic CT!

• Raise your hand if you want to know a little CT?

May19-Dagstuhl-17

This way to hopeless

This way to hope!

basic category theory
• “completing a commuting diagram”

May19-Dagstuhl-18

f’

g

f

g’

f•g = g’•f’ f’

g

g’

f•g = g’•f’ f

foundational concepts

May19-Dagstuhl-19

f’

g

f

g’

f•g = g’•f’ f

g

g’

f•g = g’•f’ f’

• Elementary category theory unifies
VCS, refactorings, and SPLs

• Why? All are functional paradigms

• “completing a commuting diagram”

foundational concepts
• Fundamental law in feature algebras

on features and feature interactions

May19-Dagstuhl-20

f

g

g

f•g = g•f f

g

interaction
or

resolution
or

mediator

f

g

g’

f•g = g’•f’ f’

• “completing a commuting diagram”

g‘

f’f’

foundational concepts: vcs merging edits

May19-Dagstuhl-23

P

P’
Line 1
Line 2
Line 3

P”
Line 1
Line 2
Line 3

Δ1 Δ3
Line 1
Line 2
Line 3

Δ
2

Δ
3

Line 1
Line 2
Line 3

Line 1
Line 2
Line 3

P’”

Line 1
Line 2
Line 3

Line 1
Line 2
>>>>
Line 3
<<<<
Line 3
>>>>

e1’

dig’s approach to a refactoring-aware vcs

May19-Dagstuhl-24

e1 e2 r3

e

rr’

e’

change order of edits
and refactorings without

altering semantics!
r•e = e’•r’

e2’r3’r3”

r2’

e2

dig’s approach to a refactoring-aware vcs

May19-Dagstuhl-25

e1 r3

ε2

ε1

r2ε1’

r3” e1‘ e2‘

r2’

ε1’

r3” e1‘ e2‘

dig’s approach to a refactoring-aware vcs

May19-Dagstuhl-26

ε2

to my knowledge
Danny never finished
this part of his work
more of a conjecture

standard
VCS

pushout
refactoring-aware VCS

recap… so what?

May19-Dagstuhl-27

it has been abundantly clear to me
since the beginning of this century

• Today’s IDE support for SPLs is pfft…

• Imagine that we created a 21st century programming environment (IDE)
• true refactoring support for product lines and their programs
• true refactoring support for version control

• Building product-lines would be standard
• one-of-a-kind designs would be the oddity
• teaching SPLs would be standard fare

in undergraduate curriculums
• variability would not be an afterthought to SE

May19-Dagstuhl-28

a history and future of spl technologies
last slide

May19-Dagstuhl-29
IDEs

+refactoring

+version control

Variability is
A fundamental

part of software
engineering and
software design

This Dagstuhl

Dig’s thesis ‘07

Morpheus ICSE’15

X15 SPLC’17

http://dig.cs.illinois.edu/papers/Thesis.pdf
https://www.researchgate.net/publication/308834361_Morpheus_Variability-Aware_Refactoring_in_the_Wild
http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf

a history and future of spl technologies
last slide

May19-Dagstuhl-30
P

+refactoring

+version control

Variability is
fundamental

part of software
engineering and
software design

This Dagstuhl

Dig’s thesis ‘07

Morpheus ICSE’15

X15 SPLC’17

http://dig.cs.illinois.edu/papers/Thesis.pdf
https://www.researchgate.net/publication/308834361_Morpheus_Variability-Aware_Refactoring_in_the_Wild
http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf

	a roadmap to revolutionize �spl technology by 2025
	in 2007
	back then as now…
	why??
	lesson #1:
	refactorings are a problem for vcs
	a partial solution
	danny dig’s 2007 solution
	lesson #2:
	refactorings are a problem for spls
	my 2017 solution
	x15… briefly…
	significant benefit
	key: x15 does not back-propagate edits!
	random thoughts
	foundational concepts�for this integration
	basic category theory
	basic category theory
	foundational concepts
	foundational concepts
	foundational concepts: vcs merging edits
	dig’s approach to a refactoring-aware vcs
	dig’s approach to a refactoring-aware vcs
	dig’s approach to a refactoring-aware vcs
	recap… so what?
	it has been abundantly clear to me �since the beginning of this century
	a history and future of spl technologies�last slide
	a history and future of spl technologies�last slide

