The Future

NEXT EXIT N

a 'coadm.a,o to zevolutionize

Apl tec/molog# 6# 2025

don batory
department of computer science
university of texas at austin

May19-Dagstuhl-1

in 2007

« I began studying the relationship of VCS and SPLs
« Lots of possibilities: propagating changes from one clone-and-own to another

* My 15" thought was to make a VCS as the engine to produce products of an SPL

« a VCS has the entire SPL codebase to build a product, why not?
Interesting variation on DOP

* is clone-and-own a good idea??
need could be reduced by a variability-aware VCS

interesting research prospects

back then as now...

« I was coding a lot to build an MDE tool suite in Java
* a large part of my task was constantly refactoring my codebase

* recalled desperately wanting to refactor AHEAD and other SPLs
log ago, and knew an entirely new generation of SPL tools -
(not based on preprocessors) was needed

« That's when it dawned on me that future SPL technologies required
a pair of fundamental advances. Namely, integration with:

ﬁ
version oy

refactorings
control f g

May19-Dagstuhl-3

W/l# 29

« Need I remind you of the today's state of SPL tools
* preprocessor based - last century technology
* you can't refactor without type information >R TR
* industrial SPL technology is about 10-15 years behind Research

« This is why SPLs are not "standard” (SPLs are still an oddity)

* using CPP and all of its bad practices This is the same
* little or no IDE support for SPLs environment I used
* no refactoring (except in last 4 years) in 1987 t+o build
» with nothing-special VCSs Genesis - maybe

1st* academic SPL

May19-Dagstuhl-4

lesson #1: 'cefacto'cingb aze not edits!

Danny Dig's PhD Thesis, Nov 2007

Batory keynote at ETAPS April 2007

May19-Dagstuhl-5

http://dig.cs.illinois.edu/papers/Thesis.pdf
http://www.cs.utexas.edu/ftp/predator/ETAPSCC07.pdf

'cefacto'cingb aze a ,o'coblem fo’c ves

« Check out a module from a project and refactor

consistency of
rename repository is broken
X-Y not all references
fo X were renamed
é\Koc\ © 00
f
(@

May19-Dagstuhl-6

a pa'ctial solution

* Check-out the entire repository, refactor, and check-in. That works...
« But readlly it doesn't!

class A class B {

rename E g _

class A class B {
@@ { Aa-=

o3& . _
O int X: a.X =
& } }

class C{ class X {
Aa-.. Aa-...

c{an.n.# dig 3 2007 solution

Make VCS refactoring aware!

I found a way to explain one of his results using a preliminary
version of a feature-algebra

Danny liked my explanation and used it in his thesis

See Dig Thesis (2 chapters) or my ETAPS 2007 keynote

May19-Dagstuhl-8

http://dig.cs.illinois.edu/papers/Thesis.pdf
http://www.cs.utexas.edu/ftp/predator/ETAPSCC07.pdf

lesson #2: 'cefacto'cingb aze not edits!

Kim, Batory, Dig SPLC 2017

May19-Dagstuhl-9

http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf

'cefacto'cingb are a /o'coblem. fo’c Aplb

 Build a product of a SPL, refactor it, and back-propagate edits

consistency of spl
rename codebase is broken
X-Y not all references
fo X were renamed

° \@

&R .009

May19-Dagstuhl-10

my 2077 solution Postdates

Apel's Morpheus 2015

Make SPL tools refactoring aware!

X15 paper SPLC 2017

An spl product is a view of a 150% SPL codebase
Code folding hides irrelevant parts of an SPL codebase
User can edit SPL program (view) and refactor

* behind curtains, refactoring is applied to entire code base

» code folding makes it look as if only the SPL program was refactored

Correctness: verified by feature algebras extended with distributivity
axiom about refactorings

May19-Dagstuhl-11

http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf
https://www.researchgate.net/publication/308834361_Morpheus_Variability-Aware_Refactoring_in_the_Wild

x18... 6'u’efl#...

* Does not repeat the mistakes of last century - using CPP to encode variability

» Reinterpret Java annotations

annotate classes, fields, methods

@interface Feature {

boolean value();
}

static final boolean X = true;
static final boolean Y = false;
static final boolean Z = false;

interface Graphics {}

@Feature(X)

class Square implements Graphics {}

configuration file as a
Custom Java annotation

@Feature (X)
int i, j;

for the given
configuration

May19-Dagstuhl-12

A{gnificant 6en.ef£t

« State of art: build a variability-aware compiler
* host language's grammar (Java) and integrate CPP constructs

e build compiler‘ , Type checker ,etc. Variability-Aware Parsing in the Presence of
Lexical Macros and Conditional Compilation
. . Christian Kis Paolo G. Gi Till Rendel Th Be
« X15 use Plain Old Java compiler P Sobastan Erdweg Kiaus Ostermann ot o o
Philipps University Marburg, Germany Germany

Feature
Annotated SPL ooe
Java Program Java program
AST

has parsed feature
configuration file +

X 1 5 all java annotations May19-Dagstuhl-13

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.232.4186&rep=rep1&type=pdf

refactorings are a problem for spls

Check out a program from a SPL and refactor

10

class A {

 int X;

}

Blass B {

 A a = …

 a.X =
}

class X {

 A a = …

 a.X =
}

spl code

base

class A {

 int X;

}

class B {

 A a = …

 a.X =
}

rename
XY

class A {

 int Y;

}

class B {

 A a = …

 a.Y =
}

class C {

 A a = …

 a.X;

}

consistency of spl

codebase is broken

not all references
to X were renamed

image1.png

rename
X-Y

image2.png

zandom t/toag/ttb

« Why not extend Eclipse refactoring engine (ERE)?
 ERE is broken beyond repair (ICSE 2016)
 Roach infested
« Slow - 300 refactorings took 5 minutes to execute
» X15 - 4 seconds for 300 refactorings (10x-100x faster)

* May you have better luck
with version control systems

X U fx)
/ | \
1

7 > Y

|
|
l |
| | |
foa{zdation.le concepts
fo# this initeg’catia)lrz
|
l 5

1

v

LOFRX) - FU) - F(f(X)

D '17/ \
FIX A

to explain
Dig's results
and show
the theory
underlying
VCS and SPLs
and refactoring

May19-Dagstuhl-16

basric categoty t/zeo'c#

""
! ‘.
e

u“ “A“E GHGSENIII - .
i £
~F
F
oy
e
-
- r
—

e
2 i ’
i
B
3 -l
3
-.-'
.-il-" -.
‘---u.l-.' r
L - -
" iy PR
o ANLE L
a
- =
_
-
1
-

to hopeless

N ©

) hopel ©

May19-Dagstuhl-17

Rais¢

Raisd

basic categoty t/zeo'c#

g

* Unifies VCS, refactorings, and SPLs
« Why? All are functional paradigms
» CTis theory of functions

f f-g = 9'-f'

é g

y
N
P

:’

commuting diagram

« "completing a commuting diagram”

frg =g-f

9'

"

E@Qﬂ@ %@@cﬁb/\/\ayw-bagsfuhl—w

foundation.al concepts

g

 Unifies VCS, refactorings, and SPLs
« Why? All are functional paradigms
« CTis theory of functions

¢

f-g =g-f

9'

P

commuting diagram

« “completing a commuting diagram”

frg =g-f

gl

®

E@Mg h@@cﬁb/\/\ayl9-bagsfuhl—l9

foandation.al concepts

« “completing a commuting diagram” * Fundamental law in feature algebras
on features and feature interactions

® J o 9
interaction
f'g - r'eso(::’rion
f . - U f
f 9 9 f - mec?i;’ror'
‘ g

pushout feature product. . -

foandation.al concepts: ves merging edits

Line 1
Line 2

>>>>

Line 3

<<L<L<

Line 3

>>>>

Line 1
_ine 2
_ine 3

standard version control ideas

A2

A3 * Pll

_ine 1
_ine 2

_ine 3

Line 1
Line 2
ine 3

_ine 1
_ine 2
ine 3

May19-Dagstuhl-23

dig L) a,op'coac/z fo a tefacto’cing—awa'ce ves

® o o \&

change order of edits
and refactorings without r
altering semantics!

dig L) a,op'coac/z fo a tefacto’cing—awa’ce ves

dig L) a,op'coac/z fo a 'cefactoting-awa'ce ves

¢ r3" el i el

re' '
<

¢
el

® standard

VCS

e pushout

to my knowledge
Danny never finished
this part of his work
more of a conjecture

o=

refactoring-aware VCS

May19-Dagstuhl-26

zecap... 50 what?

it has been abandan.t{# cleax to me

since the begin.n.in.g of this centuty

« Today's IDE support for SPLs is pfft..

» Imagine that we created a 215" century programming environment (IDE)
* true refactoring support for product lines and their programs
* true refactoring support for version control

* Building product-lines would be standard
* one-of-a-kind designs would be the oddity

* teaching SPLs would be standard fare
in undergraduate curriculums

« variability would not be an afterthought to SE

May19-Dagstuhl-28

a /ziAto'cg and futwce of Apl tec/mologieb

last slide
Variability is
Morpheus ICSE'15 A fundamental
, part of software
X15 SPLC17 engineering and
. software design
+refactoring T —————— "

Dig's thesis '07

e e e This Dagstuhl

[/7
1 /7

IDEs i
+version control May19-Dagstuhl-29

http://dig.cs.illinois.edu/papers/Thesis.pdf
https://www.researchgate.net/publication/308834361_Morpheus_Variability-Aware_Refactoring_in_the_Wild
http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf

a /ziAtot# and futhe of A,ol tec/znologieb

last slide

Variability is
Jamental
; f software

agstuhl

+version control

May19-Dagstuhl-30

http://dig.cs.illinois.edu/papers/Thesis.pdf
https://www.researchgate.net/publication/308834361_Morpheus_Variability-Aware_Refactoring_in_the_Wild
http://www.cs.utexas.edu/ftp/predator/17SPLC.pdf

	a roadmap to revolutionize �spl technology by 2025
	in 2007
	back then as now…
	why??
	lesson #1:
	refactorings are a problem for vcs
	a partial solution
	danny dig’s 2007 solution
	lesson #2:
	refactorings are a problem for spls
	my 2017 solution
	x15… briefly…
	significant benefit
	key: x15 does not back-propagate edits!
	random thoughts
	foundational concepts�for this integration
	basic category theory
	basic category theory
	foundational concepts
	foundational concepts
	foundational concepts: vcs merging edits
	dig’s approach to a refactoring-aware vcs
	dig’s approach to a refactoring-aware vcs
	dig’s approach to a refactoring-aware vcs
	recap… so what?
	it has been abundantly clear to me �since the beginning of this century
	a history and future of spl technologies�last slide
	a history and future of spl technologies�last slide

