t-wise Coverage by Uniform Sampling

Jeho Oh
jeho@cs.utexas.edu
University of Texas at Austin
Austin, Texas, USA

Paul Gazzillo
paul.gazzillo@ucf.edu
University of Central Florida
Orlando, Florida, USA

Don Batory
batory@cs.utexas.edu
University of Texas at Austin
Austin, Texas, USA

ABSTRACT

Efficiently testing large configuration spaces of Software Product Lines (SPLs) needs a sampling algorithm that is both scalable and provides good t-wise coverage. The 2019 SPLC Sampling Challenge provides large real-world feature models and asks for a t-wise sampling algorithm that can work for those models.

We evaluated t-wise coverage by uniform sampling (US) the configurations of one of the provided feature models. US means that every (legal) configuration is equally likely to be selected. US yields statistically representative samples of a configuration space and can be used as a baseline to compare other sampling algorithms.

We used existing algorithm called Smarch to uniformly sample SPL configurations. While uniform sampling alone was not enough to produce 100% 1-wise and 2-wise coverage, we used standard probabilistic analysis to explain our experimental results and to conjecture how uniform sampling may enhance the scalability of existing t-wise sampling algorithms.

KEYWORDS

software product lines, t-wise coverage, uniform sampling.

ACM Reference Format:

1 INTRODUCTION

Software Product Lines (SPLs) are highly configurable. Building blocks of SPL products are features that are increments of product functionality. Each product of an SPL is defined by a unique set of features called a configuration. A feature model declares each feature and constraints among features, so that a user can identify legal configurations with desired feature combinations [4]. As the number of features increase, the size of the configuration space, which is the set of all possible configurations, grows exponentially.

A large configuration space could have over a trillion (>10^{12}) configurations and is a challenge for testing, as testing every configuration is infeasible. Instead, prior work produced a small set of configurations to test selected features and their interactions. The aim is to get a 'high' t-wise coverage, ideally meaning 100% of all combinations of t features are covered by at least one configuration of the set. Achieving 100% can be infeasible for large spaces.\footnote{Section 4 shows that uniform sampling alone will not provide 100% coverage unless the sample set is approximately the size of the configuration space.}

Common values for t include feature-wise (t=1), pair-wise (t=2), and three-wise coverage (t=3).

Different approaches start with a feature model and derive samples for t-wise coverage [1, 2, 6, 9, 10]. However, they do not scale well for many features and complex constraints, which limited their applicability to the real-world SPLs. Thus, the proposed Challenge [16] provides large real-world feature models and asks for a sampling algorithm that can generate configuration sets with good t-wise coverage for those models.

We explore t-wise coverage using uniform sampling (US) in this paper. US ensures that all configurations in a configuration space have equal probability of being selected, yielding a statistically representative sample of the space. US can be used as a baseline against which other sampling algorithms can compare as a benchmark [13].

Despite its utility, US for large SPLs was considered infeasible until recently [11, 13]. Prior work tried different methods to make sampling as random as possible, but none achieved US for large SPLs. We use a recently developed algorithm called Smarch [8], the first to perform US of configuration spaces of size 10^{245}. Smarch utilizes a #SAT solver, which counts the number of solutions to a propositional formula [15]. We believe we are the first to explore t-wise coverage of US with probabilistic analyses to explain its coverage results.

Our contributions to the 2019 SPLC Sampling Challenge are:

- Demonstration of t-wise coverage that can be achieved by US; and
- Probabilistic analysis of configuration spaces that predicts the t-wise coverage by US and that may be useful for developing a practical t-wise sampling algorithm.

2 SMARCH: A US ALGORITHM

Smarch [8] is a US algorithm for SPLs based on a #SAT solver. Let \(\phi \) be the propositional formula of a feature model [3]. A #SAT solver can count the number of configurations in \(\phi \)’s configuration space, namely \(\mid \phi \mid \). (Each solution to \(\phi \) is a configuration, and each configuration is a solution to \(\phi \)). A #SAT solver extends a satisfiability solver by associating the number of solutions with each truth assignment [5]. Smarch uses sharpSAT [15], a state-of-the-art #SAT solver.

Here is how Smarch achieves US: A uniform random number generator can select an integer \(r \) in the range \([1..\mid \phi \mid]\). Smarch creates a one-to-one mapping that converts \(r \) to an unique configuration, so that US of range \([1..\mid \phi \mid]\) leads to US of configurations.
Smarch recursively partitions ϕ by a fixed order of variables to create a one-to-one mapping. A variable $v \in \phi$ partitions ϕ into disjoint spaces $(\phi \wedge v)$ and $(\phi \wedge \neg v)$. #SAT can compute the number of solutions for each space, i.e., $|\phi \wedge v|$ and $|\phi \wedge \neg v|$ respectively.

Then, for a random number $r \in [1, |\phi|]$, if $r \leq |\phi \wedge v|$ the $(\phi \wedge v)$ space is selected for recursive partitioning, otherwise $(\phi \wedge \neg v)$ is selected and $|\phi \wedge \neg v|$ is subtracted from r to adjust the search in $(\phi \wedge \neg v)$. This process is repeated for the next variable in ϕ, until all variables are considered and a unique configuration has been determined.

Documenting scalability of Smarch and #SAT is beyond the scope of this paper – and is the subject of on-going work. Evidence in [8] reports Smarch is able to US configuration spaces of size $O(10^{248})$ whereas the nearest US competitor’s largest space is $O(10^{13})$.

3 EVALUATION

3.1 Experimental Set-Up

Among the feature models provided in the Challenge, we used ‘FinancialServices01’ version ‘2018-05-09’. This feature model was given in FeatureIDE format [14], so we used the functionality of FeatureIDE to generate its propositional formula as a dimacs file. This file has 771 variables and 7,241 clauses. The size of the configuration space was determined to be $9.7 \cdot 10^{14}$, computed in a mere 46 milliseconds by sharpSAT [15].

We evaluated t-wise coverage for $t=1$ and $t=2$ and did the following to find valid combinations:

1. We derived a list of feature selections. With 771 features, there are $771 \cdot 2 = 1,542$ possible selections since we consider both a feature and its negation;
2. We derived all possible 1-wise and 2-wise combinations from this list. 1-wise yields $\binom{1542}{1} = 1542$ combinations and 2-wise yields $\binom{1542}{2} = 1,188,111$; and
3. We filtered out invalid combinations using a SAT solver. If a combination is valid, the conjunction of the combination and the feature model should be satisfiable. For example, for a feature f, a 2-wise combination $(f, \neg f)$ is invalid as these selections conflict with each other.

For 1-wise, 1,518 valid combinations were found (some features were mandatory). For 2-wise, 914,537 valid combinations were found.

We used Smarch to produce a US set S_n of n configurations. We have no idea what fraction of the valid combinations (computed above) are covered by S_n. So we varied n to observe the results of increasing larger sets, using $n=\{5, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 1518\}$. Then, for each set S_n, we measured 2:

- **Time taken to sample n configurations**, measured by the Linux ‘time’ tool;
- **Time taken to sample a configuration**, measured for each sample by Smarch;
- **Maximum memory used during sampling**, measured by the Linux ‘/usr/bin/time ~v’ command; and
- **t-wise coverage for $t=1$ and $t=2$**, measured as the percentage of t-wise combinations covered in S_n.

We conducted our evaluation on an Intel i7-6700@3.4Ghz Ubuntu 16.04 machine with 16GB of RAM. All the code and data for the evaluation are available at: https://github.com/jeho-oh/Smarch_t_wise.

3.2 Experimental Results

Fig. 1a shows the total sampling time and Fig. 1b the time per sample. The X-axis is the number of samples (n) and the Y-axis is the time in seconds. We observed:

- Total sampling time increases linearly with n; and
- For all n, the average sampling time for a configuration was approximately 7 seconds, with standard deviation of 1 second. For all samples, the maximum sampling time was 10.1 seconds and the minimum was 3.5 seconds.
- The number of samples taken did not affect the time to sample a configuration.

![Figure 1: Sampling time.](image)

![Figure 2: Maximum memory usage.](image)

![Figure 3: t-wise coverage result.](image)

For t-wise coverage, Fig. 3 shows the t-wise coverage result, where the X-axis is the number of samples (n) and Y-axis is the percentage of the coverage. Plots with different color indicates the results for different t. We observed:

2The Challenge [16] explicitly requests sampling time and memory measurements.
• For all values of \(n\), coverage for \(t=1\) was higher than \(t=2\);
• For \(S_5\), more than half of the feature combinations were covered for \(t=1\) and over 35% for \(t=2\);
• For both \(t=1\) and \(t=2\), larger \(n\) yielded better coverage. With 1,518 samples, coverage for \(t=1\) was 61.7% and \(t=2\) was 47.6%;
• The difference in coverage between \(n=5\) and \(n=1,518\) was surprisingly small. For \(t=1\), the difference was 6.4%. For \(t=2\), the difference was 9.4%; and
• Although samples are expected to be statistically representative of the configuration space, their \(t\)-wise coverages seemed low. Both coverages improved imperceptibly for \(n\geq200\). Why this is so is explained in the next section.

![Figure 3: \(t\)-wise coverage.](image)

We conclude that although US is feasible with Smarch, US alone is not enough to produce a 100% \(t\)-wise coverage.

4 ANALYSIS

US allows us to apply standard statistical analysis to explain our experimental results [7].

Let \(c\) denote a valid \(t\)-wise combination for a given \(t\). Let \(\nu_c\) denote the fraction of all valid configurations that have \(c\) in the configuration space. Since every configuration has an equal probability of being selected by US, the probability that a sample will have \(c\) is \(\nu_c\).

\(\nu_c\) can vary widely for different \(c\) because constraints among features may make certain combinations less frequent than others. A mandatory feature has \(\nu_c=1\) because it appears in all configurations. A feature with no constraints has \(\nu_c=0.5\); it can be freely enabled and disabled, making it appear in half of the valid configurations.

\(\nu_c\) can be computed by a #SAT solver. Let \(\phi\) be the propositional formula of an SPL’s feature model. Let \(\phi_c\) be the propositional formula of the conjunction of \(c\)’s features. We can use a #SAT solver to compute \(\nu_c\) as:

\[
\nu_c = \frac{|\phi_c|}{|\phi|}
\]

(1)

The probability \(p(c, n)\) that at least one of \(n\) samples includes combination \(c\) is:

\[
p(c, n) = 1 - (1 - \nu_c)^n
\]

(2)

where the more samples taken, the higher the probability we encounter combination \(c\). The value of \(p(c, n)\) largely depends on how often this combination appears in the configuration space, i.e., \(\nu_c\).

In our experiments of the previous section, we discovered:

• 61.5% of all 1-wise combinations have a ratio \(\nu_c>0.9\). Even with the minimum number of samples we used in the evaluation (\(n=5\)), these combinations have more than 0.99 probability of being encountered in \(n=5\) samples; and
• 38.8% of the 1-wise combinations have a ratio of \(\nu_c<0.0001\). Even with the maximum number of samples we used in the evaluation (\(n=1815\)), they have less than 0.15 probability of being encountered in \(n=1815\) samples.

We can use \(p(c, n)\) to predict \(t\)-wise coverage. Let \(C_t\) denote the set of all valid \(t\)-wise combinations, where \(|C_t|\) is the number of combinations in \(C_t\). The estimated \(t\)-wise coverage \(E(C_t, n)\) for a given \(t\), \(n\) is:

\[
E(C_t, n) = \frac{1}{|C_t|} \sum_{c \in C_t} p(c, n) = \frac{1}{|C_t|} \sum_{c \in C_t} (1 - (1 - \nu_c)^n)
\]

(3)

Fig. 4 uses (blue) X markers to plot \(E(C_1, n)\) and (brown) X markers for \(E(C_2, n)\) with our experimental results (• for \(t=1\) and • for \(t=2\)) overlaid. Eqn. (3) accurately predicts the results of our experiments and also explains why the coverage of \(t=1\) is higher than that for \(t=2\): there are many 2-way feature combinations \((c_{ij})\) that are much less likely than any 1-way combination \((c_k)\), meaning \(\nu_{c_k} \gg \nu_{c_{ij}}\).

![Figure 4: \(t\)-wise coverage estimation.](image)

It is interesting to explore the relationship between coverage and larger sample set sizes which are infeasible to explore experimentally. Fig. 5 shows the estimated \(t\)-wise coverage for \(n\) up to \(10^{14}\), which is approximately 10% of the configuration space (i.e., \(9.7 \times 10^{14}\)). We observed:

• With \(10^{14}\) samples, more than 99.99% of 1-wise and 2-wise combinations are expected to be covered. Of course, this is almost enumeration; and
• Many combinations will be covered with a small number of samples, over 30% of 2-way combinations are not likely to be covered even with \(10^7\) samples(!).
We could accurately predict these results because Smarch can uniform sample from a configuration space and standard probabilistic analyses rely on US [7].

Our analysis suggests possible enhancements to existing t-wise approaches. Once v_c values are known, we can determine which combinations can be covered by a small number of USs. Then, for combinations that are unlikely to be found by US, we may either: 1) constrict the configuration space with constraints to (re-cursively) sample configuration sub-space of interest [12] or 2) use existing approaches that do not rely on US. As sampling with many features limits the scalability of existing approaches, US may improve sampling scalability by reducing the features to consider. An equally important issue is to define a reasonable t-wise coverage (percentage) for large configuration spaces (other than 100%) for practitioners to use.

5 CONCLUSIONS AND FUTURE WORK

As US of configurations was considered infeasible, probabilistic analyses of a configuration space based on US was unexplored or considered unexploorable. We used a recently developed algorithm, Smarch [8], to US configurations of a configuration space. We also derived probabilistic models to explain Smarch results. We showed:

- US alone is not enough to produce 100% t-wise coverage; and
- Distribution of v_c can be used to predict the t-wise coverage of US.

Our work opens new possibilities on analyzing an SPL configuration space and deriving samples for testing. As US produces statistically representative samples of a configuration space, it may be possible to utilize the information from samples to improve the efficiency of existing approaches. As a future work, we plan to:

- Analyze other systems to validate and expand our insights on probabilistic analyses;
- Derive an algorithm utilizing US for t-wise coverage; and
- Enhance the performance of the Smarch algorithm.

ACKNOWLEDGMENTS

Work by Gazzillo is supported by NSF CCF-1840934. Work by Oh and Batory is supported by NSF grant CCF-1421211.

REFERENCES