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ABSTRACT
Efficiently testing large configuration spaces of Software Product
Lines (SPLs) needs a sampling algorithm that is both scalable and
provides good t-wise coverage. The 2019 SPLC Sampling Challenge
provides large real-world feature models and asks for a t-wise
sampling algorithm that can work for those models.

We evaluated t-wise coverage by uniform sampling (US) the
configurations of one of the provided feature models. US means
that every (legal) configuration is equally likely to be selected. US
yields statistically representative samples of a configuration space
and can be used as a baseline to compare other sampling algorithms.

We used existing algorithm called Smarch to uniformly sample
SPL configurations. While uniform sampling alone was not enough
to produce 100% 1-wise and 2-wise coverage, we used standard
probabilistic analysis to explain our experimental results and to
conjecture how uniform sampling may enhance the scalability of
existing t-wise sampling algorithms.
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1 INTRODUCTION
Software Product Lines (SPLs) are highly configurable. Building
blocks of SPL products are features that are increments of product
functionality. Each product of an SPL is defined by a unique set
of features called a configuration. A feature model declares each
feature and constraints among features, so that a user can identify
legal configurations with desired feature combinations [4]. As the
number of features increase, the size of the configuration space,
which is the set of all possible configurations, grows exponentially.

A large configuration space could have over a trillion (>1012)
configurations and is a challenge for testing, as testing every con-
figuration is infeasible. Instead, prior work produced a small set of
configurations to test selected features and their interactions. The
aim is to get a ‘high’ t-wise coverage, ideally meaning 100% of all
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combinations of t features are covered by at least one configura-
tion of the set. Achieving 100% can be infeasible for large spaces.1
Common values for t include feature-wise (t=1), pair-wise (t=2),
and three-wise coverage (t=3).

Different approaches start with a feature model and derive sam-
ples for t-wise coverage [1, 2, 6, 9, 10]. However, they do not scale
well for many features and complex constraints, which limited their
applicability to the real-world SPLs. Thus, the proposed Challenge
[16] provides large real-world feature models and asks for a sam-
pling algorithm that can generate configuration sets with good
t-wise coverage for those models.

We explore t-wise coverage using uniform sampling (US) in this
paper. US ensures that all configurations in a configuration space
have equal probability of being selected, yielding a statistically rep-
resentative sample of the space.US can be used as a baseline against
which other sampling algorithms can compare as a benchmark [13].

Despite its utility, US for large SPLs was considered infeasible
until recently [11, 13]. Prior work tried different methods to make
sampling as random as possible, but none achieved US for large
SPLs. We use a recently developed algorithm called Smarch [8], the
first to perform US of configuration spaces of size 10245. Smarch
utilizes a #SAT solver, which counts the number of solutions to a
propositional formula [15]. We believe we are the first to explore
t-wise coverage of US with probabilistic analyses to explain its
coverage results.

Our contributions to the 2019 SPLC Sampling Challengeare:

• Demonstration of t-wise coverage that can be achieved by
US; and

• Probabilistic analysis of configuration spaces that predicts
the t-wise coverage by US and that may be useful for devel-
oping a practical t-wise sampling algorithm.

2 SMARCH: A US ALGORITHM
Smarch [8] is a US algorithm for SPLs based on a #SAT solver.
Let ϕ be the propositional formula of a feature model [3]. A #SAT
solver can count the number of configurations in ϕ’s configuration
space, namely |ϕ |. (Each solution to ϕ is a configuration, and each
configuration is a solution to ϕ). A #SAT solver extends a satisfia-
bility solver by associating the number of solutions with each truth
assignment [5]. Smarch uses sharpSAT [15], a state-of-the-art #SAT
solver.

Here is how Smarch achieves US: A uniform random number
generator can select an integer r in the range [1..|ϕ |]. Smarch creates
a one-to-one mapping that converts r into a unique configuration,
so that US of range [1..|ϕ |] leads to US of configurations.

1Section 4 shows that uniform sampling alone will not provide 100% coverage unless
the sample set is approximately the size of the configuration space.
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Smarch recursively partitions ϕ by a fixed order of variables
to create a one-to-one mapping. A variable v∈ϕ partitions ϕ into
disjoint spaces (ϕ∧¬v) and (ϕ∧v). #SAT can compute the number
of solutions for each space, i.e., |ϕ∧¬v | and |ϕ∧v | respectively.

Then, for a random number r∈[1..|ϕ |], if r≤|ϕ∧¬v | the (ϕ∧¬v)
space is selected for recursive partitioning, otherwise (ϕ∧v) is se-
lected and |ϕ∧¬v | is subtracted from r to adjust the search in (ϕ∧v).
This process is repeated for the next variable in ϕ, until all variables
are considered and a unique configuration has been determined.

Documenting scalability of Smarch and #SAT is beyond the scope
of this paper – and is the subject of on-going work. Evidence in [8]
reports Smarch is able to US configuration spaces of size O(10248)
whereas the nearest US competitor’s largest space is O(1013).

3 EVALUATION
3.1 Experimental Set-Up
Among the feature models provided in the Challenge, we used
‘FinancialServices01’ version ‘2018-05-09’. This feature model was
given in FeatureIDE format [14], so we used the functionality of
FeatureIDE to generate its propositional formula as a dimacs file.
This file has 771 variables and 7,241 clauses. The size of the config-
uration space was determined to be 9.7 · 1014, computed in a mere
46 milliseconds by sharpSAT [15].

We evaluated t-wise coverage for t=1 and t=2 and did the fol-
lowing to find valid combinations:

(1) We derived a list of feature selections. With 771 features,
there are 771 ·2 = 1,542 possible selections since we consider
both a feature and its negation;

(2) We derived all possible 1-wise and 2-wise combinations from
this list. 1-wise yields

(1542
1
)
= 1542 combinations and 2-wise

yields
(1542

2
)
= 1,188,111; and

(3) We filtered out invalid combinations using a SAT solver. If
a combination is valid, the conjunction of the combination
and the feature model should be satisfiable. For example, for
a feature f, a 2-wise combination (f ,¬f ) is invalid as these
selections conflict with each other.

For 1-wise, 1,518 valid combinations were found (some features
were mandatory). For 2-wise, 914,537 valid combinations were
found.

We used Smarch to produce a US set Sn of n configurations.We
have no idea what fraction of the valid combinations (computed
above) are covered by Sn . So we varied n to observe the results
of increasing larger sets, using n={5, 10, 20, 30, 40, 50, 100, 200, 300,
400, 500, 1000, 1518}. Then, for each set Sn , we measured 2:

• Time taken to samplen configurations, measured by the
Linux ‘time’ tool;

• Time taken to sample a configuration, measured for each
sample by Smarch;

• Maximummemory used during sampling, measured by
the Linux ‘/usr/bin/time -v’ command; and

• t-wise coverage for t=1 and t=2, measured as the percen-
tage of t-wise combinations covered in Sn .

2The Challenge [16] explicitly requests sampling time and memory measurements.

We conducted our evaluation on an Intel i7-6700@3.4GhzUbuntu
16.04 machine with 16GB of RAM. All the code and data for the eval-
uation are available at: https://github.com/jeho-oh/Smarch_t_wise.

3.2 Experimental Results
Fig. 1a shows the total sampling time and Fig. 1b the time per
sample. The X-axis is the number of samples (n) and the Y-axis is
the time in seconds. We observed:

• Total sampling time increases linearly with n; and
• For all n, the average sampling time for a configuration was
approximately 7 seconds, with standard deviation of 1 sec-
ond. For all samples, the maximum sampling time was 10.1
seconds and the minimum was 3.5 seconds.

• The number of samples taken did not affect the time to
sample a configuration.
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Figure 1: Sampling time.

Fig. 2 shows the maximum memory usage of Smarch, where the
X-axis is the number of samples (n) and the Y-axis is the memory
size in megabytes. We observed:

• Maximum memory usage was stable, between 16.8MB and
17.1MB for all n; and

• Samplingmore configurations did not increase themaximum
memory usage.
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Figure 2: Maximummemory usage.

Fig. 3 shows the t-wise coverage result, where the X-axis is the
number of samples (n) and Y-axis is the percentage of the coverage.
Plots with different color indicates the results for different t . We
observed:

https://github.com/jeho-oh/Smarch_t_wise
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• For all values of n, coverage for t=1 was higher than t=2;
• For S5, more than half of the feature combinations were
covered for t=1 and over 35% for t=2;

• For both t=1 and t=2, larger n yielded better coverage. With
1,518 samples, coverage for t=1was 61.7% and t=2was 47.6%;

• The difference in coverage between n=5 and n=1, 518 was
surprisingly small. For t=1, the difference was 6.4%. For t=2,
the difference was 9.4%; and

• Although samples are expected to be statistically representa-
tive of the configuration space, their t-wise coverages seemed
low. Both coverages improved imperceptibly forn≥200. Why
this is so is explained in the next section.
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Figure 3: t-wise coverage.

We conclude that althoughUS is feasible with Smarch,US alone
is not enough to produce a 100% t-wise coverage.

4 ANALYSIS
US allows us to apply standard statistical analysis to explain our
experimental results [7].

Let c denote a valid t-wise combination for a given t . Let νc
denote the fraction of all valid configurations that have c in the
configuration space. Since every configuration has an equal prob-
ability of being selected by US, the probability that a sample will
have c is νc .

νc can vary widely for different c because constraints among fea-
tures may make certain combinations less frequent than others. A
mandatory feature has νc=1 because it appears in all configurations.
A feature with no constraints has νc=0.5; it can be freely enabled
and disabled, making it appear in half of the valid configurations.

νc can be computed by a #SAT solver. Let ϕ be the propositional
formula of an SPL’s feature model. Let ϕc be the propositional
formula of the conjunction of c’s features. We can use a #SAT
solver to compute νc as:

νc =
|ϕc |

|ϕ |
(1)

The probability p(c,n) that at least one of n samples includes
combination c is:

p(c,n) = 1 − (1 − νc )
n (2)

where the more samples taken, the higher the probability we en-
counter combination c . The value of p(c,n) largely depends on how
often this combination appears in the configuration space, i.e., νc .

In our experiments of the previous section, we discovered:
• 61.5% of all 1-wise combinations have a ratio νc>0.9. Even
with the minimum number of samples we used in the evalu-
ation (n=5), these combinations have more than 0.99 proba-
bility of being encountered in n=5 samples; and

• 38.8% of the 1-wise combinations have a ratio of νc<0.0001.
Even with the maximum number of samples we used in the
evaluation (n=1815), they have less than 0.15 probability of
being encountered in n=1815 samples.

We can use p(c,n) to predict t-wise coverage. Let Ct denote the
set of all valid t-wise combinations, where |Ct | is the number of
combinations in Ct . The estimated t-wise coverage E(Ct ,n) for a
given t,n is:

E(Ct ,n) =
1

|Ct |

∑
c ∈Ct

p(c,n) =
1

|Ct |

∑
c ∈Ct

(1 − (1 − νc )
n ) (3)

Fig. 4 uses (blue) Xmarkers to plot E(C1,n) and (brown) Xmark-
ers for E(C2,n) with our experimental results (• for t=1 and • for
t=2) overlaid. Eqn. (3) accurately predicts the results of our exper-
iments and also explains why the coverage of t=1 is higher than
that for t=2: there are many 2-way feature combinations (ci j ) that
are much less likely than any 1-way combination (ck ), meaning
νck≫νci j .
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Figure 4: t-wise coverage estimation.

It is interesting to explore the relationship between coverage and
larger sample set sizes which are infeasible to explore experimentally.
Fig. 5 shows the estimated t-wise coverage for n up to 1014, which
is approximately 10% of the configuration space (ie., 9.7× 1014). We
observed:

• With 1014 samples, more than 99.99% of 1-wise and 2-wise
combinations are expected to be covered. Of course, this is
almost enumeration; and

• Many combinations will be covered with a small number of
samples, over 30% of 2-way combinations are not likely to
be covered even with 107 samples(!).
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Figure 5: t-wise coverage estimation for large n.

We could accurately predict these results because Smarch
can uniform sample from a configuration space and stan-
dard probabilistic analyses rely on US [7].

Our analysis suggests possible enhancements to existing t-wise
approaches. Once νc values are known, we can determine which
combinations can be covered by a small number of USs. Then,
for combinations that are unlikely to be found by US, we may
either: 1) constrict the configuration space with constraints to (re-
cursively) sample configuration sub-space of interest [12] or 2) use
existing approaches that do not rely onUS. As sampling with many
features limits the scalability of existing approaches, US may im-
prove sampling scalability by reducing the features to consider. An
equally important issue is to define a reasonable t-wise coverage
(percentage) for large configuration spaces (other than 100%) for
practitioners to use.

5 CONCLUSIONS AND FUTUREWORK
As US of configurations was considered infeasible, probabilistic
analyses of a configuration space based on US was unexplored or
considered unexplorable. We used a recently developed algorithm,
Smarch [8], to US configurations of a configuration space. We also
derived probabilistic models to explain Smarch results. We showed:

• US alone is not enough to produce 100% t-wise coverage;
and

• Distribution of νc can be used to predict the t-wise coverage
of US.

Our work opens new possibilities on analyzing an SPL config-
uration space and deriving samples for testing. As US produces
statistically representative samples of a configuration space, it may
be possible to utilize the information from samples to improve the
efficiency of existing approaches. As a future work, we plan to:

• Analyze other systems to validate and expand our insights
on probabilistic analyses;

• Derive an algorithm utilizing US for t-wise coverage; and
• Enhance the performance of the Smarch algorithm.
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