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ABSTRACT
Analyses of Software Product Lines (SPLs) rely on automated solvers
to navigate complex dependencies among features and find legal
configurations. Often these analyses do not support numerical fea-
tures with constraints because propositional formulas use only
Boolean variables. Some automated solvers can represent numeri-
cal features natively, but are limited in their ability to count and
Uniform Random Sample (URS) configurations, which are key oper-
ations to derive unbiased statistics on configuration spaces.

Bit-blasting is a technique to encode numerical constraints as
propositional formulas. We use bit-blasting to encode Boolean and
numerical constraints so that we can exploit existing #SAT solvers
to count and URS configurations. Compared to state-of-art Satisfi-
ability Modulo Theory and Constraint Programming solvers, our
approach has two advantages: 1) faster and more scalable configu-
ration counting and 2) reliable URS of SPL configurations. We also
show that our work can be used to extend prior SAT-based SPL
analyses to support numerical features and constraints.
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1 INTRODUCTION
Software Product Lines (SPLs) are highly configurable systems. A
feature model defines the variability of an SPL using features and
constraints. A feature is an increment in program functionality. A
constraint is a relationship among features, where the presence or
absence of some features requires or precludes other features. A
valid combination of features is a configuration. All configurations
define a configuration space [2].

Classical feature models use Boolean features that have only two
values (present, absent). Boolean features are insufficient for real-
world SPLs, as there exist features that have a series or a range of
numbers as explicit values. An example is the size in bytes of a
datafile [49]; it is represented by a power of 10 series of values in a
feature model. These features are called Numerical Features (NFs).
feature models with NFs are Numerical Feature Models (NFMs).

It is infeasible to understand large configuration spaces by enu-
meration. Most SPLs do not have an analytical model to accurately
predict run-time properties (eg., [48]), so it is common to sam-
ple configurations, build the product for each sample, and gather
data about samples by benchmarking. Doing so creates a dataset
on the configuration space. This approach has been used many
times: deriving the influence of a feature for performance model-
ing [33, 55], performingmulti-objective optimization [26, 34, 35, 56],
and evaluating different sampling approaches to locate variability
bugs [47, 62].

Counting the number of configurations and Uniform Random
Sampling (URS) configurations are two operations for unbiased
statistical inferences on SPLs. Counting and URS solutions ofNFMs,
however, are largely unexplored. Only a handful of automated
solvers can represent and reason over both Boolean and numerical
feature constraints, namely Satisfiability Modulo Theories (SMT) [6]
and Constraint Programming (CP) [53] solvers. Unfortunately, SMT
and CP solvers cannot count the number of configurations (except
by enumeration) or uniform sample configurations. Prior work
sampled configurations with SMT and CP solvers, but whether the
produced samples are uniformly distributed was not shown.

In contrast, for classical feature models, there are tools that can
count faster than SMT and CP solvers and enable URS of configu-
rations. Every classical feature model can be encoded as a propo-
sitional formula, where a solution of the propositional formula is
a valid configuration of the feature model. #SAT solvers extend
Satisfiability (SAT) solvers to count the number of solutions of a
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propositional formula without enumeration [12]. Chakraborty et
al. and Oh et al. developed tools to URS solutions of a propositional
formula, based on #SAT technology [17, 51].

Bit-blasting encodes numerical values as binary bits and repre-
sent operations on them as propositional formulas [15]. We propose
to represent NFs and their constraints by bit-blasting and utilize
existing SAT-based tools for counting and URS classical feature
models. We make use of the ‘Tactic’ functionality of the Z3 SMT
solver [22] to convert NFs and their constraints into propositional
formulas using bit-blasting, which are then integrated with the
propositional formulas of classical feature models. This allows us
to represent NFMs as a Bit-Blasted Propositional Formula (BBPF).
BBPF can be input to existing #SAT-based tools for counting

and URS solutions of a NFM, which SMT and CP solvers cannot do.
In this way NFMs can be analyzed by existing tools with minimal
extra work. The contributions of our work are:

• Use of bit-blasting to express NFs and constraints,
• Integration of bit-blasting and classical feature models to
translate a NFM into a BBPF,

• Experiments that show counting and URS solutions ofBBPF
outperform SMT and CP solvers, and

• Evaluation of known SPL analyses using NFMs with huge
configuration spaces, the largest exceeding 1045 products.

2 BACKGROUND
2.1 Bit-Blasting
Bit-blasting or flattening is the transformation of a bit-vector arith-
metic formula to an equivalent propositional formula [3]. It has
been mainly used in hardware verification [19] and to optimize the
hardware verification task itself [27, 66]. Brillout et al. [13] used bit-
blasting to create a bit-accurate and complete decision procedure
for IEEE-compliant binary floating-point arithmetic units.

We focus on the following arithmetic operations: equality (=),
inequalities (,, >, ≥), addition (+) and subtraction (−). Although bit-
blasting supports more operations, it is known that multiplication
and division do not scale with increasing bit-width [15]. Real-world
SPLs that we have studied are described in Table 2. They largely
limit their use of numerical operations to equality and inequalities.
A few add two NFs and compare the result to a constant. Technical
details on bit-blasting are covered later in Section 3.

2.2 Feature Models
A classical feature model uses only Boolean features but this very
restriction allows it to be transformed into a propositional formula,
where features are variables and constraints are clauses [2]. Many
tools can convert an feature model into a propositional formula.
One is FeatureIDE that exports a feature model written in their
tool as a Conjunctive Normal Form (CNF) formula [63]. Another is
KClause which transforms a KConfig model into a compact CNF
formula [38].

Real-world SPLs use NFMs that contain both binary features
and NFs [36]. An NF has a name N , a type (ie., domain), and range
(eg., N∈[1, 2, ...128]).NFMs add new constraints to the set of propo-
sitional connectives, including: numerical equality (=), numerical
inequalities (,, >, <, ≥ and ≤), and occasionally addition and sub-
traction but no other numerical operations (at least in KConfig

systems [28, 29]). NFs can also have constraints with Boolean fea-
tures, where the value of an NF affects the value of a Boolean
feature, and vice versa.

Two examples of NFMs are: (1) the HADAS eco-assistant [48]
where energy context parameters are represented as NFs in an
Integer domain, and propositional connectives and inequalities are
present in cross-tree constraints (eg.,AES_crypto ⇒ key_size>128)
and (2) WeaFQAs [37] where some variables of quality attributes
are NFs with Integer or Float domains, containing propositional
connectives and interval constraints (ie., numerical value ranges).

2.3 Uniform Random Sampling and Finding
Sub-Optimal Products in Colossal Spaces

Uniform sampling ensures all samples are valid and uniformly
distributed across the configuration space, so that the samples can
be used for standard statistic approaches.

Oh et al. [51] were the first to URS an SPL configuration space.
They used the following ideas: Let φ be the propositional formula
of a classical feature model. Let S(φ) be the set of all solutions of φ.
Each solution of φ is in a 1-to-1 correspondence with a configura-
tion product in the feature model [2].

Let |S(φ)| be the number of solutions in S(φ). A uniform random
number generator can select an integer j in the range [1..|S(φ)|].
The trick is to convert j into the jth configuration in a fixed linear
ordering of S(φ). By construction, URS of numbers in [1..|S(φ)|] is
isomorphic to URS of configurations in S(φ).

SAT solvers find solutions to a given φ. #SAT solvers, a rela-
tively new SAT technology, can count |S(φ)|. And #SAT can also be
used to convert an integer j into the jth configuration of S(φ) [38].
Here’s how: Let F=(f1, f2, ...) be a fixed-order list of all features in a
feature model. A #SAT tool can count n=|S(φ∧f1)|, the number of so-
lutions that have feature f1. If j≤n, then the jth configuration must
have feature f1 otherwise it has ¬f1. Repeating this logic on the
remaining features in F performs a binary search on S(φ) to reveal
the presence or absence of every feature in the jth configuration.

Here is a great application for URS: it can be used to quickly
locate sub-optimal products in S(φ). Take n URS in S(φ), build
and benchmark each of them. Let cbest be the best performing
configuration among these n samples. Oh et al. [51] showed that
cbest will be, on average, within the top 1

n+1 percentile of the
best performing configurations in S(φ). So if 99 uniformly random
samples are taken, cbest is in the top 1% of the best performing
configurations of S(φ), on average, no matter how big |S(φ)| is [51].
We explore this application further on Section 4.

3 BIT-BLASTING FOR NFMS
We describe how to integrate bit-blasting and classical feature mod-
els to form NFMs and how to translate a NFM into a BBPF.

3.1 Bit-Blasting for Arithmetic Operations
This section reviews ideas about bit-blasting that are known to be
implemented by Z3. Bit-vectors have two properties: width of the
vector and whether it is unsigned (binary sign-magnitude encoding)
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# Operation Bit-Blasted Model Propositional Formula

1 (NFa == NFb ) (a3 == b3) ∧ (a2 == b2) ∧ (a1 == b1) (a3 ⇔ b3) ∧ (a2 ⇔ b2) ∧ (a1 ⇔ b1)

2 (NFa , NFb ) (a3 , b3) ∨ (a2 , b2) ∨ (a1 , b1) (a3 ⊕ b3) ∨ (a2 ⊕ b2) ∨ (a1 ⊕ b1)

3 (NFa > NFb )
(a3 < b3) ∨ ((a3 == b3) ∧ (a2 > b2)) ∨
((a3 == b3) ∧ (a2 == b2) ∧ (a1 > b1))

(¬a3 ∧ b3) ∨ ((a3 ⇔ b3) ∧ (a2 ∧ ¬b2)) ∨

((a3 ⇔ b3) ∧ (a2 ⇔ b2) ∧ (a1 ∧ ¬b1))

4 (NFa ≥ NFb )
(a3 < b3) ∨ ((a3 == b3) ∧ (a2 ≥ b2)) ∨
((a3 == b3) ∧ (a2 == b2) ∧ (a1 ≥ b1))

(¬a3 ∧ b3) ∨ ((a3 ⇔ b3) ∧ (b2 ⇒ a2)) ∨

((a3 ⇔ b3) ∧ (a2 ⇔ b2) ∧ (b1 ⇒ a1))

5 (NFa ± NFb )

S41 ≡ [(a1 ⊕ b1) ⊕ C0, (a2 ⊕ b2) ⊕ C1,

(a3 ⊕ b3) ⊕ C2,C3]

C3
1 ≡ (ai ∧ bi ) ∨Ci−1

C0 ≡ (‘ + ’ ⇒ 0) ∧ (‘ − ’ ⇒ 1)

[(a1 ⊕ b1) ⊕ ±, (a2 ⊕ b2) ⊕ ((a1 ∧ b1) ∨ ±),

(a3 ⊕ b3) ⊕ ((a2 ∧ b2) ∨ ((a1 ∧ b1) ∨ ±)),

(a3 ∧ b3) ∨ ((a2 ∧ b2) ∨ ((a1 ∧ b1) ∨ ±))]

Table 1: Bit-blasted Models and propositional formula Transformation Examples for 2-bit two’s Complement Signed Integers

or signed (binary two’s complement 1 encoding). We use the Little-
Endian representation, ie., signed bit-vectors, where the last bit
encodes the sign as positive (0) or negative (1).2

Table 1 shows examples of two’s compliment bit-blasting proposi-
tional formulas for equality, inequality, greater, greater or equal, and
addition/subtraction of Little-Endian signed integers with a value
range of [-4, 3] (ie.,n = 3 bits) where a3 is the integer sign. Of course,
a greater number of bits can be used in Table 1, but n=3 shows the
repeating patterns in propositional formula that bit-blasting uses.
Equality (==) is the conjunction of bit-by-bit equivalences (row 1,
col propositional formula). Inequality (,) is a bit-by-bit disjunction
of logical XORs (⊕) (row 2, col propositional formula). After the
numerical sign comparison (first clause of col PF in rows 3 and 4),
there are bit-by-bit equivalences till the last bit of the series, which
involve an implication in case of ≥ (row 4, col 3), or a disjunction
of opposites in case of > (row 3, col 3).

Bit-blasting addition is harder. Addition of bit-vectors can create
a result outside the range of the operands due to the number of bits
necessary to represent the result. For example, for 3 signed bits, if
we perform ‘3+ 1’, the result is ‘4’, which is impossible to represent
with 3 signed bits; we need 4 signed bits. The extra bit is called
a carry bit. Then, a binary addition requires two data inputs, and
produces two outputs, the Sum (S) of the equation and a Carry (C)
bit as shown in the operation 5 of Table 1. Subtraction in a two’s
complement encoding is an addition differing on C0, which is 0 for
addition operations, and 1 for subtraction operations.

SAT solvers regularly work with propositional formulas in CNF
form [12]. To transform the propositional formulas of Table 1, the Z3
solver uses Tseitin’s CNF transformations with skolemization [65],
as it is a widely known method to transform propositional formulas

1Two’s complement negative integer encoding is the binary complement of the positive
encoding plus one bit.
2Little-Endian: An order of bits in which the “little end” (least significant value in the
sequence) is represented first in the sequence.

into a CNF formula while maintaining the model satisfiability and
number of configurations.

3.2 Producing a BBPF for an NFM
We encode the Boolean features and their constraints of an NFM
as a propositional formula in the standard way [2]. Then, NFs and
their constraints of a NFM are encoded as propositional clauses
making use of the Z3 solver ‘Tactic’ functionality.3 We conjoin
both predicates (or substitute them below) to form the BBPF for
that NFM. Here are some details:

NF Definition. Let a signed NF f have range [a,b]. Bit-blasting
uses

⌈
log2(max(|a |, |b |)) + 1

⌉
+1 variables to represent the bits of f,

where 1 variable encodes the sign. Propositional clauses for two
constraints (f ≥a) and (f ≤b) are conjoined to limit the range of f
values. If applicable, the range of f is shifted to [0,b − a] as it may
simplify the formula and use fewer bits, namely

⌈
log2(b − a) + 1

⌉
+1.

We represent all NFs as integers. Decimal point values can be
represented by shifting the points to the desired precision, which
is shifted back when the configurations are sampled.

NF Constraints. Constraints betweenNFs can be directly derived
as propositional clauses from bit-blasting and conjoined to a propo-
sitional formula. If an NF is a constant, its binary value is used,
which can simplify the formula by Boolean constraint propagation.

TwoNFs bounded under the same constraint may have different
bit-widths due to different value ranges. As the bit-width of each
NF is fixed, the NF with shorter bit-width needs to be extended to
match the bit-width of the other NF. Extending the bit-width does
not change an NF’s possible values due to range constraints.

Mixed Boolean andNFConstraints.A numerical constraint can
be qualified by Boolean features, such as a⇒(b , 0), where a is a

3We have configured Z3 solver to convert NFs and constraints into propositional for-
mulas with the ‘Tactic’ functionality command <Then(‘simplify’, ‘bit-blast’,
‘tseitin-cnf’)> However, Z3 solver is not primarily intended to be used for this
task, nor it is a well-documented functionality.
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𝔽୵𝔹 =  (Precon) ∧ (Solver) // Precon and Solver are mandatory features

∧ ((Precon ⇒ (SeqGS ∨ SeqSOR)) ∧ (SeqGS ⇒ ¬SeqSOR)) // SeqGS and SeqSOR are alternative features of Precon

∧ ((Solver ⇒ (CGSolver ∨ BiCGSTABSolver ∨ LoopSolver ∨ GradientSolver))
∧ (CGSolver ⇒ ¬BiCGSTABSolver) ∧ (CGSolver ⇒ ¬LoopSolver) ∧ (CGSolver ⇒ ¬GradientSolver)
∧ (BiCGSTABSolver ⇒ ¬LoopSolver) ∧ (BiCGSTABSolver ⇒ ¬GradientSolver) ∧ (LoopSolver ⇒ ¬GradientSolver))
// CGSolver, BiCGSTABSolver, LoopSolver, and GradientSolver are alternative featrues of Solver

∧ ((¬pre_4 ∧ false) ∨ ((pre_4 ⇔ false) ∧ (false ⇒ pre_3)) 
∨ ((pre_4 ⇔ false) ∧ (pre_3 ⇔ false) ∧ (false ⇒ pre_2))
∨ ((pre_4 ⇔ false) ∧ (pre_3 ⇔ false) ∧ (pre_2 ⇔ false) ∧ (false ⇒ pre_1))) // pre >= 0

∧ ((¬false ∧ pre_4) ∨ ((false ⇔ pre_4) ∧ (pre_3 ⇒ true)) 
∨ ((false ⇔ pre_4) ∧ (true ⇔ pre_3) ∧ (pre_2 ⇒ true))
∨ ((false ⇔ pre_4) ∧ (true ⇔ pre_3) ∧ (true ⇔ pre_2) ∧ (pre_1 ⇒ false))) // 6 >= pre

∧ (SeqGS ⇒ ((pre_4 ⇔ false) ∧ (pre_3 ⇔ false) ∧ (pre_2 ⇔ false) ∧ (pre_1 ⇔ false))) 
// SeqGS implies (pre == 0)

Dune

Precon Solver pre

1

2

3

4

5

6

SeqGS SeqSOR

CGSolver

BiCGSTABSolver LoopSolver

GradientSolver

[0,6] integer

SeqGS implies (pre = 0)

< ℕ𝔽𝕄 >

Bit‐blasting

Bit‐
blasting

Figure 1: An example of NFM to BBPF Conversion

Boolean feature and b is aNF. In this case, the propositional clauses
forNF operations can be generated first (eg., letω be the bit-blasted
propositional formula of (b , 0)), which is then substituted into
the original formula to yield the result, namely a⇒ω.

A constraint may inhibit a NF from having any value, meaning
that the NF is not used and its value is ignored. In such case, a
designated value outside the range of theNF can be used to indicate
the NF is ignored, enforced by an equals operation.

Alternative Features. For a large set of alternative features, rep-
resenting them as an NF and keeping a map between its values
and alternative features may derive a more compact propositional
formula. As an extreme case, 2n alternative features require 2n
variables, while representing them as a single NF requires only
n bits. Regarding the clauses, alternative features requires

(2n
2
)
+1

CNF clauses,4 while an NF requires none. A NF that allows multi-
ple discrete values (eg., odd numbers {2, 3, 7, 11, 13...}) instead of
values within a range can be encoded in the same manner.

Fig. 1 shows our encoding of an NFM as a BBPF. This NFM was
taken from the Dune multi-grid solver [32]. Note that some features
and constraints are modified for better illustration.

In Fig. 1, the clauses for Boolean features are represented in lines
1–3, while the clauses for NF is conjoined at lines 4–6. As the NF
‘pre’ has range [0, 6], 4 bits are allocated (including ‘pre_4’ as its
sign bit). Lines 4 and 5 specify the range of the ‘pre’ feature. Line 6
encodes the constraint between a Boolean feature and a NF, where
bit-blasting clauses for an equality operation has an implication
relationship with a Boolean feature ‘SeqGS’.

4 EVALUATION
Our work counts and uniform samples configurations ofNFMs. We
answer the following research questions to evaluate BBPF:
RQ1 — How many bits perNF are feasible with bit blasting (BB)?
RQ2 — Does BBPF allow faster counting?
RQ3 — Does BBPF allow URS?
RQ4 — Can existing SAT-analyses of SPLs use BBPF?
RQ1 evaluates a scalability metric of bit blasting, while RQ2

and RQ3 evaluate how BBPF perform compared to state-of-art
SMT and CP solvers. RQ4 evaluates whether BBPF can be used
with existing SAT-analyses for SPLs.

4 (2n
2
)
clauses are need to ensure only one among the alternative feature is selected,

while another clause is to ensure at least one among them is selected.

We used real-worldNFMs from [38] and [58] that constrain both
Boolean and numerical features. Table 2 lists each NFM with its de-
scription, where each system has a different number of NFs and/or
difference configuration space size. Henceforth, we use FSE2015 to
denote the feature models from Siegmund et al. [58].

FSE2015 NFMs have relatively small configuration spaces, but
the equation solving times of all the configurations were bench-
marked, so that we can rank them. These NFMs were written for
the SPLConqueror tool [58], which we have translated into BBPF.
Their smallest NFM had range [1,4]; the largest had [66,4096].

Compared to FSE2015 NFMs, KConfig models have many more
features and have huge configuration spaces. The KClause tool [58]
derives a propositional formula for each KConfigmodel. As KClause
simplifiesNFs to have their default values only, we augmented their
formula with bit blasting to allow different NF values.

The KConfig NFMs that we examined had NFs as small as [0,1]
and as large as [0, 232−1]. When the range of a NF is not defined
in a KConfig model, any value within the range of the integer data
type is possible, which is [0, 232−1]. For NFs that exceed the range
[0, 210−1], we discretized them to have 210 possible values. We
benchmarked the build size of each sampled configuration for the
performance analysis of RQ4.

To generate a propositional formula for an NF and constraints
for BBPF, we used the formula printing functionality of the Z3
solver. To count the number of configurations in BBPF, we used
sharpSAT [64], a state-of-art model counter for propositional for-
mulas. To sample configurations of a BBPF, we used Smarch [38],
a state-of-art tool for URS propositional formula solutions.

RQ1: How many bits per NF are feasible with BB?
The most complicated numerical constraint that appeared in the

systems we analyzed is (A+B>C), where A, B, and C are NFs of
unsigned integers. We consider this constraint as an upper bound
on the overhead of numerical constraints.5 Propositional formulas
with three b-bit NFs related by this constraint were generated and
benchmarked to determine how many bits are feasible for counting
and URS.

Formulas with different bit-widths (#b) from 2 to 32 were gener-
ated. For each formula, we measured:

5Actual numerical constraints were simpler, as C was substituted with a constant.
Constants in constraints simplifies the formula by Boolean constraint propagation.



Uniform Random Sampling Product Configurations of
Feature Models That Have Numerical Features SPLC ’19, September 9–13, 2019, Paris, France

Type NFM Description # Features # NFs # Configs Benchmark Ref.

FSE2015

Dune Multi-grid solver 11 3 2, 304

Equation solving times [58]HSMGP Stencil-grid solver 14 3 3, 456
HiPAcc Image processing framework 33 2 13, 485
Trimesh Triangle mesh library 13 4 239, 360

KConfig
axTLS Client-server library 94 9 4.96 × 1038

Build sizes [38]Fiasco Real-time microkernel 234 5 3.06 × 1012
uClibc-ng C library for embedded Linux 269 6 8.20 × 1045

Table 2: List of Models with Numerical Features and Constraints
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Figure 2: Computation Overhead of the (A + B > C) Constraint

#C — number of CNF clauses in each formula,
tC — time in seconds to count configurations by sharpSAT, and
tS — time in seconds to sample a configuration by Smarch.

To control randomness, we conducted 97 experiments and aver-
aged the results for a confidence level of 95% with a 10% margin
of error [61]. If counting or URS took more than 10 seconds, we
considered it a time-out.

Figure 2 shows our results. The Y-axes show #C , tC , and tS ; the
X-axes are the number of bits (#b). As tC timed-out after 16 bits,
we show #b up to 16. We observed:

• #C grew linearly with increasing #b,
• tC grew exponentially with increasing #b,
tC was below 1 second for #b≤13,

• tS grew exponentially with increasing #b, and
tS was below 1 second for #b≤10.

The linear increase of #C is due to the use of Tseitin’s transforma-
tion in generating CNF formulas. As the number of NF variables
increases with linearly with #b, Tseitin’s transformation guarantees
a linear increase O(3n+1) with the number of variables [65].

tS showed a slower rate of increase compared to tC , so tC>tS
from #b>14. This is due to the formula partitioning of Smarch,
which made counting solutions to large formulas faster by counting
in a divide-and-conquer manner [38].

These results give a rough idea of the overhead added by NFs
with constraints. The fact that there was a time-out after 16 bits
does not mean that NFs larger than 16 bits cannot be treated by
bit blasting. When a NF has a value requiring more than 16 bits,
we can discretize it to reduce the number of bits to encode it. For
example, a 32-bit NF of range [0, 232−1] can be discretized into a

10-bit NF with the precision of 222. This makes analyses feasible
by reducing the precision of possible values.

Conclusion: Bit-blasting is feasible up to 16 bits per num-
ber (<10 seconds) and has negligible overhead up to 10 bits
per number (<1 second).

RQ2: Does BBPFallow faster counting?
We compared the time to count solutions using sharpSAT and

widely-used SMT and CP solvers. We used Z36 as a representative
SMT solver and Clafer with the Choco solver7 as a representative
CP solver. Z3 and Clafer use different ways to count the number of
configurations than sharpSAT:

• Z3 does not have the functionality to count configurations. A
known method involves enumerating the configurations by:
1) deriving a configuration from Z3, 2) making the negation
of that solution as a constraint, and 3) repeating 1) and 2)
until the constrained model is not satisfiable.8

• Clafer has an internal functionality to count configurations,
by using the option ‘-n’. Its functionality involves enumer-
ating configurations as well.9

We measured the time in seconds to count configurations by
each tool. To control randomness, we conducted 97 experiments
and averaged the results for a confidence level of 95% with a 10%

6Z3py, https://github.com/Z3Prover/z3.
7Clafer, https://www.clafer.org/.
8Z3 repository developer response on model counting, https://github.com/Z3Prover/
z3/issues/934.
9Clafer Choco solver source code, https://github.com/chocoteam/choco-solver/blob/
master/src/main/java/org/chocosolver/solver/search/strategy/Search.java.

https://github.com/Z3Prover/z3
https://www.clafer.org/
https://github.com/Z3Prover/z3/issues/934
https://github.com/Z3Prover/z3/issues/934
https://github.com/chocoteam/choco-solver/blob/master/src/main/java/org/chocosolver/solver/search/strategy/Search.java
https://github.com/chocoteam/choco-solver/blob/master/src/main/java/org/chocosolver/solver/search/strategy/Search.java
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Type Model Z3 Clafer BBPF

FSE2015

Dune 26.20s 11s 0.01s
HSMGP 40.70s 14s 0.01s
HiPAcc 458s 33s 0.01s
Trimesh Time-out 2s 0.01s

KConfig
axTLS Time-out Time-out 0.01s
Fiasco Time-out Time-out 0.01s

uClibc-ng Time-out Time-out 0.01s

Table 3: Average Counting Time Comparison

margin of error [61]. If counting took more than 30 minutes, we
considered it a time-out. Table 3 shows our results.

We observed with BBPF:
• As expected, counting BBPF by sharpSAT was much faster
than Z3 and Clafer, as it does not enumerate solutions.

• KConfig NFMs are too large for Z3 and Clafer to enumerate.
Conclusion: SharpSAT with BBPF counts configurations

considerably faster than Z3 and Clafer. Z3 and Clafer were
unusable for KConfig models.

RQ3: Does BBPF allow URS?
We now ask if BBPF with Smarch, Z3, and Clafer can URS solu-

tions of a NFM. RQ2 showed Z3 and Clafer can generate samples
by enumeration but did not reveal if their samples are uniform. We
used techniques in prior work to obtain random samples:

• For Z3, we randomly assigned the value for the parameter
‘random_seed’, which controls the variable selection heuris-
tic [34].

• For Clafer, we set the ‘–search’ option to ‘random’, which
randomizes the order and value of variable assignments.9

To check if the samples are uniformly distributed, we rely on a
theorem from [38, 51]. Order statistics predict that the average rank
of samples from URS are evenly distributed across a configuration
space. So if n samples are taken, the configuration space is parti-
tioned into n+1 equal-length intervals on average. The normalized
rank (in the unit interval) of the kth -best performing sample is
k

(n+1) [51].
With this result, we can check whether samples have evenly

distributed ranks using the Kolmogorov-Smirnov (KS) test [45]. A
KS test checks whether two data sets are sampled from the same
distribution. We check if the distribution between sampled ranks
and expected ranks are equal with 95% confidence.

First, we used the four NFMs from FSE2015. These NFMs had
all of their configurations enumerated and benchmarked, allowing
us to know the exact rank of the samples. For each FSE2015 NFM
and each tool, we sampled 100, 300, and 500 configurations to
evaluate randomness with different sample sizes. For each sample
set, we derived the KS test result and the time taken to sample a
configuration, averaged from the sample set, in seconds.

FSE2015 Systems. Rows 1 through 4 in Table 4 (next page) show
the average time taken to sample a configuration for each FSE2015
NFM. Table 5 (next page) shows the result of KS test. We observed:

• Z3 and Clafer had fast average sampling times at .03 and .01
seconds; Smarch took more time at .30 secs,

• Smarch passed KS tests for allNFMs and sample sizes, which
says that Smarch performs URS with 95% confidence, and

• Z3 and Clafer failed KS tests for some NFMs and sample
sizes. This says that the randomization options for Z3 and
Clafer do not always achieve URS.

It is unclear what characteristics of a NFM causes Z3 and Clafer
samples to be biased. Prior work on feature models with only
Boolean features tried a similar approach to produce random solu-
tions using SAT solvers [18, 35], but they too did not demonstrate
URS. In contrast, Smarch delivers URS by construction. That is, it
creates a 1-to-1 mapping between a random number and a unique
configuration via counting. With Z3 and Clafer, counting is infeasi-
ble, as RQ2 showed.

KConfig Systems. To demonstrate scalability of sampling, we
also present the evaluation with KConfigNFMs. Note that, we could
not check the randomness of the samples in the same manner a
FSE2015 NFMs, as their configuration space cannot be enumerated
to obtain the precise rank of selected configurations.10 Instead, we
utilized the evaluation method in [38], to evaluate whether samples
from Z3 and Clafer are uniformly distributed using Smarch.

Smarch achieves URS by using a one-to-one mapping between
a number and a configuration. When a random number between
1 to the total number of configurations is given, Smarch outputs
a corresponding configuration. Smarch also is capable of the in-
verse operation, so that it outputs the corresponding number of
a given configuration. For the samples taken from Z3 and Clafer,
we used Smarch to output the numbers and consider them as the
rank of those samples. We then evaluated whether those ranks are
uniformly distributed using the KS test.

Rows 5 through 7 in Table 4 and Table 5 are the results. KConfig
systems shows a similar trend with the FSE2015 systems. Even for
models with larger ranged NFs and larger configuration spaces,
Smarch was able to sample configurations within a reasonable time.
Samples from Z3 and Clafer failed the KS test for all systems and
sample sizes, indicating that these tools are not capable of URS
configuration spaces that are large as KConfig. On the other hand,
samples from Smarch passed all KS tests, as it used uniform random
numbers to generate the configurations.

Conclusion: Smarch can perform URS of NFM configura-
tions, which Z3 and Clafer cannot guarantee.

RQ4:Can existing SAT-analyses of SPLs useBBPFs?
We explained in Section 2.3 how URS can help finding near-

optimal configurations. (Recall taking n samples, benchmarking
each selected configuration, and identifying cbest — the best per-
forming configuration, would be in the top 1

(n+1) percentile of all
configurations on average.) Oh et al. [51] also proposed a recur-
sive searching algorithm called SRS, which recursively: 1) samples
configurations, 2) use samples to reason features that improves
performance, and 3) constricts the search space with the found
features. They demonstrated that SRS performs better than URS
alone.
10We could sort all FSE2015 configurations by performance, so finding the perfor-
mance rank of a given configuration is easy. In KConfig systems, we do not know the
performance of all configurations – only those that we sample. Hence we can only
estimate the performance rank of a given configuration.
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NFM Z3 Clafer Smarch+BBPF
Type # Samples 100 300 500 100 300 500 100 300 500

FSE2015

Dune 0.02 0.02 0.02 <0.01 <0.01 <0.01 0.25 0.25 0.28
HSMGP 0.02 0.02 0.02 <0.01 <0.01 <0.01 0.30 0.31 0.31
HiPAcc 0.05 0.05 0.05 <0.01 <0.01 <0.01 0.54 0.54 0.55
Trimesh 0.02 0.02 0.02 <0.01 <0.01 <0.01 0.60 0.61 0.61

KConfig
axTLS 0.12 0.12 0.12 0.02 0.01 0.01 1.26 1.30 1.27
Fiasco 0.25 0.24 0.24 0.03 0.01 0.01 1.50 1.49 1.51

uClibc-ng 0.28 0.27 0.27 0.05 0.02 0.02 5.56 5.39 5.62
Table 4: Average Sampling Times Comparison

NFM Z3 Clafer Smarch+BBPF
# Samples 100 300 500 100 300 500 100 300 500

FSE2015

Dune Fail Pass Fail Pass Pass Pass Pass Pass Pass
HSMGP Pass Fail Pass Pass Pass Fail Pass Pass Pass
HiPAcc Fail Fail Fail Pass Pass Pass Pass Pass Pass
Trimesh Fail Fail Fail Pass Fail Fail Pass Pass Pass

KConfig
axTLS Fail Fail Fail Fail Fail Fail Pass Pass Pass
Fiasco Fail Fail Fail Fail Fail Fail Pass Pass Pass

uClibc-ng Fail Fail Fail Fail Fail Fail Pass Pass Pass
Table 5: KS Test Result on Uniformity of Samples

Their work, however, focused on feature models with Boolean
features and constraints, while optimizing feature models with NFs
and constraints was left as future work. We wanted to see if their
work could be used "as is" with BBPF.

We replicated SRS to find near-optimal configurations from the
NFMs of RQ2. For FSE2015 NFMs, we tried to find the configu-
ration with the smallest benchmarked performance, which was
the "equation solving time" (see [58] for details). For an experi-
ment, we performed SRS with 20 samples per recursion, which
was claimed in [51] as a sufficient sample size to make accurate
statistical decisions on the features.

From the FSE2015 NFMs, we gathered following metrics per
experiment regarding configuration ranks:

N — total number of samples taken by SRS,
rSRS — normalized rank of cbest , found from SRS,
rURS — expected normalized rank of cbest from N configurations

by URS. It is derived from order statistics, as 1
(N+1) .

In addition, we analyzed the performance value of the found
configurations from FSE2015 NFMs. Performance values were nor-
malized by the actual best and worst performance value in the
configuration space. We measured:
pSRS — normalized performance of cbest found by SRS, and
pURS — normalized performance of the configuration at rank rURS.

To control randomness, we conducted 97 experiments and aver-
aged the results for a confidence level of 95% with a 10% margin of
error [61]. From the experiments. we derived:
rTest — Mann-Whitney U test results, which evaluates whether

rSRS values are smaller than rURS values with 95% confi-
dence [44]. "Pass" implies rSRS is smaller, and "Fail" other-
wise.11

11We used Mann-Whitney U Test as the distributions of the results are non-parametric.

pTEST — Mann-Whitney U test results from 97 experiments which
evaluates whether pSRS values are smaller than pURS values
with 95% confidence [44]. "Pass" implies pSRS is smaller, and
"Fail" otherwise.

rBetter — SRS success rate is the percentage of experiments that SRS
outperforms URS, where rSRS<rURS is expected.

Table 6 shows the rank results for each FSE2015NFM. We observed:

• The average rank of solutions SRS found were ∼.8% away
from optimal; the average rank of solutions URS found were
∼1.4% away from optimal. Both are good results.

• N was different for allNFMs, as the number of features, con-
straints, and how a feature affects the objective to optimize
are different for each NFM,

• rSRS was lower than rURS for allNFMs with 95% confidence,
which indicates SRS outperforms URS,

• pSRS was lower than pURS for allNFMs with 95% confidence
as well, which also indicates SRS finds better performing
configurations than URS, and

• rBetter was not 100% in all experiments, meaning that occa-
sionally SRS performs worse than URS. SRS performs better
than URS in 89% of all the experiments.

To visualize our results, Figure 3 plots all the configurations of
the FSE2015NFMs, sorted by their performance. The X-axis denotes
their normalized rank, while the Y-axis denotes their normalized
performance. The red dot (•) indicates the configuration found from
SRS, while the black × symbol indicates the expected configuration
from URS.

Figure 3 shows the configuration found from both SRS and URS
are very close to the actual best configuration, regarding both X and
Y axis. One exception is Dune, where the best two configurations
had much better performance compared to all others. SRS was
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NFM N rSRS rURS rTest pSRS pURS pTest rBetter
Dune 71.32 0.007 0.016 Pass 0.039 0.042 Pass 93%
HSMGP 66.42 0.008 0.017 Pass 0.005 0.011 Pass 91%
HiPAcc 65.82 0.010 0.017 Pass 0.002 0.004 Pass 82%
Trimesh 129.21 0.003 0.009 Pass 0.003 0.013 Pass 91%

Table 6: Finding Near-Optimal Configurations for FSE2015 Systems
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Figure 3: Configuration Space of FSE2015 Systems

able to find the two configurations for some experiments, but not
always.

We performed similar experiments with KConfig NFMs to find
configurations with the smallest build size. Since the configuration
space cannot be enumerated, we do not know what the best and
worst performance values are as well as the rank of the returned
configurations. At least, we compared the non-normalized build
size of configurations found from SRS to that of URS. To do so, we
limited N to 200 and derived:
pSRS — smallest build size in megabytes, found from SRS with 200

samples, and
pURS — smallest build size in megabytes, found from the configu-

rations in 200 URS.
We repeated the experiment 25 times and averaged the result

for a confidence level of 95% with 20% margin of error [61]. From
these experiments, we derived:
pTest — Mann-Whitney U test results which evaluates pSRS val-

ues are smaller than pURS values with 95% confidence [44].
"Pass" implies pSRS is smaller, and "Fail" otherwise.

Table 7 shows our results for each NFM.
For all systems, we observed that SRS finds configurations with

smaller build sizes with 95% confidence. Although the actual rank
of configurations sampled is unknown, the results are consistent

NFM pSRS pURS pTest
axTLS 0.23 0.24 Pass
Fiasco 25.64 26.74 Pass
uClibc-ng 1.10 1.32 Pass

Table 7: Finding Near-Optimal Configs for KConfig Systems

with FSE2015 NFMs as: 1) rURS does not depend on the size of the
configuration space, but how many samples are collected, and 2)
pSRS<pURS , which corresponds to rSRS<rURS .

These results show that SRS can perform accurate statistical
reasoning over numerical features as well, while also showing
that BBPF allows SRS to deal with numerical features without
modifying the algorithm or the solver it uses. However, we believe
that SRS can be enhanced to derive more accurate reasoning on
numerical features, which may increase the rPass value. We leave
this as a future work.

Conclusion: BBPF can be used by existing SAT analysis
on SPLs "as is", with the work of [51] as an example.

Threats to Validity

Internal validity. To control randomness, we conducted 97 exper-
iments and averaged the results for a confidence level of 95% with
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a 10% margin of error [61]. One exception is the result for KConfig
NFMs in RQ4, which repeated the experiments 25 times for 95%
confidence and 20% margin of error [61], due to the lengthy time
to build sampled configurations.

For RQ2 and RQ3, we utilized the method for counting and URS
configurations that are either proposed by the developers of the
tool or practiced by prior work in SPL research.

For RQ4, we reduced the noise on the performance measure-
ment of the samples as much as possible. FSE2015 NFMs use the
performance measurement from [32], which was used in prior
works as well. KConfig NFMs measured build sizes, as they are less
susceptible to environmental influences.

External validity. We used 7 real-world systems with different
numbers of features, number of clauses, and domains. Systems had
different combinations of constraints with each other, so that we
could evaluate our approach with different complexity ofNFMs. We
are aware that our results may not generalize to all SPLs. At least,
our results show identical trends across systems, which provides
confidence that our conclusions should hold for many SPLs with
comparable size of the configuration space.

We are also aware that Z3 and Clafer may not be representative
of all CMT and CP solvers. At least, we used the tools that were
widely used in SPL research, which are likely to be used in future
SPL research as well.

5 RELATEDWORK
Adding to Section 2, we discuss other relevant work here.

5.1 NFs in NFMs
Most papers, for various reasons, did not describe how numerical
variables were represented as features. Some considered NFs in the
same manner as mandatory Boolean features, so that they had only
one value [11, 38]. Some encodedNFs as alternative features, where
each value of a NF was considered a distinct feature [41]. Shi [57]
used a single type of feature called ‘pseudo-Boolean features’. In
his work, Successor (+1) and Predecessor (-1) were introduced as
a new type of constraint. As described in Section 3, representing
alternative features as a propositional formula has limited scalabil-
ity as the number of clauses grow rapidly as number of features
increases.

Numerical variables and string-attributed feature models have
been formalized. Extended, Advanced or Attributed feature models
appear in the literature as a way to expand classical feature models.
Attributed feature models extend Boolean feature models to include
additional information about features [8, 10, 54]. In these works,
the authors represent packages of attributes (eg., cost, performance)
bound to every Boolean feature in the extended feature model.
Those attributes are not NFs [59]. The main differences between
attributes and NFs are:

• Currently, there is no consensus on a notation to define
attributes. However, most proposals agree that an attribute
should consist at least of a name, a domain and a value [8],
while a NF consists of a name and a domain [40].

• A NF is a feature, so it can be selected or deselected; it
can have a value of zero, or it can have any value, and all

these states are different. An attribute, in contrast, cannot
be selected/un-selected [8].

• Every Boolean feature in an extended feature model is as-
sociated with a set of attributes [40]. A NF in a NFM has a
parent, and is affected by cardinality relationships [25].

• A set of attributes can contain several variables. Additionally,
those variables can be present in different sets at the same
time, as their respective value can be distributed along sev-
eral sets belonging to different features [8]. Instead, Boolean
andNFs are declared just once within the FeatureModel [21].

• If we modify the value of just one NF in a configuration, we
are producing another configuration in the configuration
space. That does not happen with attributes [40].

In any case, constraints are similarly formalized for both NFs and
attributes [8].

5.2 Automated Reasoning of SPLs
As SPLs have many features and complex constraints, automated
solvers were used to solve them as Constraint Satisfaction Problems
(CSP). SAT, SMT, CP and Binary Decision Diagrams (BDDs) can be
considered as different types of CSPs.

For classical feature models, SAT and BDD were the two most
utilized automated solvers. For both, a feature model needs to be
encoded as a propositional formula. SAT solvers and BDDs were
utilized in various analyses, including: checking if a feature model
has conflicting constraints or deriving a valid configuration [7, 63],
analyzing the structure of the FM [11, 31, 42], counting number of
valid configurations [51, 63], and finding inconsistencies between
code and feature model [41, 50]. SAT solvers and their variants, such
as MaxSAT and #SAT solvers, were used to count the number of
configurations and generate samples for testing and finding optimal
configurations [18, 35, 38, 58].

For NFMs, SMT and CP solvers were used as they natively sup-
port representation and reasoning ofNFs and constraints. Encoding
feature models for SMT and CP solvers is similar to that of a SAT
solver except that they allow numerical variables and operations.
Each variable represents a feature and constraints are represented
with logical or arithmetic operations. As SMT and CP solvers have
similar functionality as SAT solvers, they had similar usage in SPL
research: finding conflicts between constraints [9, 21, 46], deriv-
ing valid configurations under user-imposed constraints [48], and
generating samples for finding optimal configurations [34, 56, 58].

5.3 Solvers using Bit-Blasting
Bit-blasting can, computationally speaking, exhaust any solver if
the input formula contains numerical values with large bit-width
or complex arithmetic. Then, a pre-processing and simplification
of the input formula is essential for reasoning efficiency.

In [20], the authors describe several classes of simplification
methods implemented in the solver MathSAT5, which are applied
with certain heuristics like canonization (eg.,X−X=0), unconstrained
propagation, packet splitting [5] and disjunctive partitioning [16]
(ie., the formula is increasingly processed in batches). Approaches
like MathSAT5 are elegant, but are restricted to a subset of bit-
vector arithmetic comprising concatenation, extraction, and linear
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equations over bit-vectors; inequalities are not considered [15]. Al-
beit bit-vector theory admits quantifier elimination by considering
that a fix-width is the maximum-width among all variables, this
is rarely a practical approach. Instead, equisatisfiable formulas are
used [39].

Solvers Z3 [22] and Yices [23] apply bit-blasting to every opera-
tion besides equality, which is, then, handled by a specialized solver.
They also add axioms, dynamically, from array theory. Boolec-
tor [14] applies bit-blasting to bit-vector operations and lazily in-
stantiates definitions of array axioms and macros.

A more recent solver is CVC4 [4]. It is a lazy and layered solver,
which tries to decide satisfiability using faster, but incomplete,
sub-solvers for inequality reasoning. In case of sub-solvers are
not enough, theory lemmas and propagated literals are added to
the formula, and a lazy CNF-SAT bit-blasting solver is employed.
STP [30] performs several array optimizations, as well as arithmetic
and Boolean simplifications on the bit-vector formula before bit-
blasting to MiniSat [60].

5.4 Uniform Sampling of SPLs
URS is not simple, as merely random selecting features rarely yield
valid configurations [43]. Chakraborty et al. [17] proposed Unigen2,
a uniform sampling algorithm for propositional formula based on an
approximate #SAT solver. Dutra et al. [24] proposed QuickSampler,
a sampling algorithm for efficiently generating valid configurations
for testing. On these algorithms, Plazar et al. [52] showed that
Unigen2 is not scalable for configuration spaces larger than 1010,
which is not applicable for our Kconfig NFMs, while QuickSampler
samples are often not uniformly distributed.

We used Smarch [38], a URS algorithm that can scale up to
configuration spaces of size 10249.

5.5 Statistical Analyses of SPLs
Prior work on SPLs performed statistical analyses to reason on
colossal (≫1082) and complex configuration spaces. To estimate the
influence of a feature on performance, samples were benchmarked
and compared for performance differences [33, 55]. To find optimal
configurations, samples were used to search the configurations
throughout the space [18, 26, 34, 35, 51, 56]. To evaluate different
sampling approaches to locate variability bugs, URS was considered
to be the baseline to compare with other approaches [1, 47, 62].

6 CONCLUSIONS AND FUTUREWORK
Configuration spaces grow exponentially with increasing number
of features, which makes statistical reasoning crucial for under-
standing them. Compared to classical feature models, NFMs have
comparatively larger and more complex configuration spaces due to
increased variability and additional types of constraints. This makes
statistical reasoning of NFMs even more vital. Well-known auto-
mated solvers that handle numerical variables, however, were not
feasible for counting and URS of configurations for NFMs, which
are needed for unbiased statistical reasoning of product spaces.

We evaluated bit blasting to encode NFs and their constraints as
propositional formulas, to utilize existing SAT-based approaches
on counting and URS configurations. With bit blasting, NFMs were

represented as binary bits while their constraints were represented
as propositional clauses.

Our experiments showed bit-blasting:
• can represent NFs and their constraints up to 10 bits of ac-
curacy without overhead,

• can utilize sharpSAT to count the number of configurations,
which was much faster and more scalable than current SMT
and CP solvers,

• can utilize Smarch [38], an existing tool to URS configura-
tions, while SMT and CP could not guarantee the uniform
distribution of their produced samples, and

• was able to use SRS [51], a previously published algorithm, to
find near-optimal configurations for classical feature models,
to search for near-optimal configurations in NFMs as well,
and

• the largest KConfigNFMs that we examined had a huge con-
figuration space 1045 (see Table 2); we believe much larger
configuration spaces can be analyzed.

We are confident our work can be utilized by others to analyze
different SPLs with NFs. Our research also suggests future explo-
rations:

• expand bit-blasting to handle more arithmetic operations,
• evaluate whether other prior work on analyzing classical
feature models with SAT solvers can be extended by bit-
blasting.
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A ARTIFACT INFORMATION
The artifact for this paper contains a Virtual Machine (VM) with
pre-built and configured tools to re-run the evaluation, including:
Bit-blasting for NFs, model-counting, URS, and SRS for three dif-
ferent types of solvers. A VM is provided due to the amount of
knowledge and time necessary to configure and run the third-party
and new tools. A Linux operating system is mandatory to run those
tools, while a VM can run on almost any operating system and/or
hardware. It also includes the tools that natively supports NFs -
Clafer and Z3py. Tested feature models and their intermediate and
final results are also included.

A.1 Access and Content
A VM is pre-configured to re-create the experiments, as well as to
reuse for different NFMs and/or data-sets. The VM and its detailed
instructions are available at:

https://github.com/danieljmg/SPLs-BitBlasting-URS
The VM make use of the following third-party assets:

• Lubuntu 18.04 LTS x86_64 operating system 12.
• The Python Interpreter version 3.7 13.
• The Oracle’s open-source Java Development Kit 14.
• Clafer Instance Generator 0.45 15.
• The Z3 theorem prover SMT solver for Python (Z3py) 16.
• Model counting SAT solver (SharpSAT) 17.
• JetBrains 2019.1 Python IDE (PyCharm) 18.
• The Smarch random sampling tool [38].
• The Kolmogorov-Smirnov Test (KS-t) 19.
• The Mann-Whitney U Test (MWU-t) 20.
• The Oracle VirtualBox virtualization software 21.
• A KConfig measurement VM 22.

The VM includes the following new assets:

• Clafer, Z3py and DIMACS (SharpSAT format) NFMs of the
seven SPLs in Table 2.

• A Python script to transform numerical features modeled in
Z3py into Tseitin-CNF DIMACS format using Bit Blasting.
It supports composed first order logic and linear arithmetic
with integers as in Table 1.

• Scripts to count the number of configurations from Clafer,
Z3py and DIMACS models.

• Scripts to random sample configurations from Clafer, Z3py
and DIMACS models.

• A Python script to rank sets of random samples to evaluate
their uniform distribution. A set of samples is obtained and
measured from different reasoners.

• Intermediate files including sets of samples, ranks, and mea-
surements.

A.2 Installation and Environment Overview
Running the evaluation has following minimum requirements:

• A machine with at least 4GB of memory RAM and 10GB of
disk free space, with x86 64-bit operating system and Oracle
VirtualBox 6 installed.23

• Intel VT-x or AMD-V CPU option activated in the mother-
board BIOS settings. However, RQ4 is partially not compati-
ble with Intel VT-x.

To set up the environment, you first need to load the downloaded
VM into VirtualBox clicking File->Import Appliance and searching
for SPLC19VM.ova. Lubuntu credentials are:

• User: caosd
• Password and Sudoers password: splc19

After Lubuntu is ready to use, in its Desktop we can find:
• Folder featuremodels where all NFMs with different formats
(Clafer, DIMACS and Z3py) are located.

• Folder samples where 100, 300 and 500 pre-computed sam-
ples for each solver and NFMs are located.

• Folder UFscripts where scripts for model count and sampling
with SharpSAT are located.

• Launcher for PyCharm Python IDE.
• Launcher for LXTerminal in order to execute scripts.

A.3 Usage Summary
Different scripts are provided for each research question (RQ):

• RQ1: Open PyCharm and run Z3toCNF.py to Bit-blast (a+b >
c), and finish with UFscripts/SharpSAT_ABGTC scripts.

• RQ2: Run the scripts at UFscripts/SharpSATCounting, UF-
scripts/ClaferCounting and PyCharm/Z3.

• RQ3: Run the scripts at UFscripts/ClaferSampling, Py-
Charm/Z3, PyCharm/ranksampling,HCS_Optimizer/randtest.py
and HCS_Optimizer/evaluation.py. Finish with the KS-Test.

• RQ4: Adjust and run /search.py and, for Kconfig models, use
the KConfig measurement VM ending with the MWU-test.

Adjustments required for each RQ is indicated in the code. Data com-
parisons and graphs can be performed with the included software
Gnumeric 24. Detailed steps can be found in the Github artifact’s
page.

12https://lubuntu.net/
13https://www.python.org/
14https://openjdk.java.net/
15https://github.com/gsdlab/claferIG
16https://github.com/Z3Prover/z3
17https://github.com/marcthurley/sharpSAT
18https://www.jetbrains.com/pycharm
19https://www.wessa.net/rwasp_Reddy-Moores%20K-S%20Test.wasp
20https://www.socscistatistics.com/tests/mannwhitney/default2.aspx
21 https://www.virtualbox.org/
22https://github.com/paulgazz/kconfig_case_studies
23 https://www.virtualbox.org/wiki/Downloads
24http://www.gnumeric.org/
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