
Aocl : A Pure-Java Constraint and Transformation Language for MDE

Don Batory and Najd Altoyan
Department of Computer Science

The University of Texas at Austin, Austin, Texas
{batory, naltoyan}@cs.utexas.edu

Keywords: Java MDE Constraint Language, Java MDE Transformation Language.

Abstract: OCL is a standard MDE language to express constraints. OCL has been criticized for being too complicated,
over-engineered, and difficult to learn. But beneath OCL’s complicated exterior is an elegant language based
on relational algebra. We call this language Aocl, which has a straightforward implementation in Java. Aocl

can be used to write OCL-like constraints and model transformations in Java. A simple MDE tool generates
an Aocl Java 8.0 package from an input class diagram for Aocl to be used.

1 Introduction
A central issue in Model Driven Engineering

(MDE) is tooling: How can MDE tools be easier to
learn, use, and maintain? This is not new: a vi-
sionary 2004 paper by (Favre, 2004) raised similar
concerns by advocating a rethinking of MDE basics
from the ground-up. The Object Constraint Language
(OCL) (OMG, 2019) has not gone unscathed (Cabot
and Gogolla, 2019; Avila et al., 2010; Wilke and De-
muth, 2011; Bauerdick et al., 2004; Brucker and et al,
2014; Fuentes et al., 2003; Cadavid et al., 2011).

Unease about OCL’s complexity transcends MDE
where a simple constraint language for UML class
diagrams is needed. For years, researchers in Soft-
ware Product Lines (SPLs) explored generalizations
of feature models to admit replicated features, fea-
ture attributes, and numerical features (Eichelberger
and Schmid, 2015; Czarnecki et al., 2006). Doing
so generalizes trees of features (a.k.a., feature mod-
els) where propositional logic was sufficient to ex-
press constraints (Apel et al., 2013), to class diagrams
where first-order logic and languages like OCL are re-
quired (Czarnecki et al., 2006). Of course, there has
been resistance in adopting OCL outright by SPL re-
searchers for the reasons in the first paragraph.

There is also the intellectual challenge to find an
alternative to OCL that matches its power but is sim-
ple and elegant. Imagine the damage COBOL would
have inflicted on programming and Computer Science
if we all were required to use it into the 1980s. Any
early language is not, nor should be, an absolute end-
point.

Against this backdrop, today’s Object Oriented
(OO) programming languages have made great strides
in the last 25 years; Java 8.0 is vastly different than
Java 1.0. We demonstrate in this paper that contem-
porary OO languages now have the functionality to

replace specialized languages used in MDE, like OCL
and ATL. Our work is simply a next step in the evolu-
tion of MDE concepts and tooling.

Where might a replacement or simplification of
OCL be found? Researchers with a graduate under-
standing of classical databases have long recognized
the connections between MDE and relational algebra
(Karsai et al., 2006). Independently, category the-
ory is a mathematical foundation for MDE; categori-
cal concepts are finding their way into today’s MDE
tools and texts (Ehrig and et al., 2006; Diskin and
Maibaum, 2012; Mabrok and Ryan, 2015). What
would result if these foundational lines of thought
were unified?

(Freyd and Scedrov, 1990) studied categories with
power set domains called allegories. (Zieliński et al.,
2013) showed how allegories were closely connected
to database modeling and query processing. Alle-
gories were noticed by mathematicians but not so by
the database and MDE communities.

This paper is not an immediate response to reading
these pioneering works on allegories; it took years to
understand and integrate these ideas and realize their
implications and utility.

To our delight, allegories offer a clean way to ex-
press constraints from a relational algebra perspec-
tive. Our language, called Aocl, is pure-Java and is
implemented by a Java framework that relies on Java
streams, generics, and lambda expressions. Using
Aocl to write and evaluate model constraints requires
an MDE tool to generate a Java 8.0 package for a
given class diagram of the target metamodel.

Aocl is a pragmatic response to the motivations of
this paper. It is a simple, extensible (meaning new
operations can be added), pure-Java replacement for
OCL. The Aocl codebase is ∼9K Java LOC and can
be prototyped in a few months on any MDE platform.



2 Aocl

2.1 Insights Behind Aocl

Below is the EDD class diagram. It says there are
Employees, Departments, and Divisions. Each Emp works in
any number of Deps and each Dep employs any num-
ber of Emps. Each Dep belongs to a single Div.

-name : String
-age : Int

Emp

-name : String
-city : QString

Dep

-name : String

Div

-worksIn

*

-employs

*

-inDiv

1

-hasDep

*

Job DD

Figure 1: The Emp-Dep-Div or EDD Class Diagram.

Here is a query written in USE OCL (USE, 2019)
to find employees in the tool division:

Div.allInstances.select(name=‘tool ’).hasDep.employs

Its meaning is straightforward:
• Div.allInstances produces all Div objects;
• select(name='tool') eliminates Div objects

whose name is not tool;
• hasDep produces Dep objects that belong to tool

divisions; and
• employs produces Emp objects that work in tool

divisions, which is the result of the query.
Written in this way, the connection between relational
databases and OCL emerges when a relational algebra
analog to this query is written in OO style/syntax:

Div.select(name.equals("tool"))

.hasDep().employs() (1)

• Div is the table of all Div tuples;
• select(name.equals("tool")) eliminates Div

tuples whose name is not tool;
• hasDep() produces the table of Dep tuples that are

referenced by qualified Div tuples. In database
parlance, this operation is a right-semijoin of
qualified Div tuples with the entire Dep table (Sil-
berschatz et al., 2006; Wikipedia, 2017); and

• employs() is another right-semijoin that produces
the table of Emp tuples that work in qualified de-
partments.

Query (1) could have been written using only rela-
tional algebra operations, making explicit the semi-
join argument — here an association name — for each
right-semijoin:

Div.select(name.equals("tool"))

.rightSemiJoin(hasDep)

.rightSemiJoin(employs)

This is ugly. However, by lifting association role
names to their corresponding semijoin operations
yields the compact expression (1).

Note: A bit of database sugaring was used in
this example. Job is a many-to-many association
between Emp and Dep (Fig. 2 a). Classical rela-
tional database design, called normalization, re-
places association Job with an association class
Job and two one-to-many associations JobEmp and
JobDep (Fig. 2 b) (Elmasri and Navathe, 1999; Sil-
berschatz et al., 2006). In MDE parlance, the
transformation of Fig. 2 a to Fig. 2 b is a model
refactoring (France et al., 2003).

=
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Figure 2: Database Normalization of the Job Association.

Association traversals in (1) and Fig. 2 a are cas-
cading right-semijoins in Fig. 2 b. Written as Java
composed methods where A().B() means evaluate
A() first, then B():

worksIn() = wi().toDep()
employs() = em().toEmp()

That is, worksIn() is a traversal (right-semijoin) from
Emp to Dep in Fig. 2 a. In Fig. 2 b, worksIn() is a right-
semijoin from Emp to Job via association wi() and then
another right-semijoin from Job to Dep via toDep().
Of course, these details can be hidden from end-users.

In a nutshell, the essence of OCL is relational al-
gebra written in OO syntax with customized names
for right-semijoins. We call this language Aocl.

Foundations and Concessions. Our presentation is
incomplete in that the theory that inspired Aocl, and
which existed long before Aocl itself, should be pre-
sented next. For lack of space and as few in MDE ap-
preciate category theory (and far fewer allegories), the
usual theory-then-implementation order is presented
in a technical report (Batory and Altoyan, 2019).

2.2 Running Example

We add a recursive association Anc to our EDD dia-
gram, Fig. 3. Now each Emp has a lineage: descen-
dants (children) and ancestors (parents). Traversing
the Anc association computes Emps that are grandpar-
ents, by expression Emp.parent().parent(), and Emps

that are grandchildren, by Emp.child().child().

Class Diagram to Relational Schema Mapping. It
is well-known that UML class diagrams can be trans-
lated into normalized relational schemas (Elmasri and
Navathe, 1999). The blue statements in Fig. 4 are EDD
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Figure 3: EDD with a Recursive, Lineage Association Anc.

schema declarations in MDElite (Batory et al., 2013),
the MDE platform used in this paper. The dbase state-
ment declares the EDD database to consist of five tab-
les: Emp, Dep, and Div, along with an association table
Job that encodes n:m relationships among Emp and Dep
tuples, and an association table Anc that encodes n:m
ancestry information among Emp.

The first column of every table is a manufactured
identifier id required by MDElite. The primary key
of tables Emp, Dep, and Div is their name attribute. The
manufactured tuple identifier id always serves as a
tuple key. All facts, dbase, table, and tuple decla-
rations are written in a Prolog-fact notation.

The Emp table of Fig. 4 has 3 columns: id, name,
and age. Column age is of type int; the others default
to String. Table Dep has 4 columns: id, name, "city",
and inDiv. The first three columns are of type String.
"city" means that city values are quoted because
they may have blanks (e.g., "New York"). Attribute
name has unquoted String values. Column inDiv has
legal identifiers of Div tuples as its values.

dbase(EDD,[Emp,Dep,Div,Anc,Job]).

table(Emp,[id,name,age:int]).

Emp(p1,don,64).

Emp(p2,karen,57).

Emp(p3,hanna,23).

Emp(p4,alex,18).

Emp(p5,steve,53).

Emp(p6,priscila,28).

Emp(p7,hanna,73).

Emp(p8,kelly,58).

Emp(p9,phyllis,56).

table(Dep,[id,name,"city",inDiv:Div]).

Dep(d1,mens,"Austin",v1).

Dep(d2,womens,"Austin",v1).

Dep(d3,appliances,"Toronto",v2).

Dep(d4,hardware,"Toronto",v2).

Dep(d5,book,"Hamilton",v2).

table(Div,[id,name]).

Div(v1,clothing).

Div(v2,goods).

table(Anc,[id,parent:Emp,child:Emp]).

Anc(c1,p1,p3).

Anc(c2,p2,p3).

Anc(c3,p1,p4).

Anc(c4,p2,p4).

Anc(c5,p5,p1).

table(Job,[id,employs:Emp,worksIn:Dep]).

Job(w1,p1,d1).

Job(w2,p2,d2).

Job(w3,p3,d2).

Job(w4,p4,d4).

Job(w5,p5,d3).

Job(w6,p6,d2).

Job(w7,p7,d2).

Job(w8,p1,d3).

Job(w9,p8,d5).

Job(w10,p9,d5).

EDD-DB

Figure 4: An EDD Database Instance.

Object Model to Database Mapping. An EDD model
(object diagram) is needed to evaluate queries and
constraints. Any EDD model can be translated into
a database of tuples for the computed EDD schema,
such as Fig. 4. Again, tuples are written as Prolog
facts: Emp(p1,don,64) is a Emp tuple where id=p1,
name=don, and age=64. The Anc(c1,p1,p3) tuple has
id=c1, parent=p1, and child=p3, meaning don is the
parent of hanna.

Although this example lacks inheritance hierarch-
ies, Aocl supports subclasses/subtables as expected.

Constraints and Queries on EDD. Here are four con-
straints to enforce on EDD:
(C1) Every Emp has a unique name.
(C2) Every Dep in Toronto employs Emps 19 and
older.
(C3) No Div can employ more than 20 Emps.
(C4) Grandparents of workers can not be employed.

And here are five non-trivial and progressively more
complicated queries that could be used in constraints
or in model-to-model transformations:
(Q1) Find Emps whose name begins with d or p.
(Q2) Find the Divs that have Deps in Austin.
(Q3) List Emps that work in multiple Divs.
(Q4) Print the Div colleagues of priscila.
(Q5) List the id of each Emp (whose parent is also an
Emp) with the id of division(s) in which he/she works.

We consider queries in the next section and con-
straints afterwords.

2.3 Aocl Queries
An Aocl program is a pure-Java program that imports
its allegory package and starts by reading a database,
here the EDD model of Fig. 4:

import Allegory.EDD.*;

...

Database edd = new Database("EDD.edd.pl");

We can immediately write Aocl expressions for each
query in Section 2.2. Query outputs are posted in
Fig. 5.

(Q1) finds employees whose name begins with d or p.
Here is Java (Aocl) code to compute (Q1)’s solution:

edd.Emp

.select(e->e.name.startsWith("d") ||

e.name.startsWith("p"))

.print();

The expression edd.Emp yields the Emp table. The
select takes a Java Predicate as input, which
selects Emp tuples whose name starts with d or p.
Then print() displays the select-produced table. Its
USE OCL counterpart is:1

Emp.allInstances

.select(name.at(1)=’d’ or

name.at(1)=’p’)

1Following allInstances in some versions of OCL re-
quire -> or ()->; our USE OCL is correct.

https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html


(Q2) finds divisions that have departments in Austin:

edd.Dep

.select(d->d.city.equals("Austin"))

.inDiv()

.print();

Deps that are in Austin are identified by select().
Austin Deps are mapped by inDiv() to their Divs, and
then printed. Its USE OCL counterpart:

Dep.allInstances

.select(city=‘Austin ’)

.inDiv ->asSet

(Q3) lists Emps that work in multiple Deps:

edd.Emp

.select(e->e.worksIn().count()>1)

.print();

The select() finds employees that work in more than
one department. Its USE OCL counterpart:

Emp.allInstances.select(worksIn ->size >1)

(Q4) prints the division colleagues of priscila:

edd.Emp

.select(e->e.name.equals("priscila"))

.worksIn().inDiv()

.hasDep().employs()

.print();

Emp.select() produces an Emp table of priscila
tuples. worksIn().inDiv() produces a table of Divs

in which priscila works. hasDep().employs() com-
putes the table of Emps that work in those Divs. Its USE
OCL counterpart is:

Emp.allInstances

.select(name=‘priscila ’)

.worksIn.inDiv.hasDep.employs ->asSet

(Q5) lists the id of each employee (whose parent
is an employee) with the id of division(s) in which
he/she works:

DTable Q5 = new DTable("Q5","EmpId","DivId");

edd.Emp

.select(e->e.parent().exists())

.forEach(em->em.worksIn().inDiv()

.forEach(d->Q5.add(em.id,d.id)));

Q5.print();

The first line creates a temporary table Q5 with col-
umn names EmpId and DivId. The second line selects
eligible Emps. The forEach lines compute Q5 tuples
(ordered pairs). The last line prints table Q5. Its
USE OCL counterpart is:

Emp.allInstances

.select(parent ->notEmpty)->

iterate(e:Emp;

ed:Set(Tuple(first:Emp,

second:Set(Div)))=Set{}

| ed->including(Tuple{first=e,

second=e.worksIn.inDiv ->asSet}))

Observations.
• Fig. 5 is the output of Aocl and USE OCL. Their

solutions are identical, albeit different syntax. As
these examples showed, Aocl and OCL expres-
sions are syntactically similar. This is to be ex-
pected as both are stream processing languages.

• The methods invoked in the above examples on
EDD tuples and tables belong to the generated EDD
Java package. The same holds for the EDD con-
straints we consider next.

solutions

Aocl Solutions USE OCL Solutions

(Q1) Find all employees whose name begins with ‘d’ or ‘p’

table(Emp,[id,name,age:int]).

Emp(p1,don,64).

Emp(p6,priscila,28).

Emp(p9,phyllis,56).

Set{p1,p6,p9} : Set(Emp)

(Q2) Find the divisions that have departments in Austin

table(Div,[id,name]).

Div(v1,clothing). Set{v1} : Set(Div)

(Q3) List employees that work in multiple departments

table(Emp,[id,name,age:int]).

Emp(p1,don,64). Set{p1} : Set(Emp)

(Q4) Print the division colleagues of priscila

table(Emp,[id,name,age:int]).

Emp(p1,don,64).

Emp(p2,karen,57).

Emp(p3,hanna,23).

Emp(p6,priscila,28).

Emp(p7,hanna,73).

Set{p1,p2,p3,p6,p7} : Set(Emp)

(Q5) List the ID of each employee (whose parent is an employee) and the ID of division(s) in which he/she works

table(Q5,[EmpId,DivId]).

Q6(p1,v1).

Q6(p1,v2).

Q6(p3,v1).

Q6(p4,v2).

Set{ Tuple{first=p1,second=Set{v1,v2}},

Tuple{first=p3,second=Set{v1}},

Tuple{first=p4,second=Set{v2}} } : Set( 

Tuple(first:Emp, second:Set(Div)) )

Figure 5: Aocl and USE OCL Solutions to (Q1)–(Q5).

• Aocl follows relational database tradition as tables
(sets of tuples) are produced. Tables with dupli-
cates can indeed be produced in Aocl and by ap-
plying a unique() operation, duplicates can be re-
moved. Again, this is standard relational database
technology (Elmasri and Navathe, 1999). The
Bag, Sequence, Orderedset, and Collection con-
structs in OCL are clutter from a classical rela-
tional database perspective.

• The simplicity of Aocl syntax relies heavily on
Java 8.0 syntax and Java streams. For example, all
Aocl select statements require an iteration vari-
able (e.g., t->) – this is part of Java 8.0 and absent
in earlier versions of Java.

2.4 Aocl Constraints

A special Java class and table operation are used in
Aocl to log constraint violations. ErrorReport is a



Java class whose stateful objects log errors. Table
method error(er,...) takes an ErrorReport object
(er) and logs a customized error for each tuple of
error()’s input table. Constraint outputs are posted
in Fig. 6.

Aocl constraint programs begin with the reading of
a database and the creation of an ErrorReport object:

import Allegory.EDD.*;

...

Database edd = new Database("EDD.edd.pl");

ErrorReport er = new ErrorReport();

Constraints can now be written. (C1) asserts all em-
ployees have unique names:

String fmt = "multiple employees have name=%s";

edd.Emp

.name()

.duplicates()

.error(er,fmt,e->e.value);

Emp.name() produces a single-column STRINGTable of
Emp names that preserves duplicates. duplicates() re-
tains one copy of each duplicated tuple in a table and
eliminates non-duplicates. An error is logged for each
tuple in STRINGTable. Its USE OCL counterpart:

context Emp inv UniqueName:

Emp.allInstances

.forAll(e1,e2 | e1.name=e2.name implies e1=e2)

(C2) every Dep in Toronto hires Emps 19 and older:

String fmt = "%s illegally hired %s";

edd.Dep

.select(d->d.city.equals("Toronto"))

.forEach(d->d.employs()

.select(ee->ee.age <19)

.error(er,fmt,e->d.name ,e->e.name));

For each Dep in Toronto, a table of under-aged Emps is
computed and each violation is logged. Its USE OCL
counterpart:

context Dep inv EmpAge:

self.select(city=‘Toronto ’)

.employs ->forAll(e|e.age >=19)

(C3) says no Div can employ more than 20 Emps:

edd.Div

.select(d->d.hasDep().employs().count()>20)

.error(er ,"%s has >20 workers",d->d.name);

Its USE OCL counterpart:

context Div inv EmpCount:

self.hasDep.employs ->size()<=20

(C4) grandparents of workers can not be employed:

String fmt = "%s has grandchildren employed";

db.Emp.select(e->e.child().child().exists())

.error(er, fmt, e->e.name);

Its USE OCL counterpart:

context Emp inv twoGen:

self.child.child ->size() = 0

Printing accumulated errors ends a constraint pro-
gram:

er.printEH();

(C1), (C2) and (C4) log errors; (C3) does not.

Observations.
• Fig. 6 shows the output of Aocl and USE OCL

queries. The solutions are identical, albeit dif-
ferent syntax. Aocl errors pin-point their source;
USE OCL simply reports false when any error is
detected, true otherwise. The Aocl reports no er-
rors for (C3), and thus is blank.

• USE OCL and Aocl constraint expressions are
comparable in structure with Aocl expressions a bit
longer due to customized error logging.

CSolutions

Aocl Solutions USE OCL Solutions

(C1) All Emps must have unique names

Solution 1:

multiple employees have name=hanna

Solution 2:

Emp(p3..) has non-unique name=hanna

Emp(p7..) has non-unique name=hanna

false

(C2) All Deps in Toronto cannot employ Emps younger than 19

hardware illegally hired alex false

(C3) No Div can employ more than 20 Emps

true

(C4) Grandparents of workers can not be employed

steve has grandchildren employed false

Figure 6: Error Log of Constraints (C1)–(C4).

2.5 Model-to-Model Transformations

OCL cannot update the model that it examines. By
precluding updates, Aocl could behave similarly. By
allowing updates, Aocl could be used to write model-
to-model transformations and be more versatile.

As an illustration, in a few minutes, we coded
and executed ATL’s “Families-to-Persons” exam-
ple (Jouault, 2007). The Java source for this program
is in Fig. 7. (This image is digitally enlargable). We
generated Aocl packages for the Families and Persons
metamodels, and the rest was easy. We do not foresee
problems scaling Aocl to large M2M transformations.

https://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf


Figure 7: Aocl Families-to-Persons M2M Transformation.

3 Status

Aocl is operational and relies on a Java framework
that uses Java generics, lambda functions, and Java
streams (MDELite, 2020). An MDElite tool called
Meta4 converts a textual specification of a class dia-
gram into a plug-in for the Aocl framework. This plug-
in defines all classes, tables, and database operations
to support an Aocl package for that class diagram. For
example, a textual specification of the EDD diagram of
Fig. 3 is:

classDiagram EDD.

table(Emp ,[id,name ,age:int]).

table(Dep ,[id,name ,"city"]).

table(Div ,[id,name]).

// continued on next page

assoc Emp employs * -- Dep worksIn *.

assoc Emp parent * -- Emp child *.

assoc Div inDiv 1 -- Dep hasDep *.

// no inheritance decls in this example

From this specification, Meta4 generates the Aocl EDD
Java 8.0 package with classes for Emp, Dep, Div tuples
and tables, hidden association tables and their tuples,
a Java class whose instances are EDD databases and a

MDElite database schema:

Meta4
Class

Diagram
Spec

Meta4

Meta4 itself is a set of M2T tools and parsers, to-
taling 6100 Java LOC. Java Generic classes that are
shared by all Aocl packages is 2800 Java LOC. The
size of the generated EDD plug-in is 1330 Java LOC.
And MDElite, the MDE platform on which Meta4 was
built, is 18K Java LOC.

4 The Value Proposition of Aocl

Must MDE use special-purpose programming and
constraint languages like OCL(OMG, 2019), ATL
(ATL, 2005), and QVT (OMG, 2016) that require
their own compiler and IDE-like infrastructure, when
a standard and richer infrastructure that Java 11 pro-
vides might suffice? Aocl’s existence suggests not.
Here are additional pros-and-cons:
Pros. Maintaining a custom language, compiler, de-
bugger, refactoring tools, document tools, etc. is a
long-term and costly burden that few research efforts
can afford. Modern programming languages have
come a long way in the last 20 years. Java 11 (2018) is
vastly different than Java 1 (1996). The combination
of generics (Java 5), lambda expressions and streams
(Java 8), with compiler, debugging, documentation,
and refactoring support offers a modern programming
environment that makes Aocl appealing.

Even if OCL and its infrastructure were perfect to-
day, they must be maintained and extended tomorrow.
Extending tools that are Java packages, like Meta4, is
easier and less costly. And replacing arcane languages
with custom packages in modern languages can en-
tice more people to the MDE community. It certainly
would reduce the long-term burden of MDE tool sup-
port and tool education.
Cons. A perceived important down-side of Aocl is that
it is a platform dependent language rather than a plat-
form independent language. So how could a platform
dependent language be advantageous? Ans#1: Re-
call the history of distributed programming. CORBA
initially offered a language-independent front-end for
multi-platform programming. It has given way to lan-
guage annotations that bridge the gap (Oracle, 2019),
eliminating arcane CORBA languages entirely and re-
placing them with Java-derivable WSDLs for plat-
form independence. This could be done for MDE.
Ans#2: The tools of an area reflect the quality of
teaching material. OCL is about 20 years old; Eclipse
MDE tools are about 15. They are first generation
and should be celebrated for their success. We can



do better now, by reducing ideas that were considered
new 20 years ago to well-established Computer Sci-
ence technologies, making MDE concepts, languages,
and tools more elegant, easier to learn, and use.

5 Related Work
Embedding database queries in Java and other lan-

guages is common (Meijer et al., 2006). (Cheney
et al., 2013) proposed quoting mechanisms for Java
to enclose SQL-like queries. (Cook and Wiedermann,
2011) took a broader view, recognizing that quoted
blocks of SQL or a subset of Java can provide ele-
gant language support for service oriented architec-
tures and database processing. Aocl is an even closer
integration where Java packages express database (or
relational algebra) computations.

General-purpose tools, like Xtend and Xbase, inte-
grate DSLs (e.g., OCL constructs) with Java and other
languages (XText, 2017). Of course, these tools are
necessarily heavier-weight than Aocl as Aocl is simply
a package requiring no language engineering at all.

Another approach implements OCL as a Java
package (interpreter) (Eclipse, 2019). OCL queries
are submitted as Java Strings to this package (much
like SQL strings are submitted to SQL packages for
execution). The results are returned as Java objects
for subsequent processing. Aocl eliminates this mid-
dleware approach to express OCL-like queries na-
tively, invoking methods of an Aocl-generated pack-
age for direct execution.

Several projects translated OCL into Java
(Shidqie, 2007; Kallel and et al., 2016). These
particular projects were completed before Java 8
(2014) was released, where streams and lambda
functions first appeared. The translations to Java 7.0
and earlier versions are verbose and not as elegant as
their OCL and Aocl counterparts.

(Yue and Ali, 2016) compared OCL and Java
when writing constraints. Java 7 was used, meaning
that the Java code was (as above) more verbose than
OCL. Never-the-less, the authors found that partici-
pants working with OCL and Java performed equally
well, with an edge to OCL when constraints became
complicated. Aocl should reduce this advantage. A
goal was to “find a way to ... offset the investment in
terms of training and tool support ... for OCL”. Aocl

does not eliminate this cost, but reduces it to learning
a Java package, which is less intimidating.

(Rumpe, 2002) proposed �Java�OCL to (a) ad-
just OCL syntax closer to that of Java to make
it more familiar to Java developers. He examin-
ed the OCL meta operations (e.g., OclAny, OclType,
OclExpression, oclAsType) that we believe are more
elegantly handled in Java. His underlying motivation

(in our opinion) was similar to that of Yue and Ali
(Yue and Ali, 2016): to offset the investment in OCL
training.

And finally, (Vaziri and Jackson, 2000) argue that
a language like Alloy would be more appropriate than
OCL to express constraints, as OCL is “too imple-
mentation oriented”. Declarative languages always
need some escape to code to express certain concepts.
Aocl is a compromise between too-high and too-low a
specification language.

6 Conclusions
Aocl is a lightweight, simple, and pure-Java al-

ternative to OCL and special-purpose MDE transfor-
mation languages. Aocl queries and constraints are
syntactically similar (with comparable complexity) to
those of OCL. But Aocl is more streamlined as it is
pure Java, relying on Java syntax and semantics. We
believe this will simplify next-generation MDE tool-
ing and teaching – critical problems in their own right.

Modern programming languages are constantly
improving. Our experience with Java generics,
lambda expressions and streams have convinced us
that Java can effectively compete with some of yes-
terday’s special-purpose languages. The trade-off re-
places an ecosystem of intertwined special-purpose
programming languages with their massive IDE in-
frastructure (all of which must be maintained) with
small Java libraries. We argued that maintaining Java
libraries will be more cost effective in the long-run
and the maintenance of infrastructure becomes the
rightful burden of a small set of language and IDE
developers that have the resources for such efforts.

MDE users will also benefit: the cost of entry us-
ing well-known modern languages will be lower than
it is for out-dated specialized legacy languages.
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