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Abstract. Stepwise design of programs is a divide-and-conquer strategy
to control complexity in program modularization and theorems. It has
been studied extensively in the last 30 years and has worked well, although
it is not yet commonplace. This paper explores a new area of research,
finding efficient products in colossal product spaces, that builds upon
past work.

1 To My Friend Egon

Egon and I (Batory) first met at the “Logic for System Engineering” Dagstuhl
Seminar on March 3-7, 1997. Egon presented his recent work on Abstract
State Machines (ASMs) entitled “An Industrial Use of ASMs for System
Documentation Case Study: The Production Cell Control Program”. I pre-
sented my work on Database Management System (DBMS) customization
via feature/layer composition. I had not yet directed my sights beyond DBMS
software to software development in general.

At the heart of our presentations was the use and scaling of Dijkstra’s
concepts of layering and software virtual machines [15] and Wirth’s notions of
stepwise refinement [53]. The connection between our presentations was evident
to us but likely no others. I was not yet technically mature enough to have a
productive conversation with Egon then to explore our technical commonalities
in-depth.

Our next encounter was at a Stanford workshop on Hoare’s “Verifying Compi-
ler Grand Challenge” in Spring 2006. Egon would make a point in workshop
discussions and I would think: That is exactly what I would say! And to my
delight as I learned later, Egon reacted similarly about my discussion points. At
the end of the workshop, we agreed to explore interests and exchanged visits –
I to Pisa and he to Austin. We wrote a joint paper [6] and presented it as a
keynote at the June 2007 Abstract State Machine Workshop in June 2007. In
doing so, I learned about his pioneering JBook case study [44]. Our interactions
were a revelation to me as our thinking, although addressing related problems
from very different perspectives, led us to similar world view.

? This work was partially funded by the EU FEDER program, the MINECO project
OPHELIA (RTI2018-101204-B-C22), the TASOVA network (MCIU-AEI TIN2017-
90644-REDT), and the Junta de Andalucia METAMORFOSIS project.
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In this paper, I explain our source of commonality and where these ideas have
been taken recently in my community, Software Product Lines (SPLs).

2 Similarity of Thought in Scaling Stepwise Design

Central to the Stepwise Design (SWD) of large programs is the scaling of
a step to an increment in program functionality. A program is a composition
of such increments. To demonstrate that such technology is possible, one must
necessarily focus on the SWD of a single application (as in JBook [44]) or a family
of related applications (as in SPLs) where stereotypical increments in functional-
ity can be reused in building similar programs. These increments are features;
think of features as the legos [49] of domain-specific software construction.

The JBook [44] presented a SWD of a suite of programs: a parser, ASTs
(Abstract Syntax Trees), an interpreter, a compiler and a JVM for Java 1.0.
At each step, there is a proof that the interpretation of any Java 1.0 program P

and the compilation and then JVM execution of P produced identical results. The
divide-and-conquer strategy used in JBook centered on the Java 1.0 grammar.
The base language was the sublanguage of Java imperative expressions (ExpI).
For this sublanguage, its grammar, ASTs, interpreter, compiler and JVM were
defined, along with a proof of their consistency, Fig. 1a. Then imperative state-
ments (∆StmI) were added to ExpI, lock-step extending its grammar, ASTs,
interpreter, compiler, JVM and proof of their composite consistency, Fig. 1b.4

And then static fields and expressions (∆ExpC) were added, Fig. 1c, and so
on until the complete syntax of Java 1.0 was formed, with its complete AST
definitions, a complete interpreter, compiler and JVM for Java 1.0 too, Fig. 1d.
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Fig. 1. SWD of JBook.

4 All extensions were manually defined – this is normal.
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The JBook was a masterful case study in SWD. It fit my SPL theory of
features, where an application is defined by a set representations (programs,
documents, property files, etc.). Features incrementally extend each representation
so that they are consistent. Features could add new documents as well.

An SPL follows the JBook example, but with important differences. Some
programs can have different numbers of features and different features can imple-
ment identical functionalities in different ways.5 This enables a family of related
programs to be built simply by composing features. Each program in an SPL is
defined by a unique set of features. If there are n optional features, the size of
the SPL’s product space can be up to 2n distinct programs/products.

It is well-known that features obey constraints: selecting one feature may
demand the selection and/or exclusion of other features. And there is a preferred
order in which features are composed. It was discovered that a context sensitive
grammar could define the product space of an SPL whose sentences are legal
sequences of features. Such a grammar is a feature model [7]. A partial feature
model for JBook is below (given that each of the sublanguages in its design is
useful); the first line is a context free grammar. Notation “[T]” denotes feature
T is optional. Subsequent lines define propositional formulas as compositional
constraints to make the grammar context sensitive:

JBook : Expl [∆Stml] [∆ExpC] [∆StmC] ... ;

// constraints

∆ExpC ⇒ ∆Stml; // if ∆ExpC then so too must ∆Stml

∆StmC ⇒ ∆ExpC; // if ∆StmC then so too must ∆ExpC

These are the basics of SPLs [4]; a more advanced discussion is in [5].

3 SPL Feature Models and Product Spaces

A feature model can be translated to a propositional formula φ [2,3,4]. This
is accomplished in two steps: (1) the context free grammar is translated to a
propositional formula φ′, and (2) composition constraints are conjoined with
φ′ to produce φ. For example, the lone production of the JBook context free
grammar, defined above, is translated to:6

φ′ =
(
JBook⇔ (Expl)

)
∧
(

(∆Stml ∨ ∆ExpC ∨ ∆StmC ∨ . . .)⇒ JBook
)

where each term is a boolean variable. The complete propositional formula φ is:

φ = φ′ ∧ (∆ExpC⇒ ∆Stml) ∧ (∆StmC⇒ ∆ExpC)

Every solution of φ corresponds to a unique product (a unique set of features)
in that SPL. Binary Decision Diagrams (BDD) and Sharp-SAT solvers
(#SAT) can count the number of products of φ [12,21,32,40]. Industrial SPLs

can have colossal product spaces. Consider the table below from [5,21]:
5 Much like different data structures implement the same container abstraction [8].
6 More involved examples and explanations are given in [2,3,4].
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Model #Variables #SAT-Solutions Source

axTLS 1.5.3 64 1012 http://axtls.sourceforge.net/
uClibc 201 50420 298 1050 https://www.uclibc.org/
Toybox 0.7.5 316 1081 http://landley.net/toybox/
BusyBox 1.23.2 613 10146 https://busybox.net/
EmbToolkit 1.7.0 2331 10334 https://www.embtoolkit.org
LargeAutomotive 17365 101441 [26]

272 is a magic number in SPLs. If an SPL has 272 optional features, it has
2272 unique products. 2272≈1082 is a really big number : 1082 is the current
estimate of the number of atoms in the universe [46]. The LargeAutomotive
SPL in the above table has a colossal space of 101441 products. That makes the
largest numbers theoretically possible in Modern Cosmology look really, really

small � [35].7 And there are even larger known SPLs (e.g., the Linux Kernel),
whose size exceeds the ability of state-of-the-art tools to compute.

Beyond admiring the size of these spaces, suppose you want to know which
product in a space (or a user-defined subspace) has the best performance for
a given a workload. Obviously, enumerating and benchmarking each product
is infeasible. The immediate question is: How does one search colossal product
spaces efficiently? A brief survey of current approaches is next.

4 Searching SPL Product Spaces

To predict the performance of SPL products, a mathematical performance model
is created. Historically, such models are developed manually using domain-speci-
fic knowledge [1,13]. More recently, performance prediction models are learned
from performance measurements of sampled products. In either case, a per-
formance model is given to an optimizer, which can then find near-optimal
products that observe user-imposed feature constraints (e.g., product predicates
that exclude feature F and include feature G).

4.1 Prediction Models

Models can estimate the performance of any valid product [17,37,43,42,54]. The
goal is to use as few samples as possible to learn a model that is ‘accurate’. Find-
ing a good set of training samples to use is one challenge; another is minimizing
the variance in predictions.

Let C be the set of all legal SPL products. 1st-order performance models
have the following form: let $P be the estimated performance of an SPL product
P∈C, where êP is the set of P’s selected features and $Fi is the performance

7 Still 101441 does pale in comparison to 10284265, the size of the space of texts a monkey
can randomly type out, one text of which is Hamlet [36,34] or 1040000, the size of the
space of texts a monkey can type out, one text of which is this paper.
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contribution of feature Fi:

$P =
∑
i∈êP

$Fi (1)

$Fi might be as simple as a constant (ci) or a constant-weighted expression [17]:

$Fi = c0 (2)

or

= c0 + c1 · n + c2 · n · log(n) + c3 · n2 + ... (3)

where n is a global variable that indicates a metric of product or application
’size’. The value for n is given; the values of constants (ci) must be ‘learned’.

1st-order performance models are linear regression equations without (fea-
ture) interaction terms. Such models are inaccurate. Let $Fij denote the perfor-
mance contribution of the interaction of features Fi and Fj, which requires both
Fi and Fj to be present in a product; $Fij=0 otherwise. 2nd-order models take
into account 2-way interactions:

$P =

∑
i∈êP

$Fi

+

∑
i∈êP

∑
j∈êP

$Fij

 (4)

Models with n-way interactions add even more nested-summations to (4) [42].

Manually-developed performance models [1,9,13] are different as they:

– Identify operations [ O1.. ] invoked by system clients;

– Define a function $Ok to estimate the performance of each operation Ok;

– Encode system workloads by operation execution frequencies, where νk is
the frequency of Ok; and

– Express performance $P of a program P as a weighted sum of frequency times
operation cost:

$P =
∑
k

νk ·$Ok (5)

Features complicate the cost function of each operation, where the set of features
of product P∈C becomes an explicit parameter of each Ok:

$P =
∑
k

νk ·$Ok(êP) (6)

In summary, manual performance models include workload variances in their
predictions, whereas current SPL performance models use a fixed workload.
Workload variations play a significant role in SPL product performance. To
include workloads in learned models requires relearning models from scratch or
transfer learning which has its own set of issues [23].8

8 Transfer learning is an automatic translation of one performance model to another.
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4.2 Finding a Near-Optimal is NP-Hard

The simplest formulation of this problem, namely as linear regression equations,
is NP-Hard [52]. Here’s a reformulation of Eqn. (1) as a 0-1 Integer Programming
Problem. Let 1i(P) be a boolean indicator variable to designate if feature Fi is
present (1i(P)=1) or absent (1i(P)=0) in P. Rewrite Eqn. (1) as:

$P =
∑
i∈êP

$Fi =
∑
i

$Fi · 1i(P)

We want to find a configuration cnear to minimize $P, Eqn. (7). To do so,
convert Eqn. (7) into a inequality with a cost bound b, Eqn. (8). By solving
Eqn. (8) a polynomial number of times (progressively reducing b) we can deter-
mine a near optimal performance $cnear and cnear’s features (the values of its
indicator variables):

min
P∈C

($P) = min
P∈C

(∑
i

$Fi · 1i(P)
)

(7)

min
P∈C

( ∑
i∈ê

$Fi · 1i(P)
)
≤ b (8)

Prop Formula Linear 
Constraint

Linear Inequality

𝑥 ∧ 𝑦 𝑥 + 𝑦 = 2 −𝑥 − 𝑦 ≤ −2

𝑥 ∨ 𝑦 𝑥 + 𝑦 ≥ 1 −𝑥 − 𝑦 ≤ −1

𝑥 ⇒ 𝑦 𝑥 − 𝑦 ≥ 0 𝑥 − 𝑦 ≤ 0

𝑥 ⇒ ¬ 𝑦 𝑥 + 𝑦 ≤ 1 𝑥 + 𝑦 ≤ 1

𝑥 ⟺ 𝑦 𝑥 = 𝑦 𝑥 − 𝑦 ≤ 0 ∧ 𝑦 − 𝑥 ≤ 0

𝐶ℎ𝑜𝑜𝑠𝑒1(𝑥, 𝑦) 𝑥 + 𝑦 = 1 (𝑥 + 𝑦 ≤ 1) ∧ (−𝑥 − 𝑦 ≤ −1)

inequalities

Fig. 2. Prop Formula to an Integer Inequality.

Recall a feature model
defines constraints among
features, like those in the
“Prop Formula” column
of Fig. 2. There are well-
known procedures to trans-
late a propositional formula
to a linear constraint, and
then to ≤ inequalities
[16,22].

To optimize Eqn. (8)
correctly, feature model
constraints must be ob-
served. The general structure of the optimization problem described above is:

find x such that cTx ≤ b rewrite of Eqn. (8)

subject to Ax ≤ d feature model constraints

where x∈1n (x is an array of n booleans), c∈Zn and b∈Z (c is an array of n
integers, b is an integer), A ∈ Zm×n (A is an m×n array of integers), and d∈Zm (d
is an array of n integers). This is the definition of 0-1 Linear Programming, which
is NP-Complete [52]. The NP-hard version removes bound b and minimizes cTx.

4.3 Uniform Random Sampling

Optimizers and prediction models [17,18,19,37,38,39,54] rely on ‘random sampling’,
but the samples used are not provably uniform. Uniform Random Sampling
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(URS) conceptually enumerates all η=|C| legal products in an array A. An
integer i ∈ [ 1..η ] is randomly selected (giving all elements in the space an equal
chance) and A[i] is returned. This simple approach is not used because η could be
astronomically large. Interestingly, URS of large SPLs was considered infeasible
as late as 2019 [24,33].

An alternative is to randomly select features. If the set of features is valid, a
product was “randomly” selected. However, this approach creates far too many
invalid feature combinations to be practical [17,18,37,39,54]. Another approach
uses SAT solvers to generate valid products [19,38], but this produces products
with similar features due to the way solvers enumerate solutions. Although
Henard et al. [19] mitigated these issues by randomly permuting the parameter
settings in SAT solvers, true URS was not demonstrated.

The top path of Fig. 3 summarizes prior work: the product space is non-
uniformly sampled to derive a performance model; samples are interleaved with
performance model learning until a model is sufficiently ‘accurate’. That model
is then used by an optimizer, along with user-imposed feature constraints, to
find a near-optimal performing product.

URS product space 

feature
model

user imposed
feature

constraints

near-optimal
performing

product

learn
performance

model

use
optimizer

non-URS 
sample products

Performance Model Approach

Pure Uniform Random Sampling Approach

Approaches_new

Fig. 3. Different Ways to Find Near-Optimal Products.

In contrast, a pure URS approach (the bottom path of Fig. 3) uses neither
performance models nor optimizers. Near-optimal products are found by uniform-
ly probing the product space directly, and benchmarking the performance of
sampled products using the required workload. User-imposed feature constraints
simply reduce the space to probe. A benefit of URS is that it is a standard way to
estimate properties accurately and efficiently of colossal spaces [14]. It replaces
heuristics with no guarantees with mathematics with confidence guarantees.

Note� For some, it may not evident that URS could be used for optimi-
zation. In fact, Random Search (RS) algorithms [10,50] do exactly this –
find near-optimal solutions in a configuration space. We present evidence
later that URS requires many fewer samples than existing performance
model approaches [30].  
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5 URS Without Enumeration

Let η = |φ| be the size of an SPL product space whose propositional formula is
φ. Let F = [ F1, F2, ..Fθ ] be a list of optional SPL features. Randomly select an
integer i∈[1..η] and compute s1 = |φ∧ F1|, the number of products with feature
F1. If i≤s1, then F1 belongs to the ith product and recurse on the subspace
φ∧F1 using feature F2. Otherwise ¬F1 belongs to the ith product and recurse on
subspace φ ∧ ¬F1 with i=i−|φ ∧ F1| using feature F2. Recursion continues until
feature Fθ is processed, at that point every feature in the ith product is known.

Note� Historically, Knuth first proposed this algorithm in 2012 [25];
Oh and Batory reinvented and implemented it in 2017 using classical
BDDs [30]. Since then other SAT technologies were tried [11,32,40]. (A
#SAT solver is a variant of a SAT solver: instead of finding a solution
of φ efficiently, #SAT counts φ solutions efficiently.) The most scalable
version today is by Heradio et al. and uses reduced BDDs [21], which in
itself is surprising as for about a decade, SAT technologies have dominated
feature model analysis.  

Given the ability to URS a SPL colossal product space, how can a near-
optimal product for a given workload be found? That’s next.

6 Performance Configuration Space (PCS) Graphs

Let C denote the product space of φ, where η=|φ|=|C|. Imagine that for every
product P∈C we predict or measure a performance metric $(P) for a given
benchmark. By “performance metric”, we mean any non-functional property
of interest of P (response time, memory size, energy consumption, throughput,
etc.). A small $ value is good (efficient) and a large $ value is bad (inefficient).
An optimal product Pbest in C has the smallest $ metric:9

∃Pbest∈C :
(
∀P∈C : $(Pbest) ≤ $(P)

)
(9)

For large C, creating all (P, $(P)) pairs is impossible... but imagine that we
could do so. Further, let’s normalize the range of $ values: Let $(Pbest)=0 be the
best performance metric and let $(Pworst)=1 be the worst. Now sort the (P, $(P))
pairs in increasing $(P) order where $(Pbest)=0 is first and $(Pworst)=1 is last,
and plot them. The result is a Performance Configuration/Product Space
(PCS) graph, Fig. 4a. This graph suggests that PCS graphs are continuous; they
are not. PCS graphs are stair-stepped, discontinuous and non-differentiable [27]
because consecutive products on the X-axis encode discrete decisions (features)
that can make discontinuous jumps in performance, Fig. 4b.

9 To maximize a metric, negate it.
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Fig. 4. Normalized PCS Graphs.

Example� Suppose product Pi has feature F and F is replaced by G in
Pi+1. If F increments performance by .01, say, and G increments perfor-
mance by .20, there will be a discontinuity from $(Pi) and $(Pi+1) in a
PCS graph.  

Note� Every PCS graph is monotonically non-decreasing. The latter
means that consecutive products on the X-axis, like Pi and Pi+1, must
satisfy $(Pi)≤$(Pi+1). Many products in C may have indistinguishable
performance values/metrics because their differing features have no impact
on performance, leading to $(Pi)=$(Pi+1).  

Random Search (RS) is a family of numerical optimization algorithms that
can be used on functions that are discontinuous and non-differentiable [10,50].
The simplest of all RS algorithms is the Best-of-n-Samples below. Here we
use URS for sampling:

1. Initialize x with a random product in the search space.

2. Until a termination criterion is met (n− 1 samples) repeat:

2.1 Sample a new product y in the search space.

2.2 If $(y)<$(x) set x=y.

3. Return x.

Listing 1.1. Best-of-n-Samples

How accurate is the returned product? An answer can be derived by exploiting
a PCS graph’s monotonicity, next.

7 Analysis of Best-of-n-Samples

The X-axis of a PCS graph (i.e., the product space) can be approximated by the
real unit interval I=[0..1] when η > 2000 [30]. I emerges from the limit:

lim
η→∞

1

η
·
[
1..η

]
= lim

η→∞

[1
η
..
η

η

]
= [0..1] = I (10)
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Randomly select a product in C, i.e., one point in I. URS means each point
in I is equally likely to be chosen. It follows that on average the selected product
p1,1 partitions I in half:

p1,1 =

∫ 1

0

x · dx =
1

2
(11)

Now randomly select n products from C. On average n points partition I into
n+1 equal-length regions. The kth-best product out of n, denoted pk,n, has rank
k

n+1
, where the k·

(
n
k

)
term below is the normalization constant [5]:10

pk,n = k ·
(
n

k

)
·
∫ 1

0

xk · (1− x)n−k · dx =
k

n + 1
(12)

The left-most selected product, which is a near-optimal product PnearOpt=p1,n,
is an average distance 1

n+1
from the optimal Pbest= 0 by Eqn. (12):

p1,n =
1

n + 1
(13)

Let’s pause to understand this result. Look at Fig. 5. As the sample set size n
increases (Fig. (a)→Fig. (c)), PnearOpt progressively moves closer to Pbest at X=0.
If n=99 samples are taken, PnearOpt on average will be 1% from Pbest in
the ranking along the X-axis.

0 1
×

n=1(a)

0 1
× ××

n=3(b)

0 1
× ×× ×× ×

n

= 
1

𝑛+1

(c)

insight

𝑝𝑛𝑒𝑎𝑟𝑂𝑝𝑡

𝑝𝑏𝑒𝑠𝑡

Fig. 5. Convergence to Pbest by increasing Sample Size (n).

Note: None of the equations (11)-(13) reference η or |C|; both disappeared
when we took the limit in (10). This means (11)-(13) predict sampled ranks
(that is, X-axis ranks) for an infinite-sized space. Taking n=99 samples on any
colossal product space, on average PnearOpt will be 1% from Pbest in the ranking.
It is only for minuscule product spaces, η ≤ 2000, where predictions by equations
(11)-(13) will be low [30]. Such small product spaces are enumerable anyway,
and not really of interest to us.

10 Eqn. (12) is an example of the Beta function [47].
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Third, how accurate is the p1,n=
1

n+1
estimate? Answer: the standard deviation

of p1,n, namely σ1,n [5,29], can be computed from v1,n, the second moment of p1,n:

v1,n = 1 ·
(
n

1

)
·
∫ 1

0

x2 · (1− x)n−1 · dx =
2

(n + 1) · (n + 2)

σ1,n =
√
v1,n − p1,n2 =

√
2

(n + 1) · (n + 2)
−
( 1

n + 1

)2
(14)

diff

%
 d

if
f

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

# of samples taken

80

Fig. 6. %diff Plot.

Observe p1,n is almost equal
to σ1,n. Fig. 6 plots the percen-
tage difference between the two:

%diff = 100 · (p1,n
σ1,n
−1) (15)

For n=80 samples p1,n is 1.2%
higher than σ1,n which is itself
small. For n≥100 there is no
practical difference between p1,1
and σ1,n. Stated differently,
URS offers remarkable good
accuracy and variance with
n≥100 [30].

Bottom line. To find a near-optimal product in colossal product space, take a
uniform-random sample set of size n, predict or measure the performance of each
product, and return the best performing product as it will be 100

n+1% away, with

variance approximately 100
n+1%, from the optimal product, Pbest, in the space.

Percentiles. Readers may have noticed that our ranking is how ‘close’ PnearOpt
is X-axis-based from Pbest, where the more typical notion is Y-axis-based, i.e., the
fraction $(PnearOpt) is from $(Pbest). The utility of PCS graphs is this: optimizing
X also optimizes Y.

Fig. 7. Percentiles.

A common X-axis metric in
statistics is a percentile , see
Fig. 7 [28]. Candidates are lined
up and the percentage of candi-
dates that are “shorter” than You
(the blue person) is computed.
You are in the (top) 80%
percentile. In performance opti-
mization, we want to be in the
lowest percentile, ideally <1% means “in the top <1 percentile”.

8 Another Benefit of URS in Product Optimization

Prior to performance models for and URS of colossal product spaces, URS was
compared with early results on small SPLs that used performance models [30].
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The performance model contestants were Sankar2015 [37] and Siegmund2012
[42], which at the time were the best models to date.

Fig. 8 shows two non-PCS graphs: the X-axis is the number n of samples
taken to form a prediction model or a Best-of-n-Samples result and the Y-axis
is the fraction distance of their returned PnearOpt to Pbest.
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Fig. 8. Comparison of URS with Existing Performance Models in 2017.

In short:
– The accuracy of both performance models did not improve with increasing

N, unlike URS which progressively improves;
– URS obtained the same accuracy with less work (fewer samples) than both

Sarkar2015 (see in Fig. 8a) and Siegmund2012 (see in Fig. 8b); and
– URS obtained better results for the same work (see and above).

Other similar results are reported in [30]. However, these results are outdated
and need to be refreshed with the latest performance model technologies and
URS technologies; at best they are provisional and suggest future work.

9 Choosing a Sample Set Size

An open problem with non-URS methods is: what sample set size is needed to
find PnearOpt with a given accuracy? As there is no formal analysis of non-uniform
sampling, it is not known how to answer this question. However, URS has an
answer. The following elegant derivation is by Heradio [20], better than [31].

Confidence assertions are of the form: with 90% probability PnearOpt will be
within the top ρ percentile. Let ρ be the desired percentile (e.g., top 1% has
ρ=.01). In one random selection, we have probability ρ that a desired product
was selected and (1− ρ) that it was not. After n selections, we have probability
(1 − ρ)n that no selections were desirable and 1−(1 − ρ)n that at least one of
them is. Let c denote the confidence (probability) that after n selections PnearOpt
is in the top ρ percentile:

c = 1− (1− ρ)n (16)

Solving for n:

n =
ln(1− c)

ln(1− ρ)
(17)
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The table of Fig. 9 lists the sample set size to use for a given confidence (c)
and accuracy (ρ) no matter how colossal the space. Note: 90% and 95%
are common degrees of confidence; 99.7% is known as near certainty since it
encompasses 3σ, virtually all values [51]:

toTake

n=sample set size

%accuracy 90.0% 95.0% 98.0% 99.7%

5.00% 45 58 76 113

4.00% 56 73 96 142

3.00% 76 98 128 191

2.00% 114 148 194 288

1.00% 229 298 389 578

0.50% 459 598 780 1159

0.30% 766 997 1302 1933

0.20% 1150 1496 1954 2902

0.10% 2301 2994 3910 5806

%confidence

Fig. 9. Sample Set Size to Achieve %accuracy with %confidence.

Example: A product:

– in the top 5% is returned in 45 samples with 90% confidence;

– in the top 2% is returned in 148 samples with 95% confidence; and

– in the top .20% is returned in 1954 samples with 98% confidence.

Eqn. (16) has three variables; given values of two, one can solve for the
third. The previous discussion showed how to determine n given confidence c

and accuracy ρ. Here are the two other possibilities:

Given c and n, what is the expected accuracy ρ? Solving (16) for ρ:

ρ = 1− (1− c)
1
n (18)

The table of Fig. 10 has rows for confidence c values, columns are the number
of samples taken n, and entries are the accuracy ρ of returned answers:

ruben1
%ρ

%confidence 25 50 100 200 400 800 1600

90.0% 8.80% 4.50% 2.28% 1.14% 0.57% 0.29% 0.14%

95.0% 11.29% 5.82% 2.95% 1.49% 0.75% 0.37% 0.19%

98.0% 14.49% 7.53% 3.84% 1.94% 0.97% 0.49% 0.24%

99.7% 20.73% 10.97% 5.64% 2.86% 1.44% 0.72% 0.36%

n = sample set size

Fig. 10. Expected Accuracy ρ given c and n.

Example� Suppose a total of n=100 samples are to be taken and 95%
confidence is desired in an answer. The returned solution has accuracy in
the top 2.95% of all solutions.  
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Given n and ρ, what is expected confidence c? Eqn. (16) is already solved
for c and is repeated below:

c = 1− (1− ρ)n

The table of Fig. 11 has rows for accuracy values ρ, columns are the total number
of samples taken n, and entries are the confidence c of returned answers:

ruben2

%c = confidence

%ρ = accuracy 25 50 100 200 400 800 1600

4.000% 63.96% 87.01% 98.31% 99.97% 100.00% 100.00% 100.00%

2.000% 39.65% 63.58% 86.74% 98.24% 99.97% 100.00% 100.00%

1.000% 22.22% 39.50% 63.40% 86.60% 98.20% 99.97% 100.00%

0.500% 11.78% 22.17% 39.42% 63.30% 86.53% 98.19% 99.97%

0.250% 6.07% 11.76% 22.14% 39.38% 63.26% 86.50% 98.18%

0.125% 3.08% 6.06% 11.76% 22.13% 39.37% 63.24% 86.48%

n = number of samples

Fig. 11. Expected Confidence c given ρ and n.

Example� Taking n=100 samples and wanting accuracy ρ=1%, the confi-
dence of a returned answer is 63.4%. That is, there is a 63.4% chance that
the returned answer is within the top 1% of all products.  

There are other analyzes for the Best-of-n-Samples algorithm, like how many
samples are needed to have two samples returned in the top ρ% with c% confi-
dence, is much like the above. Also, a recursive search of a space is another inter-
esting possibility – performing a search and using the data collected to reduce
the size of the space to search in the next recursion. A noticeable improvement in
PnearOpt was observed by recursive searching [30] – with two important caveats.
We have not yet determined how to guarantee that Pbest is not pruned in a space
restriction, nor do we have mathematics to compute the confidence of returned
results. These remain open problems.

10 Given a Limit of n Samples...

Benchmarking is by far the greatest cost in sampling. Suppose a client is willing
to pay the cost of benchmarking 100 samples to find a near optimal product for
a particular precision ρ and confidence c.

Question: Would it be better to conduct one experiment E of 100 samples
for a given ρ accuracy, or two experiments E1 and E2 of 50 examples each again
with the same ρ accuracy, and take the best result? In the latter case, would the
confidence change by using two experiments?

Answer: There is no difference! It is not difficult to see that the PnearOpt answer
in either case would be the same: PnearOpt would be the result of experiment E1
or E2, and would be the best-of-both result.

don
Highlight
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It is a bit harder to see is how the confidence of the two-experiment result
is the same as a one-experiment result. Let c be the confidence of both E1 and
E2. The confidence c2 we would have in the result of taking the best-of-both
experiments is weighted. Namely, sum the product of confidences where at least
one experiment succeeds:

c2 = c · c · 1 + c · (1− c) · 1 + (1− c) · c · 1 + (1− c) · (1− c) · 0
= 2 · c− c2 (19)

Let c(n, ρ) = 1 − (1 − ρ)n, Eqn. (16), be the confidence of an experiment for a
fixed n and ρ. It is easy to prove the following equality that shows the confidence
of a single experiment with 2 · n samples and ρ accuracy and the confidence of
two smaller experiments with n samples and ρ accuracy, Eqn. (19), are the same:

2 · c(n, ρ) − c(n, ρ)2 = c(2 · n, ρ) (20)

10.1 PCS Graphs of Real SPLs

What do real PCS graphs look like? This is not a fundamental question, but
one asked out of curiosity. Several small SPLs were analyzed by Siegmund et al.
[41,42] that took several months of benchmarking:

– H264 is a video encoder library for H.264/MPEG-4 AVC format written in
C. With 16 features and 1152 configurations, Sintel trailer encoding times
were measured, see Fig. 12a and

– BerkeleyDBC is an embedded database system written in C. With 18
features and 2560 configurations, benchmark response times were measured.
Note its multiple “stairs” or vertical leaps. See Fig. 12b.
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Fig. 12. H264, BerkeleyDBC, and ToyBox PCS Graphs.

Fig. 12a-b are Complete PCS graphs – meaning all products are plotted.
This is possible when configuration spaces are tiny. But what about SPLs with
colossal spaces? What then? A number of techniques were tried, and the simplest
performed best:

– Randomly select n=100 or n=200 configurations, as 100-200 points are
sufficient resolution for a graph in a paper,
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– Predict the performance or build-and-benchmark each sample,

– Sort the samples from best-performing to worst,

– Let pi be the ith best performance. Plot a PCS graph using the n points
{(xi,yi)}ni=1= {( i

n+1
, pi)}ni=1.

Example. ToyBox 0.7.5 provides Android systems with a collection of Linux
command-line utilities within a single executable. It has 316 features and 1081

configurations [45]. Build size was measured. Its PCS graph, Fig. 12c, was pro-
duced with n=100, although the graph for n=200 was identical.

11 Future Work and Next Steps

There is a hunger in Software Engineering research for more scientific approaches
to be used, where mathematics can help solve fundamental design problems.
The use of mathematics is evident in the work of Börger et al. on ASMs and the
JBook [44]; so too in the area of SPLs. Software design indeed has a mathematical
foundation, but perhaps not how Dijkstra, Hoare, and Wirth initially envisioned.
Science must deliver quite a lot before it can overcome Cowboy Programming
[48]. The Science of Software Design will answer questions that were unanswerable
previously.

This holds for finding near-optimal products in colossal SPL product spaces, a
practical problem whose roots are found in early work on SWD. Given the ability
to URS such spaces, an entire world of prior results on RS is now applicable. The
simplest RS algorithm, Best-of-n-Samples, can answer scientific questions that
prior approaches could not. Namely, given any two of (confidence of answer,
accuracy of answer, and number of samples to take), the third can be computed.
Perhaps other RS algorithms may be analyzable as well.

Software Engineering research is fad-driven – the latest is Machine Learn-
ing (ML). ML also can provide answers to questions that couldn’t be answered
before. We showed in Sec. 7 that near-optimal results can be accompanied with
accuracy or confidence metrics – to give precision about returned results that
could not be determined before. Or that the number of samples to take is no
longer a guess – it can be precisely computed. And in Sec. 8, URS can also
provide more accurate answers than performance models with less work (fewer
samples), although these results need to be refreshed as they used small product
spaces (what was available at that time). Today’s open question is whether the
provisional results in this paper scale to colossal spaces.

In this paper, URS may have been offered unintentionally as a tool to solve
all analysis problems. Far from the truth, URS is but one in an ever-increasing
sophisticated arsenal of techniques that can be used. Coupled with domain-
specific knowledge, URS tools will be even better. URS will likely become a lower-
bound on what can be accomplished and accepted (w.r.t. accuracy, confidence,
and work) in future work. If so, we have indeed made progress.

To Egon. You and your work continue to inspire me and others. Thank you.
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