o.)

Check for
updates

On Proving the Correctness of Refactoring Class Diagrams
of MDE Metamodels

NAJD ALTOYAN and DON BATORY, The University of Texas at Austin, USA

Model Driven Engineering (MDE) is a general-purpose engineering methodology to elevate system design,
maintenance, and analysis to corresponding activities on models. Models (graphical and/or textual) of a target
application are automatically transformed into source code, performance models, Promela files (for model
checking), and so on for system analysis and construction.

Models are instances of metamodels. One form an MDE metamodel can take is a [class diagram, constraints]
pair: the class diagram defines all object diagrams that could be metamodel instances; object constraint lan-
guage (OCL) constraints eliminate semantically undesirable instances.

A metamodel refactoring is an invertible semantics-preserving co-transformation, i.e., it transforms both a
metamodel and its models without losing data. This article addresses a subproblem of metamodel refactoring:
how to prove the correctness of refactorings of class diagrams without OCL constraints using the Coq Proof
Assistant.

CCS Concepts: » Software and its engineering — Functionality; - Theory of computation — Program
semantics;

Additional Key Words and Phrases: Class diagram refactorings, object diagram refactorings, Coq

ACM Reference format:

Najd Altoyan and Don Batory. 2023. On Proving the Correctness of Refactoring Class Diagrams of MDE
Metamodels. ACM Trans. Softw. Eng. Methodol. 32, 2, Article 44 (March 2023), 42 pages.
https://doi.org/10.1145/3549541

1 INTRODUCTION

Model Driven Engineering (MDE) is a general-purpose engineering methodology for system
analysis, reasoning, change management, and other activities [23]. An MDE model (possibly plural)
is a specification of a target application. A model can be transformed into a performance model,
Promela file (for model checking), source code, and so on for system analysis and construction.
Models are instances of a metamodel, sometimes called a Domain Specific Language (DSL) [99].
Models and metamodels can be graphical (class diagrams, state charts), textual (sentences of a
grammar, code fragments, object constraint language (OCL) constraints), or an integration of both
[5, 22, 23].

Najd Altoyan also with King Abdulaziz City for Science and Technology (KACST).

Altoyan was supported by King Abdulaziz City for Science and Technology (KACST). This work was also supported by
NSF Grant no. 26-1005-25 (Award no. 1212683).

Authors’ address: N. Altoyan and D. Batory, Department of Computer Science, University of Texas at Austin, Austin, Texas;
emails: naltoyan@utexas.edu, batory@cs.utexas.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1049-331X/2023/03-ART44 $15.00

https://doi.org/10.1145/3549541

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

https://orcid.org/0000-0001-9314-8116
https://orcid.org/0000-0002-8739-3841
https://doi.org/10.1145/3549541
mailto:permissions@acm.org
https://doi.org/10.1145/3549541
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3549541&domain=pdf&date_stamp=2023-04-05

44:2 N. Altoyan and D. Batory

Like programs, metamodels gradually evolve for reasons of maintenance, simplification, and
accommodation of new functionalities. Also like programs [14, 57, 78], refactorings are suited for
these tasks. A refactoring is a semantics-preserving transformation. Today’s mainstream (Java)
integrated development environments (IDEs) help their users by offering a wealth of refactorings
[31, 38,43, 68, 75]. There is ample evidence that MDE architects want a comparable level of support
for metamodel refactorings on MDE platforms [33, 52, 63, 71].

A common representation of an MDE metamodel m is a [class diagram, constraints] pair: a UML
class diagram (umiCD) cd defines all Object Diagrams (ODs) that could be metamodel instances;
OCL (Object Constraint Language) constraints k eliminate semantically undesirable instances.
We write m=[cd, k]. Let R be a metamodel refactoring. R transforms metamodel m into an equiv-
alent metamodel m’=[cd’, k’]. A distributivity law—a refactoring distributes over a metamodel’s
components—relates m and m’:

R(m) = R(led,k]) = [R(ed),RK)] = [ed',K'] = m'.)
What seems not to be well-known is that the inverse of a refactoring is also a refactoring. Thus,
R'(m’) = R'([ed,k']) = [R'(cd’),R'(K")] = [cd,k] = m. (2)

That is, m and m’ are equivalent w.r.t. R. Observe that R(m) is a coordinated pair of refactorings:
a umICD refactoring R(cd) and an OCL constraints refactoring R(k).

A common restriction on metamodels is that their umiICDs have no interfaces, statics, and meth-
ods. Such umICDs define only data relationships, which enables them to be translated to database
schemas and their ODs to databases [11, 13, 37]. We focus on these umiCDs and their ODs in this
article.

Correctness is an important property of refactorings. The Eclipse Java Development Tool (JDT)
is among the most advanced IDEs and offers frequently used refactorings. Yet it is known that JDT
refactorings can alter program behavior or produce uncompilable code [46, 81]. Other major Java
IDEs including NetBeans, Oracle JDeveloper, and Intelli] IDEA are no different [47]. Lacker et al.
[49] reported that there are 5,045 refactoring-related bug reports in the Eclipse bug report website
and that 18.4% of the reported bugs will never be fixed.

Correctness of MDE refactorings are also important, but have the advantage that umiCD refac-
torings are simpler than Java refactorings. Still, there are difficulties. umiCDs semantics are not
uniform across MDE platforms [69, 87], and so too are their encodings as relational databases
[18, 19, 61, 65].

This article is on the correctness of umICD refactorings. The semantics of the few umICD features
that we use are consistent with early UML standards [32, 83] and that of typical research papers in
MDE. Also, our mappings of models to main-memory, text-file-persistent relational databases are
direct. For these reasons, our approach and results should be transferable to other MDE platforms
and UML tools.

1.1 Class Diagram Refactorings are Co-Transformations

A co-transformation is a transformation of a type and its instances [91]. umICD refactorings are co-
transformations. We are interested in the verification of minimal umiCD refactorings (minRefs)
that use a small umiCD with only the essential elements to capture a refactoring’s essence. A minRef
is Rg:{cd}—{cd’}, where © labels a minRef, cd is its minimal input umiCD, and cd’ is its minimal
output umICD. Rg must satisfy the round-tripping constraints of Equations (1) and (2): Rg converts
cd to cd’ and RZ' restores cd from cd’:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:3

Class Diagram . "
ed Person Object Diagram p1 : Person p2 : Person
fname: string d fname := "Peter" fname :="Brenda"
(a) Iname: string (b) Iname := "Sailor" Iname := "March"

(e) N ﬁ@ ﬁ@

Class Diagram

o Person’ Object Diagra"} p1': Person' p2' : Person'
(0 ¢ flname': string * string (d) d" | Tiname' = ("Peter","Sailor") flname' := ("Brenda","March")

Fig. 1. Class diagrams, object diagrams, and their correspondences.

(cd=Rs'-Ro(cd)) N\ (e =R R(ed). (3)

Further, Ro also refactors models and preserves their semantics. That is, given any OD d of
umiCD cd, round-tripping recovers d, and similarly for R;':

(Vdeed: d =R R@(d)) A (Vd’ecd’ . d' =Ro- Rg;(d/)). (4)
We show how to prove Equations (3) and (4) using the Coq Proof Assistant in this article [21].

1.2 Examples of Class Diagram Refactoring

Figure 1(a) is a umICD cd with one class, Person, having two string attributes: first name (fname)
and last name (1name). Figure 1(b) is an OD d of c¢d with two Person instances, “Peter Sailor”
and “Brenda March” [1]. Another umiCD, cd’, is Figure 1(c). It differs from cd by the composite
attribute (f1lname’) replacing fname and 1name. Figure 1(d) shows OD d”’ of cd’, also with two Person’
instances.

As Figure 1(e) suggests, cd’ and d’ are refactorings of c¢d and d, and vice versa. The minRefs
that accomplish this, mergefieldsg:{cd}—{cd’} and splitfields:{cd’} —{cd}, satisfy Equations (3)
and (4):

cd = splitFields(mergeFieldso(cd)) A cd’ = mergeFieldso(splitFields(cd")), (5)
Vdecd : d = splitFields(mergeFieldss(d)) A

Vd' ecd’ : d' = mergeFieldso(splitFields(d’)). (6)

Equations (5) and (6) must be proven.
It is worth considering what is not a refactoring. Push- A A
Down field and its inverse PullUp field are usually edits, not

refactorings. They are refactorings only when superclass A A || C AN,

is abstract. Consider Figure 2. Class A is not abstract, mean- | ® <
ing it can have instances that do not belong to any of A’s
subclasses. When field A.f is pushed down, the fields of
A subclasses are unchanged. However, A objects lose their
f field and their f values. The PushDown field of this example loses data and therefore is not a
refactoring. Neither is PullUp field in general, as it must add missing data to its subclass objects
and it too is not a refactoring.

Fig. 2. PushDown and PullUp field.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:4 N. Altoyan and D. Batory

1.3 On the Non-Uniqueness of minRefs

Not every refactoring has a unique minRef; there A A A

could be several. Figure 3 shows three minRefs for [} i o
PushDown; all A classes are abstract. Figure 3(a) -

pushes down field A.x into a single subclass B. (a)% (b)% (c)#

Figure 3(b) pushes down multiple fields x,y into B.
And Figure 3(c) pushes down field x into multiple
subclasses. These variations can be combined. Any
could be chosen, but we found choosing the least Fig. 3. minRefs for PushDowng.
complicated (Figure 3(a)) makes minRef proofs easier.

1.4 Big Picture of This Article

umlCD refactorings are considerably larger than minRefs in practice. How does our work on minRefs
contribute to larger refactorings? We have four answers.

First, minRefs are a good starting point. Two extensions (generalizations) of minRefs scale refactor-
ings to that expected by umiCD architects. These extensions are explained in Section 5. Call these
extensions X and Y, as their details are irrelevant now. (Example: X could be PushDown multiple
fields in Figure 3(b) and Y could be A with multiple subclasses). It will be evident from this arti-
cle that verifying minRefs is sufficiently complicated in Coq. Our experience has convinced us that
tackling all challenges at once—verifying minRefs with extensions X and Y —would be lethal (too
daunting to achieve). Instead, stepwise extensions of minRefs is a practical way to scale correctness
proofs [8, 9, 12, 28, 86]. Meaning: verify a minRef, then generalize the proof to support X, and then
do the same for Y. More on this in Section 5.

Second, contemporary Java IDEs offer a wealth of primitive refactorings for programmers to
use. It is not well-known that most (not all) design patterns, as in the Gang-of-Four Text [34],
are composite refactorings [8, 45, 46, 92]. That is, by scripting a series of primitive refactorings, a
program without a design pattern (e.g., visitor) can be automatically refactored into one with that
pattern. This is a practical form of scaling primitive refactorings, but not yet their verification.

Third, composing refactorings in Category Theory (which we discuss shortly) is simple: it is
function composition, as refactorings are functions. In practice, such functions become a refactor-
ing script (read: Java method) that uses local variables and invokes primitive refactorings (which
may themselves be scripts) directly, conditionally, or in loops (where the same refactorings are
invoked with different arguments on each loop iteration) [45, 46]. The theorems to prove are the
same, Equations (3) and (4), except each Ry is now a script. We believe Coq scales to this task,
but admit in the Conclusions that Coq was not the ideal prover for us to use in this article and in
future work on minRef generalization.

Fourth, prior work on database metamodel management [18, 19, 59, 61] suggests a rather dif-
ferent and potentially easier way to address umiCD refactoring correctness. We explain the idea in
Section 5.3.

1.5 Article Organization

Every umICD refactoring has a minimal definition (minRef): a simple and paired-down case to
study. Some minRefs have no constraints; most have cardinality and/or uniqueness constraints (see
Section 2.4). We call each such constraint a minimal constraint (minCon). minRefs with minCons are
more difficult to prove correct than those without.

minCons differ from OCL constraints. minCons are essential for verifying the correctness of a minRef
and are preconditions to apply a minRef to a umiCD. OCL constraints serve a different purpose: they

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:5

We are here ————>@ @ @ @ @
1. Introduction 2. Connecting Cr, 3. Proofs of MinRefs 4. Proofs of MinRefs 5. Remaining
MDE, Relational without MinCons with MinCons Steps and
DBs, and Coq Future work

Fig. 4. Roadmap to sections of this article.

eliminate semantically unwanted ODs permitted by a umiCD. Each requires different techniques
for verification.

1.6 Approach and Contributions

Approach. Category Theory (Cy) provides a formal and visual foundation that is central to our
work. Relational databases are also essential:

(1) Metamodels with umiCDs (sans OCL constraints) are relational schemas, and their model
instances are relational databases [13].
(2) Metamodel refactorings correspond to schema refactorings and model refactorings corre-
spond to database refactorings.
(3) Database concepts, not MDE concepts, are close to the abstractions offered by the Coq Proof
Assistant [21], the prover we use to verify minRefs in Sections 3 and 4.
Figure 4 is the roadmap to this article. Each node (section) progressively builds upon the results of
prior sections. Tackling all challenges at once, we found, was unintelligible.
Contributions. The contributions of our article are as follows:

(1) umiCD refactorings define umiCD equivalences.

(2) Correctness proofs of minRefs, with and without minCons, using Coq.
(3) How proofs of minRefs can be extended to larger refactorings.

(4) An outline of a future theorem prover for this line of work.

(5) Eight distinct minRefs that we have verified (Appendix G and [2]).
(6) A replication package with all Coq artifacts in this article is [3].

2 RELATING CATEGORIES, MDE, RELATIONAL DATABASES, AND COQ
2.1 Categories and MDE

Category Theory (Cy) is a theory of total functions, called arrows, that relate structures.

Structures. A structure is a data type that defines the data contained in its instances, but without
operations. Every object in Java belongs to a structure called a class, and each class defines the
attributes (data) that its objects maintain. (Yes, methods on objects are defined too, but structures
are defined without methods/operations, much like C structs [44]). The umiCDs of this article are
similar: umICDs have no methods, statics, and interfaces; think of umiCDs as graphical database
schemas [30, 84].

A structure may have a domain of instances. The domain of the
Java Integer class is the set of all Integer objects. For schema D, the (4 S
domain of D is the set of all database instances of D.

The domain of structure S is the set of all S instances and is de-
picted by a cone-of-instances diagram, Figure 5(a). S is the cone’s apex
and its domain is the base. Figure 5(a) shows three instances of S
written as {sy, s, 53} CS.

S can be an instance of a more abstract structure T, recursing up-
wards to infinity, Figure 5(b). Practicality limits recursion to three

Fig. 5. Cone of instances.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:6 N. Altoyan and D. Batory

S 4 R D U

JANYANYAN 's L
A D p N7 N7 \ A
s A 2oy | SET i agg=a (sl Lgd o

(a) (b) ()

Fig. 6. External and internal diagrams, identity arrows.

levels in MDE, called the Meta-Object Facility (MOF) [8, 67]: models are instances of metamod-
els, and metamodels are instances of a single meta-metamodel.

Arrows. An arrow relates structures via a total function [95]. Arrow A:5—R in Figure 6(a) maps
each s€S5 to some reR and is drawn from A’s domain S to A’s co-domain R. Arrows in MDE are
called transformations.

A directed multi-graph allows multiple edges between nodes. An external diagram is a directed
multi-graph where nodes are structures and arrows are directed edges. Figure 6(a) is an external
diagram with three domains 5, R, U and two arrows A:5—R and D:R—U. An internal diagram
is an external diagram with (a) cones of instances and (b) pairings of domain instances with co-
domain instances that are consistent with the arrows of the external diagram. Figure 6(b) is an
internal diagram where arrow A maps s; to r; and arrow D maps ry to u;.

Arrow composition obeys three axioms; the first two are axioms of function composition:

(1) Arrows compose. If A:5—R and D:R—U, then arrow (D- A):5—U exists.

(2) Arrows compose associatively. (E-D)-A=E-(D- A).

(3) Identity Arrows. Every structure S has an identity arrow: I5:5—S, where VseS : Is(s)=s.

Further, let A:S5—R. Then, Ig- A= Aand A-Is = A as in Figure 6(c).

Structure Equivalence. Structures R and S are equivalent or isomorphic if there are two arrows
T:R—S and T~':5—R such that T and T~! are inverses of each other: T- T ! =Igand T - T =Ig.

Functors. The most sophisticated ideas on structures and arrows that we use are functors: arrows

between external diagrams. Let C and D be external diagrams. Functor F:C—D [70]:

— sends each structure XeC to structure F(X)eD,
— sends each arrow (A:X—Y)eC to arrow (F(A):F(X)—F(Y))eD,
— such that every arrow (given or composed) in C is preserved in D.

Equivalent meanings of X “sends to” Y are as
B oz |x—LE—v

follows: ef

— X “is mapped to” Y, and H

— X “is transformed to” V.

. . C Sdef S K R L 1)

Functor Example. Figure 7 shows external dia-
gram B with two structures X, Y and arrow F G
E:X—Y; identity arrows are implicit. External di-
agram C has three structures S, R, U and two D Sdef | T M v N, w
arrows K:5—R and L:R—U. Functor H: 8—C
sends structures X to S, Y to R, and arrow E to K. Fig. 7. Embedding and equivalence.

Diagram Equivalence. Let the identity functor for external diagram C be I;:C—C. Functor
F:C—9D embeds external diagram C into D, written C— 9. Further, C and D are equivalent or
isomorphic if there exists two functors F:C—9 and G:D—C such that G-F = I¢ and F-G = I .
In other words, F and G are inverses of each other and their external diagrams embed each other,

C—D and D—C.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:7

Meta-

M3 Metamode| ®/
leve| > 2
<~—)

/
chema @ n
M2 metamogq z] X

S1 databage /.

leve|
M1 _ moder = 7
=77 vl o Gy

(a)Node’V’app,'ng —“—‘—‘___,

Fig. 9. MDE and database MOFs and their refactoring correspondences.

Equivalence Example. Figure 7 shows external diagram D. Functor F: C—D sends domains S
toT,RtoV, Uto W, and arrows K to M and L to N. Functor G: D—C is the inverse of F. Thus,
external diagrams C and D are equivalent or isomorphic.

Category Theory. The above paragraphs are the core ideas of Cy [70]. A category is another
name for an external diagram; it is a set of structures and arrows as stated above. But in Cy the
term “object” is used instead of “structure” We use “structure” instead of “object” for the obvious
reasons. MDE uses the terms “metamodel” and “class” for “structure” and “transformation” for
arrow.

We use C as a language to explain umiCD refactorings. We use no deep theorems of Cy; only
the terms, ideas, and axioms presented in this section and nothing more.

Law Example. The “distributivity law” of Equations (1) and (2) can now be explained. See Ap-
pendix A.

2.2 MDE and Relational Databases

Figure 8 shows MOF has a single meta-metamodel Q; metamod- meta-
els are instances of Q, and models are instances of metamodels. | M3 metlz\r/’:l’de'
As said earlier, a umICD of a metamodel is a graphical depic-
tion of a relational database schema. Each class T of a umICD has
a corresponding relational table T: if a; . . . a; are the attributes
of class T, they are also columns of table T. Objects of class T are | jy; model
the tuples of table T. Every relational table has an explicit iden- fevel
tifier column whose value is user- or tool-assigned [13, 37, 62], Fig. 8. The MOF hierarchy.
which corresponds to an object identifier in an MDE model. Just
as there is class inheritance in umiCDs, there are corresponding inheritance relationships among
tuple types and corresponding inheritance relationships among their tables [10]. Example: in a
umlCD, Mustang is a subclass of Horse means Mustang is a sub-tuple-type of Horse and the table
of Mustangs is a subtable of Horses.
Database systems have their own MOF: there is a single metaschema Q, schemas are instances
of Q, and all databases are instances of schemas. The functor of Figure 9(a) sends meta-metamodel

level

Q to metaschema ﬁ, metamodel M to schema ﬁ, and model (object-diagram) m to database m.
Transforming a umiCD and OD into a schema and database with inheritance is well-known [11, 37,
64].

The functor of Figure 9(b) sends a umICD refactoring R to a schema refactoring S. For example,
S splits a Dog table into a shorter Dog table connected to an Owner table, Figures 10(a)—(b). (In

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:8 N. Altoyan and D. Batory

Doi Doi Owner

(a) | Chief | 9 Don T (b) | chief | 9 ®---f---~1 Don | Tx
Belle | 3 Don T Merge Belle | 3 L4

Fig. 10. Split and merge table refactorings.

database parlance, Dog is normalized [84]). S7! restores the original Dog table, Figures 10(b)—(a).
Refactoring a schema produces a new schema and a corresponding restructuring of its
databases. Thus, schema refactoring § is a co-transformation.

Every umlCD minRef can be encoded as a schema minRef. C tells us the theorems to prove. For
each minRef Rg:{cd}—{cd'}, there is a corresponding database schema in minRef Sg:{s}—{s’}, where
the following round-tripping theorems for schemas must be proven:

s = 5% So(s) A s = S-S @)
And so too the round-tripping theorems of their databases:
Vdes : d = S2" So(d) /\ Vd'es' . d = So-SN(d). (8)

Appendix B explains implicit constraints of refactorings that we and others avoid.'

2.3 Overview of the Coq Proof Assistant

Coq is an interactive theorem prover based on a functional programming paradigm. The user
guides the system until a proof is discharged [21].

Types. Coq defines two kinds of types: Set and Prop. As the name suggests, Prop is any proposi-
tional expression. Any type that is not a proposition falls under Set. Set includes types like strings
(string), natural numbers (nat), and so on.

New types in Coq are encoded as records. A record is analogous to a umiCD class or a table
definition in databases. Each record has a single constructor and a set of typed fields. A field’s type
can be a built-in type, user-defined type, function, or proposition. Consider the following Coq
definition of class Person, Figure 11:

1 Record Person := mkPerson { (*x Person tuple constructor *) Person
2 fname : string; fname: string
3 lname : string; Iname: string
4). Fig. 11. Person.

Listing 1. Person class.

Here, Person is a new type and mkPerson is its constructor. Fields fname and [name represent a
Person’s first and last names, respectively; both use the built-in type string. Fields are separated
by semicolons (;) and statements are terminated with a period (.), Line 4.

Unlike Object-Oriented (OO) languages, Coq fields are functions. fname is a unary function that
maps each Person to a string value, i.e., fname:Person—string. Thus to retrieve the fname for
Person p, one writes (fname p), i.e., apply function fname to p, which is p.fname () in OO notation.

Technically, since we use the Coq Proof Assistant to verify refactorings, we use yet another MOF translation from the
database MOF of schemas and their databases to their corresponding MOF of Coq schemas and databases. We elide this
extra layer of mapping. We explain our Coq encoding of a metaschema in Section 3.2, and our Coq encoding of a database
refactoring in Appendix D.2.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:9

Field values can be constrained. A constraint is a field whose type is prop. Constraint notEmpty,
below, says the value of Iname cannot be empty.

Record Person2 := mkPerson2 { (* Person2 tuple constructor x*)
fname : string;
lname : string;
notEmpty : lname <>

3.

nn,
’

(* <> means not equal *)

G W N =

When Person2 is instantiated, a proof must be supplied showing that the constraint holds. If no
proofis given, a Person2 cannot be instantiated. This is because Coq does not evaluate propositional
expressions. More on this in Section 4.

Functions. Non-recursive functions are defined using the keyword De finition, followed by the
name of the function, a list of parameters, and an optional return type. Parameters are usually
surrounded by parentheses, followed by a colon (:) and the function’s (single) return type. The
body of a function, or the expression of a function, is given after the bind symbol (:=):

Definition toString (p: Person): string := (fname p) ++ " " ++ (lname p).

Listing 2. toString (pretty print) function.

Function toString takes a parameter p of type Person (Listing 1) and returns a string representation
of p, called pretty printing a Person (Listing 2). Operation (++) is string concatenation. A more
general way to define functions in Coq is using pattern matching, as explained in Appendix F.2.

Record instances are non-recursive functions that take no input. The following defines a new
instance, p1, of type Person by invoking the constructor mkPerson and supplying first name “John”
and last name “Smith” as arguments:

Definition p1 : Person := mkPerson "John" "Smith".

Proofs. The body of a function is a proof of termination: toString (Listing 2) is guaranteed to
terminate and return the evaluation of its body. Here is a definition of toString without a body:

Definition toString2 (p: Person) : string.

It says that toString2 always returns a string but does not say what string. There is no evidence
that the function terminates for all Person inputs. Executing this line lets Coq enter proof mode
allowing the user to prove termination. The current state of a proof is shown in a separate panel,
which includes information about the goal to be proven and any given facts that typically help in
discharging the proof. A goal is usually broken into subgoals. The state after the above command is

1 subgoal
p : Person
/1)

string

There is only one subgoal. Hypotheses are assumptions listed above a horizontal bar; the current
subgoal is displayed below. A proof can be discharged in many ways. One can match the subgoal
with any term matching the type of subgoal, such as a fixed string, say “hello”. However, to get
the same behavior of the original function toString2 is to supply its body in Listing 2:

Proof.
apply ((fname p) ++ " " ++ (1lname p)).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:10 N. Altoyan and D. Batory

Person | Objectl : Person | | Object2 : Person | | Object3 : Person | Car Person
name : String |name : String = don | |name : String = karen | |name : String = najd |
. 3
-7 |
-7 | | Lexus o __ don

1 -owner P | | S~

. Car - 1 1 Tesla e =~ karen

ke string [obectaicar | [obieatsicar | [oblectoicar |
|make : String = lexus | |make : String = Tesla | |make : String = Toyota | Toyota [najd

(a) Class Diagram (b) Object Diagram (c) Database Encoding

Fig. 12. Class diagram, object diagram, and database.

The keyword Proof is optional indicating that a proof has started. apply is a tactic that instructs
Coq to match a term against the current subgoal, string. Coq offers built-in tactics to reduce current
(sub)goals to simpler ones. After executing the last line, the proof state changes to

No more subgoals.

saying there are no more subgoals to prove. The proof is usually discharged with the keyword Qed.
However, since toString2 is a function definition, De fined is used instead. The full proof is

1 Definition toString2 (p: Person): string.
2 Proof.

3 apply ((fname p) ++ " " ++ (lname p)).

4 Defined.

In summary, toString and toString?2 are different ways to define the same function: the first in
the classical functional way and the last in proof mode.

2.4 Coq Encoding of Relational Databases

Figure 12 shows the PersonCar class diagram, an object diagram, and a database of this object
diagram. A table definition is a Coq record; the table name is the record name and table columns
are record fields. Table column types are scalar values, not sets.? The definitions of the Person and
Car tables of the PersonCar schema are

1 Record Person := mkPerson { (x Person tuple constructor)
2 name : string;

3 3.

4 Record Car := mkCar { (x Car tuple constructor *)

5 make : string;

6 owner : Person; (x "foreign" tuple x*)

7}

A database is another Coq record. It contains a list of all T tuples (Coq record instances) for each
table T in a schema. A database for PersonCar is an instance of

1 Record PersonCar := mkPersonCar { (x PersonCar database constructor *)
2 pl : list Person;

3 cl : list Car;

4 3.

Listing 3 populates tables of Person and Car with tuples of Figure 12(c) to form the PersonCar
database, below. This is the encoding of databases used in our proofs.

2No set-valued attributes are used in this article; we have proved refactorings in Coq with unnormalized tuples.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:11

(a) Student -enrolled -takes Course (b) Student -enrolled -enr Enroll * 1 Course

Unnormalized . . Normalized i .

-enr -takes

Fig. 13. Unnormalized vs. normalized associations.

1 Definition don := mkPerson "don". (*x Person tuples *)

2 Definition karen := mkPerson "karen".

3 Definition najd := mkPerson "najd".

4 Definition persons := [don; karen; najd]. (*x Person table x)

5 Definition Lexus := mkCar "Lexus" karen. (* Car tuples *)

6 Definition Tesla := mkCar "Tesla" karen.

7 Definition Toyota := mkCar "Toyota" najd.

8 Definition cars := [Lexus; Tesla; Toyota]. (x Car table x)

9 Definition PersonCarDB := mkPersonCar persons cars. (* database instantiation x)

Listing 3. A PersonCar database.

Primary Keys, Tuple IDs, and Associations. Relational tuples have primary keys—a subset of
columns whose values uniquely identify a tuple. Coq considers two record instances equal if they
agree on all field values.

We encoded associations in Listing 3, above. A Car tuple has a field owner whose value is literally
the related Person tuple instead of the tuple’s primary key. In the PersonCar database, there are
three identical copies of the karen tuple: one in the Person table, and two as owner values in the Car
table. This encoding is legal for normalized associations (i.e., * e and * -1, associations). For
all other associations, the association is normalized, Figures 13(a)—(b), by adding an association
class Enroll with a pair of (1:%) cardinality associations [13, 30, 84].

The Coq encoding of primary keys will not handle cyclic databases; details on how to encode
such databases are in Appendix C.

Constraints. A database schema lists constraints that its databases must satisfy. To preclude any
Person whose name is “Bob” from owning a “Honda” we write

V¢ € Car : c.owner.name = “Bob” = c.make # “Honda’. 9)
Or no Person should own two Teslas:
Vel,c2 € Car : (cl.make = “Tesla” A c2.make = “Tesla”) = cl.owner # c2.owner. (10)

Constraints are simply listed after a database’s tuple lists, like

1 Record PersonCarWthCons := mkPersonCarWthCons{ (* PersonCarWthCons db constructor x)
2 pl : list Person;

3 cl : list Car;

4 conl: forall c, In c cl — (name (owner c)) = "Bob" — ((make c) <> "Honda");

5 con2: forall c1 ¢c2, In cl cl — In c2 cl — (make c1) = "Tesla" — (make c2) = "Tesla"
6 — (owner cl1 <> owner c2);

7 3.

As said earlier, constraints make instantiation more complicated. We address this in Section 4.

Association Traversal. Traversing an association from any tuple c in table Car to its related
owner tuple p in table Person is simple—find the Car tuple c. The owner field yields the associated
Person tuple, p = (owner c¢). The dual, going from any Person tuple p to its related set of Car tuples

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:12 N. Altoyan and D. Batory

Person Person' Person Person' Person Person'’

. , P . fname: Stri 2 Stri i
fname: strin fname': string fname: string flname": string * string ‘::::ec St,r::; Cnf,a,zf,e-szn;;gﬂ:;:zg
Iname: string Iname': string Iname: string % ﬂname::(fnam* v_Iname:= snd flname

(a) Explicit One-to-One Correspondence (b) Implicit One-to-One Correspondence (c) Virtual Elements Added To (b)

Fig. 14. Invertibility of a refactoring.

requires a function to compute the table of cars Person p owns. In database parlance, this is a right
semijoin [10, 13, 30, 84]. Namely, return cars owned by p and reject others [10]:

Definition owns (p:Person) (cl: list Car) := filter (fun ¢ = p =? (owner c)) cl.

Next Sections. We show how to prove round-tripping theorems for minRefs without minCons, and
then with minCons. Our proofs do not consider the refactoring of OCL constraints, as this is
itself a substantial problem addressed elsewhere [24, 39, 74, 79].

3 PROOFS OF MINIMAL REFACTORINGS WITHOUT MINIMAL CONSTRAINTS

A schema refactoring Sg is an invertible co-transformation; not only does Sg transform its input
database schema s to output schema s’ but also transforms each database instance of s to a data-
base instance of s’, and vice versa. Cy tells us Equations (7) and (8) are the theorems to prove. A
different proof approach is used for each (Sections 3.1 and 3.2). Both use similar steps: encoding
structures, defining transformations, and proving invertibility theorems. We use the mergeFieldse-
splitFields minRefs as exemplars in this section, where minCons (e.g., uniqueness and cardinality
constraints) are absent in both source and target schemas.

3.1 Database Refactorings

Invertibility is clear when there is a one-to-one correspondence between the domain and codomain
(output domain) of a refactoring. Figure 14(a) shows each field of Person (the domain) has a cor-
responding field in Person’ (the codomain). Sometimes this correspondence is hidden or implicit
as in Figure 14(b), where a pair of distinct string fields (fname, 1name) are merged into a single
composite string field (flname’) as in mergeFieldse.

To facilitate proofs of invertibility, we make implicit elements—that are explicit in one class
diagram but not in the other—explicit by introducing additional classes and fields called virtual
elements (VEs) [30, 84], also called derived elements in UML [32]. Figure 14(b) is modified to
Figure 14(c):

— A virtual full name (v_fIname) combines first name (fname) and last name (Iname) into
string pair in Person.
— A virtual first name (v_fname) and a virtual last name (v_Iname) in Person’ returns the first
and second elements of flname, respectively.
Virtual computations are solely based on data in its database. They do not borrow data from other
databases or external data sources. Any number of VEs can be added to a table. Their expressions
are defined at the schema level and are (automatically) evaluated at the database level. VEs are
needed only for database proofs of invertibility and are not persistent.’

3Underlying each schema is a category. By adding VEs to the domain and co-domain of a minRef, we make the categories
their schemas isomorphic, a requirement for Cy equivalence.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:13

Table Person Person
tname: string fname: string flname: string*string
Iname: string
|
1 (b) Schema's (d) Schemas’
|
. 9 | thame 2 tname
R R 2 3
L erson L erson
Column P
cname: string < cname ctype ccard ctable
ctype: type g fname | string | one £ cname ctype ccard ctable
: 2 3
ccard: card Gl iname | string | one Gl fname | string*string | one

(a) Metas (c) s as an instance of Meta$S (e) s’ as an instance of MetaS

Fig. 15. Schemas are instances of Metas$.

Given the database minRef mergeFieldsg, the tasks in Coq to perform are as follows:

D.1 Declare the minimal source and target schemas of mergeFieldsc.

D.2 Define the mergeFieldsg and splitFields database minRefs.

D.3 State the theorems that mergeFieldss and splitFields are inverses of each other.
D.4 Prove theorems of Appendix D.3.

The details of task D.T are presented in Appendix D.T.

3.2 Schema Refactorings

We now go one level up in the MOF hierarchy and focus on mergeFieldso-splitFields minRefs
at the schema, not database, level. The details are different due to limitations in Coq, but our
approach is the same. We define a metaschema to encode database schemas as instances. Note:
VEs are excluded from schema invertibility proofs as they are needed only for database invertibility
proofs.

A Coq Meta-Schema Definition. A schema refactoring cannot be encoded directly as Coq has
limited reflection capabilities: i.e., there is no way to access and manipulate Coq record definitions.
Therefore, we defined our own metaschema, Metas$, so that every Coq schema (i.e., set of Records)
can be encoded as an instance of Meta$ (Figure 15). A Meta$S schema is a pair of tables, literally
named Table and Column, where the name of each Coq record (table definition) ¢ is entered as a
row in Table, and each column of t is entered as a row in Column.

Figure 15(a) is a umiCD of MetasS. Figure 15(c) shows how schema s of Figure 15(b) is encoded
as a MetaS$ database: the Table has one row for Person and the Column table has two rows for
fields fname and Iname, respectively. Figure 15(d) and (e) are the result of applying mergeFieldsg
to schema s.

We define Table and Column as Coq records, and then define a Schema as a collection of Tables
and Columns. However, since the type of column might be a reference, not just a primitive type, we
define our own generic column type, CType. A CType cannot be defined as a record since there are
different ways to construct it. Instead, we define it inductively by allowing multiple constructors

separated with a vertical bar "|".*

1 Record Table := mkTable {

2 tname: string;

3 3.

4 Inductive CType : Set := String | Bool | Nat (x primitive Column data types x)

5 | Pair: CType — CType — CType (* non-primitive Column data types x)

4Inductive types do not assign field names, only their types. Field names are defined by (separate) functions. Parameters
of each constructor are separated by arrows. The last parameter is the output which is identical to the type being defined.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:14 N. Altoyan and D. Batory

6 | Option: CType — CType

7 | List: CType — CType

8 | Ref: Table — CType.

9 Inductive Card : Set :=

10 | one | optl | many (*x predefined cardinalities 1,0..1,% *)
11 | val: nat — Card (* custom value, ex 5 x)

12 | finiteRange: nat — nat — Card (*x a range 4..9 %)

13 | infiniteRange: nat — Card. (* a range 3..*% %)

14 Record Column := mkColumn {

15 cname : string;

16 ctype : CType; (*x a predefined Column data type *)

17 ccard : Card; (* a predefined cardinality data type *)
18 ctable : Table; (* Table row to which this column belongs x)
19 3.

20 Record MetaS := mkMetaS { (* MetaS database constuctor x)

21 tbls: list Table;

22 cols: list Column;

23 3.

A type can be either a String, Bool, Nat, Pair of types, Option of a type (which allows nulls), List

of some type, or a Reference to a given table. More variants can be added as needed. Cardinality is

defined inductively as well. Possible cardinalities include 1, 0..1, ¥, a custom value (e.g., 5), and a

range between two cardinalities (e.g., 1..5 or 2.”), which correspond to the constructors of card.
Schemas s and s’ of Figure 15 are databases of MetaS$:

1 Definition t1:= mkTable "Person". (* Person as a Table instancex)

2 Definition c1:= mkColumn "fname" String one t1. (x fname and lname as Column instances x)
3 Definition c2 := mkColumn "lname" String one t1. (*x both belong to t1, the Person table *)
4 Definitions := mkMetaS [t1] [c1; c2]. (* MetaS database for s x)

5 Definition c3:= mkColumn "flname" (Pair String String) one t1. (* flname as Col instance *)

6 Definition s’ := mkMetaS [t1] [c3]. (* MetaS database for s’ x)

Listing 4. Meta$ Encoding of Schemas s and s’.

Observe how s and s’ are defined (lines 4 and 6). Both schemas have table 1. However, s has two
columns: c1 and ¢2, whereas s’ has one column ¢3. This mimics replacing fname and Iname with
fIname when refactoring s to s’.

We proceed as before: given the minRef mergeFieldsg, the tasks in Coq to perform are as follows:

E.1 Declare the minimal schemas of mergeFieldss-splitFields in MetasS.
E.2 Define the mergeFieldss and splitFields schema refactorings.
E.3 State their round-tripping theorems and proofs.

As before, the details of task E.T are presented in Appendix E.T. Appendices E.1 and E.2 are straight-
forward; the proof in Appendix E.3 is tedious and non-trivial.

4 PROOFS OF MINIMAL REFACTORINGS WITH MINIMAL CONSTRAINTS

Coq proofs for minRefs with minCons are more complex than without, due in part to Coq following
Intuitionistic Logic [97], not classical logic [96]. These difficulties are explained next.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:15

4.1 Proposition Complexities of Intuitionistic Logic

Coq propositions are not expressions to be evaluated Type

but are types that belong to Prop. Familiar types like /\

nat and bool belong to Set. Figure 16 depicts Coq’s sot Prop

type hierarchy. bool expressions (with operators like

&&, | |, and =?) belong to the computational universe %\ /\
of Coq and can be evaluated to either true or false.nat string bool .. True False Truel/True .
On the other hand, Prop expressions (with operators
like /\, \/, and =) cannot be evaluated but may only be
proven. For example, the Boolean expression true | | true evaluates, in Coq, to true. However, the

corresponding propositional expression True\/True does not evaluate to True. Instead, one must
use (inference) rules, provided in a Coq library, to show that True\/True reduces to True.

Fig. 16. Coq type hierarchy.

A proposition may be proven in different ways. Each proof is called a proof object. The type nat,
when considered as a proposition, has every natural number as an evidence or proof. The theorem
p below is discharged by selecting number 2 as a proof:

Theorem p : nat.
Proof. exact 2. Qed.

Another proof would use a different number, say 3:

Theorem q : nat.
Proof. exact 3. Qed.

Here p and g represent two identical theorems of the same type with different proofs. Our instinct
says p and q represent different proofs of the same theorem, and intuitively should be equal. After
all, we don’t care how a theorem is proven. Our main interest is knowing if the theorem holds.
This line of thinking relies on a known mathematical axiom called proof irrelevance [21]: any two
objects of the same proposition are equal.

Coq proceeds differently: different proofs are different objects, and thus p # q. Coq does not
have the proof irrelevance axiom as part of its theory and consequently must be told explicitly
when to apply proof_irrelevance. So if we want Coq to consider p and g equivalent, we must
write

Theorem th: p = q.
Proof.

apply proof_irrelevance.
Qed.

Another complexity in Coq is showing the equivalence of two instances of the same structure
with constraints. One would think that equivalence is established just by showing the values of
corresponding fields are identical. Not so. Consider the following definition of positive numbers
[66]. The structure involves a field val of type nat and a constraint val > 0:

Record PositiveNum := mkNum {
val: nat;
is_pos: val > 0;

3.

Two instances of PositiveNum, a and b, are equal if (1) (val a) = (val b) and (2) (is_pos a) =
(is_pos b). The first requirement is straightforward, but the second is not. Typically, if we know
that (val a) = (val b), and (is_pos a) holds, we would conclude that (is_pos b) must also hold.
However, Coq cannot do this inference: (is_pos a) and (is_pos b) are different types (val a > 0 and

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:16 N. Altoyan and D. Batory

val b > 0, respectively), and therefore are not equal. To solve this, we need to transport (is_pos a)
from a proof of type (val a > 0) to a proof of type (val b > 0) to prove (is_pos b).

Transport Example 1. The following theorem attempts to prove that if the values of two
PositiveNums are equal, then they are equal (by saying nothing about propositions).

1 Theorem A_equals_B (A B : PositiveNum):
2 (val A = val B) — (A =B).
3 Proof.
4 (* some script here x)
1 subgoal
m : nat
g:m>20
n : nat
h:n>2o
p =n
/1)
{| val :=m; is_pos :=g |} =
{| val := n; is_pos := h |}
5 f_equal. (x does nothing because g and h have different types *)
6 Abort. (* quit the proof %)

The tactic used in Line 5, f_equal, matches corresponding fields. It fails because the proof objects,
g and h, are of different types (m > @ and n > o, respectively).

Transport Example 2. Let p be the proof object of the equality statement m = n, which can be
used to transport instances of type m > 0 to instances of type n > 0. We do this by proving the
lemma, which we call transport. (The transport concept is part of Coq’s foundation but is not a
keyword of Coq).

Lemma transport (x y : nat) (H: x = y) (G: x >@): y > 0.

transport takes as input two numbers x and y, an evidence H stating that x and y are equal, and
another evidence G stating that x > 9, and outputs a proof object of type y > 0. In this case, G is the
proof object to transport along H. The proof of the lemma is trivial: H is used to rewrite G where
occurrences of x are replaced with y in G. The result matches the goal (y > 0) which concludes
the proof:

Lemma transport (x y : nat) (H: x =y) (G: x >0@): y > 0.
Proof.

rewrite H in G.

assumption.
Qed.

R W N =

With transport, we can prove theorem A_equals_B but must state it as

Theorem A_equals_Bv2 (A B : PositiveNum) (p: val A = val B)
(q: (transport (val A) (val B) p (is_pos A)) = (is_pos B)):
A = B.
Proof.

- (*x some script here x)
f_equal. (* it works! x)
Qed.

NN W=

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:17

P

Address'

P Constraints:

) addr
Vplp2: Person, Person 1.* 1

pl.name = p2.name

Person zipcode': string

- name': string N
name: string >pl =p2 state": string

zipcode: string Vp1 p2: Person, Constraints: Constraints:

state: string pl.zipcode = p2.zipcode vp1 p2: Person’, Val a2: Address’,
= pl.state = p2.state pl.name’ = p2.name’ al.zipcode' = a2.zipcode'
=>pl=p2 =al =a2

Fig. 17. Extract/inline class refactoring.

The theorem says, given
— two instances A and B of PositiveNum,
— a proof that A and B share the same value for field val, and
— a proof that the proof objects (is_pos A) and (is_pos B) are equal under transportation,
then A and B are equal.

4.2 Database Refactorings with Minimal Constraints

Metamodel P in Figure 17 has one class, Person. Each person has a name, resides in a zipcode and
in a state. A constraint of P is uniqueness: name is the primary key of Person:

Vpl,p2 € Person : pl.name = p2.name = pl = p2.

Also, a zipcode belongs to only one state. So, 78704 cannot be both a zipcode in Texas and, say,
California. This is captured by the sameState constraint:

Vpl,p2 € Person : pl.zipcode = p2.zipcode = pl.state = p2.state.

The refactored metamodel, P’, has two classes: Person’ and Address’ where the residence infor-
mation (i.e., zipcode and state) is extracted from Person into a newly created class Address’. Now,
each person from Person’ has one Address’, and each address hosts at least one Person’. We call
this minRef extracts-inlineg. (In database parlance, it is called table normalization).

Observe that if the primary key constraint was removed or if the cardinalities were chosen differ-
ently, the refactoring would be incorrect, leading to data inconsistencies. We call such constraints
minimal.

Given the above, the tasks in Coq to perform are as follows:
F.1 Declare the target schemas P and P’ in Coq.
F.2 Define the extracts and inlineg database minRefs;.
F.3 State their round-tripping theorems and proofs.

The details of task F.t are presented in Appendix F.t. None of these tasks are trivial.

4.3 Schema Refactorings with Minimal Constraints

The correctness of a minRef at the database level was shown in Appendix F. At the schema level,
the focus is on structural and syntactic details. As we are working with a concrete minimal schema,
field names, table names, and constraint expressions are fixed (prespecified terms).

Recall our metaschema MetasS is a list of tables and columns (Section 3.2). It now must be ex-
tended to accommodate minCons. The first challenge is: in what language are minCons expressed?
And then how to recognize if a schema satisfies a minCon, as even simple constraints can be written
in different ways, like the XOR of predicates P and Q:

(PA=Q)V(-PAQ) OR (PVQ)A(-PV-=0) OR QVP= —~(QAP) OR

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:18 N. Altoyan and D. Batory

Parametric
Generalization

last : String — suffix : String
-suffix : String splitField

Hast : string dle
suffix : String splitField -suffix : String

|
i i ' E— i
' (a) Person . ! ' (b) Person !
| e A erson ' i first : String i Person |
H |-first : String. mergeFields [(irstiast - Stringstring| 1 ! it g mergeFields — - - - |
1 -middle : String - — 1 | -middle : String I-firstMidLast : StringxStringxString | '
' “riddle : String H ' !
i | : |
]] i i
i i]

L

Fig. 18. pullUpg-pushDowng minRefs parametrically generalized to parRefs.

If OCL was used to declare an minCons, it would be daunting to take k > 1 OCL constraints and
deduce if a minimal constraint holds. A much simpler solution, which we adopt, is to have a special
single syntax (or term) for each minCon as we expect few distinct minCon types; most are related to
cardinality and tuple uniqueness. Doing so enables an MDE refactoring engine to quickly deter-
mine if a particular set of minCons holds.

Consider the minCons of SchemalP’: personKey’, addressKey’, and card’. All can be expressed
in a uniform way using predefined general-purpose constraints: key, funDep, and nonNull. key (X)
declares a non-empty set X of fields (with non-null values) to be a primary key of a designated
table. funDep(X,Y) defines a functional dependency X—Y where X and Y are non-empty disjoint
sets of fields of the same table [30, 84]. And notNull(F) declares a field F never to have a null value.
Therefore, instead of having to write personKey’ as

Vpl,p2 € Person’ : pl.name’ = p2.name’ = pl = p2,
it can be stated briefly:
Person’.key({name}).

Using special syntax for minCons (a) makes it easy for a refactoring engine to check if a specific
minCon holds and (b) simplifies the writing of schema refactorings. As we are working with concrete
minimal schemas, minCons can be hard-coded as strings. The constraints are as follows:

1 Definition personKey := "Person.key({name})". (*x Person Constraints x)

2 Definition sameState := "Person.funDep({zipcode},{state})".

3 Definition personKey' := "Person'.key({name'})". (*x Person' Constraints *)
4 Definition card' := "Person'.nonNull(addr')".

5 Definition addressKey' := "Address'.key({zipcode'})". (* Address' Constraint x)

The metamodel P-to-P’ refactoring translates minCons personKey to personKey’, sameState to
addressKey’, and personKeyAsameState to card’. The P’-to-P refactoring restores personkKey and
sameState. The proofs of invertibility are trivial. Simplicity is due to the fact that we are looking
at a concrete instance and that minCons are recognizable strings. When a refactoring is elevated to
its generalized form, MetaS would require an additional table (list) of minCons. The proof would be
a bit more involved and is left for future work.

5 REMAINING STEPS AND OTHER FUTURE WORK
5.1 Parametric Generalizations (Rg)

mergeFieldsy merges two String fields into a Pair<String> field (Figure 18(a)). How could this
minRef be generalized?

One way would be to merge n > 2 fields; Figure 18(b) illustrates n = 3. Another way would
replace the String parameter of Pair<> with a different type (e.g., Integer). Both are examples of
parametric generalizations, where mergeFieldsg is given more arguments to become a parametric
refactoring (parRef), mergeFieldsg, denoted by @.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:19

Parametric
Generalization

Fig. 19. mergeFieldso-splitFields minRefs parametrically generalized to parRefs.

Similarly, pushDowns pushes down one field of an abstract class to its lone subclass
(Figure 19(a)). A parametric generalization pushes down multiple (>2) fields together; another
allows multiple (>2) subclasses (Figure 19(d)). Combinations of generalizations are to be expected.

Parametric generalizations make small changes to the Coq definition of a minRef, typically by
adding loops or using arguments for previously fixed values.

Parametric generalizations enlarge the domain and co-domain of a minRef Ro:{cd}—{cd’} to a
parRef Rg:Qg—Q, with a larger domain (Qg) and co-domain (QF,), Figure 20(a)—(b):

Fig. 20. Effects of a parametric and context generalizations.

and parRef round-tripping theorems add another level of quantification. Equations (3) and (4) be-
come

(VedeQo : cd= R Re(cd))) N\ (Ved'eQ) + o' = Re(RG' ()). (1)
(VcdeQ@, Vdeed : d = Rg(R@(d))) A (Vcd’e%, Vd'ecd : d = R@(Rg;(d’))). (12)

5.2 Contextual Embeddings and Full Refactorings (R)

A refactoring engine offers its users full refactorings, where a refactoring target umiCD T is em-
bedded in a larger umICD C, written T<=C. C is the umICD of the user’s MDE metamodel, called
a context. Unlike prior sections, T has class, field, and association names that are expected to be
different from those hardwired in a parRef definition.

In Figure 21, full refactorings mergeFields-splitField are applied to a particular class (Dog)
that is embedded in a larger umICD (a context). This is accomplished by extending mergeFieldsq-
splitFieldg with additional parameters for each class, field, and association name (to make name
bindings general), focusing on the class(es) to transform, and leaving the remaining diagram intact
(see [76, 77] for details). Extending proofs of Rg to R requires yet another proof elaboration.

A context generalization enlarges a parRef Rg:Qg—Qy to express a full umiCD refactoring
R:Qr— Q7 with its expected broad domain and co-domain, Figure 20(b)—(c).

Round-tripping theorems for full refactorings are generalizations of parRef theorems,
Equations (11) and (12), with a broader scope of quantification, i.e.,, Qg is widened to Qg
and QF is widened to Qp. Qg is the subdomain of Q (containing all class diagrams) that

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:20 N. Altoyan and D. Batory

_owner Person _owner Person
-name : String -name : String
-phone : String -phone : String
-owns 1.% 1.2 1.2
= -owns 1.*
other Dog B
-fname : String — mdther = ~—
0.1 -Iname : String) _vet Veterinarian Dog -patient -vet Veterinarian
-nickname : String -patient -degree : String mergeFields 0.1 -name : StringxStringxString| -degree : String
-breed L —— |-school : String 3 N -breed -school : String
g . 0.1 * 0.1
fath
=Y fathe
0.1 -employs * 0.1 -employs *
-worksAt 1 -worksAt 1
Clinic Clinic
-name : String -name : String
-address : String -address : String
-city : String -city : String
-zipcode : String -zipcode : String

Fig. 21. Applying mergeField-splitFields in context umICDs.

satisfies the preconditions of R; QF, is the subdomain of Q that satisfies the postconditions of R.
Equations (11) and (12) become

(dee Qg : cdzRg;(R@(cd))) A (\fcd'egz;z :ed' =R@(R;;(cd'))), (13)
(VedeOp, Vdeed : d =R (Ra(@)))\ (Ved'e0f, Vd'ecd : &' = Ra(RG!(@))). (19)

As said earlier, we found tackling the most generalized refactoring possible—namely, minimal
refactorings with parametrization and context generalizations—was too daunting. Instead, start
with a minRef proof and incrementally extending it would be more understandable, doable, and
easier to explain, as the scope of each task is smaller.

5.3 A Sketch of a Relational Algebra Theorem Prover

For some time, we suspected that Coq was not the right prover to use. A prover that verified
Relational Algebra (Rp) identities, in our opinion, would have been better. We found leads [15, 17,
27] but no usable tools, so we continued with Coq.

Referees of this article brought Database Model Management (DbMM) [18, 19, 60, 72, 73] to
our attention. DbMM is the counterpart to work on MDE Model Management—propagation of
changes to a metamodel and its models—where refactorings are special cases. DbMM uses R to
specify and analyze changes to both relational schemas and their databases. This literature sup-
ported our intuitions that Coq abstractions and specifications were too low-level. We sketch and
explain below why a prover based on Ry might be better.

Relational Algebra. Consider this Ry expression that joins tables R and S and then projects fields
R.Aand S.B [30, 84]:

RS = Tlga s.5 (R><S). (15)
Observe that projection (II), natural join (), and indeed all Ry operations are co-transformations.
That is, each R) operation encodes a pair of operations: one on schemas and another on tables. This
unification leads to a single and compact specification for round-tripping schema and database
refactorings. To show this, we mix Coq-like notations with R) expressions to recast the theorems
of Sections 3 and 4. The end result has a flavor of Algebraic Specifications [17, 80, 85]. We use four
Rp operations; the first three are standard [30, 84, 90]:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:21

— Projecting columns ¢y, ¢y, . . ., from table T to produce table T: e, . T= T.
— Projecting named columns ny, ny, . . ., whose origingl column R
names are cy, Cy, . . ., from table T to produce table T ey nyicy, ... T =T.
— Natural join of tables R and S to produce table RS [30, 84]: RS =RS.
— Database Constructor: Let schema P have two tables {R, S}.
A new instance d of PP, whose table expressions are {Rx, Sx}, d = P[Rx, Sx].
is formed by:

mergeFieldso-splitFields. As in our Coq proof,
a pair of axioms is used (Figure 22). Equation (16)
states the fst of a Pair(a,b) is a, and Equa- i

. s -fname : String Py -flname : String x String
tion (17) states the snd of that Pair is b: -Iname : String splitFields

fst(Pair(a,b))
snd(Pair(a, b))

P

Person

[PI

Person'

mergeFields

i

a, (16)
b. (17) Fig. 22. mergeFieldso-splitFieldg.

Some helper functions are needed. Equation (18) translates a Person table to a Person’ table and
Equation (19) is its inverse:

Definition toPerson’(p : Person) : Person’ := Il finame:Pair(fname, Iname)(p)- (18)

Definition toPerson(p’ : Person’) : Person := Il fpame:fst(finame), iname:snd(finame)®’). (19)

Equation (18) projects Person table p to a Person’ table whose flname column has Pair
(fname, Iname) values. Equation (19) projects Person’ table p’ to a Person table whose columns
fname, Iname have values f'st(flname) and snd(fIname).

The round-tripping theorems are essentially identical to Equations (5) and (6) (below) and can
be proven manually using known Ry identities and Equations (16) and (19).

Theorem P_roundTrip: Vd :P, d =P [toPerson(toPerson'(d.Person))] (20)

Theorem P’ _RoundTrip: VYd' :P’, d' = [P’[toPerson’(toPerson(d'.Person’))]. (21)

extracts-inlineg. Three helper functions are needed. Equation (22) produces a Person’ table
from a Person table by projecting the name and zipcode columns. (The Person table has two
columns: name and zipcode; zipcode implements the Person’—LAddress’ association of Figure 23).
Equation (23) produces an Address’ table from a Person table by projecting the zipcode, state
columns. Equation (24) reconstructs a Person table by a natural join of the Person’ and Address’
tables:

Definition toPerson’(p : Person) : Person’ := Il ame, zipcode(P)- (22)
Definition toAddress’(p : Person) : Address’ := Tl ipcode, state(p)- (23)
Definition toPerson(p’ : Person’,a’ : Address’) : Person := p' > a’. (24)

Figure 23 shows both umiCDs, P and P’, with their constraints. P has two functional depen-
dencies that permit the partitioning of Person into Person’l=*LAddress’. P’ retains these depen-

dencies and adds two more constraints. The Person’ table can be reconstructed from (Person’ s«

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:22 N. Altoyan and D. Batory

— 7]

* 1 Address'

Person'

-name : String H-mpcode : String

-state : String

Person

-name : String

-zipcode : String -addr

-state : String Constraints:

FD: zincod Constraints:
Constraints: Fname = zipcoge FD: zipcode — state

FD: name — zipcode, state
FD: zipcode — state

Cons: Person’ = Myame zipcode (Person’ » Address’)
Cons: Address’ = M ipcoge state (Person’ x Address")

Fig. 23. extractgo-inlineg.

Address’) followed by a projection of the name, zipcode columns. This constraint means that
every Person’ tuple joins with one Address’ tuple. That is, it encodes the 1 cardinality of as-
sociation Person’—LAddress’. The second constraint encodes the 1.* cardinality of association
Person’ 12— Address’.

As before, the round-tripping theorems are essentially identical to those used in Appendix F.3:

Definition p’(d : P) : P’ = P’[toPerson’(d.Person), toAddress’(d.Person)]. (25)
Definition p(d": P"): P = P[toPerson(p’.Person, p’.Address’)]. (26)
Theorem P_roundTrip: VYd :P, d = p(p'(d)). (27)
Theorem P’_RoundTrip: Vd' :P’,d = p'(p(d")). (28)

Recap. Coq specifications of umICD refactorings are too low-level; Ry specifications are more
appropriate as they are at the right level of abstraction, namely, as R, co-transformations. Consider
the minCons of P’: that both Person’ and Address’ tables can be recovered from their join. This
precondition is admittedly not obvious from our proof in Section 4, but is a non-trivial and precise
precondition of inlineg. Any Person’ tuple that references a non-existent zipcode in the Address’
table, or any zipcode in the Address’ table that is not referenced by a Person’ tuple will violate the
preconditions of the inlineg refactoring.

6 RELATED WORK
6.1 MDE Refactorings

The work of Gheyi et al. [35, 58] was very influential to us. These were the earliest papers to
our knowledge that used a theorem prover, Prototype Verification System (PVS), to verify
the correctness of umiCD refactorings. Refactorings were defined between Alloy modules [42].
(Note: The term model is standard for an Alloy specification; we replaced it with module to avoid
confusion with MDE terminology). They argued that refactorings can be analyzed by translating
before-and-after umiCDs to Alloy and proving umiCD equivalence. Two Alloy modules are said to
be semantically equivalent if their corresponding set of instances are identical. Correspondence
is achieved through mappings, or views a.k.a. virtual elements, which may involve a computation
to recover a missing field or association in the target class diagram. As their views only find
corresponding fields and associations, and not classes, their definition could not be used to prove

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:23

intuitively equivalent modules (which the authors acknowledge) [35]. For this reason, in some
cases they could only prove (one-way) embeddings in place of refactorings. We were able to take
their example and prove bi-directional embeddings [2].

6.2 Category Theory

Using Cy as a foundation to study and formalize refactorings is not new [48, 79, 82, 91]; it is our
holistic use of Cy that is novel.

Schulz et al. [82] studied metamodel refactorings using Cy. Horn clauses expressed metamodel
constraints. They, like us, asserted “refactorings preserved model data,” but the inverse of a refactor-
ing is itself a refactoring was not explored. “Refactorings” were thus embeddings, not equivalences,
which allows for many more transformations to be called “refactorings” than we would accept.

6.3 Unbounded-Level MOFs

There is research in MDE that removes bounds on three-level MOFs, where n-level MOFs (n > 3)
are possible [50]. Our work focuses on the classical case of a fixed meta-metamodel at level n =
3 and co-refactorings at the metamodel level, n = 2, and model level, n = 1. Cy suggests what a
refactoring at level n > 3 means. An n-level refactoring is a level-recursive co-transformation. The
initial refactoring is applied to a model at level n-1. Its instances at level n-2 are co-refactored.
Affected instances at level n-3 are then co-refactored, recursively until terminating at the model
level, n = 1. Without examples, this is hard to imagine, although it is indeed reasonable.

6.4 Refactoring Verification

Different techniques were developed to reason about model and/or metamodel refactorings.

Maoz et al. [54] analyzed the correctness of class diagram refactorings using the Alloy Analyzer.
They deeply embed class diagrams in Alloy to compare and manipulate two or more umiCDs in
one Alloy module. Due to the nature of Alloy, the scope of analysis is restricted, thus equivalences
can only be proven up to some bound.

In another work [55], the same authors computed the semantic differences between two class
diagrams. Alloy was used to encode the source and target umICDs in an Alloy module making it
possible to instantiate the module to reveal semantic differences. That is, each instance corresponds
to an object diagram that is valid for the source umiCD but not the target.

Costa et al. [26] used Prolog to reason about differences in a pair of umiCDs using a base umiCD as
a common ancestor. These umiCDs are translated to Prolog facts and then each of the two versions
is compared against the base. The set of changes from the first version is compared to those from
the second. By following a set of semantic rules, e.g., an abstract class is equivalent to an interface
if they have the same name and same elements and if all the methods in the abstract class are
defined as abstract, a conclusion is then derived: (1) first and second umiCDs are equivalent, (2) one
includes the other, or (3) they are in conflict.

MDE Model Management. Striten et al. [88] discussed model refactorings in terms of behavioral
properties. The behavior of a model is captured through state machine and sequence diagrams.
Both representations must be consistent, i.e., the same call sequences must be present in both
diagrams. When a model is modified, its behavior is updated accordingly such that consistency is
preserved. Moreover, in a model refactoring, call preservation must also be satisfied, i.e., the same
call sequence is invoked on the original and refactored model. The emphasis is on preserving the
sequence itself, not its evaluation. The authors formalized consistency and preservation properties,
and verified these properties hold using Description Logic. A supporting prototype tool was also

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:24 N. Altoyan and D. Batory

developed. Although it is important to ensure such properties, our definition of model refactorings
is based on data, not behavior: call preservation does not guarantee matching results if data is not
preserved.

Sultana and Thompson [89] explored transformations (refactorings and extensions) of Haskell
programs with proofs of correctness using the Isabelle/HOL proof assistant. Proving programs
correct, even Haskell programs, is far more difficult than refactoring MDE class diagrams and
OCL constraints in our opinion. Further, the inverse of a refactoring is itself a refactoring was not
explored. They did consider “lifting,” which is an equivalence. But other “refactorings” included
extensions to types—adding new operations, which are not equivalences but embeddings or edits
by our definition. (Hint: categories without an arrow (operation) are not equivalent to categories
with a new arrow (operation)).

6.5 Co-Transformations

Refactorings are co-transformations where models are updated whenever their metamodels are
transformed to preserve conformance. More refined ideas occur under different topics as well,
including co-evolution and co-adaption [93]. For example, Konig et al. [48] presented a framework
based on Cy and triple-graph-grammars to auto-generate transformations at the instance level
w.rt.a transformation at the metamodel level. We used a bit less Cf in our article to achieve a
similar but more restrictive result on refactorings.

MDE Model Management. Herrmannsdorfer et al. [41] introduced COPE, an approach and
tool to help manually migrate models whenever their corresponding metamodel evolves. Like our
work, they predefine a set of reusable co-transformations: a pair of [metamodel adaptation and its
corresponding model migration]. After a co-transformation takes place, metamodel consistency
(i.e., satisfying the meta-metamodel constraints) and model conformance must be checked. This
differs from our approach where transformations are certified (by a theorem prover) to produce
correct results. It is not clear if or how OCL constraints are handled.

A theoretical model to facilitate the migration of data of an evolved metamodel was developed
by Téntzer et al. [91]. C was used whose interpretation was grounded in algebraic graph transfor-
mations. Refactorings were not explicitly considered as they are a special case of graph transforma-
tions. The approach was realized by a tool [53] showing in detail how graph transformations form
a theoretical basis for MDE co-transformations. The correctness of transformations, refactorings
included, was not a focus of their work.

Berg and Yu [16, 100], addressed the problem of re-establishing consistency of models after
performing a metamodel refactoring. They present a formal framework to define transformation
rules for each metamodel refactoring. They argue that rules can be used to develop an analysis
engine that (1) derives corresponding model transformations (by analyzing the effects of applying
the rules); and (2) automatically detect candidate refactorings. Implementing analysis engines was
left for future work.

6.6 Transformation Verification

To verify the correctness of an MDE transformation, various tools have been used.

Anastasakis et al. [4] used Alloy to specify source and target metamodels in addition to a set
transformation rules. If Alloy was unable to simulate a transformation, this indicated that the
transformation rules were inconsistent.

Berramla et al. [20] used Coq to prove the correctness of an algorithm that transforms a given
state diagram to its corresponding Petri Net representation.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:25

Calegari et al. [25] presented a general framework in Coq that can be used to prove the cor-
rectness of model transformation with respect to a target metamodel and transformation rules. A
transformation is correct if it meets its specification. Their work is similar to ours where metamod-
els are directly encoded (using records and inductive types). However, inheritance is not fully cap-
tured as it is represented merely as an association without enforcing its semantics with supporting
constraints. Another difference is that their transformations are declarative (i.e., specified through
propositions), whereas ours are imperative (i.e., defined by means of functions). Finally, we go be-
yond this by showing the invertibility property of refactorings to establish semantic equivalence
(i.e., data preservation) as opposed to only verifying a transformation guarantees conformance
preservation.

MDE Model Management. Ledang and Dubois [51] proved model transformations using the B
formalism where B provers were used for analysis and proofs. Based on their verification technique,
a transformation is guaranteed to respect its predefined invariants and to produce models that
conform to the target metamodel. Although their approach guarantees that a transformation meets
its specification (via invariants and conformance rules) their work does not guarantee that the
defined invariants preserve data.

Bi-directional transformations preserve consistency between source and target models. Ehrig
et al. [29] formalized bi-directional transformations using Cy and triple graph grammars, and
showed that these transformations are information-preserving between related graphs. Only
common information between models is preserved as opposed to all data—a basic requirement in
refactorings.

6.7 Database Refactorings

Among the earliest works on umiCD-like refactorings, circa 1982 before MDE was recognized as
a discipline, is in the database literature. Atzeni et al. [6] defined schema equivalence in terms of
queries and functional dependencies, and manually proved properties that implied equivalence.

A recent and impressive contribution is by Wang et al. [94]. They automatically verified the
equivalence of database-driven applications before and after a database refactoring. Equivalence
was based on queries: evaluating corresponding queries on source and target schemas must always
return the same data. This is done by relating database states through a bisimulation invariant.
Such an invariant must be sufficient (i.e., covers all queries from interfacing applications) and
inductive (i.e., always holds). They developed a tool that generates a possibly suitable invariant and
attempt to automatically prove its correctness using the Z3 SMT solver. As our focus is primarily
concerned with schemas rather than applications interfacing them, our equivalence definition is
more restrictive: not only queries defined by the application must yield the same result, but any
possible set of corresponding queries. Stated differently, if data isn’t preserved, the output of some
query that was not considered will be different in the source and target schemas.

DbMM. Bernstein and colleagues had a series of papers circa 2007 that (in our opinion) revo-
lutionized DbMM [18, 19, 61, 72, 73]. DbMM is a generic approach to deal with schema updates,
their impact on schema instances (databases), and application queries + constraints. Today, data-
base schemas can be expressed in an astonishing number of ways, including non-standard schema
declarations in different relational DBMSs, XML schemas, ER-schemas, and OO languages (Java,
Net) [65]. Further, different query languages (SQL, XQuery, XSLT, ER-SQL) give rise to a large
universe of complex translations. DbMM not only executes query mappings, it also propagates
updates, notifications, exceptions, access control fights, and provenance.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:26 N. Altoyan and D. Batory

Although Cy is not used as a foundation for DbMM, it certainly could be as the main technical
ideas of DbMM are transformations (i.e., total functions) and their compositions.

Refactorings are special cases of schema updates. DbMM , ,
opens up a more general vision of refactorings. In Figure 24, A —===> A 4

D is a database of schema S, and A; are applications that in- "'Al - Ay) Ay
terface with D via S. calls calls

Figure 24 shows that a refactoring (both our notion and S
that of a typical Java refactoring) not only modifies schema
S to S’, but also updates its database D to D’, and updates
each existing application A; to its semantic counterpart A’ D -———-> D'
that references schema S’. Doing so requires a solution to the
view update problem [30, 84]. Our work does not cover the
refactoring of application code—this is a future problem to address. New applications A}, ... A}

instOf instOf

Fig. 24. Mappings in DbMM.

k+1°
are subsequently added to interface with S’ and its database D’, possibly some applications are

deleted, and the cycle of Figure 24 continues into the future.

6.8 Refactoring Text-Based DSLs

Another popular way to define an MDE metamodel, besides a [umICD, constraints] pair, is using a
purely textual DSL, which has a grammar, lexer, and parser. A DSL could be a clone of Java, where
model refactoring (move method m in class C to class D) becomes much more complicated, as it
must deal with methods, class member references, scoping, modularity, conditional expressions,
and so on, that do not exist in umICD metamodels.

An MDE-based refactoring engine for Java, R3, was proposed by Kim et al. [46] that parallels
our work. Instead of directly refactoring an Abstract Syntax Tree (AST) as is usual, data on classes
and their members are harvested from a program’s AST and stored in a main-memory database
(much like instances of Metas$ store textual class and field declarations in a database). Like MetasS,
refactorings become tuple update operations on databases, not ASTs. Example: to move method m
in class C to class D requires the tuple of m to update its class pointer to C (or rather a pointer to
the tuple for C) to D (the tuple for D). To extract the refactored source of a program, the AST is
pretty-printed, using the updated database to guide a model-to-text transformation.

Experiments showed R3 provided better refactoring extensibility, smaller memory footprint, and
significantly improved performance than the Eclipse refactoring engine [46]. Whether R3’s design
can be used for refactoring verification remains open.

7 CONCLUSIONS

Refactoring umICDs seemed intuitively simple to the point that correctness was “evident.” merge-
Fieldso-splitFields were typical: they seemed like pushovers. Sadly, this was not the case when
details of a refactoring were exposed. What started as a small research endeavor kept ballooning
into ever larger challenges. Just verifying a minRef with all of its twists-and-turns, without being
overwhelmed, was initially daunting. We believe it shouldn’t have to be this way.

Lessons Learned. MDE refactorings are indeed simple, but their Coq proofs are not. Significant
and unexpected technical challenges surfaced with regularity as we proceeded. It is fair to say this
was among the most technically challenging problems we ever faced. We offer four lessons.

First, care must be taken in defining the domain and codomain of each refactoring. Getting the
correct preconditions and postconditions is crucial for verification. Example: a precondition to
pull-up a field f of class B, a subclass of A, is that all subclasses of A contain f. If this is not the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:27

case, pull-up is an edit, not a refactoring. Far too many MDE metamodel operations (add/remove
field) are labeled in IDEs as refactorings; they are embeddings or edits in our view.

Second, our choice of theorem prover was not ideal. Coq is a magnificent tool. It was appealing
because it was recent, popular, and well-maintained. Further, modeling relational databases in Coq
was not difficult, but it felt like an unnecessary reinvention. Coq is based on a mathematical logic
that made proofs more involved than required. The chief complexities stem from properties (or
constraints) defined over a structure: (1) properties are not treated as computational expressions
but rather as types; and as a result (2) equivalence between two instances a and b (of the same
structure) does not immediately mean that P(a) = P(b) for some property P.

Third, choosing a tool with reflection (i.e., meta-) capabilities would make the connection be-
tween metamodel and model refactorings elegant—a feature Coq lacks.

Fourth, our difficulties with Coq primarily stemmed from its low-level abstractions. We conjec-
tured that a theorem prover of Relational Algebra (Rp) equalities would have simplified our task,
and indeed would have helped us tap into existing database research results that are (in our opin-
ion) far ahead of current MDE model management thinking. The reason: Ry provides a unified way
to express co-transformations on database schemas and their instances (read: umICDs and their ob-
ject diagram instances). Although there is now direct evidence that OCL implements a subset of
Rp [10], the essential operations of join and projection are missing.

Summary. Verifying the refactoring of MDE metamodels and their models has been a long-
standing challenge. Prior work was hindered by choosing different correctness criteria for refac-
torings. Some chose embeddings [35, 36], where a refactoring R:M— /N embeds metamodel M
into another metamodel N (i.e., M= N) often with the help of VEs. We argued that the inverse
of a refactoring is itself a refactoring, where a mutual embedding M« N and N M leads to an
equivalence—a central fact that we exploited in this article and our proofs. Prior work (mostly in
database research) used a definition that two databases are behaviorally equivalent if they produce
the same results for the same set of queries, e.g., [94]. The Cy definition of equivalence that we
used is more restrictive: data equivalence is required for all possible sets of queries.

Our approach to verification is incremental. We first considered minimal refactorings (a small
example of a refactoring that captures its essence) without OCL and minimal (cardinalities, unique-
ness) constraints. We then generalized our approach to consider minimal refactorings with min-
imal constraints, and again without OCL constraints. We discussed in Future Work paramet-
ric generalizations and context generalizations of minimal refactorings and how they could
be accomplished. The refactoring of OCL constraints is still open, although prior work exists
[7, 24, 39, 40, 56, 94].

Central to all these results is the framework of Cy that has guided our research in a structured
and incremental way; without it we could not have tackled this problem and its scope.

APPENDICES
A POLYMORPHISM AND DISTRIBUTIVITY OF METAMODEL REFACTORINGS

From the Introduction, a metamodel refactoring R transforms metamodel m = [cd, k] into an equiv-
alent metamodel m” = [cd’, k’]. A distributivity law—a refactoring distributes over its metamodel’s
components—relates m and m”:

R(m) = R(cd,k]) = [R(cd), R(k)] = [cd’, k'] = m'. (29)

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:28 N. Altoyan and D. Batory

Three distinct interpretations of R exist in Equation (29). Let

— O be the domain of all MDE metamodels used in this article,
— (C be the domain of all umiCDs, and
— K is the powerset of all OCL constraints, as an instance of K is a set of OCL constraints.

Further, there exists

— R0—0 a general refactoring of metamodels in this article;
—R(C-C a general refactoring of umICDs; and
— RK—-K a general refactoring of constraints.

Three kinds of polymorphism are recognized [98]:

(1) Parametric Polymorphism where methods can be written in a type-independent manner.

(2) Subtype Polymorphism where different classes of an inheritance hierarchy can have the
same method name, each with distinct method bodies.
(3) Ad hoc Polymorphism a common method name given to different types.

Metamodel refactorings are examples of ad hoc polymorphism, but realize that any Cy functor
that maps a product of types [70] yields functions that are ad hoc polymorphic.

Example. Domain @ is formed by the cross product of domains C and % in Figure 25(a) below;
projection arrows 7¢ and g extract cd and k, respectively, from a [cd, k] tuple (a.k.a. an © tuple)
[70]. The cross product ® = (C x %) forms category R. R:R—R is a functor from R to R
(Figure 25(b)). Figure 25(c) expands R into its external diagram of Figure 25(a) and shows that the
name R is given to all arrows in functor R, exactly as in the bullet-list above.

This is the origin of the “distributivity law” used in Section 1 and Equation (29): R([cd, k]) trans-
lates to [R(cd), R(k)]=[cd’, k’]; each R corresponds to a different R in Figure 25(c). Further, R™!
translates [cd’, k'] in the opposite direction, where R™! also has three distinct meanings. Note: As
our work resides in a MOF universe, R:©—0 = Ig is an identity function—the metamodel of all
MDE metamodels is unchanged.

A
& o|@®| & Fi

T
O =Cx% @/@/

(a) Category 2 (b) FunctorR: 2—> 2 (c) Refactoring R: 2> R

Fig. 25. FunctorR: R — R.

B GAMEBOARD ISOMORPHISMS

Two isomorphic and unequal tables are shown in Figure 26. The refactoring T and its inverse, 1,
define an abnormal isomorphism. An abnormal refactoring is when values are translated incor-
rectly, but consistently.

With few exceptions, a general property that all refactorings in the literature share is the Game-
Board constraint. On a game board, pieces can be moved to different positions on a board by stated

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:29
Do Dog’ .
P I e Value Translatons
Dog Value | Chief | Belle | 9 | 3 | True | False
Chief 9 False DX -9 True
Dog’ Value DX DY | -9 | -3 | False | True
Belle 3 True DY -3 False

Fig. 26. Isomorphic tables.

rules, but the value of the piece never changes.’ The pieces of a schema/database refactoring are
user-supplied data values (not pointers) in its tuples. We assume every data value can be moved to
a different field or tuple by rules, but a data value is never altered.

Enforcing the GameBoard rule is a metalevel constraint on proofs, which we observe: “data
values are moved, never altered.”

C CYCLIC DATABASES

Figure 27 is a cyclic database: it is impossible to define table D with-
out a circular definition, and Coq forbids records with circular def-
initions. Further, our use of embedding an entire record into a for- D

-parent 1

eign key field of a Coq record doesn’t work with cyclic databases, as -x : String
record embedding would nest deeply in a cycle. "y String
-2 : String ~children

A simple approach eliminates these (and other possible) problems
by making tuple-identifiers (ak.a. keys) as explicit strings, as
is common in databases [30, 84]. Consider this noncyclic Coq
definition of D:

Fig. 27. A cyclic schema.

Record D := mkD {
X : string;
y : string;
z : string;
parent : string; (x string identifier of parent tuple x)
id := (x ++ y); (* string tuple identifier %)

(x D tuple constructor x*)

3.

A D record would be a 5-tuple, where fields x, y, z, parent and id are strings. The last field, id, is
the tuple identifier, which is formed by a concatenation of its x and y fields, i.e., D’s primary key.
(This computation tells us how to manufacture an id for every tuple to be inserted). Given this,
one can write functions to compute association traversals (given a D record return its parent, or
return the set of its children).

This is a more complicated encoding of a schema and database; we did not find a need to use it,
but it was available if needed.

D PROOF OF MERGEFIELDSo-SPLITFIELD; DATABASE REFACTORINGS
D.1

Schema s of Figure 1(a) has only one table, Person. Their Coq definitions are

Declare Schemas

Record Person := mkPerson { (* Person tuple constructor *)

fname : string;

lname : string;

v_flname := (fname, lname); (* virtual element *)
3.

5Other than promotion (pawn to queen) and capture (removal), chess follows the GameBoard constraint.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:30 N. Altoyan and D. Batory

Record s := mks { (x s database constructor x)
pl : list Person;

3.

Listing 5. Schema s Declaration.

A VE, v_flname, is added to the table definition of Person in Listing 5 to compute a pair that
encodes a full name. Symbol (:=) denotes a computation as opposed to (:) denoting a type. The
other schema s’ and its table, Figure 1(c), are

Record Person' := mkPerson' { (* Person' tuple constructor =*)
flname : string*string;

v_fname := fst flname; (x virtual element *)

v_lname := snd flname; (* virtual element x)

3.

Record s’ := mks’ { (x s’ database constructor x*)
pl' : list Person';

}.

As before, v_fname and v_Iname are VEs. Functions fst and snd are built in and return the first
and second elements of a pair, respectively.

D.2 Define Database minRefs

Function mergeFields,:s—¢’ transforms each database instance of s to a corresponding s’ instance
and splitField_:s’—s is its inverse. We use helper functions: one to translate a Person tuple to a
Person’ tuple, and another to do the inverse:

Definition toPerson'(p: Person) : Person' := mkPerson' (v_flname p).

Definition toPerson (p': Person') : Person := mkPerson (v_fname p') (v_lname p').

toPerson’ constructs a new Person’ by using the virtual field v_ finame and toPerson constructs a
new Person using virtual fields v_fname and v_Iname. Functions mergeFieldsg and splitFieldg
become

Definition mergeFieldsy (db : s) : s’ mks’ (map toPerson' (pl db)).

Definition splitFieldy (db' :s’) : s := mks (map toPerson (pl' db')).

where map is a Coq built-in function with two parameters, a function and a list, and applies the
function to every element in that list.

D.3 Invertibility Theorems

mergeFieldsg and splitFieldg are inverses of each other by proving these round-trip theorems:

Theorem s_roundTrip: forall (db : s), db = splitField,(mergeFields, db).
Theorem s’ _roundTrip: forall (db' : s’), db' = mergeFields,(splitFieldy db').

Listing 6. Main Theorems for Database Refactoring.

and define two lemmas: roundTripPerson and roundTripPerson’ to show that toPerson and
toPerson’ are inverses of each other.

Lemma roundTripPerson : forall (p : Person), p = (toPerson (toPerson' p)).

Lemma roundTripPerson' : forall (p' : Person'), p' = (toPerson' (toPerson p')).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:31

D.4 Proof Details

The proof approach for these lemmas (1) eliminate the universal quantification (forall) by assum-
ing the input p using the keyword intros; (2) destruct p by exposing its internal structure using
the destruct tactic; (3) use the auto tactic to replace the current subgoal with its definition; and
(4) show that equality holds. Below is a proof script with the current state of the proof (shown in

) after executing each line.

1

Lemma roundTripPerson : forall (p : Person),

2 p = (toPerson (toPerson' p)).
3 Proof.
1 subgoal
forall p : Person, p = toPerson (toPerson' p)
6 intros p. (* assume the input and call it p *)
1 subgoal
p : Person
/1)
p = toPerson (toPerson' p)
11 destruct p. (* break p to its basic parts *)
1 subgoal
fname@, lname@ : string
[QVAD)
{| fname := fname@; lname := lname@ |} =
toPerson (toPerson' {| fname := fname@; lname := lname@ |})
17 auto. (*x simplify and discharge if possible *)
No more subgoals.
19 Qed.

The other lemma, roundTripPerson’, is similar.

The proof of the main theorems (Listing 6) uses these lemmas but the proof is slightly different
as it deals with lists and induction. The following Coq proof script shows the resulting state inside

a after each line:

1 Theorem s_RoundTrip : forall (db : s),
2 db = (splitField, (mergeFields. db)).
3 Proof.
1 subgoal
(/1)
forall db : s, db = splitField, (mergeFieldsy db)
7 destruct db as [elems]. (* destruct db to its lone field. Assume its value to be 'elems'x)

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:32 N. Altoyan and D. Batory

1 subgoal

elems : list Person

(QVAD)

{| pl := elems |} = splitField, (mergeFieldsy {| pl := elems |})

The destruct tactic in Line 7 eliminates the universal quantifier, and destructs db to its only field
(i.e., pl). The value of pl is assigned to some list of Persons which we have named elems.

8 unfold splitField,, mergeFieldsg (* unfold to their definitions x)

1 subgoal
elems : list Person
/1)
{|] pl := elems |} =
{| pl := map toPerson (pl' {| pl' := map toPerson' (pl {| pl :=elems |}) |}) |}

Next, the current subgoal is updated and elems is assumed (i.e., it is added to the hypothesis
environment). Line 8 instructs Coq to unfold the definitions of mergeFields, and splitField
which updates the current subgoal as shown in the box after Line 8.

9 f_equal. (* compares corresponding expressions *)

1 subgoal
elems : list Person
/1)
elems = map toPerson (pl' {| pl' := map toPerson' (pl {| pl := elems |3}) |3})

To compare corresponding expressions and drop pl to the left of the assignment symbol (:=), the
f_equal tactic is used. The result is shown in the box following Line 9.

10 induction elems. (* generates two cases: when elems is empty and when it is notx)
2 subgoals
(1/2)
[1 = map toPerson (pl' {| pl' := map toPerson' (pl {| pl :=[1 |}) I}
(2/2)
a :: elems = map toPerson (pl' {| pl' := map toPerson' (pl {| pl := a :: elems [}) |})
16 - auto. (x solves the first subgoal *)
17 - simpl. f_equal. (* generates two cases: base and induction step x)
2 subgoals
a : Person
elems : list Person
IHelems : elems = map toPerson (pl' {]| pl' := map toPerson' (pl {| pl := elems [|}) |})
(1/2)

a = toPerson (toPerson' a)
(2/2)
elems = map toPerson (map toPerson' elems)

At this point, induction is used on elems in Line 10. By the definition of lists in Cogq, there are two
ways to create a list: (1) creating an empty list (using nil), and (2) adding an element to an existing
list (using cons). Therefore, a subgoal is generated for each case. The first is straightforward and
is solved using the auto tactic. Using simpl and f_equal in Line 17, the second subgoal is further
split into two subgoals: base case and induction step (as shown in the box after Line 17).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:33

18 + apply RoundTripPerson. (* solves base case *)

1 subgoal

a : Person

elems : list Person

IHelems : elems = map toPerson (pl' {| pl' := map toPerson' (pl {| pl := elems [}) |3})

/1)
elems = map toPerson (map toPerson' elems)

19 + assumption. (* applies 'IHelems' hypothesis x)
20 Qed.

The base case uses the previously defined lemma RoundTripPerson as it matches the (first) subgoal.
The current state updates the box shown after Line 18. Now the subgoal intuitively matches the
hypothesis IHelems® generated by the induction step. The assumption tactic in Line 19 instructs
Coq to look at the list of hypotheses and try to match the subgoal with a suitable hypothesis. This
ends our proof and concludes with Qed.

E PROOF OF MERGEFIELDS-SPLITFIELD; SCHEMA REFACTORINGS
E.1 Declare Schemas

The Meta$ encodings of s and s’ were defined in Listing 4 of Section 3.2.

E.2 Define Schema minRefs
mergeFieldsg takes schema s and returns schema s’, and splitFieldg does the inverse:
mergeFieldss : {s} — {s’} /\ splitFields : {s’} — {s}. (30)

Transforming s to s’ requires replacing columns c1 and ¢2 with ¢3. Everything else remains un-
changed. This is reflected in the code below:

Definition mergefields (s : MetaS) (x y z: Column) : MetaS :=
mkMetaS (tbls s) (add z (rmv y (rmv x (cols s)))).

Goal (mergefields s c1 c2 c3) = s’. (*x applying mergeFields to s returns s’ x)
Proof.

unfold mergefields, s’
f_equal.

Qed.

NN Gk W DN =

The function mergeFields, modifies its input schema, in our case s which has one table, by updating
its list of Columns: x and y (denoting fname and Iname) are removed (using the function rmv) and
z (denoting flname) is added (using the function add). splitField is the inverse of mergeFields:

1 Definition splitField (s : MetaS) (z x y: Column) : MetaS :=

2 mkMetaS (tbls s) (add x (add y (rmv z (cols s)))).

3 Goal (splitField s’ ¢3 c1 c2) = s. (* applying splitField to s’ returns s %)
4 Proof.

5 unfold s1, splitField.

6 f_equal.

7 Qed.

The name IHelems is auto generated by Coq which represents the inductive hypothesis of the list elems.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:34 N. Altoyan and D. Batory

E.3 Theorems and Proofs

The invertibility theorems of the mergeFieldsc-splitFields schema minRefs are straightforward
and so are their proofs:

1 Theorem th1:
2 s = splitfield (mergefields s c1 c2 c3) c3 c1 c2.
3 Proof.

4 unfold s, splitfield, mergefields.
5 f_equal.
6 Qed.

7 Theorem th2:

8 s’ = mergefields (splitfield s’ c¢3 c1 c2) c1 c2 c3.
9 Proof.

10 unfold s’, splitfield, mergefields.

11 f_equal.

12 Qed.

The first theorem says that applying MergeFieldss to s then SplitFieldg recovers s. Similarly,
applying SplitFields then MergeFields to s’ yields s’ again. The proof script for both theorems
shares the same idea: definitions are unfolded and their corresponding field values are compared
using f_equal tactic. This tactic also solves equivalent values, which concludes the proof.

F PROOF OF EXTRACT-INLINE; DATABASE REFACTORINGS
F.1 Declare Schemas

The Coq specification of schema P is

1 Record Person := mkPerson { (x Person tuple constr. x) P

2 name : string; Person

3 zipcode : string; -

4 state : string; name: string

5). zipcode: string
6 Record P := mk[P { (* P database constructor %) state: string

7 pl : list Person; Constraints:

8 personKey : forall p1 p2, Vp1 p2: Person,

9 In pl pl — Inp2pl — (* name is primary key *) pl.name = p2.name
10 (name p1) = (name p2) — p1 = p2; =pl =p2

11 sameState : forall p1 p2, Vp1 p2: Person,

12 In pl pl = Inp2pl — (* any 2 Persons in pl x) pl.zipcode = p2.zipcode
13 (zipcode p1) = (zipcode p2) — (* with same zipcode value *) = pl.state = p2.state
14 (state pl) = (state p2); (* must share same state value)

15}

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:35

And now schema P’ with constraints personKey’, addressKey’, and card’:

1 Record Address' := mkAddress'{ (* Address' tuple constructor *)

2 zipcode' : string; P’

3 state' : string; Person'

4 b name': string

5 Record Person' := mkPerson'{ (* Person' tuple constructor x)

6 name' : string; is

7 addr' : Address'; (* each Person has one Address' x) 1

8 } addr'

9 Record P’ :=mkP" { (x P’ database constructor *) Address

10 pl' : list Person’ zipcode': string
11 al' : list Address’; state”: string

12 personKey' : forall p1 p2,)) Constraints:

13 Inplpl' — Inp2pl — (* name' is primary key *) vp1l p2: Person’,

14 (name' p1) = (name' p2) — pl1 = p2; pl.name’ = p2.name’'
15 addressKey': forall al a2, =>pl=p2

16 Inalal' - Ina2al — (* zipcode' is primary key x) val a2: Address’,

17 (zipcode' al) = (zipcode' a2) — al = az; al.zipcode' = a2.zipcode’'
18 card' : al' = nodup addr_dec (map addr' pl'); (*x at-least-one cardinality) =>al=a2

19)

Listing 7. Modeling the database of schema P’ in Coq.

Note: The card’ constraint says the result of collecting all Address’ tuples from Person’ tuples
and removing duplicates (via the Coq built-in nodup) yields the Address’ list al’. In other words,
each Address’ tuple is referenced.

F.2 Define Database minRefs

Given an instance of Person, corresponding instances of Person’ and Address’ can be derived. Line 2
below, createAddr’, translates a Person to an Address’ by extracting the zipcode and state values
from Person p. On Line 4, a Person’ instance is created by extracting the person’s name (name p)
and its Address’ tuple (createAddr’ p).

Conversely, a Person’ instance p” has an embedded Address’ instance and can be translated to
a Person instance. Line 7, toPerson, creates a Person by pattern matching, which breaks p’ into
its components: the matching constructor mkPerson’, a name n, and an Address’ which is further
decomposed into its constructor mkAddress’, a zipcode z, and state c. These values are then used
to create a Person instance. Note: = is used in pattern matching branches. It is different from —
which is used to denote logical implication or to separate function types.

1 (x From Person to Address' -- Left to Right x) toperson’ | Person
2 Definition createAddr' (p:Person):= mkAddress'(zipcode p) (state p). , "ame“smng
3 (* From Person to Person' x) ;:rstor:gg 1‘

4 Definition toPerson' (p:Person): Person'= s s e
5 mkPerson' (name p) (createAddr' p). \\\ z'\p:oddder‘i;ng
6 (* From Person' to Person -- Right to Leftx) createndar’ |
7 Definition toPerson (p':Person’): Person:=

8 matchp with R
9 | mkPerson' n (mkAddress'z ¢c) = mkPersonnzc Pfo T
10 end. name: string

zipcode: string
state: string

1
addr’
Address'

zipcode': string
state': string

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:36 N. Altoyan and D. Batory

Transformation toP’ converts a P database to a [P’ database. Converting a list of Person tuples to
a list of Person’ tuples and then to a list of Address’ tuples is easy. Showing that constraints same-
State, addressKey’, and card’ also hold is another matter. We show the important steps to prove
personKey’ below; proofs of other constraints follow a similar pattern. Given the list translation

pl’” =(map toPerson’ pl), (31)

constraint personkey’ becomes after substituting (31)

forall p1 p2 : person',

In p1 (map toPerson' pl) —
In p2 (map toPerson' pl) —
name' pl = name' p2 —

pl = p2.

A proof follows by expanding toPerson’ and relying on constraints from [P, here: personKey.

F.3 Proof Details

The transformation definitions between the P and P’ are

1 Definition toP(db':P’) : P := mkP(db').
2 Definition toP’(db:P) : P’ := mkP’(db).

We first define helper lemmas to prove invertibility between table transformations: toPerson,
toPerson’, and createAddr’:

Lemma reconstructPerson : forall p:Person, p = toPerson(toPerson' p).
Lemma reconstructPerson' : forall p':Person', p' = toPerson'(toPerson p').
Lemma reconstructAddr' : forall p':Person', addr' p' = createAddr'(toPerson p').

The proof scripts of these lemmas are straightforward. However, because the database trans-
formations toP and toP’ involve constraints, their invertibility theorems reconstructP and
reconstructlP’ require special treatment. We now explain the steps needed to prove reconstructP.
The same approach is used by reconstructP’” and is omitted. The theorems are as follows:

Theorem reconstructP : forall db:P, db = toP(toP' db).
Theorem reconstructP' : forall db':P’, db' = toP'(toP db").

Recall that a constraint must be transported to a suitable type before equality can be established
(Section 4.1). In our case, two [P instances, db1 and db2, that encode the same data will have mis-
matched personKey types and mismatched sameState types. With these transports, we can prove
the equivalence of db1 and db2:

1 (* Generalize the definitions of 'personKey' and 'sameState' constraints for readability *)
2 Definition personKeyDef (pl: list person):=

3 forall p1p2, In pl pl — Inp2pl — name p1 =name p2 — p1 =p2.

4 Definition sameStateDef (pl: list Person):=

5 forall p1 p2, Inpl pl — Inp2pl — (zipcode p1) = (zipcode p2) — (state p1) = (state p2).
6 (* Transport 'personKey' *)

7 Definition transportPersonKey {p1 p2: list person}:

8 pl =p2 — (x if the two lists are equivalentx)

9 personKeyDef p1 — (* and if (personKey p1) holds x*)
10 personKeyDef p2. (x then (personKey p2) must hold *)
11 Proof.
12 intros H1 H2.
13 rewrite H1 in H2.
14 assumption.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels

15
16

Defined
(* Transport 'sameState' is almost identical to above *)

44:37

Our main theorem reconstructP requires us to prove db and (toPerson (toPerson’ db)) are equiv-
alent. The eqDB lemma (Line 1 below) is used for this purpose and requires four inputs:

(1) two P instances—in our case, these are db and (toP (toP’ db));
(2) a proof that their pl lists are equivalent—i.e., a proof that (pl db = pl (toP (toP’ db)));
(3) aproof that their personKey proofs are equivalent—solved using the proof irrelevance axiom

(Section 4.1); and

(4) a proof that their sameState proofs are equivalent.

O 0 N U R W =

_
N = O

Lemma eqDB (db1 db2 : P) (*x given two P instancesx)

(p: pl db1 = pl db2) (*x with equal Person listsx)

(* and with same constraints after transportation x)

(q: transportPersonKey p (personKey db1) = personKey db2)

(r: transportSameState p (sameState db1) = sameState db2):

db1 = db2. (x then these two instances are equal *)
Proof.

destruct db1; destruct db2.

simpl in * |- *.

destruct p, q, r.

reflexivity.

Qed.

The proof of the second point is discharged using induction and the reconstructP lemma:

O 0 N N U W

—_ =
=

Lemma egPersonList (db: P): pl db = pl (toP (toP' db)).
Proof.

unfold toP', tolP.

destruct db as [PL PP PF]. (x assign PL, PP, and PF to pl, personKey, and sameState *)
simpl.

induction PL as [| p pl].

- reflexivity.

- simpl. f_equal.

+ apply reconstructPerson.

+ firstorder.

Qed.

Now, the proof of the main theorem is

NN G RN =

Theorem reconstructP: forall db : P, db = toP (toP' db).

Proof.

intros db. (x 'pl' field is equal in both instances x)
apply (eqDB db (toP (toP' db)) (eqPersonList db)).

apply proof_irrelevance. (x 'personKey' holds for both instances *)
apply proof_irrelevance. (* 'sameState' holds for both instances *)
Qed.

The theorem says: for any P instance, db, it is always equal to its reconstructed version after round-
tripping, toP (toP’ db). The proof of the inverse transformation, tolP’, is not much different. The
same approach is used by reconstructP’ and is omitted.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

44:38

G REFACTORINGS THAT HAVE BEEN VERIFIED

Beyond the refactorings covered in the body of this article, we have proofs for the following:

(1) Add/Remove Intermediate
Class. This refactoring was taken
from [35] as it could only be proven
by its authors as a one-way embed-
ding. We used this example to prove
bi-directional embeddings.

(2) Move Field. Moves a field from
one class to another via an existing
1:1 association. A field F cannot be
moved if the target class already has
a field named F.

(3) Remove/Extract Abstract Su-
perclass. Person is an abstract class
without associations and is an imme-
diate subclass of Object. This refac-
toring pushes the contents of Person
down into its subclasses.

(4) Split/Combine Class. A class
has two key fields name and ssn
with functional dependencies ssn —
{name, ss_date} and name — {ssn,
ss_date}. This refactoring splits the
Person class into two classes con-
nected by a 1:1 association.

A Bank

accounts

Add Interm.

1

Remove
Interm. Class

N. Altoyan and D. Batory

e i

Account

Vector'

elems'| Account'

A Person B Person'
name: string name': string
insurance: string
I Move Field 1
1
i < Move Field 1
I Car'
Car
= make': string
make: string insurance': string
A <<abstract>>
Person
- B
name: string Remove Abs
Superclass Staff' Faculty'
- name': string name': string
Iéﬁ Extract Abs jobTitle": string rank’: string
Staff Faculty Superclass
jobTitle: string rank: string

Person

name: string
ssn: string
ss_date: string

MinCons:

Person. key({name})
Person. key({snn})

Split Class

Combine
Class

il

Person’

name': string

|
1

1
l

SocialSecurity'

ss'

ssn'": string
ss_date": string

MinCons:
Person'. key({name'})

Address'. key({ssn'})

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:39

(5) Replace Sub-Association
with Field. An association can
be a sub-association of another.
In A, a Person owns many Cars,
but a subset of these Cars can
be favored. This refactoring re-
places the sub-association with
a preferred Boolean attribute of

Person

name: string

0. 5
ovns favors

make: string

MinCons:
Car. subAssoc(owner, favored)

Car’ that indicates if the car is favored.

Replace
Association |

Replace Field

L

Person’

name": string

make': string
preferred’: bool

Note: The minCons in A declares the (favored--favors) association is a subassociation of

(owner--owns).

(6) Conflate/Inflate Association. B =

Lo K . A Domain
This is an odd refactoring submit- Domain dname" string
ted by students in Batory’s under- dname: string -
grad course, and was used as a stress | st | [enasat :

Conflate

test for our approach. A defines a cat- ‘
egory diagram, where nodes have starts " enas e Arrow’
unique domain names and edges Arrow Association Py
(which start at one node and end at aname: string codomain': string
the same or another node) are ar- | = MinCons:
r T . t d . % . Domain'. key({dname'})
Ows. 1woO assoclations are used 1n omain. key({dname}) Arrow'.inflate(connects’, domain’, codomain’)

A and are squashed into a single 2:*

association in B by adding fields domain and codomain to encode arrow direction information.

Note: The minCons in B is an abbreviation of

Va' € Arrow’ : fst(a’.connects’).dname’ = a’.domain’ A snd(a’.connects’).dname’ = a’.codomain.

ACKNOWLEDGMENTS

We thank Jongwook Kim and the referees for their help with our article.

REFERENCES

[1] F. Allilaire and F. Jouault. 2007. Families to Persons: A Simple llustration of Model-to-Model Transformation. https://

(2]
(3]

www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf.

N. Altoyan. 2020. MDE Refactorings: A Categorical Framework with Proofs, Tools, and Implementations. Ph.D. Disser-
tation. University of Texas at Austin.

N. Altoyan. 2022. Coq Proof Scripts for Metamodel Co-Refactings. https://zenodo.org/record/6645716#YqoHOnb
MKUL

K. Anastasakis, B. Bordbar, and J. Kiister. 2007. Analysis of model transformations via alloy. In MoDeVVa.

S. Andova, M. van den Brand, L. Engelen, and T. Verhoeft. 2012. MDE basics with a DSL focus. In Formal Methods for
Model-Driven Engineering, M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.), Lecture Notes in Computer Science,
Vol. 7320. Springer-Verlag.

P. Atzeni, G. Ausiello, C. Batini, and M. Moscarini. 1982. Inclusion and equivalence between relational database
schemata. Theoretical Computer Science 19 (Sept. 1982), 267-285.

T. Baar and S. Markovi¢. 2007. A graphical approach to prove the semantic preservation of UML/OCL refactoring
rules. In PSL

D. Batory. 2020. Automated Software Design Volume 1 (2nd ed.). Lulu.com.

D. Batory. 2021. Conversation About Theorem Proving with Warren Hunt. Private communication.

D. Batory and N. Altoyan. 2020. Aocl: A pure-java constraint and transformation langauge for MDE. In
MODELSWARD.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

https://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf
https://zenodo.org/record/6645716#.YqoHOnbMKUl

44:40

(11]

[12

—

(13]

—
—
w

[’

— —
DY =
(=}
=

[21

—

[22]

[23

[t

[24]

[25]

[42]

(43]
[44]

N. Altoyan and D. Batory

D. Batory and M. Azanza. 2017. Teaching model-driven engineering from a relational database perspective. Software
and Systems Modeling 16 (May 2017), 443-467.

D. Batory and E. Bérger. 2008. Modularizing theorems for software product lines: The JBook case study. Journal of
Universal Computer Science 14, 12 (June 2008), 2059-2082.

D. Batory, E. Latimer, and M. Azanza. 2013. Teaching model driven engineering from a relational database perspective.
In MODELS.

K. Beck and C. Andres. 2004. Extreme Programming Explained: Embrace Change (2nd ed.). Addison-Wesley.

V. Benzaken, E. Contejean, and S. Dumbrava. 2014. A Coq formalization of the relational data model. In ESOP.

H. Berg and L Yuh. 2017. Generic Metamodel Refactoring with Automatic Detection of Applicability and Co-
Evolution of Artefacts. https://www.duo.uio.no/handle/10852/54485?locale-attribute=no.

R. Berghammer and G. Schmidt. 1993. Relational Specifications. Technical Report. Banach Center Publications, Vol.
28, Institute of Mathematics, Polish Academy of Sciences.

P. Bernstein, T. Green, S. Melnik, and A. Nash. 2008. Implementing mapping composition. VLDB Journal (June 2008).
P. Bernstein and S. Melnik. 2007. Model management 2.0: Manipulating richer mappings. In ACM SIGMOD.

K. Berramla, E. Deba, and M. Senouci. 2015. Formal validation of model transformation with Coq proof assistant. In
NTIC.

Y. Bertot and P. Castéran. 2013. Interactive Theorem Proving and Program Development: Coq’Art: the Calculus of In-
ductive Constructions. Springer Science & Business Media.

J. Bézivin. 2006. Model driven engineering: An emerging technical space. In GTTSE, R. Lammel, J. Saraiva, and
J. Visser (Eds.). Springer, Berlin.

M. Brambilla, J. Cabot, M. Wimmer, and L. Baresi. 2017. Model-Driven Software Engineering in Practice: Second Edition.
Morgan and Claypool.

J. Cabot and E. Teniente. 2007. Transformation techniques for OCL constraints. Science of Computer Programming 68
(2007), 179-195.

D. Calegari, C. Lunas, N. Szasz, and A. Tasistro. 2011. A type-theoretic framework for certified model transformations.
In SBMF.

V. Costa, R. Monteiro, and L. Murtao. 2014. Detecting semantic equivalence in UML class diagrams. In SEKE.

E. de Kogel. 1993. Relational Algebra and Equational Proofs. Technical Report 93/23. Eindhoven University of
Technology.

B. Delaware, W. Cook, and D. Batory. 2011. Theorem proving for product lines. In OOPSLA/SPLASH.

H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Téantzer. 2007. Information preserving bidirectional model transfor-
mations. In FASE.

R. Elmasri and S. Navathe. 2010. Fundamentals of Database Systems. Addison-Wesley.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. 2000. Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

M. Fowler and S. Kendall. 1997. UML Distilled: Applying the Standard Object Modeling Language. Addison-Wesley
Longman Ltd.

R. France, S. Ghosh, E. Song, and D. Kim. 2003. A metamodeling approach to pattern-based model refactoring. IEEE
Software (Sept. 2003).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

R. Gheyi, T. Massoni, and P. Borba. 2005. A rigorous approach for proving model refactorings. In ASE.

R. Gheyi, T. Massoni, and P. Borba. 2005. An abstract equivalence notion for object models. Electronic Notes in Theo-
retical Computer Science (May 2005).

M. Golobisky and A. Vecchietti. 2005. Mapping UML class diagrams into object-relational schemas. In ASSE.

W. Griswold. 1991. Program Restructuring as An Aid to Software Maintenance. Ph.D. Dissertation. University of
Washington.

K. Hassam, S. Sadou, and R. Fleurquin. 2010. Adapting OCL constraints after a refactoring of their model using an
MDE process. In BENEVOL.

F. Hermann, H. Ehrig, U. Golas, and F. Orejaso. 2012. Formal analysis of model transformations based on triple graph
grammars. Mathematical Structures in Computer Science 24 (Jan. 2012).

M. Herrmannsdorfer, S. Benz, and E. Jirgens. 2009. COPE—automating coupled evolution of metamodels and models.
In ECOOP.

D. Jackson. 2002. Alloy: A lightweight object modelling notation. ACM Transactions on Software Engineering and
Methodology 11 (April 2002), 256-290.

J. Kerievsky. 2004. Refactoring to Patterns. Addison-Wesley.

B. Kernighan and D. Ritchie. 1989. The C Programming Language. Prentice Hall.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

https://www.duo.uio.no/handle/10852/54485?locale-attribute=no

On Proving the Correctness of Refactoring Class Diagrams of MDE Metamodels 44:41

[45]
[46]
[47]

[48]
[49]
[50]

[51]
[52]

[53]

[54]
[55]
[56]

[57
[58

]
]
[59]
]

J. Kim, D. Batory, and D. Dig. 2015. Scripting parametric refactorings in Java to retrofit design patterns. In ICSME.
J. Kim, D. Batory, D. Dig, and M. Azanza. 2016. Improving refactoring speed by 10X. In ICSE.

J. Kim, D. Batory, D. Dig, and M. Azanza. 2019. Code transformation issues in move-instance-method refactorings.
In IWoR.

H. Ké6nig, M. Lowe, and C. Schulz. 2011. Model transformation and induced instance migration: A universal frame-
work. In SBMF.

E. Lacker, J. Kim, A. Kumar, L. Chandrashekar, S. Paramaiahgari, and J. Howard. 2021. Statistical analysis of refactor-
ing bug reports in eclipse bugzilla. In IWoR.

J. De Lara, E. Guerra, and J. Cuadrado. 2014. When and how to use multilevel modelling. ACM ACM Transactions on
Software Engineering and Methodology 24 (Dec. 2014), 1-46.

H. Ledang and H. Dubois. 2010. Proving model transformations. In TASE.

U. Mansoor, M. Kessentini, M. Wimmer, and K. Deb. 2015. Multi-view refactoring of class and activity diagrams using
a multi-objective evolutionary algorithm. Software Quality Journal 25 (Aug. 2015).

F. Mantz, S. Jurack, and G. Téantzer. 2012. Graph transformation concepts for meta-model evolution guaranteeing
permanent type conformance throughout model migration. In AGTIVE.

S. Maoz, J. Ringert, and B. Rumpe. 2011. CD2Alloy: Class diagrams analysis using alloy revisited. In MODELS.

S. Maoz, J. Ringert, and B. Rumpe. 2011. CDDiff: Semantic differencing for class diagrams. In ECOOP.

S. Markovi¢ and T. Baar. 2008. Refactoring OCL annotated UML class diagrams. Software and Systems Modeling 7
(Feb. 2008), 25-47.

R. Martin. 2003. Agile Software Development: Principles, Patterns, and Practices. Prentice Hall.

T. Massoni, R. Gheyi, and P. Borba. 2005. Formal refactoring for UML class diagrams. In SBES.

S. Melnik. 1998. Generic Model Management, Lecture Notes in Computer Science, Vol. 2967. Springer-Verlag.

S. Melnik. 2004. Generic Model Management: Concepts and Algorithms. Lecture Notes in Computer Science. Springer-
Verlag.

S. Melnik, A. Adya, and P. Bernstein. 2008. Compiling mappings to bridge applications and databases. ACM Transac-
tions on Database Systems 33 (Nov. 2008), 1-50.

Microsoft. 2020. MS Access. https://en.wikipedia.org/wiki/Microsoft_Access.

M. Mohammed and A. Mohammad. 2015. UML model refactoring: A systematic literature review. Empirical Software
Engineering (Jan. 2015).

W. Mok and D. Paper. 2001. On transformations from UML models to object-relational databases. In HICSS.

T. Neward. 2006. The Vietnam of Computer Science. https://blogs.tedneward.com/post/the-vietnam-of-computer-
science/.

Niols. 2016. ‘f_equal‘ Isn’t Doing Anything. (2016). Retrieved November 21, 2019 from https://cstheory.stack
exchange.com/questions/33743/f-equal-isnt-doing-anything.

0. (OMG). 2006. Meta-Object Facility (MOF) Specification, Version 2.0. OMG Document Number formal/2006-01-01
http://www.omg.org/spec/ MOF/2.0.

B. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph.D. Dissertation. University of Illinois at Urbana-
Champaign.

R. Paige and J. Ostroff. 2001. Metamodelling and conformance checking with PVS. In FASE.

B. Pierce. 1991. Basic Category Theory for Computer Scientists. MIT Press.

J. Pilgrim, B. Ulke, A. Thies, and F. Steimann. 2013. Model/code co-refactoring: An MDE approach. In ASE.

R. Pottinger and P. Bernstein. 2008. Schema merging and mapping creation for relational sources. In EDBT.

R. Pottinger and P. Bernstein. 2009. Associativity and commutativity in generic merge. In Mylopoulos Festschrift,
Conceptual Modeling: Foundations and Applications, A. Borgida et al. (Eds.), Lecture Notes in Computer Science, Vol.
5600. Springer-Verlag.

A. Queralt and E. Teniente. 2006. Reasoning on UML class diagrams with OCL constraints. In ER.

D. Roberts. 1999. Practical Analysis for Refactoring. Ph.D. Dissertation. University of Illinois at Urbana-Champaign.
L. Rose et al. 2010. A comparison of model migration tools. In MODELS.

L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack. 2010. Model migration with epsilon flock. In ICMT.

K. Rubin. 2012. Essential Scrum: A Practical Guide to the Most Popular Agile Process. Addison-Wesley.

A. Rutle, A. Rossini, Y. Lamo, and U. Wolter. 2012. A formal approach to the specification and transformation of
constraints in MDE. The Journal of Logic and Algebraic Programming (March 2012).

D. Sannella and M. Wirsing. 1983. A kernel language for algebraic specification and implementation—extended ab-
stract. In Foundations of Computation Theory. Springer, Berlin.

M. Schéfer, A. Thies, F. Steimann, and F. Tip. 2012. A comprehensive approach to naming and accessibility in refac-
toring Java programs. IEEE Transactions on Software Engineering (Nov. 2012).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

https://en.wikipedia.org/wiki/Microsoft_Access
https://blogs.tedneward.com/post/the-vietnam-of-computer-science/
https://cstheory.stackexchange.com/questions/33743/f-equal-isnt-doing-anything
http://www.omg.org/spec/MOF/2.0

44:42 N. Altoyan and D. Batory

[82] C.Schulz, M. Léwe, and H. Konig. 2011. A categorical framework for the transformation of object-oriented systems:
Models and data. Journal of Symbolic Computation (March 2011).

[83] B. Selic. 2012. The less well known UML. In SFM, M. Bernardo, V. Cortellessa, and A. Pierantonio (Eds.).

[84] A. Silberschatz, H. Korth, and S. Sudarshan. 2006. Database System Concepts (5th ed.). McGraw-Hill, Inc.

[85] L Sommerville. 1995. Software Engineering (5th ed.). Addison Wesley Longman Publishing Co., Inc., Chapter: Alge-
braic Specification.

[86] R.Stark,J. Schmid, and E. Borger. 2001. Java and the Java Virtual Machine: Definition, Verification, Validation. Springer-
Verlag.

[87] D. Steinberg and F. Budinsky. 2008. EMF: Eclipse Modeling Framework (2nd ed.). Addison-Wesley Professional.

[88] R. Striten, V. Jonckers, and T. Mens. 2007. A formal approach to model refactoring and model refinement. In SoSYM.

[89] N. Sultana and S. Thompson. 2008. Mechanical verification of refactorings. In PEPM.

[90] R. Sunderraman. 2007. Oracle 10g Programming: A Primer. Addison-Wesley Longman Publishing Co., Inc.

[91] G. Téntzer, F. Mantz, and Y. Lamo. 2012. Co-transformation of graphs and type graphs with application to model
co-evolution. In ICGT.

92] L. Tokuda and D. Batory. 1999. Evolving object-oriented designs with refactorings. In ASE.

93] G. Wachsmuth. 2007. Metamodel adaptation and model co-adaptation. In ECOOP.

] Y. Wang, L. Dillig, S. Lahiri, and W. Cook. 2018. Verifying equivalence of database-driven applications. In POPL.

95] Wikipedia. 2018. Partial Function. https://en.wikipedia.org/wiki/Partial_function.

96] Wikipedia. 2019. Classical Logic. Retrieved December 12, 2019 from https://en.wikipedia.org/wiki/Classical_logic.

97] Wikipedia. 2019. Intuitionistic Logic. (2019). Retrieved September 11, 2019 from https://en.wikipedia.org/wiki/
Intuitionistic_logic.

[98] Wikipedia. 2020. Polymorphism. https://en.wikipedia.org/wiki/Polymorphism_(computer_science).
[99] Wikipedia. 2021. Domain-Specific Language. https://en.wikipedia.org/wiki/Domain-specific_language.
[100] I Yu and H. Berg. 2015. A framework for metamodel composition and adaptation with conformance-preserving
model migration. In MODELSWARD.

Received 10 February 2021; revised 25 May 2022; accepted 11 June 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 44. Pub. date: March 2023.

https://en.wikipedia.org/wiki/Partial_function
https://en.wikipedia.org/wiki/Classical_logic
https://en.wikipedia.org/wiki/Intuitionistic_logic
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Domain-specific_language

