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Abstract. Real-world Software Product Lines (SPLs) need Numerical
Feature Models (NFMs) whose features not only have boolean values sat-
isfying boolean constraints, but also have numeric attributes satisfying
arithmetic constraints. A key operation on NFMs finds near-optimal per-
forming products, which requires counting the number of SPL products.
Typical constraint satisfaction solvers perform poorly on counting.

Nemo (Numbers, features, models) supports NFMs by bit-blasting , the
technique that encodes arithmetic as boolean clauses. Nemo translates
NFMs to propositional formulas whose products can be counted efficiently
by #SAT solvers, enabling near-optimal products to be found. We eval-
uate Nemo with a diverse set of real-world NFMs, complex arithmetic
constraints, and counting experiments in this paper.

Keywords: feature model · bit-blasting · propositional formula · nu-
merical features · model counting · software product lines

1 Introduction

Software Product Line (SPL) engineering is a key reuse approach to build highly-
configurable systems [1]. An SPL reduces the overall engineering effort to produce
similar products by capitalizing on their commonalities and managing their con-
figurations. A classical Feature Model (FM) defines SPL variability by boolean-
valued features and boolean constraints, called propositional formulas (PFs). A
PF is a relationship among features, where the presence or absence of some fea-
tures requires or precludes other features. A valid combination of features is a
configuration [2,5].

Real-world SPLs need Numerical Feature Models (NFMs). An example is the
SPL of Linux repositories where packages have versioning and other numerical
attributes [29] called Numerical Features (NFs). Relationships among NFs are
arithmetic constraints. In effect, NFMs are FMs with NFs.
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SAT solvers find configurations of FMs, because FMs can be translated to PFs,
and SAT is efficient for finding PF solutions (ie., configurations). Unfortunately,
SAT performs poorly on counting as it enumerates products, which is infeasible
for large SPL product spaces, ≫106 products [30].

Why is counting important? Because counting products enables unbiased
statistical inferences on large product spaces [21,28]. That, in turn, can be used
to find the best performing configuration in a user-constrained SPL product space
given a defined workload [28,39].

Only a handful of automated solvers support NFMs, namely Satisfiability
Modulo Theories (SMT) [4] and Constraint Programming (CP) [34] solvers. Un-
fortunately, SMT and CP solvers cannot count and instead perform brute-force
enumeration. In contrast, #SAT solvers extend SAT solvers to count the number
of solutions of a PF efficiently without enumeration [9]. #SAT solvers outper-
form SMT and CP solvers on counting. We use techniques to translate NFMs
into PFs [26]. Concretely, bit-blasting [11] encodes numerical values into bits and
arithmetic constraints into PFs.

In this paper, we present Nemo (Numbers, features, models) which natively
supports NFMs and efficient SAT operations to find NFM products (satisfying
boolean and/or arithmetic constraints) as well as #SAT counting NFM products.
Nemo’s NFM language is simple; it supports constant, enumerated, and range
variables, along with boolean and arithmetic constraints. Given an NFM, Nemo
generates a PF in the standard format for SAT-based tools. At which point, a
SAT or #SAT tool can be invoked.

The novel contributions of our paper are:

• Explaining how Nemo automatically translates and optimizes the en-
coding of arithmetic operations (as complex as multiplication, division,
and modulo) and arithmetic constraints on NFs into PFs; and

• Experimentally comparing the run-time of Nemo with popular SMT
and CP solvers on processing bit-blasted PFs on artificial NFMs and 7
real-world NFMs with up to 1045 configurations using (1) benchmarks
for arithmetic expressions and (2) benchmarks for counting tasks.

Nemo is open-source: https://github.com/danieljmg/Nemo_tool

2 Background

2.1 Propositional Formulas of Feature Models

A classical feature model uses only boolean features but this very restriction
allows it to be transformed into a PF, where features are boolean variables and
constraints are clauses [2,5]. State-of-the-art tools that convert feature models
into PFs are FeatureIDE [41] and Glencoe [35]; both translate a graphically-
drawn feature model into a PF in a Conjunctive Normal Form (CNF).

However, real-world SPLs use NFMs that contain both binary features and
NFs [17]. An NF has a name N, a type (ie., domain), and range (eg., N∈[1, 2, ...128]).

https://github.com/danieljmg/Nemo_tool
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NFMs add arithmetic constraints to the set of propositional connectives. And
arithmetic constraints can constrain boolean features and vice-versa.

Two examples of NFMs are: (1) the HADAS eco-assistant [27] where en-
ergy parameters are represented as NFs in an integer domain, and proposi-
tional connectives and inequalities are present in cross-tree constraints (eg.,
AEScrypto ⇒ keySize>128) and (2) WeaFQAs [18] has integer and float at-
tributes with propositional connectives and interval constraints (ie., numerical
value ranges).

2.2 Bit-Blasting

Bit-blasting , also called flattening , is the transformation of a bit-vector arith-
metic formula to a PF [3]. Variables are bit-vectors and arithmetic operations
are propositional clauses that reference bits. The resulting PF is satisfiable when-
ever the original formula is. Our work focuses on basic arithmetic relations and
operations, and of course, counting. We present operations in order of their usage
frequency in real-world NFMs [26]: equality (=), inequalities (=/, >, >), addition
(+), subtraction (-), multiplication (*), division (/), and modulo (%).

3 Bit-Blasting Basic Arithmetic Operations

The main property of bit-vectors is their width which defines: a) the minimum
and maximum limits of the original numerical variables, and b) if the vector
is unsigned (ie., binary sign-magnitude encoding) or signed (ie., binary two’s
complement encoding).4 We use the Big-Endian representation5 where the first
bit of the bit-vector encodes the sign as positive (0) or negative (1).

Table 1 shows examples of two’s complement bit-blasting PFs for arithmetic
relations on Big-Endian signed integers with a value range of [-4,3] (ie., n = 3

bits) where bit-1 is the integer sign:

a, b =< a1, a2, . . . an >,< b1, b2, . . . bn >
∧

where ai, bi ∈ {0, 1}; 1 ≤ i ≤ n

Of course, we could have used larger widths in Table 1, but n = 3 is sufficient
to grasp the encoding patterns. Equality (==) is the conjunction of bitwise equiv-
alences (row 1, col PF). Inequality (=/) is a bit-by-bit disjunction of XORs (⊕) (row
2, col PF). After the numerical sign comparison (first clause of col PF in rows
3 and 4), there are bit-by-bit equivalences until the last bit of the series, which
involve an implication in case of > (row 4, col 3), or a disjunction of opposites
in case of > (row 3, col 3).

Arithmetic encoding patterns are more complex. Addition and multiplication
of bit-vectors can produce a result outside the domain range. For example, for 3
4 Two’s complement negative integer encoding is the binary complement of the positive

encoding plus one bit.
5 Big-Endian: An order of bits in which the ‘Big end’ (most significant value in the

sequence) is first in the sequence.
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Table 1. Propositional Formulas for 3-bit Two’s Complement Signed Integers
Row Operation Bit-Blasted Model Propositional Formula

1 (NFa == NFb) (a1 == b1) ∧ (a2 == b2) ∧ (a3 == b3) (a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (a3 ⇔ b3)

2 (NFa ̸= NFb) (a1 ̸= b1) ∨ (a2 ̸= b2) ∨ (a3 ̸= b3) (a1 ⊕ b1) ∨ (a2 ⊕ b2) ∨ (a3 ⊕ b3)

3 (NFa > NFb)
(a1 < b1) ∨ ((a1 == b1) ∧ (a2 > b2)) ∨
((a1 == b1) ∧ (a2 == b2) ∧ (a3 > b3))

(¬a1 ∧ b1) ∨ ((a1 ⇔ b1) ∧ (a2 ∧ ¬b2)) ∨
((a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (a3 ∧ ¬b3))

4 (NFa ≥ NFb)
(a1 < b1) ∨ ((a1 == b1) ∧ (a2 ≥ b2)) ∨
((a1 == b1) ∧ (a2 == b2) ∧ (a3 ≥ b3))

(¬a1 ∧ b1) ∨ ((a1 ⇔ b1) ∧ (b2 ⇒ a2)) ∨
((a1 ⇔ b1) ∧ (a2 ⇔ b2) ∧ (b3 ⇒ a3))

5 (NFa ± NFb)

S41 ≡ [C3, (a1 ⊕ b1) ⊕ C2,

(a2 ⊕ b2) ⊕ C1, (a3 ⊕ b3) ⊕ C0]

C31 ≡ (ai ∧ bi) ∨ Ci−1

C0 ≡ (‘ + ’ ⇒ 0) ∧ (‘ − ’ ⇒ 1)

[(a3 ∧ b3) ∨ ((a2 ∧ b2) ∨ ((a1 ∧ b1) ∨ ±)),

(a1 ⊕ b1) ⊕ ((a2 ∧ b2) ∨ ((a1 ∧ b1) ∨ ±)),

(a2 ⊕ b2) ⊕ ((a1 ∧ b1) ∨ ±),

(a3 ⊕ b3) ⊕ ±]

6 (NFa ∗ NFb)
M ≡ NFa + NFa . . . + NFa

|NFb|times
m6 ≡ a1 ⊕ b1

Too large to represent
Apply addition (5th row) |NFb| times

7 (NFa/NFb)
|NFa| − |NFb| − |NFb| . . . − |NFb|

D ≡ #times penultimate negative value
d3 ≡ a1 ⊕ b1

Too large to represent
Apply subtraction (5th row) D times

8 (NFa%NFb)
|NFa| − |NFb| − |NFb| . . . − |NFb|
MOD ≡ penultimate negative value
mod3 ≡ 0

Too large to represent
Apply subtraction (5th row)

D (7th row) times

signed bits, if we perform ‘3+1’, the result is ‘4’, for which we need 4 signed bits.
The extra bit is called a carry bit . Then, a binary addition requires two data
inputs and produces two outputs, the sum S of the equation and a carry bit C as
shown in the operation 5 of Table 1. Subtraction in a two’s complement encoding
is an addition with an opposite sign bit (ie., C0 = 1). The multiplication pattern
is described in row 6 of Table 1, which basically is a sign bit calculation plus a
sequence of additions with a double bit-width. Division in row 7 is the times of
the last but one subtraction of the second operand till the result is below zero.
The modulo operation in row 8 is what is left after the division (ie., until we
cannot subtract anymore keeping above zero). For multiplication and division,
the sign is the XOR of the most significant bit of both operands (a1 and b1). The
sign bit of the resulting modulo operation is always 0 (ie., modulo always returns
a positive number).

The majority of SAT solvers primarily work with PFs in CNF [9]. Nemo
applies the optimal alternative – Tseitin’s CNF transformation with skolemiza-
tion [43]. It is the fastest known encoding to transform PFs into a CNF formula
while maintaining model equivalence and model count (ie., not altering the total
number of solutions).
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4 Nemo

Bit-blasting NFMs is a tough task to perform manually. The current prototype
does it automatically including boolean and arithmetic features and constraints.

4.1 Prototype Overview

Fig. 1 presents an overview of Nemo, in which a modeling expert defines an NFM
for a given SPL. Nemo provides a simple language designed to support boolean
and numerical variables and mixed constraints NFMs, concretely:

• Features of domain Boolean, Integer and Natural (by default);
• Constant and Enumerated features, and Ranges of values;
• Cardinality-based , Mandatory and Optional (by default) features;
• Propositional Logic: equivalences, implications, negations, conjuctions, dis-

junctions, parenthetical expressions, etc.;
• Inequalities: equal, not equal, greater (or equal), lower (or equal); and
• Arithmetic: addition, subtraction, multiplication, division, and modulo.

The input to Nemo is a .txt file. The Nemo transformation procedure is
explained in Algorithm 1.
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Algorithm 1: Nemo Complete Procedure (blue lines of Fig. 1)
Input: NFM defined in a .txt file

1 Parse features names;
2 Calculate features types;
3 Calculate NFs bit-widths;
4 Optimize and register the declared and calculated constraints;
5 Bit-blast the NFM;
6 Transform the bit-blasted NFM into a PF;
7 Transform the PF into its Tseitin CNF form;
8 Transform the Tseitin CNF PF into DIMACS;

Result: DIMACS file of the bit-blasted NFM

The default output of Nemo is an NFM transformed into a PF in DIMACS
format. DIMACS dates back to 1993 and is the de-facto input format standard
for SAT solvers.6 A DIMACS CNF file has three parts: an optional comment
section with the prefix c, a mandatory problem line with the prefix p, and the
clauses section following the mentioned CNF PF format. 0 is a reserved keyword
for a clause delimiter. DIMACS format identifies features sequentially just with
a unique numerical index. Table 2 shows an example of a DIMACS file:

Table 2. DIMACS format example for (A or C) and (C or not B) formula
Code Description
c 1 variable A (variables first)
c 2 variable B
c 3 variable C

p cnf 3 2 header, CNF format, 3 variables, and 2 clauses
1 3 0 (A or C) (clauses last)
3 -2 0 and (C or not B)

Due to our encoding, bit-vectors are identified with a name plus the sequence
of bits (Big Endian); in contrast, boolean features are identified as name plus
Boolean keyword. Note: A CNF Tseitin transformation of a bit-blasted NFM
generates extra variables. Table 3 shows a bit-blasted example in DIMACS.
As shown in Fig. 1, the generated DIMACS file can then be used to generate
products with a SAT solver, or to count configurations with a #SAT solver. The
latter is useful for fast probabilistic sampling and learning [32].

4.2 Numerical Feature Modeling in Nemo

Currently, most SPL feature modeling languages are tool-specific [33], eg., Clafer
[6]. For Nemo, we abstract the notion of NFMs defining just two entities as in [24]:
generic variables and functions. Then, following the meta-model of [19], we can
define a NFM as a formula with different domains, where a variable is a feature
6 DIMACS: http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability

http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability


Nemo: A Tool to Define and Transform Numerical Feature Models 7

Table 3. Nemo output for expr: (A = B) requires C; A,B ∈ [-1,1], C Boolean

Code Description
c 1 Abit1
c 2 Abit2
c 3 Bbit1
c 4 Bbit2
c 5 Tseitin1
c 6 Tseitin2
c 7 Tseitin3
c 8 C Boolean
p cnf 8 14 header, cnf format, 8 variables, and 14 clauses
-2 0 not Abit2
-4 0 not Bbit2
-2 -4 -5 0 and (not Abit2 or not Bbit2 or not Tseitin1
2 4 -5 0 and (Abit2 or Bbit2 or not Tseitin1)
2 -4 5 0 and (Abit2 or not Bbit2 or Tseitin1)
-2 4 5 0 and (not Abit2 or Bbit2 or Tseitin1)
-1 -3 -6 0 and (not Abit1 or not Bbit1 or not Tseitin2)
1 3 -6 0 and (Abit1 or Bbit1 or not Tseitin2)
1 -3 6 0 and (Abit1 or not Bbit1 or Tseitin2)
3 -1 6 0 and (Bbit1 or not Abit1 or Tseitin2)
-6 7 0 and (not Tseitin2 or Tseitin3)
-5 7 0 and (not Tseitin1 or Tseitin3)
5 6 -7 0 and (Tseitin1 or Tseitin2 or not Tseitin3)
8 7 0 and (C or Tseitin3)

and a function is a hierarchical relationship or constraint. For that, we decided
to define a keywords-based syntax for our first prototype. Our motivation was
to reduce Nemo’s learning curve. Consequently, we used a cheat sheet:

• def Var_Name D defines a named feature with D as its domain or range;

• bool, integer and natural (ie., natural numbers or positive integers) are
the supported domains;

• [X] indicates a constant feature with a value X;

• [X:Y] indicates a range between X and Y inclusive;

• [X,Y,Z] indicates an enumerated type with restricted values X, Y or Z;

• and/or are the conjunctions and disjunctions;

• <->/->/neg are equivalences, implications and negations;
• =/>/</>=/<=/!= are the equalities/inequalities; and

• +/-/*///% are the numerical operators.

Listing 1.1 illustrates most of the types of supported clauses:
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def A_constant [3]
def B_natural [0:3]
def C_natural_2 [:3]
def D_integer [ -2:1]
def E_enumerated_integer [-1, 2, 4, 8]
def F_new_Boolean bool 0
def G_predefined_Boolean bool 23
ct G_predefined_Boolean or F_new_Boolean
ct (( A_constant * B_natural) > C_natural) ->

(F_new_Boolean or (E_enumerated_integer = D_integer ))

Listing 1.1. A Nemo NFM: (G or F) and ((A*B)>C) requires (F or (E = D))

Sequentially, the above means:

1. A_constant: a constant natural NF with a value of 3;
2. B_natural: a natural NF between 0 and 3;
3. C_natural_2: a natural NF between 0 and 3,
4. D_integer: an integer NF between −2 and 1 in two’s complement encoding;
5. E_enumerated_integer: an enumerated integer NF with exactly 4 values;
6. F_new_Boolean: a boolean feature. Zero (0) means that it is a new feature;
7. G_predefined_Boolean: a boolean feature defined in a previous DIMACS

NFM where 23 is that feature identifier in the original NFM;
8. A boolean parenthetical propositional expression: (G or F); and
9. An arithmetic constraint: ((A*B)>C) requires (F or (E = D)).

We have two tags for the objects: def are feature declarations and ct are
their constraints. The format is flexible, allowing any tag at any line. Range
definitions can have one of the limits omitted (eg.,[: 3] is considered as [0 : 3]).

4.3 Implementation of Smart Transformations

Nemo is a cross-platform tool developed in Python 3.10.8 x86_64. We tackled
several engineering challenges in its implementation.

First, Nemo dynamically sets a feature as a natural or an integer, as the
bit-blasted encoding of some operations are different (ie., inequalities, division,
and modulo).7 If any value of a NF is negative, it is considered an integer.

Second, Nemo dynamically calculates the minimum bit-width of each NF to
generate the shortest PF. The process is based on the possible values of each NF
(eg., range, enumeration) and the domain; natural NFs and constraints produce
smaller PFs. For instance, the most optimal encoding for an enumerated feature
with just two values (eg., -1 and 9), and that is not involved in arithmetic
expressions, is a single bit natural NF.

Third, Nemo readjusts the previous computed widths based on NFM con-
straints. Leaving aside boolean features, every NF involved in operations with
other NFs must have the same type and bit-width in order to apply bit-blasting.
7 Besides inequalities, division, and modulo, arithmetic operations do not make un-

signed/signed distinction due to the Two’s complement encoding.
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Our solution was to recursively search for the NF with the highest bit-width of
each set of NFs involved in a constraint, and set that bit-width to the rest of
the features sharing a constraint. For instance, transforming a natural into an
integer NF, is to add one bit for the sign.

Fourth, Nemo readjusts bit-widths in case of mathematical operations that
can produce extra carry-bits. The most efficient is to define the highest from:

• Addition: Extending one bit for the first addition, followed by extra bits
per sets of two extra additions. For example, A + B + C + D = E needs two
extra carry bits. Note that natural numerical ranges are up to 2bit−width−1.

• Multiplication: The extended bit-width is the original multiplied by the
number of multiplication operands plus 1. For instance, A * B * C = D im-
plies that bit-widthupdated = (bit-widthcurrent × 3)+1.

4.4 Nemo Optimizations by Pre-Processing the NFM

Bit-blasting and Tseitin transformations create different size CNF PFs depend-
ing on the equation. Nemo takes advantage of that by replacing and adjusting
constraints to produce shorter PFs. Concretely:

1. >/</+/- do not create extra variables;
2. >/< create (bit-width−1) Tseitin variables in the NFs involved;
3. = creates (bit-width) Tseitin variables in the NFs involved;
4. =/ creates (bit-width+1) Tseitin variables in the NFs involved;
5. / creates (3×2 bit−width −1) Tseitin variables in the NFs involved;
6. % creates (14×2 bit−width −1) Tseitin variables in the NFs involved; and
7. * creates (6 bit−width −1) Tseitin variables in the NFs involved.

The only two operations naturally replaceable by an alternative with a shorter
PF encoding are {>,<} by {>,<} respectively. (eg., A>1 and A<2 are equivalent to
A>0 and A<3). Additionally, Nemo removes duplicated constraints. For example,
in case of the constraints A<2 and A<1 the first one is redundant. Finally, Nemo
dynamically prioritizes natural NFs, as unsigned operations are more scalable –
need smaller bit-widths and produce smaller PFs.

5 Evaluation

We answer the following research questions to evaluate Nemo:

RQ1: Are Nemo bit-blasted NFMs viable for any bit-width?
RQ2: Do Nemo bit-blasted NFMs allow faster counting?

RQ1 evaluates the viability of Nemo for different NFM constraints with in-
creasing bit-widths. RQ2 evaluates how Nemo performs compared to state-of-art
SMT and CP solvers for large real-world SPLs. To count the number of config-
urations of Nemo bit-blasted NFMs, we used sharpSAT [42], the state-of-the-art
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model counter for PFs. Every test has been carried out on an Intel(R) Core
i7-4790 CPU@3.60 GHz processor with 16 GB of memory RAM and an SSD
running an up-to-date Lubuntu 20.04 LTS X86_64.

RQ1: Are Nemo bit-blasted NFMs viable for any bit-width?

We start analyzing the most complex types of NFM operations – arithmetic.
Additionally, we add the least complex inequality (i.e., =), which allows us to
focus on arithmetic equalities. For similar reasons, we opted for natural instead
of integer NFs. The first set of 5 NFM constraints that were analyzed are defined
by

(
(A op B) = C

)
where op ∈ {+,-,*,/,%} from now on.

Formulas with different bit-widths (#b) from 2 up to 16 step 2 were gener-
ated. Remember that the maximum bit-width, as said earlier, is limited to the
most demanding operation. Finally, if counting surpasses 15 minutes we consid-
ered it a time-out due to a high probability of never finishing. For each expression,
we measured: a) the number of CNF clauses generated in each PF, and b) the
time in seconds to count the configurations of those PFs with sharpSAT.

Fig. 2 shows in two graphs the first results. The X-axis are bit-vector widths,
and the Y-axis is the number of generated clauses or counting time in seconds
respectively. As operation * counting timed-out, we scale the graphs up to bit-
width 16. It is worth noting that Fig. 2 was truncated at 16-bits, even though
addition (+) did not time-out even when the bit-width was 40.

• Number of clauses: + and - linearly grow in direct proportion with the bit-
width. / and % almost linearly grow at 2× rate. * grows exponentially.

• Time to count: + and - linearly grow in proportion with the bit-width, keep-
ing below a second for 16 bit-width. *, / and % grow exponentially, keeping
below 50 seconds for 12 bit-width.
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Fig. 2. Nemo generated clauses and counting time in seconds of arithmetic operations.

As the number of NF variables is proportional to the bit-width, Tseitin’s
transformation guarantees a linear increase O(3n+1) [43]. As operation * creates
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(2∗bit-width) carry-bits, Tseitin’s transformation increase is negligible. Hence,
carry-bits are the ones causing the exponential growth.8

Further, we analyze logic and arithmetic mixed nested constraints, and up
to four conjuncted numerical constraints. Following the previous procedure, we
prioritize the fewer demanding operations (ie., =, +, ⇒) to reduce interactions
for cleaner insights. The second set of 4 constraints analyzed are:

1. ((A + B) = C) ⇒ D
2. (A + B) = C
3. (A + B) = C ∧ (D + E) = F
4. ((A + B) = C)∧((D + E) = F)∧((G + H) = I)∧((J + K) = L)

Fig. 3 shows the second set of results. Again, the number of clauses is lin-
early proportional to the bit-width and the number of operations and constraints.
Boolean operations needed fewer clauses than arithmetic operations. While nest-
ing did not especially affect the number of clauses, it caused an exponential
increase in counting time including a 12 bit-width time-out.
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Fig. 3. Nemo generated clauses and counting time in seconds of sets of equations.

Nemo natural encoding was feasible up to a 12 bit-width. While multiplica-
tion is the only exponential transformation, division, modulo, and nesting are the
slowest to count; we suggest discretizing their numerical ranges, keeping them
within 12 bit-width for the current prototypes of Nemo and sharpSAT.

Conclusion: Nemo NFs are unbounded by default, but its encoding
scales up to 12 bit-width per number with a counting time under 10
seconds. The number of clauses is indirectly related to that time. Di-
vision, modulo, and nesting are the slowest constraints to count.

8 Multiplying two bit-vectors could generate a double width one (eg., 23 ∗ 23 = 26).
Those are many carry-bits compared to additions which create a maximum of one.



12 Daniel-Jesus Munoz, Jeho Oh, Monica Pinto, Lidia Fuentes, and Don Batory

RQ2: Do Nemo bit-blasted NFMs allow faster counting?

We expect RQ1 counting conclusions to be an upper-bound for other solvers
as larger bit-widths imply more configurations to analyze, which sometimes be-
comes exponential. We used 7 real-world NFMs obtained from [29] and [37].
Table 4 lists them, where each system has a different number of NFs and/or
different configuration space size. Henceforth, we use FSE2015 to denote the FMs
from [37]. We modeled their NFMs independently in Clafer, Z3, and Nemo syntax,
and additionally ran Nemo to generate the PFs just for sharpSAT. Considering
the bottleneck found in RQ1, if a NF is unbounded or surpasses [0, 212−1], it is
limited to 212 options for the 3 solvers, which implies values discretization within
some of the NFMs (eg., we can represent the even values of [0, 213] in 12 bits).

Table 4. List of Models with Numerical Features and Constraints
Type NFM Description #F #NFs #Configs Benchmark

FSE2015

Dune Multi-grid solver 11 3 2, 304 Equation
solving
times

HSMGP Stencil-grid solver 14 3 3, 456
HiPAcc Image processing 33 2 13, 485
Trimesh Triangle mesh library 13 4 239, 360

KConfig
axTLS Client-server library 94 9 4.96× 1038 Build

sizesFiasco Real-time microkernel 234 5 3.06× 1012

uClibc-ng C library 269 6 8.20× 1045

Table 5. Clafer, Z3 and Nemo encoding sharpSAT counting time for 7 real-world SPLs
Type Model Z3 Clafer sharpSAT

FSE2015

Dune 26.18 s 10.49 s 0.01 s
HSMGP 40.70 s 13.91 s 0.01 s
HiPAcc 457 s 32.52 s 0.01 s
Trimesh Time-out 217.01 s 0.01 s

KConfig
axTLS Time-out Time-out 0.01 s
Fiasco Time-out Time-out 0.01 s

uClibc-ng Time-out Time-out 0.01 s

We compared for the same number of solutions the time to count them in
seconds with sharpSAT, and one CP and SMT solvers: Clafer9 and Z310 respec-
tively. Z3 and Clafer do not strictly perform model counting as sharpSAT does,
instead they enumerate by: 1) deriving a configuration, 2) making the negation
of that solution as a constraint, and 3) repeating steps 1 and 2 until the con-

9 Clafer: https://www.clafer.org/
10 Z3py: https://github.com/Z3Prover/z3

https://www.clafer.org/
https://github.com/Z3Prover/z3
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strained model is unsatisfiable.11,12 If counting took more than 15 minutes, we
considered it a time-out . Table 5 lists the results. In summary, sharpSAT counted
NFMs configurations in under 0.01 seconds where Z3 and Clafer timed-out for
KConfig models. This empirically demonstrates the superior speed of algorithms
for model counting versus enumerating.

Conclusion: sharpSAT counts the configurations of Nemo PFs consid-
erably faster than Z3 and Clafer do with native NFMs.

6 Nemo Tool Scalability and Threats to Validity

In RQ1 we tested the scalability of counting with sharpSATthe bit-blasted mod-
els generated by Nemo. In this section, we use the same NFMs to test the scalabil-
ity of the transformation process itself. In other words, we now evaluate Nemo’s
runtime. We present the results in Fig. 4, and although there are two tools
performing different tasks, we infer similar conclusions. Nemo finishes instantly
for addition and subtraction operations. However, the runtime time is slightly
exponential for division and modulo, and truly exponential for multiplication,
due to the carry bits of the operations. Nevertheless, all transformations finished
below 40 minutes for a 16 bit-width. Regarding nested and stacked constraints,
it takes a maximum of 85 seconds to process all equalities. Comparing Fig. 2
and Fig. 4, there is clear relationship between Nemo transformation time and the
number of clauses of that transformation. This scalability issue was theoretically
predicted [11].
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Fig. 4. Nemo runtime in seconds of arithmetic operations and equations sets.

Internal validity. To control randomness, we conducted 97 experiments and
averaged the results for a confidence level of 95% with a 10% margin of error [40].
For RQ2, we used the counting methods that are proposed by the developers
of each solver: sharpSAT is the default execution, Clafer requires the noprint
option, and Z3 requires a counting loop.

11 Z3 developer on model counting: https://github.com/Z3Prover/z3/issues/934
12 Clafer Choco solver: https://github.com/chocoteam/choco-solver/blob/

master/src/main/java/org/chocosolver/solver/search/strategy/Search.java

https://github.com/Z3Prover/z3/issues/934
https://github.com/chocoteam/choco-solver/blob/master/src/main/java/org/chocosolver/solver/search/strategy/Search.java
https://github.com/chocoteam/choco-solver/blob/master/src/main/java/org/chocosolver/solver/search/strategy/Search.java
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External validity. We used the 7 real-world SPLs of Table 4 which have dif-
ferent numbers of features, domains, and constraints. For complex constraints,
synthetic models were evaluated. While we are aware that our results may not
generalize to all SPLs, their trends are identical in different cases. Similarly, al-
though being state-of-the-art, Z3 and Clafer may not be representative of all
SMT and CP solvers. Additionally, a manual bit-blasting approach for NFs and
basic operations was successfully applied for counting-based optimizations of
SPLs [26]. Our work extends the encoding to complete arithmetic, and creates
a tool that allows NFMs modeling while automatizing and optimizing all the
process.

7 Related Work

Work tackling NFMs is rare [22]. Some considered NFs as classical features with
just present/absent states [8,29,15]. Some encoded NFs as alternative features,
where each value of a NF was considered a distinct feature [20]. Shi [36] used
a single type of feature called ‘pseudo-boolean’ with only Successor (+1) and
Predecessor (-1) operations. In [7], each boolean feature had related attributes
– a set of variables in the form (name, value, domain). However, attributes and
NFs are essentially different: attributes are not nodes of the variability tree, and
as opposed to a NF, a change in the value of an attribute does not result in
a different configuration [25]. Hence, counting the size of a product space will
return a lower-than-expected value.

SMT and CP solvers natively support representation and reasoning of NFMs.
However, #CP or #SMT solvers, counting generalizations of CP and SMT, are
nonexistent. This is to be expected, as CP and SMT theories are unbounded
by default [31], being unaware of allocated memory or domain definitions (eg.,
undefined maximum of x in x≥1). In SAT theory, all variables are bounded (ie.,
boolean). Consequently, SMT approximation counting has been proposed [14].
STP solver [16] implements a bit-vector approach for counting. It performs array
optimizations and arithmetic and Boolean simplifications before bit-blasting to
MiniSat [38]. While it works to test satisfiability by counting at least one, it
does not preserve counting or model equivalence. This is in line with the most
recent model counting competition (2020), where 34 versions of 8 fastest counting
solvers were tested. Model counting is more commonly found in Binary Decision
Diagrams [12] and SAT-based [42] solvers. The results indicate that while fast,
even so-called ‘exact solvers’ count a close but inexact number of configurations.

Simplification of NFMs usually reduces reasoning time. However, those beyond
the ones implemented in Nemo do not preserve counting or model equivalence [13].
Nevertheless, the bit-width bottleneck is shared even in solutions that perform
approximate counting. An example is Boolector reasoner [10], which lazily in-
stantiates array axioms and macros. Even Z3 [23] applies bit-blasting to every
operation besides equality, which are, then, handled by a specific algorithms.
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8 Conclusions and Future Work

The size of an SPL configuration space grows exponentially with an increas-
ing number of features. Compared to classical FMs, NFMs have more complex
relationships due to larger domains (natural and integer) and more complex
types of constraints (ie., arithmetic). That makes techniques of statistical reason-
ing and learning that much more important to understand and support, where
a key reasoning operation is model counting. Unfortunately, while automated
solvers can analyze NFMs, they were not developed with the objective of count-
ing configurations. Again, counting configurations is key to finding near-optimal
SPL configurations (eg., find one of the top configurations minimizing the run-
time of a given benchmark [26,28,32]).

We developed Nemo, a prototype that automatically optimizes and transforms
NFMs to a Tseitin PF in DIMACS format. Nemo represents NFs as bit-vectors by
means of bit-blasting, while arithmetic constraints are encoded as propositional
clauses. We evaluated Nemo by transforming different synthetic and real-world
NFMs to PFs and used existing SAT-based approaches to count configurations.
We have shown that Nemo can:

– model, automatically optimize, and transform NFMs by using the Nemo lan-
guage;

– use bit-blasting to encode common types of numerical features and arith-
metic constraints;

– represent NFMs up to 12 bit-width of accuracy without overhead for almost
every combination of boolean and arithmetical operations;

– use sharpSAT to count the number of configurations up to 1045 products in
under 0.01 seconds. Analyzing a 1045 product space is infeasible with current
state-of-the-art SMT and CP solvers as they count by enumeration.

We are confident our work can support statistical and learning techniques that
analyze NFMs of real-world SPLs. Our research also suggests future explorations:

– bit-blast more features of other domains and with new types of relationships
(eg., strings with concatenation and sub-string operations);

– optimize the transformation to generate models that are faster to count;
– run Nemo in an ecosystem with different solvers with extended support (eg.,

attributes, graphical interface); and
– beautify Nemo’s language to be a more human-friendly modeling language.
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