
On the Notion of Functional Aspects in

Aspect-Oriented Refactoring

Sven Apel1 and Jia Liu2

1 Department of Computer Science, University of Magdeburg, Germany
apel@iti.cs.uni-magdeburg.de

2 Department of Computer Sciences, University of Texas at Austin
jliu@cs.utexas.edu

Abstract. In this paper, we examine the notion of functional aspects
in context of aspect-oriented refactoring. Treating aspects as functions
reduces the potential interactions between aspects significantly. We pro-
pose a simple mathematical model that incorporates fundamental prop-
erties of aspects and their interactions. Using this model, we show that
with regard to refactoring functional aspects are as flexible as traditional
aspects, but with reduced program complexity.

1 Introduction

Aspect-oriented refactoring (AOR) is the process of decomposing a legacy pro-
gram into a well-structured core and a set of aspects that implement concerns
that crosscut the core functionality. This process, also referred to horizontal
decomposition [9], untangles the structure of a legacy program by gradually de-
taching code pieces and encapsulating them in aspects.

The essence of AOR can be formulated using simple mathematics. The follow-
ing equation expresses the relation between a legacy program P and a program
P ′ that was refactored in order to detach aspect A:

P = A ∗ P ′ (1)

The operator ’*’ denotes aspect weaving. Aspects are detached in a step-wise
manner. In its general form, AOR means decomposing program P incrementally
into an untangled core program P ′ and n aspects Ai:

P = A1 ∗ A2 ∗ . . . ∗ An−1 ∗ An ∗ P ′ (2)

AOR can be understood as the inverse process of aspect weaving. While the
former process detaches aspects of a program, the latter attaches aspects. While
introductions of an aspect (as defined in AspectJ) are targeted to the classes of
program P ′, advice can have global effects. That is, an advice in aspect Ai can
advise an aspect Aj , for any pair (i, j) (Fig. 1). In theory, the number of potential
aspect interactions (Ai advises or refers to Aj) grows by O(n2), although in
practice, a desire is for aspect interactions be either well-understood or non-
existent. Note, the refactoring order of aspects is not necessarily equivalent to
aspect weaving order, especially if aspects are independent of each other.

apel
Textfeld
Published in the Proceedings of the ECOOP Workshop on Aspects, Dependencies, and Interactions (ADI'06), Nantes, France, July 3rd, 2006.



AOR and step-wise development. A different perspective to understand
aspects and AOR can be found in the practice of stepwise software development
(SWD) [7, 8, 3, 2]. The idea behind SWD is to develop a program from a mini-
mal base and successively applying refinements that implement different design
decisions, called development steps.

Usually, refinements in SWD are modeled as functions; they take a program
as input and produce a modified program as output. This interpretation is not
far from the intuitive understanding of aspects. For example, aspect A takes
program P ′ as input and produces the modified program P .

P = A(P ′) (3)

A sequence of n factored aspects is modeled by function composition, where
function application is (a form of) aspect weaving:

P = A1(A2(. . . An−1(An(P ′)) . . .)) (4)

This sequence could be continued by substituting P ′ for a detached aspect An+1

that takes a refactored program P ′′ as input.

1A2

A A43

A

Fig. 1. Potential interac-
tions of traditional aspects.

1A2

A A43

A

Fig. 2. Potential interac-
tions of functional aspects.

At the first glance, the notion of functional aspects seems to be only a math-
ematical or even notational concern. But there are some deeper issues, as we
will explain: Notably, SWD and function composition impose a fixed order on
weaving. This is because of refinements affect and extend only that program
that was produced by previous development steps [7]. This restriction limits the
number of potential interactions between different refinements and therewith
improves program comprehensibility. As Figure 2 shows, modeling aspects as
functions leads to a different interaction pattern, one that is theoretically half
as complex compared to the traditional one, shown on Figure 1. As intended for
traditional aspects, it is desired for the interactions of functional aspects to be
either well-understood or non-existent.

With functional aspects, the weaving order is unidirectional; aspects affect
only aspects that were woven previously. This enables us to define the refactoring
order as the inverse to the weaving order. This definition is valid since all aspects
Ai may only affect subsequently detached aspects Aj with j > i.

Aspect quantification. The differing interaction patterns result from differ-
ent interpretations of aspect quantification. While traditional aspects are quanti-
fied globally, functional aspects are quantified locally (they affect only previously
woven aspects). This results in a fundamental difference between SWD and AOP.



Nevertheless, functional aspects have the strength that the number of possible
interactions is half of the number of the traditional approach. Their underlying
model has the potential for formalizing the effects of aspects that is in line
prior research on software design and program generation [8, 7, 3, 2, 1, 5]. In this
paper, we examine functional aspects in the light of AOR. As mentioned, the
unidirectionality of functions imposes a fixed weaving order, but also a fixed
refactoring order. That is, we cannot factor out an aspect A and subsequently
factor out aspect B with B affecting A. This is not allowed with functional
aspects. Given these facts, it would seem that refactoring functional aspects
would be more difficult than refactoring traditional aspects, because the order
in which aspects are composed must known a priori. That is, it would seem that
A1 must be refactored first in (4), then A2, ... and finally An. Knowing this order
up-front seems unlikely.

Perspective, goals, and contributions. We believe that the concept of
functional aspects matches very closely with prior work in software design and
automated software development. Their main benefit is that the number of po-
tential aspect interactions is half of the one of traditional aspects. A fundamental
question regarding functional aspects is: does the order in which functional as-
pects are refactored matter? And can mathematical models of the effects that
functional aspects make to a program provide help in answering this question?

In this paper, we explore answers to these questions. Our analysis allows us
to demonstrate a flexibility in refactoring functional aspects that is normally at-
tributed to traditional aspects, i.e., that the order in which traditional aspects are
refactored does not matter. (Note: that we believe that the refactoring-aspects-
order-does-not-matter is an assumption of the AOP community; our results may
suggest why this assumption has a basis in fact). We demonstrate how a math-
ematical model may help to promote refactoring approaches, in particular, we
show how to transform functional (and also traditional) aspects in a way that
they become commutative with respect to the refactoring order.

2 Aspect Interactions and Dependencies

In our analysis we focus on the following kinds of interactions:

References. Aspects that refer to other aspects depend on these aspects. Such
referential dependencies are for example method calls or advising other aspects.
Treating aspects as functions implies that referred aspects have to be woven
before the referring aspects; as mentioned, with traditional aspects the order
does not matter.

Overlapping join points. Aspects interfere with other aspects when advising
the same join point. In case of overlapping join point sets, the order of aspects
matters, because different orders result in different program semantics. The right
order has to be inferred from the domain, i.e. which aspect advises a join point
first. With respect to overlapping join point sets, both kinds of aspects behave
equally.



3 Algebraic Properties

Dependencies between functional aspects impose a fixed refactoring order. In
this section, we show how to alter this order without affecting the program
semantics. On one hand, this demonstrates similar flexibility with traditional
aspect semantics. On the other hand, it gives evidence that the refactoring order
does not matter.

Altering the order of refactoring is achieved by respectively swapping two
aspects, or more precisely swapping the composition order. Functional aspects
can be swapped if they are commutative. Otherwise, we exploit a notion which
we call pseudo-commutativity to create swappable aspects.

3.1 Commutativity

Two aspects A and B are commutative if they can be swapped, and this does
not affect the program semantics. Commutativity is the ideal case and yields the
most flexibility in permuting the refactoring order.

A(B(P )) = B(A(P )) (5)

The left-hand side of the equality means A is factored first, then B; the right-
hand side means B is factored first, and then A.

A precondition for commutativity of aspects is that these aspects do not de-
pend on each other – this means there are no referential dependencies and no
join point overlapping. Figure 3 lists two aspects Foo and Bar that are com-
mutative with respect to a program. They do not refer to each other and they
advise a disjoint set of join points (calling m and n).3

1 aspect Foo {
2 before() : call (* n()) { ... }
3 }

4 aspect Bar {
5 before() : call (* m()) { ... }
6 }

Fig. 3. Two commutative aspects.

3.2 Pseudo-Commutativity

Two aspects A and B are pseudo-commutative (1) if they are not commutative,
but (2) they can be transformed to A′ and B′ so that swapping them does not
affect the program semantics.

A(B(P )) = B′(A′(P )) (6)

The above equation means that for each pseudo-commutative pair A and B there
is at least one pair A′ and B′ that, when swapped, does not change the program

3 For simplicity, we depict both aspects in the same listing. The order in the listing is
arbitrary and does not refer to any order.



semantics. Hence, a programmer may implement aspects with this property in
several ways, e.g. A or instead A′. If functional aspects are pseudo-commutative,
the order of refactoring does not matter. The programmer can always find for
each aspect an appropriate implementation that fits the already factored se-
quence of aspects. In our example, it does not matter if we factor A first and
then B, or B′ first and then A′. Although the implementations of A and B differ
from A′ and B′, they implement the same concerns, but in a different way.4

In the following, we illustrate several examples of pseudo-commutativity.

Resolving referential dependencies. Let Foo and Bar be aspects, and Foo
refers to Bar by calling the static method bar (Fig. 4). Since we treat aspects as
functions, Bar has to be woven first because of the referential dependency; the
only correct order is Foo(Bar(Prog)).

1 aspect Foo {
2 void foo() { Bar.bar(); }
3 before() : call (* n()) { foo(); }
4 }

5 aspect Bar {
6 static void bar() { ... }
7 before() : call (* m()) { ... }
8 }

Fig. 4. Two referential dependent aspects.

However, applying the notion of pseudo-commutativity, we are able to derive
Foo’ and Bar’ so that the expression Bar′(Foo′(Prog)) equals Foo(Bar(Prog)).
By doing this, we achieve the same flexibility as traditional aspects. Figure 5
depicts one possible pair of Foo’ and Bar’.

1 aspect Foo´ {
2 void foo() { /∗ ref . removed ∗/ }
3 before() : call (* n()) { foo(); }
4 }

5 aspect Bar´ {
6 static void bar() { ... }
7 before() : call (* m()) { ... }
8 before() : execution(void foo()) {
9 bar(); }

10 }

Fig. 5. Resolving referential dependencies.

Foo’ no longer refers to Bar’ (Line 2), i.e. Foo’ does not directly call method
bar. In order not to affect the program behavior, Bar’ itself triggers the call of
bar by introducing an advice (Lines 8-9). The advice is executed before that join
point in Foo’ that is responsible for calling bar. Note that the basic meaning or
effect of Foo and Bar (advising n and m as well as bar is invoked when is foo is
executed) is preserved by Foo’ and Bar’.

In the above example, we removed a method call to another aspect in order
to swap both. Now suppose that one aspect refers to another by means of an
advice. Interestingly, this is exactly the opposite case of removing a method call

4 A related idea can be found in design maintenance systems: Program transformations
implement design decision in stepwise manner. Baxter has shown that the order of
design decisions can be altered by altering the transformations [4].



reference. Take Bar’ and Foo’ as example (Fig. 5); Bar’ advises Foo’. To remove
this reference (in order to swap them), we have to find their pseudo-commutative
counterparts – these are exactly the original aspects Foo and Bar (Fig. 4).

Cyclic referential dependencies. Cyclic referential dependencies are a spe-
cial case of referential dependencies. Figure 6 shows that aspect Foo refers to Bar
by advising bar (Line 3); the advice invokes method adviceBar. Symetrically, Bar
refers to Foo by advising foo (Line 7). If we cannot remove such cyclic referential
dependencies, we have an example where traditional aspects are more flexible.
This is because with traditional aspect semantics, the following two composition
orders would be correct: Foo ∗ Bar ∗ Prog and Bar ∗ Foo ∗ Prog.

1 aspect Foo {
2 void foo() { ... }
3 before() : execution(void Bar.bar()) { adviceBar (); }
4 }
5 aspect Bar {
6 void bar() { ... }
7 before() : execution(void Foo.foo()) { adviceFoo (); }
8 }

Fig. 6. Cyclic referential dependencies.

To remove cyclic referential dependencies the idea of sandwiching helps [7].
Although sandwiching is a mechanism to resolve cyclic dependencies in uses-
hierarchies, it can be adopted to our problem. Using sandwiching, we can split
each pair of cyclic referential dependent aspects A and B into A1, A2 and B1

and B2 so that:

A2(B2(A1(B1(P )))) = B2(A2(B1(A1(P )))) (7)

A2 refers to B1 and B2 to A1. This is called sandwiching because of A2 and A1

embrace B2, and B2 and B1 embrace A1. After this transformation the ordering
of (B1, A1) and (B2, A2) can be swapped pairwise. Since we eliminated cycles,
the remaining referential dependencies can be removed for further swapping, i.e.
(B1,B2) and (A1,A2).

Figure 7 illustrates the sandwiching of the aspects Foo and Bar (cf. Fig. 6):

Foo2(Bar2(Foo1(Bar1(Prog)))) = Bar2(Foo2(Bar1(Foo1(Prog)))) (8)

Foo1 defines method foo (Line 10); Bar1 defines method bar (Line 13); Foo2 and
Bar2 encapsulate the dependent code. But now Foo2 refers to Bar1 (Lines 2-3),
and Bar2 to Foo1 (Lines 6-7). Hence, Foo2 and Bar2 can be swapped since
they only depend on Foo1 and Bar1. Since Foo1 and Bar1 do not depend on
one another, they can be swapped as well.

However, sandwiching is only the first step to derive the two possible or-
derings mentioned above: Foo(Bar(Prog)) and Bar(Foo(Prog)). But now that
there are only unidirectional referential dependencies left, we can further trans-
form the aspects by exploiting pseudo-commutativity in order to permute their



1 aspect Foo2 {
2 before() : execution(void Bar1.bar()) {
3 adviceBar (); }
4 }
5 aspect Bar2 {
6 before() : execution(void Foo1.foo()) {
7 adviceFoo (); }
8 }

9 aspect Foo1 {
10 void foo() { ... }
11 }
12 aspect Bar1 {
13 void bar() { ... }
14 }

Fig. 7. Sandwiching for resolving cyclic dependencies.

ordering; we can derive the orderings Bar2′(Bar1′(Foo2′(Foo1′(Prog)))) (Fig. 8)
and Foo2′′(Foo1′′(Bar2′′(Bar1′′(Prog)))) (Fig. 9), whereby respectively the
parts of Bar can be merged again, and symmetrically the parts of Foo. After this
step, we are able to derive both orders Bar(Foo(Prog)) and Foo(Bar(Prog)),
as with traditional aspects.

1 aspect Bar2´ {
2 before() : execution(void Foo1.foo()) {
3 adviceFoo (); }
4 }
5 aspect Bar1´ {
6 void bar() { adviceBar (); ... }
7 }

8 aspect Foo2´ {
9

10 }
11 aspect Foo1´ {
12 void foo() { ... }
13 }

Fig. 8. Ordering: Bar2′(Bar1′(Foo2′(Foo1′(Prog)))).

1 aspect Foo2´´ {
2 before() : execution(void Bar1.bar()) {
3 adviceBar (); }
4 }
5 aspect Foo1´´ {
6 void foo() { adviceFoo (); ... }
7 }

8 aspect Bar2´´ {
9

10 }
11 aspect Bar1´´ {
12 void bar() { ... }
13 }

Fig. 9. Ordering: Foo2′′(Foo1′′(Bar2′′(Bar1′′(Prog)))).

Resolving join point overlapping. Two aspects interact with each other if
they advise overlapping sets of join points. Naturally, the order matters in this
situation, for functional and traditional aspects. Weaving in different orders re-
sults in different execution orders of the connected advice. Suppose Foo and Bar
advice the same method call (Fig. 10); both aspects were already factored out.
Changing the refactoring and thereby the following weaving order would result
in semantically differing programs because either foo is called before bar or vice
versa. However, with AspectJ it is possible to define a weaving order explicitly,
but this can be complicated and not all desired orders can be expressed [5].

We use pseudo-commutativity to resolve join point overlapping. This method-
ology is useful for both kinds of aspects. Suppose method n is called in a main



1 aspect Foo {
2 void foo() { ... }
3 before() : call (* n()) { foo(); }
4 }

5 aspect Bar {
6 void bar() { ... }
7 before() : call (* n()) { bar(); }
8 }

Fig. 10. Join point overlapping.

method (Fig. 11). Right before calling method n our two concerns (later on im-
plemented by Foo and Bar) are to be executed. Factoring both concerns using
the above depicted aspects would be possible only in one order, first Bar then
Foo. In order to be able to swap Foo and Bar, we can prepare the code associated
with the target join points themselves. We simply add hooks for each advice that
is supposed to bind to the join points. The methodology of preparing code is in
line with the observation of Murphy et al. [6].

1 void main(String[] argv) {
2 /∗ Bar ∗/; /∗ Foo ∗/; n();
3 }

Fig. 11. Two concerns intermixed with
the base program.

1 void main(String[] argv) {
2 hookBar (); hookFoo (); n();
3 }

Fig. 12. A target join point for Foo and
Bar.

Figure 12 shows the refactored main function. The both hooks hookFoo and
hookBar implement the corresponding concern functionality. Then, when refac-
toring out Foo and Bar as aspects the (empty) hook methods mark their join
points. The hooks fix the concern execution order. They enable us to alter the
refactoring order (first Foo, then Bar) because now we bind the aspects not to
calling n, but to calling the hooks (Fig. 13). Thus, the order of refactoring no
longer influences the order of execution, with functional aspects and traditional
aspects.

1 aspect Foo {
2 void foo() { ... }
3 before() : call (* hookFoo ()) {
4 foo(); }
5 }

6 aspect Bar {
7 void bar() { ... }
8 before() : call (* hookBar ()) {
9 bar(); }

10 }

Fig. 13. Binding advice to hooks.

4 Conclusions

In this paper we examined the flexibility of functional aspects in context of AOR.
We presented a simple algebraic approach that models aspects as functions. This
is in line with prior work on software design and composition. We explored if
functional aspects are as flexible as traditional aspects with respect to altering



the refactoring order. We raised this question because, on one hand, treating
aspects as functions reduces program complexity by decreasing the number of
potential aspect interactions, and, on the other hand, it seemed that the tradi-
tional model was more flexible w.r.t. the ordering of aspects. In order to address
these issues, we analyzed the properties and dependencies of functional aspects.
We used our mathematical model to abstract over implementation details and
to be able to make general statements.

Specifically, we have shown that certain kinds of aspect dependencies caused
by references and overlapping join points can be resolved by applying the notion
of pseudo-commutativity. Both kinds of aspects are similarly flexible with respect
to the order of refactoring. We claim that each pair of aspects with referential
dependencies or overlapping join points can be transformed into a corresponding
pseudo-commutative pair. While our ideas are preliminary, we believe our theory
offers practice potential in future AOR technologies.

With this study we could show that the SWD perspective does not con-
strain the known techniques of AOR. It has the same power than the traditional
approach but reduces potential interactions. It is more disciplined and advanta-
geous with regard to complexity and comprehensibility [5].

Our next task is to decompose larger applications to test the validity of our
ideas. This is a subject of on-going work.

Acknowledgments. We thank Don Batory for fruitful discussions and useful
comments on drafts of this paper. The first author is sponsored by the German
Research Foundation (DFG), project number SA 465/31-1, as well as by the
German Academic Exchange Service (DAAD), PKZ D/05/44809. This work was
done while Sven Apel was visiting the group of Don Batory at the University of
Texas at Austin.

References

1. S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects and Features in
Concert. In ICSE, 2006.

2. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM TOSEM, 1(4), 1992.

3. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE

TSE, 30(6), 2004.
4. I. Baxter. Design Maintenance Systems. CACM, 35(4), 1992.
5. R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to Aspect

Composition. In ACM SIGPLAN PEPM Workshop, 2006.
6. G. C. Murphy et al. Separating Features in Source Code: An Exploratory Study.

In ICSE, 2001.
7. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE

TSE, SE-5(2), 1979.
8. N. Wirth. Program Development by Stepwise Refinement. CACM, 14(4), 1971.
9. C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in Middleware Sys-

tems. In OOPSLA, 2004.




