
1

A Science of Software Design

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78746

batory@cs.utexas.edu

Underlying large-scale software design and program synthesis are simple and
powerful algebraic models. In this paper, I review the elementary ideas upon
which these algebras rest and argue that they define the basis for a science of
software design.

1 Introduction

I have worked in the areas of program generation, software product-lines, domain spe-
cific languages, and component-based architectures for over twenty years. The empha-
sis of my research has been on large-scale program synthesis and design automation.
The importance of these topics is intuitive: higher productivity, improved software
quality, lower maintenance costs, and reduced time-to-market can be achieved through
automation.

Twenty years has given me a unique perspective on software design and software mod-
ularity. My work has revealed that large scale software design and program synthesis is
governed by simple and powerful algebraic models. In this paper, I review the elemen-
tary ideas on which these algebras rest. To place this contribution in context, a funda-
mental problem in software engineering is the abject lack of a science for software
design. I will argue that these algebraic models can define the basis for such a science.

I firmly believe that future courses in software design will be partly taught using
domain-specific algebras, where a program’s design is represented by a composition of
operators, and design optimization is achieved through algebraic rewrites of these
compositions. This belief is consistent with the goal of AMAST. However, I suspect
that how I use algebras and their relative informality to achieve design automation is
unconventional to the AMAST community. As a background for my presentation, I
begin with a brief report on the 2003 Science of Design Workshop.

2 NSF’s Science of Design Workshop

In October 2003, I attended a National Science Foundation (NSF) workshop in Airlie,
Virginia on the “Science of Design” [11]. The goal of the workshop was to determine
the meaning of the term “Science of Design”. NSF planned to start a program with this
title and an objective was to determine lines of research to fund. There were 60 attend-
ees from the U.S., Canada, and Europe. Most were from the practical side of software
engineering; a few attendees represented the area of formal methods. I was interested

dsb
To appear. Invited presentation at the 10th International Conference on Algebraic Methodology And Software Technology AMAST'2004, Stirling, Scotland, July 12-16.

2

in the workshop to see if others shared my opinions and experiences in software
design, but more generally, I wanted to see what a cross-section of today’s Software
Engineering community believed would be the “Science of Design”. In the following, I
review a few key positions that I found particularly interesting.

Richard Gabriel is a Distinguished Engineer at Sun Microsystems and one of the archi-
tects of Common Lisp. He described his degree in creative writing — in particular,
poetry — and demonstrated that it was far more rigorous in terms of course work than
a comparable degree in Software Engineering (of which software design was but a
small part). He advocated that students should be awarded degrees in “Fine Arts” for
software design. I was astonished: I did not expect to hear such a presentation at a Sci-
ence of Design workshop. Nevertheless, Gabriel reinforced the common perception
that software design is indeed an art, and a poorly understood art at that.

Carliss Balwin is a Professor at the Harvard Business School. She argued that software
design is an instance of a much larger paradigm of product design. She observed that
the processes by which one designs a table, or a chair, or an auditorium, are fundamen-
tally similar to that of designing software. Consequently, software design has firm
roots in economic processes and formalisms. Once again, I was not expecting to hear
such a presentation at a Science of Design workshop. And again, I agreed with her
arguments that software design can be viewed as an application of economics.

Did the workshop bring forth the view of is software design as a science? I did not see
much support for this position. Attendees were certainly using science and scientific
methods in their investigations. But I found little consensus, let alone support, for soft-
ware design as a science. The most memorable summary I heard at the workshop was
given by Fred Brookes, the 1999 ACM Turing Award recipient. He summarized the
conclusions of his working group as “We don’t know what we’re doing, and we don’t
know what we’ve done!”.

The results of the workshop were clear: if there is to be a science of software design, it
is a very long way off. In fact, it was questionable to consider software design a “sci-
ence”. Although I do not recall hearing this question posed, it seemed reasonable to ask
if design is engineering.1 For example, when bridges are designed, there is indeed an
element of artistry in their creation. But there is also an underlying science called phys-
ics that is used to determine if the bridge meets its specifications. So if software design
is engineering, then what is the science that underlies software design? Again, we are
back to square one.

After many hours of thought, I realized that the positions of Gabriel and Baldwin were
consistent with my own. Software design is an art as Gabriel argued, but not always.
Consider the following: designing the first automobiles was an art — it had never been
done before, and required lots of trial and error. Similarly, designing the first computer
or designing the first compiler were also works of art. There were no assembly lines

1. Thanks to Dewayne Perry for this observation.

3

for creating these products and no automation. What made them possible was crafts-
manship and supreme creativity. Over time, however, people began building variants
of these designs. In doing so, they learned answers to the important questions of how to
design these products, what to design, and most importantly, why to do it in a particular
way. Decision making moved from subjective justifications to quantitative reasoning. I
am sure you have heard the phrase “we’ve done this so often, we’ve gotten it down to a
science”. Well, that is the beginnings of a science.

A distinction that is useful for this paper is the following: given a specification of a
program and a set of organized knowledge and techniques, if “magic” (a.k.a. inspira-
tion, creativity) is needed to translate the specification into a program’s design, then
this process is an art or an inexact science. However, if it is purely a mechanical pro-
cess by which a specification is translated into a design of an efficient program, then
this process follows an exact or deterministic science.

Creating one-of-a-kind designs will always be an art and will never be the result of an
exact or deterministic science, simply because “magic” is needed. Interestingly, the
focus of today’s software design methodologies is largely on creating one-of-a-kind
products. The objective is to push the envelope on a program or component’s capabili-
ties, relying on the creativity and craftsmanship of its creators — and not automation.
In contrast, I believe that an exact science for software design lies in the mechanization
and codification of well-understood processes, domain-expertise, and design history.
We have vast experiences building particular kinds of programs, we know the how, the
what, and the why of their construction. We want to automate this process so that there
is no magic, no drudgery, and no mistakes. The objective of this approach is also to
push the envelope on a program or component’s capability but with emphasis on
design automation. That is, we want to achieve the same goals of conventional soft-
ware development, but from a design automation viewpoint.

The mindset to achieve higher levels of automation is unconventional. It begins with a
declarative specification of a program. This specification is translated into a design of
an efficient program, and then this design is translated to an executable. To do all this
requires significant technological advances. First, how can declarative specifications
of programs be simplified so that they can be written by programmers with, say, a
high-school education? This requires advances in domain-specific languages. Second,
how can we map a declarative specification to an efficient design? This is the difficult
problem of automatic programming; all but the most pioneering researchers aban-
doned this problem in the early 1980’s as the techniques that were available at that time
did not scale [1]. And finally, how do we translate a program’s design to an efficient
executable automatically? This is generative programming [9]. Simultaneous advances
on all three fronts are needed to realize significant benefits in automation.

To do all this seems impossible, yet an example of this futuristic paradigm was realized
over 25 years ago, around the time that others were giving up on automatic program-
ming. The work was in a significant domain, and the result had a revolutionary impact
on industry. The result: relational query optimization (RQO) [12].

4

Here’s how RQO works: an SQL query is translated by a parser into an inefficient rela-
tional algebra expression. A query optimizer optimizes the expression to produce a
semantically equivalent expression with better performance characteristics. A code
generator translates the optimized expression into an efficient executable. SQL is a
prototypical declarative domain-specific language; the code generators were early
examples of generative programming, and the optimizer was the key to a practical
solution to automatic programing.

In retrospect, relational database researchers were successful because they automated
the development of query evaluation programs. These programs were hard to write,
harder to optimize, and even harder to maintain. The insight these researchers had was
to create an exact or deterministic science to specify and optimize query evaluation
programs. In particular, they identified the fundamental operators that comprised the
domain of query evaluation programs, namely relational algebra. They represented
particular programs in this domain by expressions (i.e., compositions of relational
operators). And they used algebraic identities to rewrite, and thus optimize, relational
algebra expressions.

RQO is clearly an interesting paradigm for automated software development [5]. I can-
not recall others ever proposing to generalize the RQO paradigm to other domains. The
reason is clear: the generalization is not obvious. It is possible, and in the next sections,
I show how.

3 Feature Oriented Programming

Feature Oriented Programming (FOP) originated from work on product-line architec-
tures. The goal is to declaratively specify a program by the features that it is to have,
where a feature is some characteristic that can be shared by programs in a domain. So
program P1 might have features X, Y, and Z, while program P2 has features X, Q, and R.
Features are useful because they align with requirements: customers know their
requirements and can see how features satisfy requirements.

Interestingly, feature specifications of products are quite common. (It just isn’t com-
mon for software). The Dell web site, for example, has numerous web pages where
customers can declaratively specify the features they want on their PCs. A Dell web
page is a declarative DSL; clicking the check boxes and selecting items from pull-
down menus is the way declarative specs are written. By sending Dell a check for the
computed amount, that customized PC will be delivered in days. Similarly, ordering a
customized meal at a restaurant involves choosing items from a menu; this too is a
familiar form of declarative specifications. Neither customizing PCs or ordering cus-
tomized meals requires an advanced technical degree. We want the same for software.

GenVoca is a simple and powerful algebraic model of FOP. GenVoca is based on the
idea of step-wise refinement, which is an ancient methodology for building software by
progressively adding details [14]. The novelty of GenVoca is that it scales the concept
of refinement. That is, instead of composing hundreds or thousands microscopic pro-
gram rewrites called refinements, GenVoca scales refinements so that they each encap-

5

sulate an individual feature. A complete program is synthesized by composing a few
feature refinements. (Warning: I am using the term “refinement” in its common object-
oriented (OO) usage, namely to elaborate or extend. In contrast, “refinement” has a
different meaning in algebraic specifications — it means to elaborate but not extend a
program’s functionality. “Extension” is a more appropriate term. Henceforth, I use the
term “extension”, but beware that papers on FOP use the term “refinement” instead).

A GenVoca model of a domain is a set of operators that defines an algebra. Each oper-
ator implements a feature. We write:

M = { f, h, i, j }

to mean model M has operators (or features) f, h, i, and j. One or more of these opera-
tors are constants that represent base programs:

f // an application with feature f
h // an application with feature h

The remaining operators are functions which represent program extensions:

i(x) // adds feature i to application x
j(x) // adds feature j to application x

The design of an application is a named expression called an equation:

app1 = i(f) // application with features i and f
app2 = j(h) // application with features j and h
app3 = i(j(h)) // application with features i,j,h

The family of programs that can be created from a model is its product-line. To sim-
plify notation, we henceforth write i(j(h)) as i•j•h, where • denotes function com-
position.

A GenVoca expression represents the design of a program. Such expressions (and
hence program designs) can be automatically optimized. This is possible because a
function represents both a feature and its implementation. That is, there can be differ-
ent functions with different implementations of the same feature. For example, sup-
pose function k1 adds feature k with implementation #1 to its input program, while
function k2 adds feature k with implementation #2. When an application requires the
use of feature k, it is a problem of expression optimization to determine which imple-
mentation of k is best (e.g., provides the best performance). Of course, more compli-
cated rewrite rules can be used. Thus, it is possible to design efficient software
automatically (i.e., find an expression that optimizes some criteria) given a set of
declarative constraints for a target application. An example of this kind of automated
reasoning — which is exactly the counterpart to relational query optimization — is [6].

The program synthesis paradigm of GenVoca is straightforward. Figure 1 depicts a
program P that is a package of four classes (class1—class4). These classes are syn-
thesized by composing features X, Y, and Z. X encapsulates a fragment of class1—
class3, which is shown in a solid color. Y extends class1—class3 and introduces

6

class4, which is shown in horizontal stripes. Z extends all four classes, and is shown
in checker-board. Thus features encapsulate fragments of classes. Composing features
yields packages of fully-formed classes.

My colleagues and I have had considerable success using GenVoca for creating prod-
uct-lines for database systems [7], network protocols [7], data structures [6], avionics
[2], extensible Java and Scheme compilers [3][10], and program verification tools [13].
The next section briefly explains how code synthesis is performed.

3.1 Implementation Details

Extension and composition are very general concepts that can be implemented in many
different ways. The core approach relies on inheritance to express method and class
extensions. Figure 2a shows method A() whose body sequentially executes statements
x, y, and z. Figure 2b declares an extension of this method to be Super.A() followed
by statement w. Super.A() says invoke the method’s original definition. The compos-
ite method is Figure 2c; it was produced by substitution (a.k.a. macro-expansion): that
is, Super.A() was replaced with the original body of A().

Class extensions are similarly familiar. Figure 3a shows a class P that has three mem-
bers: methods A(), B(), and data member C. Figure 3b shows an extension of P, which
encapsulates extensions to methods A() and B() and adds a new data member D. The
composition of the base class and extension is Figure 3c: composite methods A() and
B() are present, plus the remaining members of the base and extension.

One way to implement the above is to use subclassing: that is, make Figure 3b a sub-
class of Figure 3a, where the semantics of the subclass equals that of Figure 3c.
Another way is to use substitution (in-place modification) as we have illustrated. There
are many other ways to realize these ideas with or without inheritance.

Fig. 1. Package P = Z•Y•X

class1 class2 class3 class4

featureX

featureY

featureZ

class1 class2 class3 class4

featureX

featureY

featureZ

void A() {
x; y; z;

}

void A() {
Super.A(); w;

}

void A() {
x; y; z; w;

}(a) (b) (c)

Fig. 2. Method Definition and Extension

class P {
void A(){ x;y;z; }
void B(){ r;t; }
int C;

}

refines class P {
void A(){ Super.A();w; }
void B(){ q;Super.B(); }
String D;

}

class P {
void A(){x;y;z;w;}
void B(){q;r;t;}
int C;
String D;

}(a) (b) (c)
Fig. 3. Method Definition and Extension

7

4 AHEAD

Algebraic Hierarchical Equations for Application Design (AHEAD) is the successor to
GenVoca [3]. It embodies ideas that have revolutionized my thinking on program syn-
thesis. In particular, AHEAD shows how step-wise development scales to the synthesis
of multiple programs and multiple representations, and that software design has an ele-
gant algebraic structure that is expressible as nested sets of expressions. The following
sketches the basic ideas of AHEAD.

4.1 Multiple Program Representations

Generating code for individual programs is not sufficient. Today’s systems are not
individual programs but groups of collaborating programs such as client-servers and
tool suites of integrated development environments. Further, systems themselves are
not solely defined by source code. Architects routinely use many knowledge represen-
tations to express a system’s design, such as process models, UML models, makefiles,
or formal specifications.

That a program has many representations is reminiscent of Platonic forms. That is, a
program is a form. Shining a light on this program casts a shadow that defines a repre-
sentation of that program in a particular language. Different light positions cast differ-
ent shadows, exposing different details or representations of that program. For
example, one shadow might reveal a program’s representation in Java, while another
an HTML document (which might be the program’s design document). There are class
file or binary representations of a program, makefile representations, performance
models, and so on. A program should encapsulate all of its artifacts or projections.

In general, suppose program P encapsulates artifacts Ap, Bp, and Cp, where the meaning
of these artifacts is uninterpreted. I express this relationship algebraically as:

P = { Ap, Bp, Cp }

where set notation denotes encapsulation. Members of a set are called units.

4.2 Generalize Extensions

Adding a new feature to a program may change any or all of its representations. For
example, if a new feature F is added to program P, one would expect changes in P’s
code (to implement F), documentation (to document F), makefiles (to build F), formal
properties (to characterize F), performance models (to profile F), and so on.

In general, suppose feature F changes artifacts A and B (where Af and Bf denote the
specifications of these changes) and adds new artifact Df. I say F encapsulates Af, Bf,
and Df, and write this relationship algebraically as:

F = { Af, Bf, Df }

8

4.3 Generalize Composition

Given P and F, how is F•P computed? The answer: composition is governed by rules of
inheritance. Namely, all units of the parent (inner or right-hand-side) feature are inher-
ited by the child (outer or left-hand-side) feature. Further, units with the same name
(ignoring subscripts) are composed pairwise with the parent term as the inner term:

F•P = { Af, Bf, Df } • { Ap, Bp, Cp }
= { Af • Ap, Bf • Bp, Cp, Df } (1)

Stated another way, F•P is computed by composing corresponding artifacts and the
correspondence is made by name. Thus, the A artifact of F•P is produced by Af•Ap —
the original artifact Ap extended by Af. Similarly, the B artifact of F•P is Bf•Bp — the
original artifact Bp extended by Bf. Artifacts C and D of F•P correspond to their original
definitions. (1) defines the Law of Composition: it tells us how composition distrib-
utes over encapsulation.

Readers may recognize Figure 3 to be a particular example of this law. P is the base
class of Figure 3a, encapsulating members A, B, and C. F is the class extension of
Figure 3b, encapsulating members A, B, and D. The composition F•P — an illustration
of (1) — is Figure 3c. More on this in the next section.

You will see shortly that the Law of Composition applies at all levels of abstraction and
can be made to apply to all artifacts. Figure 4 is an example of the latter. Figure 4a is a
grammar of a language that sums integers. Figure 4b shows a grammar extension that
adds the minus operation. In particular, a new token MINUS is added to the grammar
and the Operator production is extended with the MINUS rule. (The phrase
Super.Operator says substitute the right-hand-side of the original Operator pro-
duction). Figure 4b shows the composite grammar. Each token and production corre-
sponds to individual terms in the Law of Composition.

// INTEGER is predefined

"+" PLUS

Expr
 : Val

| Val Operator Expr
 ;

Val
 : INTEGER
 ;

Operator
 : PLUS
 ;

"-" MINUS

Operator
: Super.Operator
| MINUS
;

"-" MINUS
"+" PLUS

Expr
: Val
| Val Operator Expr
;

Operator
: PLUS
| MINUS
;

Val
: INTEGER
;

Fig. 4. Grammars, Extensions, and Composition

(a) constant (b) function (c) composition

9

4.4 Generalize Modularity

A module is a containment hierarchy of related artifacts. Figure 5a shows that a class is
a 2-level containment hierarchy that encapsulates a set of methods and fields. An inter-
face is also a 2-level containment hierarchy that encapsulates a set of methods and con-
stants. A package is a 3-level containment hierarchy encapsulating a set of classes and
interfaces. A J2EE EAR file is a 4-level hierarchy that encapsulates a set of packages,
deployment descriptors, and HTML files.

In general, a module hierarchy can be of arbitrary depth and can contain arbitrary arti-
facts. This enables us to define a module that encapsulates multiple programs.
Figure 5b shows a system to encapsulate two programs, a client and a server. Both pro-
grams have code, UML, and HTML representations with sub-representations (e.g.,
code has Java files and binary class files, UML has state machines and class diagrams).
Thus, a module allows us to encapsulate all needed representations of a system.

Module hierarchies have simple algebraic representations as nested sets of constants
and functions. Figure 6a shows package K to encapsulate class1 and class2,
class1 encapsulates method mth1 and field fld1. class2 encapsulates mth2 and
mth3. The corresponding set notation is shown in Figure 6b.

4.5 Generalize GenVoca

A GenVoca model is a set of constants and functions. An AHEAD model is also a set
of constants and functions, but now a constant represents a hierarchy that encapsulates
the representations of a base program. An AHEAD function is a hierarchy of exten-
sions — that is, it is a containment hierarchy that can add new artifacts (e.g., new Java
and HTML files), and can also refine/extend existing artifacts. When features are com-
posed, corresponding program representations are composed. If the representations of

methods fields

class

constantsmethods

interface

package

deployment
descriptors

HTML
files

J2EE EAR File

methods fields

class

methods fields

class

constantsmethods

interface

package

deployment
descriptors

HTML
files

J2EE EAR File

constantsmethods

interface

constantsmethods

interface

packagepackage

deployment
descriptors

HTML
files

J2EE EAR File

deployment
descriptors

HTML
files

J2EE EAR File

system

code UML HTML code UML HTML

client server

*.java, *.class *.htmlstate-machines *.java, *.class *.htmlclass diagrams

system

code UML HTML code UML HTML

client server

*.java, *.class *.htmlstate-machines *.java, *.class *.htmlclass diagrams

Fig. 5. Modules are Containment Hierarchies

(a)

(b)

10

each feature are consistent, then their composition is consistent. Thus consistent repre-
sentations of programs can be synthesized though composition; this is exactly what is
needed.

4.6 Implementation Details

We implement module hierarchies as directory hierarchies. Figure 7a shows our alge-
braic representation of a module, and Figure 7b shows its directory representation.

Feature composition is directory composition. That is, when features are composed,
their corresponding directories are folded together to produce a directory whose struc-
ture is isomorphic to the feature directories that were composed. For example, the
X.java file of C = B•A in Figure 8 is produced by composing the corresponding
X.java files of B and A.

Our implementation is driven by purely algebraic manipulation. We evaluate an
expression by alternately expanding nonterminals and applying the Law of Composi-
tion:

Fig. 6. Modules and Nested Sets

class1 class2

package K

K = { class1, class2 }

graphical algebraic
mth1 fld1

class1 = { mth1, fld1 }

mth3mth2
class2 = { mth2, mth3 }

class1 class2

package K

K = { class1, class2 }

class1 class2

package K

K = { class1, class2 }

graphical algebraic
mth1 fld1

class1 = { mth1, fld1 }

mth1 fld1

class1 = { mth1, fld1 }

mth3mth2
class2 = { mth2, mth3 }

mth3mth2
class2 = { mth2, mth3 }

(a) (b)

W.htm Z.htmX.java Y.java

Code
R.drc

Htm

A

W.htm Z.htmX.java Y.java W.htm Z.htmW.htm Z.htmX.java Y.javaX.java Y.java

Code
R.drc

Htm

A

A = { Code, R.drc, Htm }

Code = { X.java, Y.java }

Htm = { W.htm, Z.htm }

(a) (b)

Fig. 7. Corresponding Algebraic and Directory Representations

X.java = X.java X.java

Code

X.javaY.java Z.htm

R.drc
Htm

A

X.java W.htmY.java

Code

R.drc
Htm

B

=

X.java W.htmY.java Z.htm

Code

R.drc
Htm

C

X.java = X.java X.java

Code

X.javaY.java Z.htm

R.drc
Htm

A

X.java W.htmY.java

Code

R.drc
Htm

B

=

X.java W.htmY.java Z.htm

Code

R.drc
Htm

C

Fig. 8. Composition of Feature Directories

11

C = B • A
= { CodeB, R.drcB, HtmB } • { CodeA, R.drcA, HtmA }
= { CodeB•CodeA, R.drcB•R.drcA, HtmB•HtmA }
= { X.javaB, Y.javaB }•{ X.javaA, Y.javaA },

R.drcB•R.drcA, { W.htmB } • { Z.htmA } }
= { { X.javaB•X.javaA, Y.javaB•Y.javaA },

R.drcB•R.drcA, { W.htmB, Z.htmA }}

The result is a nested set of expressions. Each expression tells us how to synthesize an
artifact of the target system. That is, the X.java artifact of feature C is computed by
X.javaB•X.javaA; the Y.java artifact of C is computed by Y.javaB•Y.javaA, the
R.drc artifact of C is computed by R.drcB•R.drcA, and so on. Thus, there is a simple
interpretation for every computed expression, and there is a direct mapping of the
nested set of expressions to the directory that is synthesized.

Figure 9 illustrates the AHEAD paradigm. An engineer defines a system by declara-
tively specifying the features it is to have, typically using some GUI-based DSL. The
DSL compiler translates the specification into an AHEAD expression. This expression
is then expanded and optimized, producing a nested set of expressions. Each expres-
sion is typed — expressions that synthesize Java files are distinguishable from expres-
sions that synthesize grammar files — and is submitted to a type-specific generator to
synthesize that artifact. The set of artifacts produced are consistent with respect to the
original declarative specification. AHEAD is a generalization of the Relational Query
Optimization paradigm.

A common question that is asked is: can you realistically design features so that they
can be composed? Absolutely. It’s easy — this is what software product-lines are all
about. Features or components are designed to be composable and compatible. Com-
posability and compatibility are properties that don’t happen by magic or by accident;
they are premeditated. Some of you may recall the old chip catalogs of the early 1970s,
where all the chips in the catalog were designed to be compatible — they worked off of
the same voltage, impedance, etc. Chips built by another manufacturer often were not
compatible. A more familiar example today are disks for PCs. There are all sorts of
disk manufacturers now that have an incredible line of products. These disks are com-
patible because they meet SCSI or IDE standards. (Recall that prior to plug-and-play
standards, adding a disk to a PC required a high-paid technician to do the installation).
The same ideas apply to software.

Engineer

declarative DSL

Engineer

declarative DSL

Engineer

declarative DSLdeclarative DSL
h1 g1 f1

h2 g2 f2

h3 g3 f3

generator

generator

generator

equation
composition

& optimization

h g f
artifact1

artifact2

...

artifacts of
specified system

h1 g1 f1

h2 g2 f2

h3 g3 f3

generator

generator

generator

generator

generator

generator

equation
composition

& optimization

equation
composition

& optimization

h g f
artifact1

artifact2

...

artifact1

artifact2

...

artifacts of
specified system

Fig. 9. Program Synthesis Paradigm of AHEAD

12

5 Cultural Enrichment

It is beyond the scope of this paper to show a detailed example of these ideas in action.
For those interested, please consult [4]. In this section, I explain a simple result that
illustrates AHEAD algebras and an elementary optimization. Then I discuss the
breadth of the AHEAD framework.

5.1 A Simple Result

Have you ever wondered what an algebraic justification of object-oriented subclassing
(e.g., inheritance) would be and why inheritance is fundamental to software designs?
Here’s an answer: when a program is synthesized, an expression is generated for every
class of that program. Suppose the program has classes A, B, and C with the following
expressions:

A = Z • Y • X • W
B = Q • Y • X • W
C = E • Y • X • W

Observe that all three classes share a common sub-expression Y•X•W. Instead of redun-
dantly evaluating this expression, one can eliminate common sub-expressions by fac-
toring:

F = Y • X • W
A = Z • F
B = Q • F
C = E • F

Whenever a new equation F is created, a new class F is generated. The relationship
between classes F and A, B, C is indicated in the revised expressions: the expressions
for A, B, C reference and thus extend F. Code generators materialize F as a class with A,
B, and C as subclasses. That is, F contains the data members and methods that are com-
mon to its subclasses. Just as common sub-expression elimination is fundamental to
algebra, inheritance hierarchies are fundamental to object-oriented designs, because
they are manifestations of the same concept. Interestingly, the process of promoting
common methods and data members of subclasses into a superclass is called refactor-
ing in OO parlance, whereas in algebra it is called factoring. Not only are the concepts
identical, the names are almost identical too.

5.2 Even More Generality

I have concentrated so far on domain-specific operators — constants and functions —
whose compositions define programs within a target domain. But there are many oper-
ators in the AHEAD universe that are not domain-specific. I illustrate some with an
example.

In the current implementation of AHEAD, all code is written in Java that has been
extended with refinement constructs (e.g., “refines” and “Super”). This language is

13

called Jak (short for “Jakarta”). To compile these classes, the Jak files are translated to
their Java file equivalents using the jak2java tool. Next, the Java files are translated
to class files using the javac tool. These are derivation steps that can be expressed
algebraically: Let P be a program that is synthesized from some AHEAD equation. P
encapsulates a set of Jak files. Let P’ define the set that additionally contains the corre-
sponding Java and class files. The relationship of P and P’ is expressed as:

P’ = javac(jak2java(P)) (2)

That is, the jak2java tool is an operator that elaborates or extends containment hier-
archies by translating every Jak file to its corresponding Java file. Similarly, the javac
tool is an operator that elaborates containment hierarchies by translating every Java file
to its corresponding class file(s).

There are many other operators on containment hierarchies, such as javadoc (that
derives HTML-documentation files from Java files), javacc (that derives Java files
that implement a parser from .jj files), and jar (a Java archive utility). In short, com-
mon tools that programmers use today are operators that derive and thus add new rep-
resentations to containment hierarchies. Readers will recognize equation (2) to be an
algebraic specification of a makefile. It is much easier to write and understand (2)
than its corresponding ant declaration in XML. Thus, it should be possible to generate
low-level makefiles from equational specifications like (2). Further, if the makefile
expression is particularly complicated, it may be possible also to optimize the expres-
sion automatically (e.g., perform javac operator before javadoc) prior to makefile
generation. Doing so would further relieve programmers of the burden of manually
writing and optimizing these files.

Software design involves many activities that involves many representations of a pro-
gram (e.g., analysis, implementation, description). Given the ability to compose and
derive, you can do just about anything. AHEAD unifies these activities in an algebraic
setting. Not only will this simply program specifications, it will also make specifica-
tions more amenable to automatic optimization.

6 Why Does AHEAD Work?

I’m sure that some of you, upon reading this paper, will wonder what the big deal is;
the ideas are straight from an introductory computer science course (a.k.a. “CS 101”).
You are right about the simplicity, but you may have forgotten the state (and abject
lack) of science in software design (e.g., Section 2). As computer scientists we under-
stand CS 101 concepts, but I claim that we do not know how they are applied to soft-
ware design. Software engineers do not think about software designs in terms of
algebras or anything (as far as I can tell) dealing with mathematics. They certainly do
not think of design in terms of automation. Their reward structure for software devel-
opment is also screwed up: complexity is appreciated; simplicity and elegance are dis-
missed. Not only is this bad science, this is bad engineering.

14

My students and I have synthesized the AHEAD tool suite, which is in excess of 250K
Java LOC, from elementary equational specifications. We know of no technical limit
on the size of system that can be synthesized. The obvious questions are: why can
AHEAD be this simple? What are we giving up? And why does it work as well as it
does?

There are many answers; here is one. I have seen the following idea proposed by dif-
ferent people in three consecutive decades, starting in late 1970s. Suppose a pair of
independently written packages Q and R are to be composed. Composition is accom-
plished in the following way: corresponding classes in Q and R are identified. That is,
class X in Q corresponds to class Y in R, and so on for every relevant class. Then corre-
sponding methods are paired. That is, method M in class X of Q corresponds to method
N in class Y of R, and so on for all relevant methods. And finally, corresponding param-
eters are matched: parameter 2 of method M in class X of Q corresponds to parameter 3
of method N in class Y of R, etc. Given these relationships, tools can be built to com-
pose Q and R, and examples can show that indeed a package with the functionalities of
Q and R can be created.

This approach has many problems. First, it does not scale in general. What happens if Q
and R both have 1000 classes, 10,000 methods, and 20,000 parameters? Who can
define (or have the patience to define) the required correspondences? How does one
validate these correspondences? Note the hidden complexity of this approach: every
concept (class, method, parameter) has two names: the name used in package Q and
that used in R. This means that programmers have to remember twice the amount of
information than they need to. If k additional packages are to be composed, then pro-
grammers must know k different names for the same concept. The concept is the
essence of this problem; the different arbitrary names add accidental complexity [8]. In
general, programmers have a hard time remembering all these accidental details.

Second, it does not work in general. Just because the names in packages can be aligned
syntactically does not imply semantic alignment. That is, there is no guarantee that cor-
responding methods agree on their semantics. If there is disagreement, this approach to
composition and software synthesis fails. The only recourse is to define an adaptor that
performs the semantic translation — if in fact such an adaptor can be written.

In my experience, software reuse and software composition succeeds because of a pre-
meditated design. Stated another way, components are composable only if they were
designed with the other in mind. This axiom is crucial to scalability. It is very easy
(and wrong) to assume that just because a small example works where this axiom does
not hold, more complicated examples will work just as well.

AHEAD’s contribution is basic: it shows how simple ideas and common software
development tools can be unified and elegantly captured as an algebra that expresses
the essential tasks of software design and scalable software generation as mathematics.
I reject axioms that accept accidental complexity as fundamental. As a consequence,
AHEAD provides a clean solution to a core design problem where class, method, and
parameter names are standardized, and so too are their semantics. This enables us to

15

build simple tools and attack problems of automated design on scale. Our work relies
on a common engineering technique: arbitrary and random complexity are eliminated
by design. AHEAD does indeed have correspondence mappings; they are implicit, and
hence easy to write and easy to understand.2

The following quote from Fred Brooke’s 1987 “No Silver Bullet” paper [8] helps to
put the above arguments into context:

The complexity of software is an essential property. Descriptions of software that
abstract away its complexity often abstract away its essence…3 Software people are not
alone in facing complexity. Physicists deal with terribly complex objects even at the
“fundamental” particle level. The physicist labors on in a firm faith that there are unify-
ing principles to be found … Einstein argued that there must be simplified explanations
of nature, because God is not capricious or arbitrary.

No such faith comforts the software engineer. Much of the complexity that he must mas-
ter is arbitrary complexity, forced without rhyme or reason, because they were designed
by different people, rather than by God.

Not quite. Just like physicists, I too believe there is an underlying simplicity in soft-
ware. Programmers are geniuses in making simple things look complicated. If software
were truly complicated, people could not program and architects could not design.
There must be an underlying simplicity. The challenge is not making things compli-
cated, but revealing their essential simplicity. That is what AHEAD does and this is
why it scales.

Further, it does not take God to eliminate complexity. All it requires is common sense
and the use of common engineering techniques. This has worked for many non-soft-
ware domains; I and others are showing that it can work for software as well.

7 Conclusions

Just as the structure of matter is fundamental to chemistry and physics, so too must the
structure of software be fundamental to Computer Science. By structure, I mean: What
are modules? And how are modules composed to build larger modules? Unfortunately,
the structure of software is not yet well-understood. Software design, which is the pro-
cess to define the structure of an application, is an art. As long as it remains an art, our
abilities to automate software design and make software development a true engineer-
ing discipline are limited.

In short, software design is in desperate need for a science of design. Such a science, I
have argued, must be intimately related to automated design. That is, a science of soft-
ware design will not arise from having virtuoso engineers use their creativity and

2. Our belief is that once the core problems are understood, one can begin to relax assumptions
within the AHEAD framework itself to address progressively broader design problems.

3. The exception, of course, is modularity; hiding the details is what modularity is all about.

16

craftsmanship to create one-of-a-kind products. A science of design must arise from
domains where the software development process is mature or reasonably well-under-
stood and where developers can mechanize the process of creating successive variants
of programs. Because today’s models of software design are not aimed at automation,
progress towards a science is understandably lacking.

I believe a science of software design is indeed possible, and have argued that the sem-
inal work on Relational Query Optimization (RQO) is a powerful paradigm that can be
emulated in other domains. RQO showed how declarative specifications can be trans-
lated into efficient query evaluation programs automatically. The core reason why
RQO was successful is because it expressed the design of query evaluation programs
algebraically. I presented FOP as a generalization of the RQO paradigm. I believe FOP
could be a basis for a science of software design for many reasons:

• it raises the level of modularity from “code” to “design-related-artifacts”,

• program design and optimization are expressed algebraically (and thus are ideal
for automatic manipulation),

• it allows us to reason about applications in terms of their features (as architects
do), and

• it is based on a few simple ideas whose applicability shows no apparent bounds.

Historically, science has progressed by leaps of intuition followed by many years of
community debate before the real contributions of a work are understood. The science
of software design will be no different; such a science is indeed years away. AHEAD
has the right “look and feel” for particular aspects of software design, but that is a far
cry from having the software development community accept and appreciate its possi-
bilities. FOP does seem to be a step in the right directions of simplicity, mathematical
elegance, and support for automation. These criteria, more than anything else, are the
metrics by which advances in software design should be measured.

Acknowledgements. I gratefully acknowledge help from Vicki Almstrum, Dewayne
Perry, Chetan Kapoor, Chris Lengauer, and Carron Shankland on improving earlier
drafts of this paper.

8 References

[1] R. Balzer, “A Fifteen-Year Perspective on Automatic Programming”, IEEE Transactions on
Software Engineering, November 1985.

[2] D. Batory, L. Coglianese, et al., “Creating Reference Architectures: An Example from
Avionics”, Symposium on Software Reusability, Seattle Washington, April 1995.

[3] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refinement”,
International Conference on Software Engineering, 2003.

[4] D. Batory, J. Liu, J.N. Sarvela, “Refinements and Multi-Dimensional Separation of
Concerns”, ACM SIGSOFT 2003 (ESEC/FSE2003).

[5] D. Batory, “The Road to Utopia: A Future for Generative Programming”, Dagstuhl on
Domain-Specific Program Generation, Springer LNCS #3016, 1-17.

17

[6] D. Batory, et al., “Design Wizards and Visual Programming Environments for GenVoca
Generators”, IEEE Trans. Software Engineering, May 2000, 441-452.

[7] D. Batory and S. O'Malley. “The Design and Implementation of Hierarchical Software
Systems with Reusable Components”. ACM TOSEM, 1(4):355-398, October 1992.

[8] F.P. Brookes, “No Silver bullet: Essence and Accidents of Software Engineering”, IEEE
Computer, April 1987, pp. 10-19.

[9] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. Addison-Wesley, 2000.

[10]S. Krishnamurthi, “Linguistic Reuse”, Ph.D. Rice University, 2001.

[11]National Science Foundation, “Science of Design: Software-Intensive Systems”, Workshop
Proceedings, October 2003.

[12]P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price, “Access Path
Selection in a Relational Database System”, ACM SIGMOD 1979, 23-34.

[13]R.E.K. Stirewalt and L.K. Dillon, “A Component-Based Approach to Building Formal
Analysis Tools”, International Conference on Software Engineering, 2001, 57-70.

[14]N. Wirth, “Program Development by Stepwise Refinement”, CACM Vol. 14, No. 4, April
1971, 221-227.

