
Reducing Combinatorics in Testing Product Lines

Chang Hwan Peter Kim
University of Texas at Austin

Austin, TX 78712 USA
chpkim@cs.utexas.edu

Don Batory
University of Texas at Austin

Austin, TX 78712 USA
batory@cs.utexas.edu

Sarfraz Khurshid
University of Texas at Austin

Austin, TX 78712 USA
khurshid@ece.utexas.edu

ABSTRACT
A Software Product Line (SPL) is a family of programs
where each program is defined by a unique combination of
features. Testing or checking properties of an SPL is hard as
it may require the examination of a combinatorial number of
programs. In reality, however, features are often irrelevant
for a given test — they augment, but do not change, existing
behavior, making many feature combinations unnecessary as
far as testing is concerned. In this paper we show how to
reduce the amount of effort in testing an SPL. We represent
an SPL in a form where conventional static program analy-
sis techniques can be applied to find irrelevant features for
a test. We use this information to reduce the combinatorial
number of SPL programs to examine.

1. INTRODUCTION
A Software Product Line (SPL) is a family of programs

where each program is defined by a unique combination of
features. By developing a set of programs with commonal-
ities and variabilities in a systematic way, SPLs can signif-
icantly reduce both the time and cost of software develop-
ment. But at the same time, SPLs require software engi-
neering techniques distinct from those for conventional pro-
grams. In particular, testing, the phase to which the major-
ity of software development is dedicated, becomes especially
challenging [26].

The most obvious challenge in testing or checking the
properties of programs in an SPL is scale: an SPL with
only 10 optional features has over a thousand (210) distinct
programs. The need to assume the worst-case and test all
programs is evident in the following scenario: suppose that
every program of an SPL outputs a String that each feature
might modify. To see if the output always conforms to a
particular pattern, every possible feature combination must
be tested.

Current practice often focusses on feature combinations
that are believed to have a higher chance of falsifying certain
properties [10][11][25]. In light of no other information, this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

is reasonable but critical combinations may be overlooked.
Another approach is to apply traditional verification tech-
niques directly – model checking [16][35] or bounded exhaus-
tive testing [7][37] – on every product of the SPL. Again,
feature combinatorics render brute force impractical. Yet
another complicating factor is that features often have no
formal specifications; even contracts are typically unavail-
able.

Given this dismal situation, it is still possible to improve
the state-of-the-art by leveraging the semantics of features,
i.e. increments in functionality. It is well-known that there
are features whose absence or presence has no bearing on
the outcome of a test. Such features are irrelevant — they
augment, but do not invalidate, existing behavior. To illus-
trate potential benefits, suppose we determine that 8 of the
10 features in the above example do not modify the output
String and thus are irrelevant. We can confidently run the
String output test on only 22 = 4 programs to analyze the
entire product line, instead of a thousand.

In this paper, we explore the concept of irrelevant features
to reduce SPL testing. We find features that do not influ-
ence the result of a given test (these features are irrelevant).
We accomplish this by representing an SPL in a form where
conventional program analyses can be applied, determining
the features that are irrelevant for a given test, and pruning
the space of such features to reduce the number of SPL pro-
grams to examine for that test without reducing its ability to
find bugs. In a poster paper [19], we introduced the notion
of analyzing features to reduce the effort of testing a product
line. This paper expands the poster paper substantially by
making the following new contributions:

• Technique. We precisely define (ir)relevance in terms
of changes that a feature can make to a program. We
modify off-the-shelf static analyses for object-oriented
programs to check for relevance.

• Implementation. We implement our technique as
an Eclipse plugin that uses Soot [30], a popular static
analysis framework for Java, and SAT4J [31], an off-
the-shelf SAT solver.

• Evaluation. We demonstrate the effectiveness of our
technique on concrete product lines and tests.

2. MOTIVATING EXAMPLE
Product Line. Suppose that we have the product line in

Figure 1 that represents bank accounts where one can add
money and be rewarded for being a valuable customer. The

1

dsb
Text Box
to appear, AOSD 2011

code of each feature in Figure 1 is painted a distinct color.
For now, ignore underlined code.

Our product line has four features:

• Base (clear color) represents the core functionality which
allows money to be added, interest and overdraft penalty
to be computed, and provides a class (PremiumAccount)
that represents premium accounts with money already
loaded in.

• Loyalty (blue) rewards a customer for adding money
to the account. The feature adds a points field, which
is incremented by a percentage of the money in the
account when Account.add(int) is called. The fea-
ture also adds PremiumAccount.overdraftPenalty(),
which overrides the method provided by Base.

• Ceiling (yellow) places a ceiling on the return value of
interest(double) and PremiumAccount.overdraft-

Penalty().

• Fee (dark grey) charges for adding money. The charge
going into the bank’s account is not shown.

Unlike a conventional module such as a class, a feature
module encapsulates semantically-related code that is scat-
tered and tangled throughout a program. Also, a feature
module is a part of a program if and only if the correspond-
ing feature is selected, namely, blue code is present iff Loy-

alty=true (code annotated with LOYALTY like points dec-
laration will disappear if the feature is false). In general a
product line can be viewed as a template that can instan-
tiate up to 2n distinct programs, where n is the number of
optional features.

Feature Model. A feature model defines the legal feature
combinations or configurations (we use these terms inter-
changeably). For our example, the feature model is shown
below as a context-sensitive grammar. It requires Base to
be present in every program (only bracketed features are op-
tional) and requires one of the other three features, yielding
a total of 7 distinct programs:

ProductLine :: [Ceiling] [Fee] [Loyalty] Base; // grammar
Ceiling or Fee or Loyalty; // constraints

Product Line Tests. A product line test is a program
with a main method that executes some methods and refer-
ences some code of the product line. Figure 2 shows three
tests for our product line. Test1 checks that there are no
points when a premium account is created. Test2 checks
the penalty for $200 overdraft against a premium account.
Test3 adds $100 to an account and checks that there is at
least that much in the account afterwards.

Although a test can be written fairly arbitrarily, such as
bundling multiple tests into one and testing many function-
alities at the same time, we assume a setting where a test
exercises a small portion of the product line, the way a unit
test does. To execute a test, all of its inputs (except the
boolean feature variables like LOYALTY and FEE which are
discussed later) must be set by the user.

Feature Combinatorics. Eliminating unnecessary fea-
ture combinations is the central problem in product line test-
ing and we tackle this problem by determining what features
are relevant to a test. We can intuitively understand what
“relevance” means before we define it precisely. For exam-
ple, consider Test1: only Base and Loyalty are relevant

Figure 1: Example Product Line

1 class Test1 { /*** Test1 ***/
2 static void main(String args) {
3 PremiumAccount a = new PremiumAccount();
4 assert a.points == 0;
5 }
6 }
7

8 class Test2 { /*** Test2 ***/
9 static void main(String args) {

10 PremiumAccount a = new PremiumAccount();
11 a.money = -200;
12 assert a.overdraftPenalty() == 2;
13 }
14 }
15

16 class Test3 { /*** Test3 ***/
17 static void main(String args) {
18 Account a = new Account();
19 a.add(100);
20 assert a.money >= 100;
21 }
22 }

Figure 2: Product Line Tests

2

because only these features’ code is reachable from Test1.-

main(). For Test2 and Test3, the relevant features are less
obvious but can still be statically determined. In all cases,
we can use knowledge of relevant features to reduce the set
of SPL programs to test.

Solution Overview. Figure 3 shows an overview of our
technique for reducing combinatorics in product line testing.
We start with a product line that is encoded as a SysGen
program (Section 3), a feature model for the product line,
and a product line test. We specialize the feature model
with respect to the test to identify unbound features, a sub-
set of which are relevant (Section 4). We then feed the
specialized feature model, the SysGen program and the test
to a static analysis that identifies the relevant features (Sec-
tion 5). Given the relevant features and specialized feature
model, a solver determines the configurations against which
the test must be run (Section 6). We begin by explaining
SysGen programs.

3. SYSGEN PROGRAMS
A system generation (SysGen) program encodes a prod-

uct line as a single program using #ifdef <feature> decla-
rations. At compilation time, variables denoting features
are assigned boolean values and a particular program of
the product line is produced. Our SysGen programs, in-
cluding the running example, are slightly different: we use
if(feature)-conditionals and annotations rather than #ifdef

<feature> declarations, and feature variables only appear
in these conditionals and annotations (these are the under-
lined statements and annotations in Figure 1). The benefit
in doing so is that it enables off-the-shelf program analyses
for conventional (Java) programs to be applied to product
lines.

To instantiate a program from a SysGen representation,
we simply set each feature variable (e.g. LOYALTY, FEE, and
CEILING) to a boolean value that indicates the presence or
absence of that feature. Nothing further needs to be done
as the statements that are guarded by feature variables will
be executable or not executable depending on these values.
Classes, methods, and fields that are annotated with feature
variables whose value is false are physically removed. Note
that colors are not part of the SysGen representation, but
we retain them in this paper for visual aid.1

4. RELEVANT FEATURES
A relevant feature is a feature for which we need to con-

sider both true and false values when running a test. As
we explain in Section 4.2, a feature is considered to be rel-
evant depending on whether its code can influence the test
outcome. We use the SysGen program, feature model and
test to reduce the set of features whose code needs to be
analyzed. We describe how to do this next.

1Not all product line variations may be easily represented
using variability mechanisms of a conventional programming
language. For example, pushing multiple alternative fea-
tures into a single program may result in duplicate decla-
rations. This can occur if two features introduce different
implementations of the same method. A workaround is to
factor code that is common in alternative features into a
common feature that the alternative features refine. We
deal with product lines that can be represented as SysGen
programs, albeit with some refactoring.

Figure 4: Classification of Features

4.1 Pruning Features
A bound feature has its truth value fixed for a given test.

Bound features are determined by adding implementation
constraints according to [33] to the feature model to ensure
that the test will compile. Also, a tester may decide that cer-
tain features must always be present or absent when running
a test by adding test constraints to the feature model (e.g. if
a tester wants to run Test2 with Loyalty present, the tester
can add Loyalty=true to the feature model). Both imple-
mentation and test constraints specialize the feature model,
reducing feature combinations. The complete set of bound
features are determined by mapping the specialized feature
model to a propositional formula [3] and using a SAT solver
to propagate constraints [17]. Unbound features, which can
take either a true or false value, are simply the comple-
ment of bound features.

Of the unbound features, only the features whose code is
reachable from the test’s entry point (main method) need to
be checked for relevance.2 The static analysis presented in
Section 5 determines which features are reachable and only
checks these features for relevance.

Figure 4 shows our classification of features. We use the
term ineffective to describe reachable features that are not
relevant. We reserve the term irrelevant to describe any
feature that is not relevant (i.e. ineffective, unreachable,
and bound), for which we need only consider one truth value
when running the test. Note that whether the test passes
or fails is independent of whether an irrelevant feature is
present or not. We discuss how to isolate relevant features
in Section 4.2 but for now, it is apparent that:

• In Test1, Base and Loyalty are bound to true as
the test references PremiumAccount (which belongs to
Base) and Account.points (Loyalty). Note that Base
is required anyway due to the feature model. Features
Fee and Ceiling are unbound. These two features are
also unreachable as their code is not executed by the
test.

• In Test2, only Base is bound. Although the test refer-
ences PremiumAccount.overdraftPenalty() of Loy-

alty, the method definition need not exist as Base pro-
vides Account.overdraftPenalty(). Therefore, Loy-
alty is unbound. However, if the tester wanted to
test only the former method definition, the constraint

2Unreachable features’ code may also be relevant if the test
uses reflection. See Section 8.1. Also, note that bound fea-
tures may actually be reachable as well but we just do not
label them as such.

3

Figure 3: Overview of Our Technique

Loyalty=true would be added to the feature model.
The reachable features are Loyalty and Ceiling.

• For Test3, only Base (true) is bound. All the three
unbound features are reachable. For example, Ceiling
is reachable as interest(double) is called by Loyalty.

Binding features reduces feature combinatorics (i.e,. the
number of programs to test) from 2n, where n is the number
of unbound features in the entire product line, to 2u, where u
is the number of unbound features in the test. Determining
reachable features r further reduces the number to 2r. Rel-
evant features R, a subset of reachable features, shrinks the
number of programs to test to 2R, where 2R ≤ 2r ≤ 2u ≤ 2n.
We now discuss the conditions for relevance.

4.2 Conditions for Relevance
A reachable feature is ineffective to a test if the feature

does not alter the (1) control-flow or (2) data-flow of any
feature whose code may be executed by the test. By control-
flow , we mean the control-flow graph (CFG) which is a di-
rected graph whose nodes are basic blocks that consist of
straightline code. A feature preserves a CFG if it only adds
more code to existing basic blocks without introducing edges
between the existing basic blocks, thereby preserving the
shape of the graph itself. By data-flow , we mean the graph
of def-use pairs [1]. A feature preserves def-use pairs if it
writes only to variables that it introduces. Trivially, the
set of relevant features is the complement of the ineffective
features in the set of reachable features. In Section 5, we
precisely define the checks of relevancy, but for now, con-
sider these examples:

• For Test1, as there is no reachable feature as explained
before, there is no relevant feature and thus, only one
configuration, such as {Base=true,Loyalty=true,Fee=-
false,Ceiling=false}, needs to be run for the test.

• For Test2, both of the reachable features, Loyalty and
Ceiling, are relevant as the former changes the inter-
procedural CFG by replacing a called method with its
own method and the latter adds an edge to a CFG to
exit early.

• For Test3, Ceiling, Fee, and Loyalty are reachable.
Fee is relevant as it alters a variable (money) of an-
other feature (Base). Ceiling is relevant as it changes

control-flow of interest() method called from line 13.
Loyalty is relevant as it allows code of another relevant
feature (Ceiling) to be reached. With three relevant
features, Test3 must be run on all configurations.

We now present a static analysis that conservatively de-
termines reachable and relevant features.

5. STATIC ANALYSIS
Using an off-the-shelf inter-procedural context-insensitive

and flow-insensitive points-to analysis called Spark [21], our
Soot-based static analysis examines code that is reachable
from the start of a given test and checks if a reachable fea-
ture’s code alters the behavior of another feature. Our static
analysis identifies two classes of effects that a relevant fea-
ture can have: direct and indirect. The check for direct ef-
fects examines two types of changes that a feature can make:
introductions (Section 5.1) and modifications (Section 5.2).
The check for indirect effects (Section 5.3) determines if a
feature’s code can allow a direct effect to be reached. If
a feature is determined to have an effect by any of these
checks, the feature is relevant.

5.1 Introductions
An introduction adds a class, field, method or another

type of class member. For example, Base introduces Ac-

count, PremiumAccount and Account.money. Loyalty in-
troduces Account.points and PremiumAccount.overdraft-

Penalty().
In general, the only way an introduction of feature F can

influence the outcome of a test execution is for it to (a)
override the introduction of another feature G and (b) is
reachable from the test. By design, a feature can only over-
ride methods, not variable declarations, of another feature.
An overriding method introduction that is reachable from
the test affects control-flow of other features because it ef-
fectively replaces the CFG of the overriden method with its
own. A feature with an overriding introduction is relevant.

For example, in Test2, Loyalty is relevant because it in-
troduces a reachable method PremiumAccount.overdraft-

Penalty() that overrides Base’s introduction of Account.-

overdraftPenalty().

5.2 Modifications
A modification adds a contiguous block of statements to

an existing method. Modifications of SysGen programs are

4

always enclosed by if-conditions of feature variables, such
as lines 12-13 and 40-41 of Figure 1. Our static analy-
sis for modifications was inspired by a similar analysis for
aspects [9] that checks for data-flow and control-flow ef-
fects. Section 5.2.1 presents the control-flow check and Sec-
tion 5.2.2 presents the data-flow check.

5.2.1 Control-Flow Check
The only way a modification does not preserve a CFG as

described in Section 4.2 is if it adds a branching statement
(i.e. continue, break, and return for Java) to the control-
structure (i.e. loop, switch, and function) of another feature.
A feature with such a modification has a control-effect and
is relevant.

For example, in PremiumAccount.overdraftPenalty(), Ceil-
ing’s modification (line 41) optionally changes the control-
flow of the method by returning a value different from what
Loyalty returns. Therefore, Ceiling is relevant to Test2,
which invokes PremiumAccount.overdraftPenalty(). Also,
Ceiling is relevant to Test3 because line 26, reachable through
line 13, changes the control-flow of interest(double).

5.2.2 Data-Flow Check
The modifications made by feature F preserve def-use

pairs if F ’s statements write (i) to fields that F introduced
or (ii) to fields introduced by another feature, G, but whose
base object (e.g., base object for the expression x.money is
x) was allocated by F . The reason for Condition (i) is the
following: a field introduced by F cannot have existed be-
fore F was added. As a result, writing to the field cannot
possibly override existing values. As for Condition (ii), F
should be able to modify objects that it itself created. Here
are three examples:

• Example satisfying (i): given Test3 and the SysGen
program, we see that Loyalty’s modification (line 13)
satisfies (i) because it only updates a field, points,
that Loyalty itself introduced.

• Example satisfying (ii): suppose that Loyalty has a
modification that does the following:

if(LOYALTY) {

Account account = new Account();

account.money = 100;

}

Even though Loyalty writes to a field (money) that is
introduced by another feature (Base), this is allowed
because the modification only affects the object ac-

count which cannot exist without Loyalty.

• Example not satisfying (i) and (ii): Fee’s modification
(line 15) assigns to another feature’s field money of the
object a that was created by Test3, not Fee.

Our data-flow check evaluates both (i) and (ii). For each
reachable if(F) statement, the check finds field writes oc-
curing in the statement’s control-flow (other if(G) state-
ments in that control-flow, where G is not equal to F, are
skipped as they will be visited later). Then for each field
write found, F is checked against the feature that declared
the field. If the two features are the same, the if(F) state-
ment satisfies condition (i). If the two are different, then for
each possible allocation site of the base object of the field

being written, the feature of the allocation site must be F

for the if(F) statement to satisfy condition (ii). If neither
condition is satisfied, if(F) statement produces a data-flow
effect and F is relevant.

We modified a Soot-based side-effect analysis [20] to im-
plement the data-flow check. We chose this particular analy-
sis because it was easy to modify for our needs. The analysis
is as precise as Spark, which as mentioned is both context-
insensitive and flow-insensitive. We argue in Section 8.2
that a highly precise static analysis is not necessary for our
problem.

5.3 Indirect Effect
There are times when a feature satisfies both the control-

flow and data-flow checks of irrelevancy, but the feature is
still relevant because it enables the code of relevant features
to be reached.

Indirect Data-Flow Effect. Consider Figure 5. An un-
bound feature A that writes only to its own variables can
affect the outcome of a test for m() if its variables are read
by a relevant feature C (relevant because it writes to A’s vari-
able). In fact, a program with C will not even compile cor-
rectly without A. This is not a problem because a previously
developed technique [33] ensures that A=true when C=true

by constructing the implementation constraint C =⇒ A.

1 @BASE
2 class Program {
3 @A
4 int a = 0;
5

6 @BASE
7 void m() {
8 if (B) {
9 if (C) { a = a + 2; }

10 }
11 }
12 }

Figure 5: An Example Illustrating Indirect Effect

Indirect Control-Flow Effect. C is relevant in Figure 5
because it writes to A’s variable. B’s code does not change
control-flow or data-flow of another feature, but it does en-
able a relevant feature, C, to be reached. Generating the
reachability constraint C =⇒ B allows B to be treated as an
irrelevant feature without fearing that B will be turned off
when C is on. However, in general, generating such reacha-
bility constraints efficiently can be difficult as there are many
ways to reach a statement. So instead, we make a conserva-
tive approximation and consider each reach-enabling feature
like B to be relevant, taking both of their truth values, guar-
anteeing that C’s code will be reachable. For this reason, in
Test3, Loyalty, whose code does not alter control-flow or
data-flow but does enable through line 13 Ceiling’s mod-
ification of interest(double) to be reached, is considered
relevant along with Ceiling and Fee.

6. CONFIGURATIONS TO TEST
Given relevant features and the feature model specialized

for the test, we now identify the configurations on which to
run the test. Our algorithm, shown in Figure 6, relies on
the SAT4J [31] SAT solver, which can enumerate solutions
to a propositional formula. Our algorithm iterates through
each possible combination of the relevant features and treats

5

1 Set<Configuration> solve
2 (FeatureModel specializedFM, Set<Feature> relevantFeatures) {
3 Set<Configuration> configs = new HashSet<Configuration>();
4

5 while(specializedFM.isSatisfiable()) {
6 Configuration c = specializedFM.getOneSolution();
7 configs.add(c);
8

9 PropositionalFormula blockingClause =
10 new PropositionalFormula();
11 for(VariableAssignment varAssignment: c.getVarAssignments())
12 {
13 if(relevantFeatures.contains(varAssignment.getVariable()))
14 blockingClause = blockingClause.and(varAssignment);
15 }
16 specializedFM = specializedFM.and(not(blockingClause));
17 }
18

19 return configs;
20 }

Figure 6: Algorithm to Find Test Configurations

Table 1: Configurations to Test
Test1 Test2 Test3 Base Loyalty Fee Ceiling
No No Yes 1 0 0 1
No Yes Yes 1 0 1 0
No Yes Yes 1 0 1 1
Yes Yes Yes 1 1 0 0
No Yes Yes 1 1 0 1
No No Yes 1 1 1 0
No No Yes 1 1 1 1

irrelevant features as don’t-cares. More specifically, we find
a solution to the specialized feature model and add it to the
configurations to test (lines 6-7). We then ensure that the
configuration’s assignments to the relevant features do not
appear again by creating a blocking clause [31] consisting of
the assignments and conjoining the negation of the clause
to the feature model (lines 9-16). We then check if there is
another configuration and repeat the process until there are
no more configurations.3

Once the configurations to test have been identified, a test
runner , shown in Figure 3, goes through each configuration,
creating a concrete program corresponding to the configura-
tion from the SysGen program and running the test against
that program.

Examples. Table 1 shows the results of analyzing our
running example. Without analysis, each row, a configu-
ration in the original feature model, would have to be ex-
ecuted for each test. However, with our analysis, given a
test, only the rows with Yes entries in the column corre-
sponding to the test need to be examined. For Test1, as
stated in Section 5, there are no relevant features and thus
the enumeration algorithm returns just one configuration,
{Base=true,Loyalty=true,Fee=false,Ceiling=false}, to
test. For Test2, four combinations of the relevant features
Loyalty and Ceiling must be tested. For Test3, all seven
configurations must be tested.

7. CASE STUDIES
We implemented our technique as an Eclipse plugin and

evaluated it on three product lines: Graph Product Line

3A simple variation of our algorithm terminates after col-
lecting k configurations, in case there is a huge number of
configurations to test.

(GPL), which is a set of programs that implement differ-
ent graph algorithms [23]; notepad , a Java Swing applica-
tion with functionalities similar to Windows Notepad; and
jak2java, which is a feature-configurable tool that is part of
the AHEAD Tool Suite [2].

Multiple tests were considered for each product line. Each
test, essentially a unit test, creates and calls the product
line’s objects and methods corresponding to the functional-
ity being tested. We ran our tool on a Windows XP ma-
chine with Intel Core2 Duo CPU with 2.4 GHz and 1024
MB as the maximum heap space. Note that although the
product lines were created in-house, they were created long
before this paper was conceived (GPL and jak2java were
created over 5 years ago and notepad was created 2 years
ago). In fact, these product lines were originally written in
Jak [4] and for the purpose of this paper, we developed a
Jak-to-SysGen translator to convert them into the SysGen
representation. Our plugin, the examined product lines and
tests, as well as the detailed evaluation results are available
for download [18].

7.1 Graph Product Line (GPL)
Table 2 shows the results for GPL, which has 1713 LOC

with 18 features and 156 configurations. Variations arise
from algorithms and structures of the graph (e.g. directed/-
undirected and weighted/unweighted) that are used. We
report two representative tests below.

CycleTest. 10 features are unbound. Applying the static
analysis, we find that 7 out of the 10 are reachable. Out of
these 7, only 1 feature, Undirected, is relevant. Undirected
is relevant because it fails the data-flow check by adding an
extra edge for every existing edge against the graph which
was created by the Base feature. The other reachable fea-
tures perform I/O operations on their own data are not
considered to be relevant (see Section 8.1 for a discussion
on I/O). With no analysis, the test would have to be run
on 156 configurations, the number of programs in the prod-
uct line. By specializing the feature model for this test and
determining bound and unbound features, we reduce that
number to 40. By applying the static analysis, we reduce
the number to 2. The time taken to specialize the feature
model is negligible. The static analysis takes less than a
minute and a half.

Our technique achieves a useful reduction in the config-
urations to test. Such a reduction pays dividends in two
ways. First, there is a good chance that it takes less time to
perform the static analysis (1.20 minutes) and run the test
on the reduced set (2) of configurations than to run the test
on the original set (156) of configurations. But more impor-
tantly, redundant test results are eliminated and need not
be analyzed by the tester. As far as the tester is concerned,
there is no extra information in the other 154 test results
and any information related to success or failure of the test
can be obtained from these 2 configurations.

StronglyConnectedTest. This test requires a number
of features to be bound for compilation, leaving only 4 fea-
tures unbound. Out of those 4, 3 are reachable, but none are
relevant. Just determining the unbound features already re-
duces the number of configurations, and applying the static
analysis returns the best possible outcome, i.e. running the
test on just 1 configuration. Like the previous test, the static
analysis takes just over a minute.

6

Table 2: GPL Results
Lines of code 1713

Features 18
Configurations 156

CycleTest
Unbound features 10
Reachable features 7
Relevant features 1: Undirected (data-flow)

Configurations with 40
unbound features

Configurations to test 2
Duration of static 72 sec. (1.20 min.)

analysis
StronglyConnectedTest

Unbound features 4
Reachable features 3
Relevant features 0

Configurations with 16
unbound features

Configurations to test 1
Duration of static 72 sec. (1.20 min.)

analysis

7.2 Notepad
Table 3 shows the results for Notepad, which has 2074

LOC with 25 features and 7056 configurations. Variations
arise from the different permutations of functionalities, such
as saving/opening files and printing, and user interface sup-
port for them (each functionality can have an associated
toolbar button, menubar button, or both). We wrote tests
for the example functionalities mentioned.

PersistenceTest. Binding still leaves 22 features un-
bound, but static analysis cuts down that number to 3 reach-
able features and only one relevant feature. The UndoRedo

feature is relevant because it fails the data-flow check by at-
taching an event listener to the text area, which is allocated
by another feature. Binding reduces 7057 configurations to
5256 and this is reduced to 2 configurations after running
the analysis. Although Notepad is not large, it uses Java
Swing, whose very large call-graph must be included in or-
der for application call-back methods to be analyzed. This
substantially raised the analysis time to 45 minutes. A com-
mon solution to this problem is to skip over certain method
calls, especially those that are deep, in the framework, but
this must be done with great care as doing so could prevent
call-back methods from being reached. Reducing analysis
time is a subject for further work.

PrintTest. The numbers are similar to the previous test,
but this time, Persistence is also found to be relevant be-
cause one of its methods overrides a method of an off-the-
shelf file filter class in the Swing framework. Still, we only
have to test 4 configurations rather than 5256. The duration
is long for the same reason as mentioned previously.

7.3 jak2java
Table 4 shows the results for jak2java, which has 26,332

LOC with 17 features and 5 configurations. Despite the
large code base and the number of features, there are only
five configurations total because of the many constraints in
the feature model. We wrote tests to execute the methods
that we know are modified by other features. We aimed
to find out whether these modifications would render these
other features relevant to the method being executed. Here
are some representative results.

ReduceToJavaTest. Features sm5 and j2jClassx are
relevant because they introduce methods that override meth-

Table 3: Notepad Results
Lines of code 2074

Features 25
Configurations 7057

PersistenceTest
Unbound features 22
Reachable features 3
Relevant features 1: UndoRedo (data-flow)

Configurations with 5256
unbound features

Configurations to test 2
Duration of static 2856 sec. (47.60 min.)

analysis
PrintTest

Unbound features 22
Reachable features 4
Relevant features 2: UndoRedo (data-flow)

Persistence (introduction)
Configurations with 5256
unbound features

Configurations to test 4
Duration of static 2671 sec. (44.51 min.)

analysis

Table 4: jak2java Results
Lines of code 26332

Features 17
Configurations 5

ReduceToJavaTest
Unbound features 4
Reachable features 3
Relevant features 3: sm5 (introduction),

j2jSmx (control-flow),
j2jClassx (introduction)

Configurations with 5
unbound features

Configurations to test 5
Duration of static 254 sec. (4.24 min.)

analysis
ArgInquireTest

Unbound features 4
Reachable features 0
Relevant features 0

Configurations with 5
unbound features

Configurations to test 1
Duration of static 100 sec. (1.66 min.)

analysis

ods of another feature. Feature j2jSmx is relevant because
it fails the control-flow check by returning early from the
method of another feature. Unfortunately, all the configura-
tions in the product line must be tested. The reason for this
is that calling reduce2java, the method being tested, is very
much like calling the main method of a product line, which
reaches a large portion of the product line’s code base. Be-
cause there is a large amount of code to analyze, the static
analysis takes 4.24 minutes. All the configurations have to
be tested because a large fraction of the product line’s in-
teractions are reachable.

ArgInquireTest. This test fares better because the method
being called, argInquire, does not reach a large portion of
the product line, taking 1.6 minutes to determine that only
1 configuration needs to be tested.

8. DISCUSSION
We now discuss assumptions and limitations, the effec-

tiveness of our work, testing missing functionality, threats
to validity, and a perspective.

7

8.1 Assumptions and Limitations
Off-the-shelf program analyses have well-known limita-

tions. Indeed, the first three assumptions below are not
unique to our work but the last assumption is.

• Reflection. Any change to the code base, including
the addition of a class member, can change the out-
come of reflection. We assume that reflection is not
used. Another possibility is to check if reflection is
used in the control-flow of the test and consider any
unbound feature to be relevant. Related work, such as
[15], also do not consider reflection.

• Native Calls. It is hard to determine if a native
call, such as an I/O operation, has a side-effect using
Soot. Rather than making the overly conservative as-
sumption that every native call has a side-effect, we
assume that native calls have no side-effect. Conse-
quently, features can perform reads/writes to files or
standard input/output without being considered rele-
vant.

• Timing. If a test uses the duration of its execution as
an outcome, any feature that adds instructions to the
test will be considered relevant. Rather than checking
if a test indeed uses such a timer, we assume that it
does not.

• Local Variables. A method can declare variables lo-
cal to it. We assume a feature’s modification does not
reference or modify local variables introduced by other
features. Features are written in a dedicated language
like Jak [4] that restricts a feature’s modifications in
this way. We assume this restriction holds and we
use an off-the-shelf side-effect analysis, which, by def-
inition of “side-effect” of a method, need not consider
writes to local variables. Our benchmarks satisfy this
assumption as they were translated from Jak to SysGen

representation using a translator. It would not require
much effort to remove this limitation.

8.2 Effectiveness
Our technique works because there are tests that exer-

cise a small portion of the product line involving a few fea-
tures. Even just binding features can cut down many con-
figurations. Further reductions are possible as not many
features are reachable from a test and even fewer are rele-
vant. Determining reachable and relevant features cannot
be done manually and requires a dedicated program anal-
ysis like ours. Although a highly precise program analysis
can significantly reduce false positives, our case studies il-
lustrate that a context-insensitive analysis suffices because
only a small set of classes and methods, relevant to the func-
tionality being tested, are instantiated and invoked.

8.3 Testing Missing Functionality
Suppose feature Interest should modify the data-flow of

a method deposit(int). The feature’s author forgets to
make the modification, which causes our analysis to report
that Interest is irrelevant when testing deposit(int).
Interest is irrelevant because it is missing functionality,

rather than having an orthogonal functionality as previous
example features did. Without a specification, e.g. that
Interest is supposed to be relevant to deposit(int), the

burden of detecting missing functionality rests on the alert-
ness of testers; no program analysis could detect this error.
This is a general problem of testing and is not limited to our
work. In fact, our work helps in that it reports information
on feature (ir)relevance, which may provide a clue to such
errors.

8.4 Threats to Validity
Our technique can take longer than running the test on

all the configurations, as is the case with ReduceToJavaTest

for jak2java since there is no reduction in configurations.
But we believe this case is an outlier and the static anal-
ysis is worth running to achieve even a small reduction for
several reasons. First, testing a product requires it to be syn-
thesized, which takes non-negligible time. Second, it takes
time to run the tests themselves. Third, a configuration’s
test result may be redundant with another configuration’s
test result due to an irrelevant feature between the two, yet
the tester will have to waste time analyzing both configura-
tions’ results. Further experience with our analysis will bear
out these points.

8.5 Perspective
Initially, our belief was that existing analyses for con-

ventional programs could be directly applied to a SysGen
program. However, we discovered that analyzing a SysGen
program was much more challenging than we had antici-
pated. Consider the following example. While some parts of
our analysis, including reachability and data-flow check, are
performed using a backend abstraction like 3-address code,
other parts of our analysis, notably the control-flow check,
must be performed on a frontend abstraction like Abstract
Syntax Tree because branch statements like break and con-

tinue are often optimized away on the backend [6]. This
presents the technical challenge of developing a bridge be-
tween frontend and backend analyses. For example, we only
want to perform control-flow checks on the reachable meth-
ods, but these methods are determined by a backend anal-
ysis. Currently, we provide a string representation that the
frontend and the backend abstractions both map to. Devel-
oping a more robust intermediate abstraction may be nec-
essary in the future.

9. RELATED WORK

9.1 Product Line Testing and Verification
There is a considerable amount of research in product line

testing and verification (see [24] for a survey). We discuss
research most closely related to ours.

Model-Checking. Classen et al.[8] recently proposed
a technique to check a temporal property against a prod-
uct line that is in the form of Feature Transition Systems
(FTS), which is a preprocessor-like representation like Sys-
Gen, but for transition systems. Their technique composes
the product line’s FTS with the automaton of the tempo-
ral property’s negation and reports violating configurations.
Although we both tackle the general problem of checking
a property against a product line, they work on a repre-
sentation (transition systems) and setting (verifying tempo-
ral properties) different from ours (object-oriented programs
and testing), making the two techniques complementary.

Sampling. Sampling exploits domain knowledge, rather
than program analysis results, to select configurations to

8

test. An SPL tester may choose a set of features for which
all combinations must be examined, while for other features,
only t-way (most commonly 2-way) interactions are tested
[10][11][25]. Sampling approaches can miss problemmatic
configurations, whereas we use a program analysis to safely
prune feature combinations.

Test Construction. Instead of generating tests from
a complete specification of a program, tests are generated
incrementally from feature specifications [34]. There is also
research on constructing a product line of tests so that they
may be reused [5][27]. We address the different problem of
minimizing test execution for a single given test.

9.2 Program Slicing
Determining relevant features is closely related to back-

wards program slicing [36], which uses a dataflow analysis
to determine the minimal subset of a program that can af-
fect the values of specified variables at a specified program
point. Our definition of relevance is more conservative than
a “slice” [36] but at the same time, requires less precision:
our goal is to reduce feature combinations to test by de-
termining features, not statements, for which we need only
assign one truth value.

9.3 Feature Interactions
There is a large body of work on detecting feature in-

teractions using static analysis [28][32][13][9][22], of which
harmless advice [13] and Modular Aspects with Ownership
(MAO) [9] are the most relevant. Harmless advice intro-
duces a type system in which aspects can terminate control-
flow but cannot produce data-flow to the base program.
MAO relies on contracts to determine if an aspect changes
the control-flow or data-flow of another module. Our analy-
sis was inspired by MAO, but is technically closer to harm-
less advice, as both perform an inter-procedural analysis and
do not rely on contracts. But unlike harmless advice, our
approach does not require every feature to be harmless or
irrelevant.

More importantly, MAO and harmless advice assume a
setting where all modules (i.e. aspects/features) are required
for the program to work, which is sharply different from
SPLs. Indeed, related work in feature interactions perform
analysis more for modular reasoning of a single program,
rather than for reducing combinatorics in product line test-
ing.

9.4 Compositional Analysis and Verification
Currently, we perform a static analysis for each test. With

multiple tests, it is possible that the same classes and meth-
ods of the product line will be analyzed multiple times. It
may be possible to analyze the product line once and com-
bine the result against that of analyzing each test using com-
positional static analysis [12] and verification [14][22].

9.5 Reducing Testing Effort
Reducing testing effort for a single program, typically us-

ing output from some analysis, has a long history. [29]
identifies a subset of existing tests to run given a program
change. We address a complementary problem, namely to
identify a subset of existing features that are relevant for a
given test in a product line.

10. CONCLUSIONS
Software Product Lines (SPLs) represent a fundamental

approach to the economical creation of a family of related
programs. Testing SPLs is more difficult than testing con-
ventional programs because of the combinatorial number of
programs to test in an SPL.

Features are a fundamental, but unconventional, form of
modularity. Combinations of features yield different pro-
grams in an SPL and each program is identified by a unique
combination of features. Features impose a considerable
amount of structure on programs (that is why features are
composable in combinatorial numbers of ways), and exploit-
ing this structure has been the focus of our paper.

Our key insight is that every SPL test is designed to eval-
uate one or more properties of a program. A feature might
alter any number of properties. In SPL testing, a particular
feature may be relevant to a property (test) or it may not.
Determining whether a feature is relevant for a given test is
the critical problem.

We presented a framework for testing an SPL. Given a
test, we determine the features that need to be bound for it
to compile. This already reduces configurations to test. Of
the unbound features, we determine the features reachable
from the entry point of the test, further reducing configu-
rations. And of the reachable features, we determine the
features that affect the properties being evaluated, reducing
configurations even more.

Several case studies were presented that showed meaning-
ful reductions in the number of configurations to test, and
more importantly, lends credence to the folk-tale that many
features of a product line add new behavior without affect-
ing existing behavior. We demonstrated the idea of leverag-
ing such features to exhaustively but efficiently test product
lines. Our work is a step forward in practical reductions in
SPL testing.

Acknowledgements. Kim is supported by an NSERC
Postgraduate Scholarship. Kim and Batory are supported
by NSF’s Science of Design Project #CCF-0724979. Khur-
shid is supported by NSF #CCF-0845628.

11. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[2] D. Batory. Ahead tool suite. http:
//www.cs.utexas.edu/users/schwartz/ATS.html.

[3] D. Batory. Feature models, grammars, and
propositional formulas. Technical Report TR-05-14,
University of Texas at Austin, Texas, Mar. 2005.

[4] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools
for implementing domain-specific languages. In In
Proceedings Fifth International Conference on
Software Reuse, pages 143–153. IEEE.

[5] A. Bertolino and S. Gnesi. Pluto: A test methodology
for product families. In F. van der Linden, editor,
PFE, volume 3014 of Lecture Notes in Computer
Science, pages 181–197. Springer, 2003.

[6] E. Bodden. Private and Soot newsgroup
correspondence, 2010.

[7] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In

9

ISSTA’02, July 2002.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
Efficient verification of temporal properties in software
product lines (to appear). In 32nd International
Conference on Software Engineering, ICSE 2010, May
2-8, 2010, Cape Town, South Africa, Proceedings.
IEEE, 2010. Acceptance rate: 13.7

[9] C. Clifton, G. T. Leavens, and J. Noble. MAO:
Ownership and effects for more effective reasoning
about aspects. In ECOOP’07.

[10] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and
adequacy in software product line testing. In
ROSATEA ’06: Proceedings of the ISSTA 2006
workshop on Role of software architecture for testing
and analysis. ACM, 2006.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In ISSTA ’07: Proceedings of the 2007
international symposium on Software testing and
analysis, pages 129–139, New York, NY, USA, 2007.
ACM.

[12] P. Cousot and R. Cousot. Modular static program
analysis. In Proceedings of Compiler Construction,
pages 159–178. Springer-Verlag, 2002.

[13] D. S. Dantas and D. Walker. Harmless advice.
SIGPLAN Not., 41(1):383–396, 2006.

[14] D. Giannakopoulou, C. S. Pasareanu, and
H. Barringer. Assumption generation for software
component verification. In ASE’02.

[15] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for java software. In
OOPSLA’01.

[16] G. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5), May
1997.

[17] M. Janota. Do sat solvers make good configurators?
In S. Thiel and K. Pohl, editors, SPLC (2), pages
191–195. Lero Int. Science Centre, University of
Limerick, Ireland, 2008.

[18] C. H. P. Kim. Reducing combinatorics in product line
testing: Tool and results. Available from http:

//userweb.cs.utexas.edu/~chpkim/spltesting,
2010.

[19] C. H. P. Kim, D. Batory, and S. Khurshid.
Eliminating Products to Test in a Software Product
Line. In ASE2010 (Tentatively Accepted Poster
Session Paper). Available from http://userweb.cs.

utexas.edu/~chpkim/chpkim-ase10-short.pdf.

[20] A. Le, O. Lhoták, and L. Hendren. Using
inter-procedural side-effect information in jit
optimizations. In Compiler Construction, volume 3443
of LNCS, 2005.

[21] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In G. Hedin, editor, Compiler
Construction, 12th International Conference, volume
2622 of LNCS, pages 153–169, Warsaw, Poland, April
2003. Springer.

[22] H. Li, S. Krishnamurthi, and K. Fisler. Verifying
cross-cutting features as open systems. SIGSOFT
Softw. Eng. Notes, 27(6):89–98, 2002.

[23] R. E. Lopez-herrejon and D. Batory. A standard
problem for evaluating product-line methodologies. In
Proc. 2001 Conf. Generative and Component-Based
Software Eng, pages 10–24. Springer, 2001.

[24] R. Lutz. Survey of product-line verification and
validation techniques. Technical report, Jet Propulsion
Laboratory, NASA, May 2007.

[25] J. McGregor. Testing a Software Product Line.
Technical Report CMU/SEI-2001-TR-022, CMU/SEI,
Mar. 2001. Available from http://www.sei.cmu.edu/

pub/documents/01.reports/pdf/01tr022.pdf.

[26] C. Nebut, Y. L. Traon, and J.-M. Jézéquel. System
testing of product lines: From requirements to test
cases. In Software Product Lines, pages 447–478.
Springer-Verlag, 2006.

[27] K. Pohl and A. Metzger. Software product line
testing. Commun. ACM, 49(12):78–81, 2006.

[28] C. Prehofer. Semantic reasoning about feature
composition via multiple aspect-weavings. In
GPCE’06.

[29] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22, 1996.

[30] Sable Group. Soot: a Java optimization framework.
http://www.sable.mcgill.ca/soot/.

[31] SAT4J. SAT4J. http://www.sat4j.org/.

[32] G. Snelting and F. Tip. Semantics-based composition
of class hierarchies. In ECOOP’02.

[33] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook.
Safe composition of product lines. In C. Consel and
J. L. Lawall, editors, GPCE, pages 95–104. ACM,
2007.

[34] E. Uzuncaova, D. Garcia, S. Khurshid, and D. S.
Batory. Testing software product lines using
incremental test generation. In ISSRE’08.

[35] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. of the 15th Conference on
Automated Software Engineering (ASE), Grenoble,
France, 2000.

[36] M. Weiser. Program slicing. In ICSE ’81: Proceedings
of the 5th international conference on Software
engineering, pages 439–449, Piscataway, NJ, USA,
1981. IEEE Press.

[37] T. Xie, D. Marinov, and D. Notkin. Rostra: A
framework for detecting redundant object-oriented
unit tests. In ASE’04.

10

