
Eliminating Products to Test in a Software Product Line
(Short Paper)

Chang Hwan Peter Kim
University of Texas at Austin

Austin, TX 78712 USA
chpkim@cs.utexas.edu

Don Batory
University of Texas at Austin

Austin, TX 78712 USA
batory@cs.utexas.edu

Sarfraz Khurshid
University of Texas at Austin

Austin, TX 78712 USA
khurshid@ece.utexas.edu

ABSTRACT
A Software Product Line (SPL) is a family of programs.
Testing an SPL is a challenge because the number of pro-
grams to examine may be exponential in the number of fea-
tures. However, there are features whose absence or presence
has no bearing on the outcome of a test. We can ignore such
irrelevant features and consider combinations of only the re-
maining features, thereby eliminating unnecessary test runs.
In this paper, we propose a product line representation that
enables a conventional static program analysis to be applied.
We then present a classification of features that can be used
to narrow down the search for relevant features. Conditions
of relevance that a static analysis can check are outlined and
a procedure that uses the set of relevant features to reduce
the combinatorial number of programs to test is sketched.

1. INTRODUCTION
A Software Product Line (SPL) is a family of programs

where each program is defined by a unique combination of
features. Developing a set of programs with commonalities
and variabilities in this way can significantly reduce both
the time and cost of software development. However, as the
number of programs may be exponential in the number of
features, testing an SPL, the phase to which the majority of
software development is dedicated, becomes especially chal-
lenging [12].

Indeed, scale is the biggest challenge in testing or checking
the properties of programs in a product line. Even a product
line with just 10 optional features has over a thousand (210)
distinct programs. As an example of a situation where every
program must be considered, suppose that every program of
an SPL outputs a String that each feature might modify.
Every possible feature combination must be checked to see
if the output always conforms to a particular pattern.

The state-of-the-art often relies on sampling, checking fea-
ture combinations that have a higher chance of falsifying
certain properties [6, 7, 11]. While this is practical, it may
overlook critical combinations. Another approach is to apply

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

traditional verification techniques directly – model check-
ing [9, 16] or bounded exhaustive testing [3, 17] – on every
product of an SPL. Unfortunately, feature combinatorics of-
ten render brute force impractical. Yet another complicating
factor is that features often have no formal specifications;
even contracts, a relatively lightweight form of specification,
are typically unavailable.

Current approaches fail to exploit the defining characteric
of features, i.e. a feature is an increment in functionality.
Features add new functionality, but typically do not invali-
date existing functionality. We hypothesize that this is the
key to reducing the number of configurations to test. For
example, suppose that 8 of the 10 features in the example
mentioned do not modify the output String and thus are
irrelevant. We need only run the String test on only 22 = 4
programs, rather than a thousand.

In this paper, we explain the concept of irrelevant fea-
tures. We represent an SPL in a form where conventional
program analyses can be applied and we outline conditions
of relevance that allows a static analysis to identify the rel-
evant features. We then describe how this information may
be used to reduce the configurations to test without reducing
the test’s ability to find bugs.

2. MOTIVATING EXAMPLE
Product Line. Figure 1 shows a product line of games

where a player accumulates points by discovering treasure.
Each feature’s code is given a distinct color. There are four
features in the product line:

• Base (clear color) introduces Player class, which de-
fines what happens when a treasure is found and how
reward and penalty are computed, and SuperPlayer,
which, despite the name, is actually just a player with
more points than a normal player.

• Novice (blue) eases the game play by introducing bonus
points (bonus field is introduced in lines 6-7 and incre-
mented in lines 12-13) and reducing a SuperPlayer’s
penalty (the feature introduces its own version of penal-
ty() in lines 36-42 that overrides Base’s version).

• Limit (yellow) puts a ceiling on the return value of
Player.reward() and SuperPlayer.penalty().

• Fatigue (red) considers finding a treasure a form of
labor and subtracts a small number of points (lines
14-15).

SysGen Representation. There are different ways of
representing a product line. In this paper, we use a SysGen

1

dsb
Text Box
In Proceedings of Automated Software EngineeringConference, September 2010 Belgium

Figure 1: Example Product Line

program representation, where an SPL is an ordinary Java
program whose members are annotated with the name of the
introducing feature and statements are conditionalized using
feature identifiers (in a manner similar to #ifdef). In Sys-
Gen, a program (also referred to as a configuration or feature
combination) is instantiated by assigning a Boolean value for
each feature and statically evaluating feature-conditionals
and feature-annotations (e.g. the bonus declaration disap-
pears if Novice is false). The primary benefit of using a
SysGen program is that it enables off-the-shelf analyses for
conventional (e.g. Java) programs to be applied to product
lines.

Feature Model. A feature model defines the legal feature
combinations. For our example, the feature model is shown
below as a context-sensitive grammar. It requires Base to
be present in every program (only bracketed features are op-
tional) and requires one of the other three features, yielding
a total of 7 distinct programs:

ProductLine :: [Limit] [Fatigue] [Novice] Base; // grammar
Limit or Fatigue or Novice; // constraints

Product Line Tests. A product line test is a program
with a main method that executes some methods and refer-
ences some code of the product line. Figure 2 shows three

1 class Test1 { /*** Test1 ***/
2 static void main(String args) {
3 SuperPlayer p = new SuperPlayer();
4 assert p.bonus == 0;
5 }
6 }
7

8 class Test2 { /*** Test2 ***/
9 static void main(String args) {

10 SuperPlayer p = new SuperPlayer();
11 p.points = 200;
12 assert p.penalty() == 10;
13 }
14 }
15

16 class Test3 { /*** Test3 ***/
17 static void main(String args) {
18 Player p = new Player();
19 p.treasure(100);
20 assert p.points >= 100;
21 }
22 }

Figure 2: Product Line Tests

tests for our product line. Test1 checks that there is no
bonus when a super player is created. Test2 checks the
penalty for a super player with 200 points. Test3 makes a
regular player discover a treasure worth 100 units and checks
that the player has at least that many points afterwards.

Although a test may check many functionalities, we as-
sume a setting where it exercises a small portion of a prod-
uct line, the way a unit test does. We consider a test to have
all of its inputs (except the Boolean feature variables which
are used to instantiate a program) fixed.

Feature Combinatorics. The key to making product
line testing practical is eliminating unnecessary feature com-
binations and we do this by determining the features relevant
to a test. The running example helps us understand intu-
itively what“relevance” is. For example, in Test1, only Base

and Novice are relevant because only these features’ code
is reachable from Test1.main(). The relevant features are
less obvious for Test2 and Test3 but they can still be stat-
ically determined. We begin by presenting a classification
of features that helps narrow down the search for relevant
features.

3. CLASSIFICATION OF FEATURES
A feature is relevant if its code can influence the test out-

come, meaning that we need to run the test once with the
feature set to true and another time with the feature set to
false as the test results may be different across these two
runs (we will elaborate on this in Section 4). Although ev-
ery feature’s code can be analyzed for relevance, there is no
need to do so because from the SysGen program, the feature
model and the test we are given, we can considerably reduce
the set of features whose code needs to be analyzed. We
classify features with this goal in mind.

A feature is bound if its truth value is fixed for a given
test. Before determining bound features, a feature model
is specialized, i.e. its feature combinations are reduced, by
having implementation constraints added according to [15]
to ensure that the test will compile. The feature model may
be further specialized by a tester adding test constraints

to the feature model to require that certain features must
always be present or absent when running the test. The com-

2

Figure 3: Classification of Features

plete set of bound features are then determined by mapping
the specialized feature model to a propositional formula [2]
and using a SAT solver to propagate constraints. Unbound
features, whose truth values are not fixed, are just the com-
plement of bound features.

Of the unbound features, only the features whose code is
reachable (i.e. executable) from the test’s entry point (main
method) need to be checked for relevance.1 An off-the-shelf
static analysis that computes a call graph and determines
the transitive callees of each statement of the main method
can be used to identify reachable features.

Figure 3 shows the classification of features. Ineffective
features are reachable features that are not relevant. An
irrelevant feature is any feature that is not relevant (i.e.
ineffective, unreachable, and bound) and thus we need only
consider one truth value for it when running the test. In
other words, whether the test passes or fails is independent
of whether an irrelevant feature is present or not. We give
ideas on how to identify relevant features in Section 4 but
for now, it is apparent that:

• In Test1, the test references SuperPlayer (which be-
longs to Base) and Player.bonus (Novice), so Base

and Novice are bound to true. Note that Base is
mandatory anyway due to the feature model. Fatigue
and Limit are unbound. Also, these two features are
unreachable as their code is not executed through the
test.

• In Test2, only Base (true) is bound. The test ref-
erences SuperPlayer.penalty() of Novice, but the
method definition need not exist as Base provides Play-
er.penalty(). Therefore, Novice is unbound. How-
ever, if the tester wanted to test only the former method
definition, she could add the test constraint Novice=-

true to the feature model. Novice and Limit are
reachable features.

• For Test3, only Base (true) is bound. All the three
unbound features are reachable. For example, Limit
is reachable as reward() is called by Novice.

Suppose n is the number of unbound features in the entire
product line, u the number of unbound features in the test,
r the number of reachable features, and R the number of

1Unreachable features may also be relevant if the test uses
reflection. For example, a feature that just adds a field can
influence the outcome of a test that prints the number of
fields of a class. We assume that tests do not use reflection.
Also, note that bound features may actually be reachable as
well but we just do not label them as such.

relevant features. The number of programs to test is at
most 2R, where 2R ≤ 2r ≤ 2u ≤ 2n.

4. CONDITIONS FOR RELEVANCE
A reachable feature is relevant to a test if it influences

the test result. Conversely, an ineffective feature is simply
a reachable feature that is not relevant. A feature will be
ineffective if it does not change the control-flow or data-
flow of another reachable feature’s code. Control-flow is
represented using a control-flow graph (CFG), a directed
graph whose nodes are basic blocks that consist of straight-
line code. An ineffective feature adds code to existing ba-
sic blocks without introducing edges between them, thereby
preserving the shape of the graph itself. Data-flow is repre-
sented using a graph of def-use pairs [1]. A feature preserves
def-use pairs if it writes only to its own variables. For ex-
ample:

• For Test1, because there is no reachable feature as ex-
plained before, there is no relevant feature and conse-
quently, only one configuration with Base and Novice

bound to true, such as Base=true, Novice=true, Fa-

tigue=false, Limit=false, needs to be run for the
test.

• For Test2, Novice and Limit, the two reachable fea-
tures, are relevant as the former changes the CFG by
replacing a called method with its own method and
the latter adds an edge to a CFG to exit early.

• For Test3, Limit, Fatigue, and Novice are reach-
able. Fatigue is relevant because it alters a variable
(points) of another feature (Base). Limit is rele-
vant because it changes control-flow of reward() called
from line 13. Novice is relevant as it allows code of
another relevant feature (Limit) to be reached. With
three relevant features, Test3 must be run on up to
seven configurations.

Further details are given in [10].

5. CONFIGURATIONS TO TEST
We can identify the configurations to run the test on us-

ing the relevant features and the feature model specialized
for the test. We can use an off-the-shelf SAT solver like
SAT4J [14] to enumerate all combinations of the relevant fea-
tures, treating the rest of the features as don’t-cares. Config-
urations disallowed by the feature model are not considered.
Finally, for each of the configurations to test, we create a
concrete program corresponding to it from the SysGen pro-
gram, and run the test against the concrete program.

Examples. For each of the three example tests, without
our technique, all seven configurations in the original feature
model would have to be tested. With our technique, for
Test1, just one configuration, {Base=true,Novice=true,-

Fatigue=false,Limit=false}, must be examined. For Test2,
configurations representing the four combinations of the rel-
evant features Novice and Limit must be tested. For Test3,
all seven configurations must be tested as every feature ex-
cept Base is considered relevant.

3

6. RELATED WORK
Model-Checking. Classen et al.[4] recently proposed

a technique to check a temporal property against a product
line that is in the form of Feature Transition Systems (FTS),
which is a preprocessor-like representation like SysGen. Our
technique and their technique are different in that theirs
works on a representation (transition systems) and setting
(verifying temporal properties) different from those (object-
oriented programs and testing) that ours works on and thus
the two techniques are complementary.

Sampling. Sampling exploits domain knowledge, rather
than program analysis results, to select configurations to
test [6, 7, 11]. While these approaches can miss problem-
atic configurations, our work cannot as we exhaustively, but
without redundancy, examine the feature combinations.

Feature Interactions. [5, 8] present static analyses
that check whether a feature modifies behavior of another
feature, which is clearly similar to (ir)relevance. However,
these techniques work on conventional aspect-oriented pro-
grams, where all modules are required for the program to
work, which is sharply different from SPLs. Indeed, the
prior works performed analysis more for modular reasoning,
rather than for reducing combinatorics in product line test-
ing.

Reducing Testing Effort. There is also related work on
reducing testing, typically using output from some analysis,
although such work is not in the context of product lines.
For example, a regression testing technique like [13] identifies
a subset of existing tests to run given a program change or
a feature. We address the opposite problem, i.e. we identify
a subset of existing features to run given a test. The two
techniques are complementary as both settings can occur.

7. CONCLUSIONS
Software Product Lines (SPLs) represent a fundamental

approach to the economical creation of a family of related
programs. Testing SPLs is more difficult than testing con-
ventional programs because of the combinatorial number of
programs to examine. Our insight is that every test is de-
signed to evaluate one or more properties of SPL programs.
A feature might alter any number of properties. In SPL
testing, determining whether a particular feature is relevant
to a property (test) or not is the critical problem.

We sketched a procedure to test a product line. Given a
test, we determine the features that need to be bound for it
to compile. This already reduces configurations to test. Of
the unbound features, we determine the features reachable
from the entry point of the test, further reducing the config-
urations. And of the reachable features, we determine the
features that affect the properties being evaluated, reducing
the configurations further.

Acknowledgements. Kim is supported by an NSERC
Postgraduate Scholarship. Kim and Batory are supported
by NSF’s Science of Design Project #CCF-0724979. Khur-
shid is supported by NSF #CCF-0845628.

8. REFERENCES
[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.

Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[2] D. Batory. Feature models, grammars, and
propositional formulas. Technical Report TR-05-14,
University of Texas at Austin, Texas, Mar. 2005.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In
ISSTA’02, July 2002.

[4] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
Efficient verification of temporal properties in software
product lines (to appear). In ICSE, 2010.

[5] C. Clifton, G. T. Leavens, and J. Noble. MAO:
Ownership and effects for more effective reasoning
about aspects. In ECOOP’07.

[6] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and
adequacy in software product line testing. In
ROSATEA ’06: Proceedings of the ISSTA 2006
workshop on Role of software architecture for testing
and analysis. ACM, 2006.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
testing of highly-configurable systems in the presence
of constraints. In ISSTA, 2007.

[8] D. S. Dantas and D. Walker. Harmless advice.
SIGPLAN Not., 41(1):383–396, 2006.

[9] G. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering, 23(5), May
1997.

[10] C. H. P. Kim, D. Batory, and S. Khurshid. Reducing
Combinatorics in Product Line Testing. Technical
Report TR-10-02, UT-Austin, January 2010. Available
from http://userweb.cs.utexas.edu/~chpkim/

chpkim-productline-testing.pdf.

[11] J. McGregor. Testing a Software Product Line.
Technical Report CMU/SEI-2001-TR-022, CMU/SEI,
Mar. 2001. Available from http://www.sei.cmu.edu/

pub/documents/01.reports/pdf/01tr022.pdf.

[12] C. Nebut, Y. L. Traon, and J.-M. Jézéquel. System
testing of product lines: From requirements to test
cases. In Software Product Lines, pages 447–478.
Springer-Verlag, 2006.

[13] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE Transactions on
Software Engineering, 22, 1996.

[14] SAT4J. SAT4J. http://www.sat4j.org/.

[15] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook.
Safe composition of product lines. In C. Consel and
J. L. Lawall, editors, GPCE, pages 95–104. ACM,
2007.

[16] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In ASE, 2000.

[17] T. Xie, D. Marinov, and D. Notkin. Rostra: A
framework for detecting redundant object-oriented
unit tests. In ASE’04.

4

