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Abstract 
A feature model defines each product in a product-line by a
unique combination of features. Feature compatibilities are
expressed as constraints in feature models and may be con-
tradictory. We suggest a run-time approach to expose con-
tradictions in feature models when they are uncovered.
However, the emphasis of this paper is to explore the possi-
bility of finding contradictions statically using model check-
ing and an incremental consistency algorithm.

1.  Introduction
A feature model is a common way to express the products of
a software product line (SPL). A feature is an increment in
product development, and no two products in an SPL have
the same combination of features. A feature model can be
formally defined as a context free grammar (CFG) with con-
straints; the tokens of the grammar are primitive features and
the constraints eliminate nonsensical combinations of fea-
tures that the grammar would otherwise admit [4][5][16]. 

A feature model can be mapped to a propositional formula,
where each feature is equated with a distinct boolean vari-
able and the formula encodes the constraints of feature com-
patibility [5][3][6][21][30]. A variable has the value true if
its corresponding feature is present in a product; it is false
otherwise. A truth assignment to the variables that satisfies
the formula defines a product in the feature model’s SPL,
and each product has a unique truth assignment.

Behind every feature model lurks the possibility of contra-
dictions. Consider the following elementary feature model M
whose CFG is:

M : [A] [B] C D;

All products of M have features C and D, and optionally fea-
tures A and B. Suppose the following (obviously nonsensical)
feature compatibility constraints are added to M:

A implies B;
B implies not A; (1)

Observe that a contradiction arises if feature A is selected: B
is selected by enforcing the first constraint, and then A is

deselected by the second. Selecting A implies its deselection
is clearly both an error and contradiction in the model. Such
contradictions reveal dead features — features that are
present in no product [5][6]. For example, A is present in no
product of M. Benavides et al. presented an analysis for find-
ing unconditionally dead features in feature models [6], i.e.,
features that are dead without preconditions. In this paper,
we show that contradictions can arise in more general ways:
dead features can arise conditionally. Consider model G:

G : [A] [B] [C] D ;

All products of G have feature D, and optionally features A, B,
C. The feature compatibility constraints for G are:

(C and A) implies B;
B implies not A; (2)

Note that model G is a generalization of M because all prod-
ucts of M are products of G. Further, A is not a dead feature in
G: there is a product of G with feature A (namely product AD).
However, if feature C is selected, then model G simplifies to
model M. The contradiction is exposed in G when features C
and then A are selected in this order. Stated differently, fea-
ture A is dead whenever feature C is selected. No analysis that
we are aware (including [6]) uncovers the conditions under
which A is dead or when model G is contradictory.

Like any specification, designers need to be alerted to such
errors, and feature models are no exceptions. Constraints like
(1) are clearly wrong, but when extra conditions are added
(as in (2)) they become next to impossible to spot manually.

Finding contradictions (i.e., conditions under which features
are dead) in a feature model is a challenging problem. In this
paper, we suggest a solution to expose contradictions at run-
time by noting when different constraint propagation algo-
rithms have different outputs. Our emphasis is to explore the
difficulty of finding contradictions statically using model
checking and an incremental consistency algorithm.

2.  A Run-Time Solution and Perspective

Our work is at the confluence of a number of different
research threads in SPLs. Binary Decision Diagrams
(BDDs) are a common way to represent propositional formu-
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las in product specification tools [3][30]. Among the analy-
ses that can be performed by BDDs is constraint
propagation. Given a set of features that must be in a target
product, analyses can infer the selection and deselection of
other features (obeying the compatibility constraints in a
feature model). For example, a BDD can infer that no prod-
uct in M of the Introduction uses feature A. A GUI front-end
uses this information to preclude users from selecting A,
thereby avoiding the contradiction of specifying a product
in M with A. (In the AI configuration community [1][2][10],
this property is called backtrack-free — a configurator
should not allow a user to select a feature that leads to
invalid configurations [27][28][30]). It is well-known that
the BDD inferencing of constraints is complete — all possi-
ble inferences are made.

An alternative to BDDs is the Boolean Constraint Propaga-
tion (BCP) algorithm [4]. BCP is a classical AI algorithm
used in logic truth maintenance systems and works by itera-
tively applying rules (constraints) to infer the truth values
of variables [11]. Unlike BDDs, BCP is incomplete. That is,
BCP cannot infer all facts. In the case of model M, the fol-
lowing can happen: the GUI front-end allows users to select
feature A (because BCP was unable to infer that A cannot be
present in a product of M) and when A is chosen, constraint
propagation reveals the contradiction in M.

From a product-specification-tool perspective, BDDs are
preferred over BCP as they preclude users from specifying
a set of features that will lead to a contradiction. But this
does not eliminate the error in model M. Using BDDs, users
or designers will discover that they can never select feature
A and this is a tip-off to an error. In contrast, BCP makes the
error of M visible: it explicitly reports that M is contradictory
by showing two different inference chains that lead to
opposite conclusions. But this requires users to select a spe-
cific sequence of features to expose the error.

Feature incompatibility is expressed by unsatisfiability —
two features A and B are incompatible w.r.t. predicate
P(A,B) if P(true,true)=false. That is, P(true,true)
=false means features A and B cannot both be present in the
same product. Modelling errors — where two different
inference chains lead to contradictory results — are also
expressed by unsatisfiability: there is one inference chain
where P(true,true)=false and of course there is another
chain where P(true,true)=true. Feature modelling tools
that use BDDs to propagate constraints do not distinguish
feature incompatibilities from contradiction errors; tools
based on BCP do. Thus, BCP algorithms can be used to
identify contradiction errors in models.

The above suggests a simple, solution for finding contradic-
tions in feature models: Product configuration tools should

use BDDs to side-step contradictions. But they should also
use BCP algorithms to also propagate constraints. Under
normal circumstances, BDDs and BCP will produce identi-
cal outputs when propagating constraints. However, when
BDDs assign values to variables that BCP does not, a con-
tradiction has been exposed. Such findings can be quietly
reported by the tool to model designers for subsequent
examination and model repairs.

Ideally, however, we want to discover contradictions not at
run-time (when users are selecting features to define prod-
ucts), but through static analysis. In the following sections,
we explore several approaches, using model checking and
an incremental consistency algorithm, that exposes contra-
dictions statically. We begin by reviewing the details of fea-
ture models and the BCP algorithm.

3.  Feature Models and the BCP Algorithm
A feature diagram
is a common way to
depict a feature
model [9][16][17].
It is an and-or tree,
where children of a
node can be
optional or manda-
tory. Terminals are
primitive features
and non-terminals
are compound fea-
tures. Constraints
on selecting a par-
ticular number of
children (choose exactly one child or choose one or more)
and cross-tree constraints (predicates that relate features of
different subtrees) can be declared. Figure 1a shows a fea-
ture diagram of model M from Section 1. using common
notations that are defined in [9]. Cross-tree constraints are
not depicted.

As mentioned in Section 1., another representation of a fea-
ture diagram is a CFG with cross-tree constraints. Figure 1b
shows this representation for model M. Simple rules trans-
late a CFG into a propositional formula, and the cross-tree
constraints are conjoined onto this formula (Figure 1c) [4].
The resulting formula can then be translated into conjunc-
tive normal form (CNF) for subsequent analysis.

The BCP algorithm is simple [11]. A CNF clause is unit
open if all but one of its terms (i.e., a variable or its nega-
tion) is false. The BCP algorithm uses unit open clauses to
infer the value of an unassigned term. For example, if x and
y are true in the unit open clause (¬x∨¬y∨z) then the BCP
algorithm concludes z must be true. When a variable is

// grammar

M : [A] [B] C D ;
// cross-tree constraints
A ⇒ B;
B ⇒ ¬A;

A ⇒ M ∧ B ⇒ M ∧ 
(C ∧ D)⇔ M ∧ 

A ⇒ B ∧ B ⇒ ¬A

(b)

(c)

(a) M

A

Figure 1   Feature Diagrams
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assigned a value, every CNF clause of a feature model’s
formula is examined and each unit open clause is pushed on
a stack. 

The BCP algorithm is a loop: the stack is popped, the
popped clause is checked if it remains unit open, and if so a
variable assignment is inferred (triggering more clauses to
be pushed onto the stack). The BCP loop terminates when
the stack is empty. By remembering the sequence of infer-
ences that are made, explanations of variable assignments
can be presented to users in the form of a proof [16].

From a tool perspective, a product of a product-line is
declaratively specified by selecting its features one feature
at a time. After each feature selection, BCP is invoked to
propagate constraints. It is during constraint propagation
that model contradictions are discovered.

A CNF clause is violated when all of its terms are false.
When BCP encounters a violated clause, a model contradic-
tion is announced. The incompleteness of the BCP algo-
rithm is evident from its description: using model M of
Figure 1, only when feature A is selected will the contradic-
tion of M reveal itself. 

The general problem of finding model contradictions is to
find a sequence of k feature selections (where n is the total
number of features and 0<k≤n) that reveal two inference
chains that reach opposing conclusions. A feature model is
contradiction free if there are no contradictions for all k,
0<k≤n. In the following sections, we examine two algo-
rithms to find contradiction errors statically.

• Spin: Contradictions can be found by model checking.
The goal is to prove that error states that correspond to
contradictions cannot be reached for a given feature
model. Spin is a model checker that interprets a
Promela program. The system (BCP + feature model)
is represented by a Promela program and Spin per-
forms an exhaustive search on its state space. 

• Incremental Consistency: A contradiction is a result
of constraint propagation of the kth feature selection
given a sequence of k-1 previous selections. By induc-
tion, we incrementally prove via enumeration that a
model is consistent for increasing values of k, for
0<k≤n.

4.  Spin (Simple Promela INtrepreter)

Specifying a product using a feature modelling tool alter-
nates between two phases: the user selection of a feature
and the propagation of constraints. This process can be
visualized as a state machine, where each phase repeats
over time (Figure 2).

Each state of a state machine represents a unique value
assignment to the set of variables (features) of the given
feature model. In BCP, variables can assume one of three
values — unknown, true, or false. All features (with the
exception of the root of the grammar) start with unknown as
their initial value (the root is assigned true). Upon each
feature selection, the system propagates constraints to
select and deselect other features obeying the constraints of
the feature model. When no further inferences can be made,
the cycle repeats by selecting the next feature. 

Special states, called error states, arise during constraint
propagation when a CNF formula is violated (thus implying
a model contradiction). A model checker is a general-pur-
pose tool for traversing a state machine to determine if par-
ticular states (or conditions on states) are reachable.
Finding a sequence of user feature selections that results in
a contradiction can be formulated as a reachability problem.

We used Spin for our work [25][14]. Promela is a modelling
language for concurrent processes. It was designed for veri-
fication and its programs can be directly model checked by
Spin. The variables and constraints of the specified feature
model are represented as propositional formulas. A
Promela-translator converts these formulas into a Promela
program. User selections are modelled as an exhaustive
sequential selection of user-visible features. 

Spin provides three ways to flag errors: we used assertions
to define error states [25]. Spin’s verification procedure is
based on a depth-first search of the state space. It offers two
modes of operation:

• Exhaustive search: The entire state space is
examined. This is the default mode of operation. 

• Bitstate hashing: For large problem sizes, an
exhaustive depth-first graph traversal method is not
possible due to the bound placed by the size of the
memory. In such cases, a high-coverage
approximation of the exhaustive runs can be
performed with the available memory using bitstate
hashing [15]. This technique strikes a compromise
between the number of states explored and the
amount of the memory used. If the problem size is
more than the size of available memory, Spin
covers only a fraction of the state space.

select
feature propagate

error
state

select
feature propagate

error
state

Figure 2   State Machine of Feature Selection 
and Constraint Propagation



Figure 3 shows a Promela file that implements the BCP
algorithm for the propositional constraints of model M in
Section 1.. One of three values — T (true), F (false), U
(unknown) — is assigned to each selectable variable/feature.
Each assignment to the set of variables defines a unique
state of the machine. The initial assignment of values is
indicated by (*) in Figure 3, where features A and B are
assigned the value U.

When BCP infers the value of a feature, a state transition
occurs. Transitions are represented by if statements in
Promela. The two if statements following the propagate:
label are the BCP actions for inferring features for two CNF
clauses, which correspond to the two constraints of M: A⇒B

and B⇒¬A. Each CNF clause has two terms. If one is F and
the other is U, the value of the other feature is inferred. Only
after all constraints have been propagated, is another fea-
ture selected. Note: after each if statement is an assertion,
which if violated, indicates a model contradiction error. 

The if statement following the “Select Feature Phase”
comment selects a previously unselected feature (i.e.,
whose value is U). If there are no U-valued features, all fea-
tures/variables have been assigned T or F values, the search
backtracks. Only when the entire search space (i.e., all pos-
sible sequences of feature selections) has been examined
does the search terminate.

We built a tool that translates a feature model (CNF gram-
mar + constraints) into a Promela program. The program is

then compiled; its execution explores the state machine of
the feature model. We used a number of different feature
models, which we ourselves previously wrote in building
SPLs for different domains, or that others had written using
our tools. We deliberately introduced contradictions in
some models to test our tools. These models are summa-
rized in Figure 4. Model complexity is indicated by the
number of features and CNF clauses.

Figure 5 shows the execution time for exhaustive search
and bitstate hashing (and its coverage factor) of Spin for
these models. We ran all of our experiments (in this section
and the next) on an Intel Pentium IV processor with a 1GB
RAM. For small models (models having less than 10 fea-
tures) Spin completes the check within seconds. For larger
models, system memory is exhausted quickly. “∞” indicates
models for which Spin never terminated. Bitstate hashing
helps restrict memory consumption but the search is not
exhaustive. As bitstate hashing does not cover the entire
state space, error states might not be found.

The models that we were able to analyze completely with
Spin either had no inconsistencies, or caught the errors
which we deliberately injected. (From our prior experience
in building models, we knew that some of our models had
inconsistencies, but those errors had been found and cor-
rected prior to this research. However, we did not know if
our models were contradiction free).

Our experience with Spin was mixed. While it was success-
ful, it was clear that we had to reduce the size of the state
space, as Spin could not provide us with certifications that
all of our models were contradiction free. We also realized
that in a sequence of k+1 feature selections, the order in
which the first k features are selected does not matter. That

mtype = {T, F, U};

init {
mtype A=U, B=U; (*)

do: // loop till you finish selecting all features

/********** Propagate Phase **********/
propagate:
if // Promela code for constraint A ⇒ B
 ::(A == U && B == F) -> A = F; goto propagate;
 ::(B == U && A == T) -> B = T; goto propagate;
 ::else -> skip;
fi;
assert(!(A == T && B == F )); //error state
if // Promela code for constraint B ⇒ ¬A
 ::(B == U && A == T) -> B = F; goto propagate;
 ::(A == U && B == T) -> A = F; goto propagate;
 ::else -> skip;
fi;
assert(!(B == T && A == T )); //error state
/********** Select Feature Phase **********/
if
 ::A==U -> A = T; printf("choose feature A\n");
 ::B==U -> B = T; printf("choose feature B\n");
 ::else -> break;
fi;

od;
}

Figure 3   Portion of a Promela File for Model M Figure 4   Different Feature Models Used In Our Experiments

Model Name # of
Features

# of CNF
Clauses

Brief Description of 
the Model’s SPL

BerkeleyDB 55 185 BerkeleyDB [18]

Folutest 13 66 a notepad application

Freeman 3 17 a scalar vector 
graphics application

GG4-model 15 140 an elaborated graph 
product line

GPL 17 188 graph product line 
[20]

Notepad 20 155 a notepad application

SVGMap 19 52 a SVG map application

TightVNC 21 83 desktop sharing 
application

Violet 64 341 image processing 
application

apl 12 47 error-injected model

long 12 17 error-injected model



is, the value assignments to the feature/variables after the
first k features are selected (and constraints propagated) are
invariant to the order in which these features are chosen
[12]. This observation allowed us to reduce the size of the
state-space for n features from O(n!) to O(n2n-1). Further,
we discovered that encoding this state-space reduction tech-
nique into Promela programs was problematic: the pro-
grams became complicated, and ultimately did not reduce
the likelihood of exhausting memory. It seemed easier for
us to write our own tool (avoiding Spin altogether) to verify
that models are contradiction free by retracing previous
computations, to substantially reduce the memory require-
ments for model verification. This lead us to our second
solution.

5.  Incremental Consistency Algorithm
A feature model is k-contradiction free if every selection of
k features does not expose a contradiction. A model of n
features is contradiction free if it is k-contradiction free for
all k where 0<k≤n. (Note that “unconditionally” dead fea-
tures are exposed when k=1 [6]). 

Suppose a sequence of features has been selected (and their
consequences are propagated to the selection or deselection
of other features). Figure 6 lists the lookAhead algorithm
which determines if the selection of the next feature (for all
such features) exposes a contradiction; it returns true if
there is no contradiction, false otherwise. BCP denotes the
boolean constraint propagation algorithm, which returns
true if no contradiction was encountered in propagating
constraints, false otherwise.

Let V denote the set of all features. A model is k-contradic-
tion free if lookAhead() returns true for all subsets S⊆V,
where |S|=k-1. That is, each subset S contains precisely k-

1 features that were selected. We generate sequences of
length k-1, where each sequence corresponds to precisely
one set of size k-1, and we guarantee that no two sequences
of have the same feature membership. The challenge in
enumerating sequences is to account for constraint propaga-
tion. For example, consider k=2. We do not consider the
sequence (A,B) if selecting feature A automatically selects
(via constraint propagation) B. The sequences we generate
must be sequences that users of a feature-selection tool
could produce. Figure 7 (on next page) sketches the algo-
rithm we used to prove a model is k-contradiction free; it
generates all sequences of length k-1 observing the above
constraint.

Model Name Exhaustive
(secs)

Bitstate 
Hashing 
(secs)

BitState
Hashing

Coverage (%)

BerkeleyDB ∞ 106.4 14

Folutest 3.5 3.3 100

Freeman 1.2 1.3 100

GG4-model 8.6 6.7 100

GPL ∞ 22.8 85

Notepad ∞ 67.3 21

SVGMapApp ∞ 52.1 24

TightVNC ∞ 95.7 14

Violet ∞ 102.4 19

apl 4.8 1.7 100

long 1.6 1.6 100

Figure 5   Execution Time of Spin for 
Different Feature Models

// let V be the set of variables (features) along with 
// their current truth assignment (T,F,U). 
// lookAhead returns true if the selection of the next 
// feature does not expose a contradiction

boolean lookAhead() {
Vreset = V;  // checkpoint (save) 

// existing truth assignments
foreach var in V {

if (var==U) { // if var (feature) not selected
var=T; // select it
if (not BCP()) // propagate constraints

return false;// contradiction was found
V = Vreset; // rollback (restore) assignments

}
}
return true; // no contradiction found

}

Figure 6   LookAhead Algorithm

// returns true if a feature model is k-contradict-free

boolean contradictionFree( int k ) {
return contradictionFree(k,0);

}
// The index of a variable in V is its rank.  Ranks are 
// used to compute sequences of k features, where a 
// sequence is generated only once. contradictionFree(k,r) 
// returns true if all possible selections of k features 
// (whose rank is <=r) does not expose a contradiction

boolean contradictionFree(int k, int r) {
if (k==1)               // we selected a set of features

return lookAhead();  // lookahead for a contradiction
else {

// let g be the # of unselected variables 
// in V with rank>r
if (g<k) 

return true; // no way to select k features when
// there are only g features remaining

 // otherwise select another feature
Vreset = V;                  // checkpoint/save state
foreach var in V {

if (var==U and rank(var)>r) { 
// if feature is not yet selected and 
// its rank is past r, select it
var=T;
if (not BCP())

return false; 
// no contraditions yet. select another feature

if (not contradictionFree(k-1,rank(var)))
return false;

V=Vreset;              // rollback/restore state
}

}
}

}

Figure 7   Contradiction Free Algorithm



Our incremental consistency algorithm (ICA) verifies that a
model is contradiction free if it is k-contradiction free for all
k where 0<k≤n (Figure 8). Note: when k=1, ICA exposes
unconditionally dead features. When k>1, ICA exposes
conditionally dead features. To express the “coverage” of a
search space, we print the value of each k for which k-con-
tradiction freedom has been proven. When k=n, where n is
the number of user selectable features, the model has been
proven to be contradiction free.

An important optimization of our algorithms is saving and
restoring the values of variables (i.e., saving and restoring
the variable array V in the lookAhead and the contradic-
tionFree algorithms). Instead of creating a stack where we
pushed and popped the state of V, we simply remembered
the set of variables that changed since the last “save state”
or checkpoint. Generally few variables (features) change
values upon selecting a feature and propagating its conse-
quences. Undoing (restoring to a checkpoint) is fast.

Another observation is that we mistakenly thought the BCP
algorithm consumed little CPU. Originally we implemented
our algorithms without checkpoints. When we computed a
sequence of features, we reset the V array to its initial state
and recomputed the state of V by selecting each feature in
order and propagating constraints.

The above two optimizations had a significant effect on the
performance of ICA. Figure 9 shows the execution times of
ICA for both the optimized and the unoptimized versions,
along with the exhaustive Spin numbers. In almost all test
cases, the unoptimized ICA generally executes noticably
faster than Spin, and provides answers to conflict freedom
in many cases where Spin failed to produce an answer. The
optimizations that we described above (listed in the ICA
Optimized column) provide the same solutions as the unop-
timized ICA with an order of magnitude or more increase in
speed. However, even with ICA optimizations, we were not
able to determine whether two models (BerkeleyDB and
Violet) were free of contradictions.

Figure 10 shows how far our optimized ICA algorithm was
able to prove contradiction freedom. The BerkeleyDB

model has 55 selectable features; in one hour of computa-
tion, we were able to prove that it was 5-conflict free. The
Violet model has 64 selectable features, and in one hour we
were able to prove it was 3-conflict free. In short, we hardly
covered any of the state space of these models. We believe
the ICA algorithms can prove conflict freedom in models
that have about 20 (or fewer) features; ICA seems ineffec-
tive in models with substantially larger number of features.

6.  Perspective and Related Work

We realized that the difficulty of statically finding contra-
dictions in feature models can be explained from the fol-
lowing perspective. A standard analysis of feature models
ensures that they are satisfiable or non-void — that the rep-
resented product line has at least one product [6]. (Stated
differently, the propositional formula that encodes the fea-
ture model is satisfiable). Testing satisfiability is NP-com-
plete. For a feature model to be contradiction free requires a
much stronger property than satisfiability: each time a fea-
ture is selected and its consequences are propagated, the
resulting predicate represents a simplified feature model,
here called a submodel. (From the Introduction, model M is
a submodel of G when C is selected). Contradiction freedom
means that every possible submodel of a feature model is
satisfiable or non-void (i.e., every submodel has at least one

// let V be the set of all user-selectable 
// variables/features and V.sizeof = n, the number of
// all user-selectable features. ICA returns true if
// the feature model is contradiction free

boolean ICA() {
for k = 1 to V.sizeof {

if (not contradictionFree(k))
return false;

print("Coverage up to "+k);
}
return true;

}

Figure 8   Incremental Consistency Algorithm

Model Name
Spin 

Exhaustive
(secs)

ICA
Unoptimized

(secs)

ICA
Optimized
(secs)

BerkeleyDB ∞ ∞ ∞

Folutest 3.5 7.7 0.6

Freeman 1.2 0.01 0.01

GG4-model 8.6 13.6 1.8

GPL ∞ 80 10.3

Notepad ∞ 1916.5 118.5

SVGMapApp ∞ 532.8 10.8

TightVNC ∞ 2135.5 28.9

Violet ∞ ∞ ∞

apl 4.8 0.05 0.02

long 1.6 0.02 0.02

Figure 9   Execution Time of ICA for Different Models

k-contradic-
tion free

BerkeleyDB
(in hours)

Violet
(in hours)

1 0.00 0.00

2 0.01 0.01

3 0.04 0.20

4 0.20 1.80

5 0.86 11.16

6 3.22 —

7 11.52 —

Figure 10   Coverage of ICA



product). Conversely, if a submodel is unsatisfiable (i.e., it
has no products), then the original feature model has a con-
tradiction (equivalently, a conditionally dead feature). For
example, if a user is allowed to select feature A in model M,
the resulting submodel is unsatisfiable. It is not clear if an
efficient algorithm can be developed to statically identify
model contradictions, due to the exponential number of
submodels of a given feature model. In the interim, the
engineering solution suggested in Section 2. can be used.

6.1.   Related Work
Trinidad et. al [29] provide a framework for automating the
error treatment of feature models, where feature models are
expressed in terms of CSP (as opposed to propositional for-
mulas as we have done). They focus on three types of
errors. (1) A dead feature is a non-selectable feature, a fea-
ture that not appear in any product. (2) A child feature
which is non-mandatory, is a full-mandatory feature if it is
always chosen whenever its parent is chosen. And (3) a fea-
ture model is said to be void (which we called unsatisfiable
earlier) if no product can be defined. The goal of [29] is to
detect the above three errors and provide explanations for
the relationships that caused these errors. Prior to our work,
the relationship of dead features with void models (that is, a
dead feature leads to a void submodel) was not previously
known. Our work generalizes and unifies dead feature and
void analyses to consider conditional errors.

[27][28][30] use BDDs to represent configuration models,
generalizations of feature models that permit non-boolean
attributes. The requirement that configuration tools be
backtrack free (i.e., prevent users from uncovering model
contradictions) is discussed in the context of using BDDs as
a general engine for displaying user options at a particular
state in a design, propagating constraints, and explaining
inferences. We are unaware of work in the configuration
modeling community that seeks analyses to find model con-
tradictions [1][2][10].

Our notion of k-contradiction free was inspired by, but not
identical to, the notion of k-consistency used by Kumar [19]
and Freuder [13] for solving constraint satisfaction prob-
lems (CSP). A model is k-strong consistent if, given a con-
sistent sequence of k-1 variables, any kth variable that is
chosen from the set of unassigned variables has a value that
satisfies all the constraints. While their goal is to find an
overall consistent solution for a CSP, our goal is to find a
particular sequence of user-selections that lead to a contra-
diction.

Marinov et.al [22], define boolean constraint propagation
networks as an inference engine for implementing knowl-
edge-based systems. They define inconsistencies in a model
as a permanent conflicts between two chains of proposi-

tions (propagations) that always imply opposite values at a
node (or a feature). They also stated that such problems
should be detected at compile time, but no algorithms for
doing so were presented.

Dynamic constraint satisfaction problems (DCSP) extends
CSP to include evolving constraints because of assignments
of values to variables. Soininen et. al [24] express configu-
ration problems as DCSPs and also show that they are NP-
complete. Verfaillie et. al [31] use dynamic backtracking to
detect inconsistencies in DCSPs and also provide explana-
tions in terms of the constraints that lead the system to an
inconsistent state.

7.  Conclusions
A feature model defines each product of a product line by a
unique combination of features. A contradiction in a feature
model is an error in a product line’s specification. Finding
such errors is important, both to model designers (as they
have specified nonsensical constraints) and customers of
the product line. We suggested a dynamic solution to find
contradictions, where errors can be detected during usage
and silently reported to model designers. However, the
focus of this paper was to investigate whether model con-
tradictions could be efficiently found by static analysis. We
found that model checking could be used, but is so slow
that only the simplest feature models could be verified. We
then developed an Incremental Consistency Algorithm
(ICA), which incrementally verified increasingly stronger
properties of contradiction freedom. Although our ICA was
at least an order of magnitude faster than model checking,
and that it verified contradiction freedom in more models, it
too had practical limits. We believe that ICA can verify
contradiction freedom of models with about 20 or fewer
selectable features. In short, our experimental results sug-
gest that a static analysis to find contradictions in feature
models with large number of features may be very difficult. 

Product lines are increasing common in software develop-
ment. In the automotive industry, it is not uncommon for
models to have hundreds, if not thousands of features [5].
Moreover, future feature models will not be limited to
selecting (or even deselecting) individual features, but also
supplying numerical constraints (e.g. performance bounds,
cost bounds) on feature selections [5][6]. As feature models
become more complex, the ability to guarantee that they are
absent of certain kinds of errors becomes even more impor-
tant. Finding contradictions in feature models is an interest-
ing, practical, and basic problem. The contribution of our
paper is a step toward more effective tools for feature
model verification.
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