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Abstract1

Feature Oriented Programming (FOP) is an emerging para-
digm for application synthesis, analysis, and optimization. A
target application is specified declaratively as a set of fea-
tures, like many consumer products (e.g., personal comput-
ers, automobiles). FOP technology translates such
declarative specifications into efficient programs.

AHEAD is a model of FOP that is based on step-wise refine-
ment, which advocates that complex programs can be syn-
thesized from simple programs by incrementally adding
features. The AHEAD Tool Suite (ATS) supports program
development in AHEAD. AHEAD and ATS are among the
most advanced models/tools for large-scale program synthe-
sis.

1  Introduction

The future of software engineering lies in a paradigm shift
towards automation. Critical to this vision are technologies
that synthesize large-scale software systems — their designs,
source code, and other related artifacts. Such technologies
require advances in the following areas:

• Domain-Specific Languages — notations that simplify
the specification of program designs;

• Automatic Programming — optimizing a program
design from a declarative specification;

• Generative Programming — automatically mapping a
program design to an executable;

• Compositional Programming — supporting tools and
benchmarks that derive, verify, and analyze properties of
generated programs.

A spectacular example of their integration was realized over
twenty-five years ago: relational query optimization (RQO)
(Figure 1). SQL is a prototypical declarative domain-specific
language. The design of a query evaluation program is speci-
fied as a composition of relational algebra operators; rela-
tional algebra is a prototypical model of compositional

programming. Automatic programming is achieved by query
optimizers that rewrite an inefficient expression (or ineffi-
cient program design) to a semantically equivalent but more
efficient expression (design). Mapping a relational algebra
expression to an efficient executable is generative program-
ming.

A “holy grail” of Software Engineering is to replicate the
paradigm and success of RQO in other domains. Feature
Oriented Programming (FOP) is an emerging paradigm that
is a generalization of RQO. FOP uses features to describe
and differentiate programs in a domain. Feature specifica-
tions of programs are typically declarative (e.g., GUIs with
check boxes, web pages with menu selections). An FOP
model of a software domain is an algebra, where each opera-
tor implements a feature. Program designs are represented
by expressions — compositions of features/operators — that
can be both optimized and translated to efficient executables.

2  AHEAD and ATS

AHEAD (Algebraic Hierarchical Equations for Application
Design) is a model of FOP based on step-wise refinement
(SWR). SWR advocates that complex programs can be built
from simple programs by incrementally adding features. The
distinguishing characteristics of AHEAD are:

• features are the primary units of software modularity;

• features encapsulate hierarchically structured program
representations (e.g., code, makefiles, documentation,
design rules, regression tests);

• source code that is encapsulated by features corresponds
to “cross-cuts” (i.e., fragments of multiple classes);

• features are operators. An application is defined by a
composition of such operators;

• features are composed by merging corresponding
program representations, thereby synthesizing consistent1.   This work was supported in part by the U.S. Army Simulation and Train-

ing Command (STRICOM) contract N61339-99-D-10.
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Figure 1: The Relational Query Optimization Paradigm
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representations of the target application.

The AHEAD Tool Suite (ATS) is a set of Java-based tools
that support program development in AHEAD. ATS is
being used in the construction of fire support simulators for
the U.S. Army [3] and in the synthesis of ATS itself [2].
That is, ATS tools have been bootstrapped: each ATS tool
has its own AHEAD expression and the tool itself is synthe-
sized from this expression. A novelty of ATS is that it sup-
ports a superset of Java, i.e., Java with refinement
declarations and state machines. The set of features that can
be added to Java is expressible in AHEAD, so that ATS
really is a product-line, where each member of this product
line is a tool suite for a particular dialect of Java.

A key property of AHEAD is that it is scalable: there is no
limitation on the size of the programs or the number of rep-
resentations that it can synthesize. ATS, for example, cur-
rently exceeds the equivalent of 250K LOC in Java, yet its
specifications are a few lines of FOP expressions. The set
of program representations that ATS can compose include:
XML documents, programs written in extended Java, state
machines, language grammars, design rules, and expres-
sions. 

3  ATS Demonstration

ATS consists of a variety of artifact composition tools,
including: 

• jampack and mixin — code composition tools

• unmixin — a tool that propagates changes made to
composed source code back to its original feature
counterparts

• baliComposer — a BNF grammar composition tool

• xmlComposer — a tool that composes XML documents
and their refinements

• jedi — a language-extensible version of javadoc

• modelexplorer — a graphical tool for composing,
browsing, and building feature-based designs

New AHEAD tools are coming on line, including a com-
poser for Java byte codes, and a tool to generate declarative
GUI front-ends from feature models. 

4  Relationship to Other Work

AHEAD refinements have a long history, originating in col-
laboration-based designs [8], mixins [4], and mixin-layers
[6][4]. AHEAD is an example of the Aspect-Oriented Pro-
gramming (AOP) paradigm [5] in that features are imple-
mented by cross-cuts (i.e., updates to multiple classes). The
novelty and power of AOP is in quantification — a predi-
cate that defines where advice is to be inserted in a pro-
gram. In contrast, the use of quantification in AHEAD is

comparable to traditional OO frameworks. That is, adding a
feature to a framework requires certain methods and classes
to be extended. AHEAD takes this idea to its logical con-
clusion: instead of having two different levels of abstraction
(e.g., the abstract and concrete classes), AHEAD allows
arbitrary numbers of levels, where each level implements a
particular feature. 

AHEAD is also an example of the Multi-Dimensional Sepa-
ration of Concerns (MDSOC) paradigm [7], where modu-
larity can be understood as a multidimensional space of
concerns. We have shown program specifications that could
be O(kn) features long have short and easy to understand
specifications of length O(kn), where n is the number of
dimensions and k is the number of features per dimension
[2]. That is, systems with exponential complexity have qua-
dratic-length specifications. AHEAD differs from MDSOC
in that AHEAD defines an algebraic model of program
specifications and compositions.
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