
Feature-Oriented Programming and the AHEAD Tool Suite

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

batory@cs.utexas.edu

Abstract1

Feature Oriented Programming (FOP) is an emerging para-
digm for application synthesis, analysis, and optimization. A
target application is specified declaratively as a set of fea-
tures, like many consumer products (e.g., personal comput-
ers, automobiles). FOP technology translates such
declarative specifications into efficient programs.

AHEAD is a model of FOP that is based on step-wise refine-
ment, which advocates that complex programs can be syn-
thesized from simple programs by incrementally adding
features. The AHEAD Tool Suite (ATS) supports program
development in AHEAD. AHEAD and ATS are among the
most advanced models/tools for large-scale program synthe-
sis.

1 Introduction

The future of software engineering lies in a paradigm shift
towards automation. Critical to this vision are technologies
that synthesize large-scale software systems — their designs,
source code, and other related artifacts. Such technologies
require advances in the following areas:

• Domain-Specific Languages — notations that simplify
the specification of program designs;

• Automatic Programming — optimizing a program
design from a declarative specification;

• Generative Programming — automatically mapping a
program design to an executable;

• Compositional Programming — supporting tools and
benchmarks that derive, verify, and analyze properties of
generated programs.

A spectacular example of their integration was realized over
twenty-five years ago: relational query optimization (RQO)
(Figure 1). SQL is a prototypical declarative domain-specific
language. The design of a query evaluation program is speci-
fied as a composition of relational algebra operators; rela-
tional algebra is a prototypical model of compositional

programming. Automatic programming is achieved by query
optimizers that rewrite an inefficient expression (or ineffi-
cient program design) to a semantically equivalent but more
efficient expression (design). Mapping a relational algebra
expression to an efficient executable is generative program-
ming.

A “holy grail” of Software Engineering is to replicate the
paradigm and success of RQO in other domains. Feature
Oriented Programming (FOP) is an emerging paradigm that
is a generalization of RQO. FOP uses features to describe
and differentiate programs in a domain. Feature specifica-
tions of programs are typically declarative (e.g., GUIs with
check boxes, web pages with menu selections). An FOP
model of a software domain is an algebra, where each opera-
tor implements a feature. Program designs are represented
by expressions — compositions of features/operators — that
can be both optimized and translated to efficient executables.

2 AHEAD and ATS

AHEAD (Algebraic Hierarchical Equations for Application
Design) is a model of FOP based on step-wise refinement
(SWR). SWR advocates that complex programs can be built
from simple programs by incrementally adding features. The
distinguishing characteristics of AHEAD are:

• features are the primary units of software modularity;

• features encapsulate hierarchically structured program
representations (e.g., code, makefiles, documentation,
design rules, regression tests);

• source code that is encapsulated by features corresponds
to “cross-cuts” (i.e., fragments of multiple classes);

• features are operators. An application is defined by a
composition of such operators;

• features are composed by merging corresponding
program representations, thereby synthesizing consistent1. This work was supported in part by the U.S. Army Simulation and Train-

ing Command (STRICOM) contract N61339-99-D-10.

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

declarative
DSL

automatic, compositional
programming

generative
programming

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

declarative
DSL

automatic, compositional
programming

generative
programming

Figure 1: The Relational Query Optimization Paradigm

dsb
Text Box
International Conference on Software Engineering 2004

representations of the target application.

The AHEAD Tool Suite (ATS) is a set of Java-based tools
that support program development in AHEAD. ATS is
being used in the construction of fire support simulators for
the U.S. Army [3] and in the synthesis of ATS itself [2].
That is, ATS tools have been bootstrapped: each ATS tool
has its own AHEAD expression and the tool itself is synthe-
sized from this expression. A novelty of ATS is that it sup-
ports a superset of Java, i.e., Java with refinement
declarations and state machines. The set of features that can
be added to Java is expressible in AHEAD, so that ATS
really is a product-line, where each member of this product
line is a tool suite for a particular dialect of Java.

A key property of AHEAD is that it is scalable: there is no
limitation on the size of the programs or the number of rep-
resentations that it can synthesize. ATS, for example, cur-
rently exceeds the equivalent of 250K LOC in Java, yet its
specifications are a few lines of FOP expressions. The set
of program representations that ATS can compose include:
XML documents, programs written in extended Java, state
machines, language grammars, design rules, and expres-
sions.

3 ATS Demonstration

ATS consists of a variety of artifact composition tools,
including:

• jampack and mixin — code composition tools

• unmixin — a tool that propagates changes made to
composed source code back to its original feature
counterparts

• baliComposer — a BNF grammar composition tool

• xmlComposer — a tool that composes XML documents
and their refinements

• jedi — a language-extensible version of javadoc

• modelexplorer — a graphical tool for composing,
browsing, and building feature-based designs

New AHEAD tools are coming on line, including a com-
poser for Java byte codes, and a tool to generate declarative
GUI front-ends from feature models.

4 Relationship to Other Work

AHEAD refinements have a long history, originating in col-
laboration-based designs [8], mixins [4], and mixin-layers
[6][4]. AHEAD is an example of the Aspect-Oriented Pro-
gramming (AOP) paradigm [5] in that features are imple-
mented by cross-cuts (i.e., updates to multiple classes). The
novelty and power of AOP is in quantification — a predi-
cate that defines where advice is to be inserted in a pro-
gram. In contrast, the use of quantification in AHEAD is

comparable to traditional OO frameworks. That is, adding a
feature to a framework requires certain methods and classes
to be extended. AHEAD takes this idea to its logical con-
clusion: instead of having two different levels of abstraction
(e.g., the abstract and concrete classes), AHEAD allows
arbitrary numbers of levels, where each level implements a
particular feature.

AHEAD is also an example of the Multi-Dimensional Sepa-
ration of Concerns (MDSOC) paradigm [7], where modu-
larity can be understood as a multidimensional space of
concerns. We have shown program specifications that could
be O(kn) features long have short and easy to understand
specifications of length O(kn), where n is the number of
dimensions and k is the number of features per dimension
[2]. That is, systems with exponential complexity have qua-
dratic-length specifications. AHEAD differs from MDSOC
in that AHEAD defines an algebraic model of program
specifications and compositions.

5 References

[1] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement”, International Conference on Software
Engineering, 2003.

[2] D. Batory, J. Liu, J.N. Sarvela, “Refinements and Multi-
Dimensional Separation of Concerns”, ACM SIGSOFT 2003
(ESEC/FSE2003).

[3] D. Batory, D. Brant, M. Gibson, M. Nolen, “ExCIS: An Inte-
gration of Domain-Specific Languages and Feature-Oriented
Programming”, Workshop on New Visions for Software
Design and Productivity: Research and Applications,
Vanderbilt University, Nashville, Tennessee, December 13-
14, 2001. Also, http://www.cat.utexas.edu/

[4] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and
Mixins”. POPL 98, San Diego, California. ACM, New York,
NY, 171-183.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin, “Aspect-Oriented Programming”,
ECOOP 1997, 220-242.

[6] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, ACM Transactions on Soft-
ware Engineering and Methodology, March 2002.

[7] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns”, ICSE 1999.

[8] M. VanHilst and D. Notkin, “Using role components to
implement collaboration-based designs”. OOPSLA 1996,
ACM Press, 359-369.

