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Abstract

Feature refactoring is the process of decomposing a program into a
set of modules, called features, that encapsulate increments in pro-
gram functionality. Different compositions of features yield differ-
ent programs. As programs are defined using multiple
representations, such as code, makefiles, and documentation, fea-
ture refactoring requires all representations to be factored. Thus,
composing features produces consistent representations of code,
makefiles, documentation, etc. for a target program. We present a
case study of feature refactoring a substantial tool suite that uses
multiple representations. We describe the key technical problems
encountered, and sketch the tool support needed for simplifying
such refactorings in the future.

Categories and Subject Descriptors: D.2.7 [Distribution, Mainte-
nance, and Enhancement]: Restructuring, Reverse engineering,
and Reengineering; D.2.13 [Reusable Software]: Domain engi-
neering; I.2.2 [Automatic Programming]: Program synthesis.

General Terms: Design, Experimentation.

Keywords: Refactoring, software product lines, multiple represen-
tations, refinements, AHEAD, feature-oriented programming, pro-
gram synthesis.

1  Introduction

Features are increments in program functionality. They are the
semantic units by which different programs within a family or soft-
ware product line (SPL) can be differentiated and defined. Different
compositions of features yields different programs within an SPL.

An SPL often starts with a single program [12]. Variants of the pro-
gram arise, and instead of maintaining multiple distinct versions, it
is more cost effective to maintain the features from which different
versions can be assembled. Feature refactoring is the process of
decomposing a program into a set of features. Given such a refac-
toring, variants of the original program can be created by omitting
unnecessary features. Further, new features can be added, and yet
more programs can be assembled. This is how an SPL emerges.
Program evolution is often enhanced by feature decompositions, as
programs typically evolve by updating, adding, and deleting incre-
ments of functionality (features) [6][22][28].

A program has many representations. Beside source code, there
may also be regression tests, documentation, makefiles, UML mod-
els, performance models, etc. When a program is refactored into
features, all of its representations — code, regression tests, docu-
mentation, etc. — must be refactored as well. That is, a feature
encapsulates all representations (or changes to existing representa-
tions) that define the feature’s implementation. When a program is
built by composing features, all relevant representations are synthe-
sized.

In this paper, we present a case study in feature refactoring that
demonstrates these concepts. The program that we refactor is the
AHEAD Tool Suite (ATS) which is a collection of tools that were
developed for feature-based program synthesis [1]. Over time, ATS
has grown to 24 different tools expressed in over 200K LOC Java.
In addition to code, there are makefiles, regression tests, documen-
tation, and program specifications, all of which are intimately inter-
twined into an integrated whole. There has been an increasing need
to customize ATS by removing or replacing certain tools. This moti-
vated the feature refactoring of ATS, in order to create a product line
of its variants.

What is new about our work is the scale of refactoring. Prior work
on feature refactoring dealt with small programs under 5K LOC and
focussed only on code refactoring [21][22]. In this case study, we
scale features substantially in size (ATS is almost two orders of
magnitude larger) and in the kinds of representation (ATS required
refactoring not only code, but documentation, makefiles, and
regression tests as well). This wholistic approach to refactoring
information is fundamental to feature orientation, and as such this
paper constitutes a valuable case study on the scalability of feature-
based program refactoring and synthesis.

We describe the technical problems encountered in feature refactor-
ing ATS, and the kinds of tool support needed for performing such
refactorings in the future. We believe our experiences (except one)
extrapolate to the feature refactoring of other tool suites. The
exception is that ATS is bootstrapped, and it posed its own special
conceptual and technical challenges. We begin with a description of
AHEAD and ATS.

2  Feature Oriented Programming

Feature Oriented Programming (FOP) is a general paradigm of
program synthesis. Features (a.k.a. feature modules) are the build-
ing blocks of programs. Each feature may include any number of
artifacts (i.e., representations). GenVoca was an early model of
FOP; AHEAD is the current model.
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2.1   GenVoca
A GenVoca model of an SPL is an algebra that offers a set of oper-
ations, where each operation implements a feature. We write M =
{f, h, i, j} to mean model M has operations or features f, h, i,
and j. GenVoca distinguishes features as constants or functions.
Constants represent base programs. For example: 

f // a program with feature f
h // a program with feature h

Functions represent program refinements that extend a program
that is received as input. For instance:

i•x  // adds feature i to program x
j•x  // adds feature j to program x

where • denotes function application. 

The design of a program is a named expression, e.g.:

prog1 = i•f // prog1 has features f and i
prog2 = j•h // prog2 has features h and j
prog3 = i•j•h // prog3 has features h,j,i

The set of programs that can be created from a model is its product
line. Expression optimization corresponds to program design opti-
mization, and expression evaluation corresponds to program syn-
thesis [27][3][20]. Not all features are compatible. The use of one
feature may preclude the use of some features or may demand the
use of others. Tools that validate compositions of features are dis-
cussed in [7].

2.2   AHEAD
Algebraic Hierarchical Equations for Application Design
(AHEAD) extends GenVoca to express nested hierarchies of arti-
facts (i.e., files) and their composition [6]. If feature f encapsu-
lates a set of artifacts af, bf, and df we write f = { af, bf, df }.
Similarly, i = { ai, bi, ci } says that feature i encapsulates arti-
facts ai, bi, and ci. As artifacts themselves may be sets, a feature is
a nested set of artifacts. AHEAD uses directories to represent
nested sets. Figure 1a shows an AHEAD feature and its corre-
sponding directory.

The composition of features is governed by the rules of inherit-
ance. In the composition i•f, all artifacts of f are inherited by i.
Further, artifacts with the same name (ignoring subscripts) are
composed pairwise. This is AHEAD’s Law of Composition:

i•f = { ai, bi, ci } • { af, bf, df }
= { ai•af, bi•bf, ci, df } (1)

Features are composed by applying (1) recursively, where direc-
tories are folded together by composing corresponding artifacts in
each directory. Figure 1b shows the composition of features A and

B. The result is feature C, where artifact X.jak of C is synthesized
by composing X.jak (from B) with X.jak (from A) [6].

The polymorphism of the • operator is central to AHEAD. Arti-
facts of a given type (.jak, .b, etc.) and their refinements are
defined in a type-specific language. That is, the definition and
refinements of .jak files are expressed in the Jak(arta) language,
a superset of Java. The definition and refinement of .b files are
expressed as Bali grammars, which are annotated BNF files. And
so on. One or more tools implement the • operator for each artifact
type. The jampack and mixin tools implement the • operator for
.jak files (i.e., .jak files are composed by either the jampack
and mixin tools), and the balicomposer tool implements the •
operator for .b files. ATS is the set of tools that compose artifacts,
produce and analyze compositions, and derive artifacts of one type
from others (e.g., the jak2java tool translates a .jak file to its
.java counterpart).

Notation. Although we write the composition of A and B as
A•B, it really is an abbreviation of the expression
compose(A,B), where A and B denote feature directories. We
use • to simplify our expressions.

2.3   XAK and XML Document Refinement

XAK (pronounced “sack”) is a tool for composing base and refine-
ment artifacts in XML format. The need for XAK arose two years
ago while developing SPLs for web applications using AHEAD
[16]. An unusual characteristic of web applications is that a siz-
able fraction of their definition is not Java or Jak source, but rather
XML specifications [16] (e.g., JSP, HTML, and Struts control
flow files [2]). Thus, it is common for a feature of a web applica-
tion to contain XML artifacts (base or refinements) and Jak source
(base or refinements). We began our work at a time when AHEAD
did not have a language for XML artifact refinement and a tool for
XML artifact composition. This lead to the creation of XAK.

XAK follows the AHEAD paradigm of module definition and
refinement. An XML document is a tree rooted at node t1 in
Figure 2a. Its XAK counterpart is slightly different: it is a tree of
trees (e.g., trees rooted at nodes t1, t2, and t3 in Figure 2b), and
each of these nodes is tagged with a xak:module attribute, so that
the XAK module abstraction of the original tree is a tree of modules
(module m1 contains modules m2 and m3 in Figure 2c).

In general, a XAK module has a unique name and contains one or
more consecutive subtrees that share the root module. Each sub-
tree may contain any number of modules. Note that the modules of
an XML artifact reflect a natural hierarchical partitioning into
semantic units that can be refined (more on this shortly). 

Figure 1. Features as Directories

(a) Feature A and its Directory
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As a concrete example,
Figure 3a shows a XAK arti-
fact that defines a bibliog-
raphy. The artifact is
partitioned into modules
(see the xak:module

attributes) which impose
the module structure of
Figure 3b. Also, the root of the artifact is labeled with the
xak:artifact attribute. Note that all modules have unique
names.

A refinement of a XAK module is defined similarly to method
refinement in the Jak language [6]. A refinement of the XAK arti-
fact of Figure 3 is shown in Figure 4 that appends a new author to
the mATSAuthors module. The xak:super node is a marker that
indicates the place where the original module body is to be substi-
tuted. In general, a XAK refinement artifact can contain any num-
ber of xak:module refinements.

XAK is a tool that composes a base XAK artifact with zero or more
refinements. (XAK also composes refinements into a compound
refinement). The result of composing the base artifact of Figure 3
and the refinement of Figure 4 is the artifact in Figure 5. Note that
it is possible for a XAK refinement to add new modules. In this
example, only new content is added to an existing module. Thus,
the modular structure of Figure 3b is unchanged.

The result of a XAK composition is a XAK artifact. The underlying
XML artifact is the XAK artifact with the xak:artifact and
xak:module attributes removed. XAK has other functionalities not
needed for our work, such as interfaces, schema extensions and
validation [17].

2.4   Feature Refactoring and ATS
Feature refactoring is the inverse of feature composition. Instead
of starting with a base program B and features F and G, and com-
posing them to build program P = F•G•B, feature refactoring starts
with P and refactors P into an expression F•G•B [22].

Figure 6 shows a part of the directory structure of ATS. There is an
expression per tool in the ahead/expressions directory.
ahead/lib contains Java archive (JAR) files for ATS, ahead/
models contains directories of AHEAD models, fopdocs con-
tains HTML tool documents, and regression is a directory of
regression tests.

ATS is the baseline program for a product line of variants. We want
to feature refactor ATS into a core (the kernel of ATS) and
optional features, one per tool (e.g., aj, cpp, drc, jedi, etc.). By
doing so, we create an AHEAD model of ATS, which we call the
ATS Product Line (APL):

t1

t2 t3

t1

Figure 2. XAK Module Hierarchy

(a) (b)

m1

m2 m3
(c)

<bibliography xak:artifact="myBib">
<paper xak:module="mATSRefac">

<title>Feature Refactoring ..</title>
<date>06-02-21 11:30:45</date>
<authors xak:module="mATSAuthors">

<author id="1">
<name>Oscar</name>

</author>
</authors>

</paper>
<paper xak:module="mXAKRef">

<!-- content collapsed -->
</paper>

</bibliography>

Figure 3. XAK Base doc

myBib

mASTRefac mXAKRef

mATSAuthors mXAKAuthors

(a)
(b)

Figure 4. XAK Refinement

<xak:refines xak:artifact="myBib">
<xak:extends xak:module="mATSAuthors">

<xak:super xak:module="mATSAuthors"/>
<author id="2">

<name>Don</name>
</author>

</xak:extends>
</xak:refines>

Figure 5.  XAK Composition Result

<bibliography xak:artifact="myBib">
<paper xak:module="mATSRefactor">

<title>Feature Refactoring ..</title>
<date>06-02-21 11:30:45</date>
<authors xak:module="mATSAuthors">

<author id="1">
<name>Oscar</name>

</author>
<author id="2">

<name>Don</name>
</author>

</authors>
</paper>
<!-- content collapsed -->

</bibliography>

Figure 6. The ATS Directory Structure

expression files
JARs for bootstrapping
AHEAD models

composer-specific files
xc-specific files

jak2java-specific tests
jampack-specific tests
...
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APL = { core, // kernel of ATS
aj, // aspectj translator
cpp, // c++ tools
guidsl, // feature modeling tool
xc, // XML composer
drc, // design rule tool
jedi, // javadoc-like tool
me, // modelexplorer
... }

Given APL, we can synthesize different variants of ATS:

ATS1 = ...cpp•drc•xc•core; // full set of tools
ATS2 = ...cpp•core;  // a subset of tools
ATS3 = jedi•guidsl•me•core
ATS4 = drc•aj•core

An essential tool in synthesizing variants of ATS is XAK, whose
capabilities we described in the previous section.

3  The Process of Feature Refactoring ATS

Let ATSsrc denote the AHEAD feature that contains the source
artifacts for the AHEAD Tool Suite. The tool binaries (i.e., JAR
files) are produced by an ant XML build which we model by the
function antBuild:

ATSbin = antBuild (ATSsrc)

That is, ATSbin differs from ATSsrc in that tool binaries have been
created and added to the ATS directory. The build process itself
creates directories to contain tool JARs, newly created batch and
bash executables [13], and runs the regression tests to evaluate the
correctness of tool executables. An ATS build time is about one-
half hour.

Figure 7 illustrates the five-step process that we used to feature
refactor ATSsrc into an SPL of ATS variants.

Step 1. ATSbin was created by an ant build of ATSsrc:

ATSbin = antBuild (ATSsrc)

Step 2. ATSsrc was feature refactored (more on this in
Section 3.1) into the APL:

APL = { core, jedi, cpp, aj ...}

Each APL feature has XAK artifacts, that either define or refine
HTML and XML documents in ATSsrc.

Step 3. Although APL is itself an AHEAD model, we could not
compose its features using the binaries of ATSbin created in Step
1. The reason is that APL features encapsulate XAK artifacts and
their refinements, and the XAK tool is not part of ATSbin. However,
XAK can be added to ATSbin by refinement. Let ATSxak be a fea-
ture that adds the XAK tool to ATSbin to produce ATSbin’, which is
a set of tools that can compose APL features:

ATSbin’ = ATSxak • ATSbin (2)

Note that the tools of ATSbin are used to evaluate (2). As we
explain in Section 3.2, this is a form of bootstrapping where a tool
suite is used to build a new version of itself.

Step 4. We use the tools of ATSbin’ to synthesize different vari-
ants of ATSsrc by composing APL features, such as:

APL-1src = aj • core

APL-2src = jedi • core

Step 5. Tool binaries of an ATS variant are obtained by an ant
build:

APL-1bin = antBuild (APL-1src)

APL-2bin = antBuild (APL-2src)

In the following sections, we elaborate the details of steps 2, 3,
and 4 in this process.

3.1   Step 2: Refactoring ATS
One of the core contributions of SPL research is the use of features
and feature models to define members of an SPL. Although the
process of identifying features, refactoring them from the original
program, and creating a feature model is iterative, we proceeded in
a largely straightforward fashion (discussed below) with minimal
backtracking.

3.1.1    The APL Feature Model

We identified the following features in ATS:

• core. The kernel of ATS includes Jak file tools jampack,
mixin, and jak2java, and Bali file tools such as
balicomposer and bali2jak.

• aj, mmatrix, jedi, reform. Tools that process Jak files. aj
translates Jak files to AspectJ files, mmatrix collects
statistics on Jak files, jedi is a javadoc-like tool, and reform
is a Jak file pretty-printer.

Figure 7. ATS Refactoring Process
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• guidsl, web, me. GUI-based tools for declaratively
specifying programs and exploring AHEAD models.

• xak, xc. Tools for composing XML files.

• bctools. Tools that produce, compose, and analyze byte
codes. 

• obe, drc, cpp. Miscellaneous tools.

Figure 8 depicts a feature model for APL using a notation similar
to [14]. 

Figure 9 shows an alternative grammar representation that is used
in AHEAD to specify feature models and cross-tree constraints
(e.g., the selection of bctools or the me tool requires the mma-
trix tool) [7]. Note that the cross-tree constraints were discov-
ered during the refactoring of ATS, discussed in the next section. 

3.1.2    The Refactoring Process

We refactored ATSsrc in a progressive manner. First, we identified
the kernel of ATSsrc which we called the core feature. The
remainder of ATSsrc was called extra0. So our first step in refac-
toring ATS was described by:

ATSsrc = extra0 • core (3)

We knew that we found a correct definition of core when we were
able to build core tools and run their regression tests without
errors:

ATScore = antBuild (core) (4)

Unlike prior feature refactoring work, the presence of regression
tests in a feature helped us confirm that our refactoring was cor-
rect. If a build failed, we tracked down the missing pieces as files
that had to be moved from extra0 into core — i.e., we failed to
include all parts of core in our refactoring of (3).

Next, we factored out feature Fn from extran to produce a
smaller extran+1 feature:

extran = extran+1 • Fn (5)

To verify that we had a correct definition of Fn, we composed it
with core, built the binaries, and ran the regression tests correctly,
which takes over 20 minutes: 

ATSn = antBuild (Fn • core) (6)

Again, the regression tests validated both the core tools and the
additional tool(s) encapsulated in Fn. Failed builds helped us iden-
tify pieces that were not moved from extran+1 to Fn.

We repeated (5) and (6) to remove incrementally all features
from extra that we identified in the last section. The final version
of extra was empty — it contained no files. This refactoring took
around 10 person/days.

This process required adjustment when we discovered dependen-
cies among APL features. For example, the bctools feature
required the mmatrix feature because the bctools invoked the
mmatrix tool. We had to create a version v of ATS with both tools
before we could build and test:

ATSv = antBuild( bctools • mmatrix • core )

3.1.3    Feature Contents

Each feature encapsulated a tool or group of tools that roughly
contained the same content. There were new artifacts such as
source files, makefiles, HTML documentation, and regression
tests specific to that feature. Refinements were generally limited
to ant makefiles and HTML document files, both of which were
encoded as XAK files and XAK refinements.

The refactorings of (3) and (5) were straightforward. We first
identified the parts of ant makefiles that triggered the building of
a target tool T, its parts, and its regression tests. These statements
were factored from extra into a XAK file that refined the ant
build script of core. (Initially, we simply commented them out,
and once we knew we had a correct set of statements, we moved
them into a XAK refinement file). We followed a similar procedure
for refactoring HTML documents. The remaining work was to
move files (source, HTML, regression) that were specific to the
tools of T into the feature T, being careful to retain the directory
hierarchy in which these files were to appear. There were other
files in addition to ant makefiles and HTML documents that had
to be refined, but these were few and simple (e.g., largely text file
concatenation); AHEAD had tools to perform these refinements.

Figure 10 shows the detail of disk volume, the number of files and
their number of lines of code in each ATS feature. The FILES col-
umn indicates the total number of files in each feature. The Java,
Jak, and XML files were introductions (constants), while XAK files
indicates the number of files that an ATS feature refines. 

APL

coreJakToolsGuiToolsXmlToolsbctools

cpp

Dep

reform jedi mmatrix aj

guidsl webme

xcxak

obedrc

choose1 choose1+choose1+choose1+

Figure 8. APL Feature Model 

// APL Grammar

APL : Deprecated* [cpp] [bctools] [XmlTools]
GuiTools* JakTools* core ;

JakTools : // optional Jakarta tools
reform | jedi | mmatrix | aj ;

GuiTools : guidsl | web | me ; // GUI-based tools

XmlTools : xc | xak ; // XML composition tools

Deprecated: obe | drc | cpp ; // miscellaneous

%% // constraints

bctools ∨ me ⇒ mmatrix;

Figure 9. APL Grammar
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3.2   Step 3: Bootstrapping ATS/lib
One of the unique parts about refactoring ATS is its reliance on
bootstrapping: to build ATS tools requires ATS tools. Many ATS
tools are written in the Jak language and are themselves composed
from features. Seven ATS tools are needed for bootstrapping: 

• jampack, mixin — tools to compose Jak files,
• jak2java — a Jak to Java file translator,
• balicomposer — a tool to compose Bali files.
• bali2jak — a Bali file to Jak file translator,
• bali2javacc — a Bali file to JavaCC translator, and
• composer — a tool that composers features.

These seven tools are stored as JAR files, which we call boot-
strapping JARs, in directory ATS/lib (see Figure 6). As soon as
one of the above tools is synthesized during an ATS build, its JAR
file replaces its bootstrapping JAR from that point on in an ATS
build. At the end of an ATS build, no bootstrapping JARs are used.

To synthesize customized versions of ATS from features required
three distinct changes to be made to ATS itself. What makes this
intellectually challenging is whether the changes could be
expressed using AHEAD concepts. We wanted to stress AHEAD
to understand better its generality. In the following, we outline the
three changes that we made, and explain how we realized them
using refinements.

First, most APL features encapsulated regression tests that were
specific to the tool(s) the feature encapsulated. Among the tests
for Jak tools are Jak files that are syntactically incorrect. (These
files are used to test language parsers). The Jak file composition
tools (mixin and jampack) parse all Jak input files before per-
forming any actions. We refined both tools so that if only one Jak
file was listed on their command line, the file itself would not be
parsed, but merely copied to the target feature directory. In this
way, composer could invoke mixin or jampack on syntactically
incorrect Jak files without discovering their syntactic errors.

Second, we needed to add xak.jar to the bootstrapping JARs to
compose XAK files representing HTML documents and ant build
scripts.

Third, we needed to refine JAR files. In particular, the bootstrap-
ping JAR file for composer. Remember that this JAR contains a
version of composer that understands how to compose a pre-

defined set of artifacts (Jak files, Bali files, etc.). If composer is to
compose new artifact types (such as XAK files), composer’s boot-
strapping JAR must be refined to add this capability before it can
compose APL features. 

composer was designed so that new artifact-composing tools
could be added easily. For each artifact type, two Java class files
are placed in a subdirectory (called Unit) of the composer tool.
These class files contain information that tell composer how to
invoke a tool to compose artifacts of a specific type. For example,
there is a pair of files that tell composer how to compose Jak files
using the mixin tool; there is another pair of files that tells com-
poser how to compose Bali grammar files using the balicom-
poser tool, etc. To support XAK file composition, two additional
class files had to be added to the Unit directory to tell composer
how to compose XAK files. 

All three changes could be made by refining ATS/lib using jar-
composer. We chose to modify mixin and jampack directly as
its changes were permanent, while adding xak.jar and its modi-
fication of composer.jar in ATS/lib were optional. We accom-
plished the last two changes (adding xak.jar and refining
composer.jar) by refining ATS/lib. The general problem is as
follows: lib is itself an AHEAD module that contains bootstrap-
ping JARs:

lib = { composer.jar, mixin.jar, ... }

A refinement of lib includes new JAR files plus a refinement of
the composer.jar to tell composer how to compose new file
types using the new JAR files. For example, the refinement to lib
that adds XAK is:

libxak = { composer.jarxak, xak.jar }

where composer.jarxak contains the Unit file extensions of
composer that calls XAK. To produce a refined lib (denoted lib-

new below), we compose libxak with lib:

libnew = libxak • lib
= { composer.jarxak•composer.jar,

xak.jar, mixin.jar, ... } (7)

The key to this bootstrapping step is the ability to compose JAR
files. By adding a jarcomposer to the bootstrapping JARs, we
can use the unrefined lib to evaluate (7), and in principle can
now add any number of new artifact composition tools to
AHEAD.

Our jarcomposer is simple: it unjars the base JAR file and
refinement JARs into distinct directories. It then uses the com-
poser bootstrapping JAR to compose these directories, forming
their union. The contents of the resulting directory are then placed
into a new JAR file. In (7), this JAR file (i.e. libnew/com-
poser.jar) becomes the refined composer bootstrapping JAR.
At this point, libnew can compose an enlarged set of artifact types
(e.g., XAK artifacts), thus allowing ATS features to be composed.

Figure 10. Feature Size and Content Distribution
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3.3   Step 4: Producing APL-Specific Products 
Once ATSbin’ and APL were developed, it was a simple matter to
define, synthesize, and build different versions of ATS. Over one
hundred different versions are possible (see Figure 8). For exam-
ple, a version K that contained the core and guidsl tools is spec-
ified and built by:

ATSKsrc = guidsl • core (8)

ATSKbin = antBuild( ATSKsrc ) (9)

In the synthesis of ATSKsrc, makefiles and HTML documents of
core were refined, and the code and document files for guidsl
were added to core. Figure 11 displays part of the synthesized
index.html document of ATSK, which shows a document index
for all the tools of core (composer, jampack, mixin, unmixin,
and jak2java) and the guidsl tool (red dotted box). That is,
only documents for tools that are present in ATSKsrc are listed; no
other tool documents are included. This customization is the result
of refactoring ATS. The evaluation of (8) and (9) is accom-
plished using the tools in ATSbin’.

4  Lessons Learned and Future Tool Support

We encountered many problems during the refactoring of ATS.
Most were not related with ATS, but with the decomposition pro-
cess itself, and these problems apply to the refactoring of pro-
grams in general. Solutions to these problems and tool support to
simplify future refactoring tasks are discussed below.

4.1   Lessons Learned

The greatest challenge in feature refactoring is understanding the
original program. When a program grows beyond a few thousand
lines of code, it becomes hard to understand what artifacts are
impacted by individual features and what dependencies exist
among features. Refactoring adds architectural knowledge to a
design that was never documented or that was lost. Minimal
knowledge of the program and its structure is essential, and we
had such knowledge prior to refactoring ATS, i.e., we knew
approximately the ATS directory structure and organization of
makefiles and documents.

Dependencies Among Features. Dependencies among features
are not always evident. For example, the bctools feature requires
the mmatrix feature; we discovered this requirement when
bctools failed to compile without mmatrix. Once we recognized
this relationship, we remembered it by adding a cross-tree con-

straint to our feature model (Figure 9). Discovering such depen-
dencies and updating feature models is a manual process that we
feel could largely be automated.

Error Exposure. Feature refactoring may expose existing errors.
For instance, the documentation for the cpp tools was not refer-
enced by the ATS documentation home page and consequently was
not accessible. (A link to the documentation of all tools should
appear in the home page). We detected this error during the cre-
ation of the cpp feature, as we knew the home page document had
to be refined, but was not.

Program Extensions. AHEAD and GenVoca are generalizations
of object-oriented frameworks [4]. Extending a framework
involves adding new classes and extending hook methods that are
defined in abstract classes of a framework. While frameworks
have been developed primarily for code, AHEAD generalizes this
idea to frameworks to non-code artifacts as well. That is, there are
variation points in documents of all types, and document exten-
sions are made at these points. It is well-known that manually
extending frameworks is error prone, and could be substantially
helped by tools that guide users in how to properly extend frame-
works [18]. The same ideas apply to non-code documents as well.

The lack of documentation or tool support for adding tools to ATS
hampered our abilities to feature refactor ATS. Extending ATS has
historically been ad hoc, where variations arise due to different
programmers following different procedures. We now know that a
new tool would (a) add source files, (b) add one or more document
pages that are linked with existing documentation at predefined
points, (c) add new build documents that are linked to existing
build script at predefined locations, and (d) regression tests must
appear in a designated directory. A standard procedure for extend-
ing ATS would have significantly helped us in refactoring because
we would have known exactly where changes would be made (as
opposed to discovering these places later when ant builds fail or
when synthesized documentation is found to be erroneous). 

Accidental Complexities (Grandma’s Teeth). Accidental com-
plexity lies at the heart of many problems in software engineering
[9]. It is unnecessary and arbitrary complexity that obscures the
similarity of designs, patterns, and processes that could otherwise
be unified. Years ago, we were building different tools for the
same language (e.g., pretty-printers, composers, translators), and
discovered the process by which each tool was designed and cre-
ated was unique. Odd details whose only rationale was “that was
the way we did it” distinguished different tools. Called
“Grandma’s teeth”, meaning a gross lack of alignment in an other-
wise identical design, was an indicator of accidental complexity.
By standardizing designs (which reduces complexity), we were
able to significantly simplify the design and synthesis of tool
suites [5], and make the process of design and implementation
more rigorous, structured, repeatable, and streamlined.

Our refactoring of ATS exposed other forms of Grandma’s teeth
that we were unaware of. Makefiles passed parameters to other
makefiles, but the same parameter was given different names in
different places. Classpaths were defined in different makefiles in
different manners. The place where makefiles are altered to add
build scripts for similar tools varied significantly. The removal of

Figure 11. Customized HTML Documentation
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accidental complexity and the alignment of similar concepts
would solve this, and would substantially simplify program refac-
toring.

Generality of Experiences. We believe that there is nothing spe-
cial about ATS or our procedure to refactor it. (Although ATS is
unusual in that it is bootstrapped, this made it harder to refactor.
Few applications require bootstrapping). The incremental way in
which we refactored features from ATS is analogous to aspect min-
ing and refactoring (see Section 5), and is not unusual. Further,
although the dependencies among features were minimal, the
basic approach in Section 3 would be our starting point for future
refactorings.

Even though our work is preliminary, we believe that it is possible
to feature refactor an application with minimal knowledge of its
structure. That we had regression tests per feature helped substan-
tially in validating our efforts. Tool support (discussed in the next
section) would also help greatly in a refactoring process.

4.2   Future Tool Support

A Tool for Initial Refactoring. We learned from ATS that when a
feature encapsulates one or more tools, most artifacts of a feature
are new files. Only specific artifacts (makefile gateways, docu-
mentation home pages, etc.) are refined. A simple tool could be
created to partition the files of a composite feature (i.e., directory)
into a pair of directories (representing the contents of different fea-
tures), thus simplifying an important step in feature refactoring.

Artifact-Specific Refactoring Tools. ATS currently has tools for
refactoring Java/Jak source classes [22]. Exactly the same kind of
tool would be needed for refactoring XML (e.g., XAK) artifacts
into base and refinement files. Other artifact-specific tools would
be needed for refactoring other documents (e.g., Word files, JPEG
images).

Safe Composition Tools. A recently added set of tools to the ATS
arsenal are those that support safe composition [8]. Safe composi-
tion is the guarantee that programs composed from features are
absent of references to undefined elements (such as classes, meth-
ods, and variables). Existing safe composition tools are targeted to
Java and Jak source files. However, the same concept holds for
other artifact types. XML and HTML define elements that can be
subsequently referenced. We want to synthesize documents of all
types that are devoid of references to undefined elements, includ-
ing cross-references to elements of documents in different types.
Safe composition tools could also be useful in detecting unrefer-
enced elements or benign references. A benign reference is a refer-
ence to a non-existent file, but no error is reported. ant makefiles
allow benign references in fileset definitions: if a listed file in a
fileset is not present, ant does not complain. Benign references
and unreferenced elements suggest (a) they are no longer needed
and should be removed, (b) they are not linked to other elements
(the topic of Error Exposure of the previous section), or (c) they
belong to other features. 

In general, we believe that a tremendous amount of automated
support for feature refactoring could be provided by detecting
unused element definitions or benign references.

5  Related Work

Three SPL adoption models have been proposed, namely, extrac-
tive, reactive, and proactive [12]. ATS refactoring exemplified the
extractive approach which “reuses one or more existing software
products for the product line’s initial baseline”. Few experiences
have been published on the extractive approach for SPLs. In [11],
re-engineering techniques are used to obtain an SPL from already
available programs. The Unix diff command is used to extract
differences among assets. Pairs of files are compared to obtain the
lines matched, lines inserted, lines deleted and lines replaced.
These hints are then used to ascertain common abstractions, and to
group assets with a shared common structure, code and functional-
ity. Similar concerns are addressed in [10] where the focus is on
abstraction elicitation in SPLs; the approach looks for cut-copy-
paste clones within distinct pieces of code that can be moved into
an abstract superclass. Diff-like facilities are also used for this
purpose. 

These efforts aim at improving reuse, modularity and legibility of
the software artifacts. By contrast, feature refactoring is not only
concerned about reuse but on engineering a system for variability.
Moreover, and unlike prior research, our work underlines the
importance and necessity of refactoring and encapsulating multi-
ple representations of programs in features. Our work can be seen
as an instance of a general approach to feature-oriented refactoring
of legacy programs [22].

Features can use aspects to implement program refinements. Fea-
ture refactoring is thus related to aspect mining and refactoring
[25][28], which strives to surface hidden concerns, much like our
goal to strive to surface particular features [19]. We see three dis-
tinctions between our work and aspect refactoring. First is the
scale on which we are refactoring: ATS features encapsulate tools
or groups of tools; very few pieces of simple advice (i.e., refine-
ments of designated variation points) are used. Second, we are
largely refactoring artifacts other than Java code. And third, while
aspect-based approaches rely on labeling methods and inferring
other labels via program analysis [26], the approach described in
this paper relies on regression tests and build scripts to surface fea-
tures. Through failures in a build process, the missing pieces are
identified and moved to the appropriate feature. This is more akin
with SPLs where the production process (basically supported
through build scripts) plays a major role. 

Feature refactoring includes three main activities, namely, feature
identification, feature refactoring as such, and refactoring valida-
tion. In our approach, the first two are mainly manual whereas
regression tests are used to validate the result and, if a build fails,
to guide refactoring. A more intensive use of regression tests are
presented in [24]. First, test cases are grouped to identify a feature
implementation. Clustering and textual pattern analysis is con-
ducted to find test-case clusters. A cluster execution serves to
locate source code that implements the feature through the use of
code profilers. Once a feature implementation is located, the code
is refactored (e.g. global variables are removed and implicit com-
munication is moved to explicit interfaces) into fine-grained com-
ponents.
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6  Conclusions

Feature refactoring is the process of decomposing a legacy pro-
gram into a set of building blocks called features. Each feature
implements an increment in program functionality; it encapsulates
new artifacts (code, documentation, regression tests, etc.) that it
adds to a program, in addition to the changes it makes to existing
artifacts that integrate the new artifacts into a coherent whole. The
result of feature refactoring is a software product line, where dif-
ferent variations of the original program can be synthesized by
composing different features.

The AHEAD Tool Suite (ATS) is the largest program, by almost
two orders of magnitude, that we have feature refactored. ATS
consists of 24 different tools expressed in over 200K LOC Java.
We feature refactored ATS so that hundreds of ATS variants (with
or without specific tools) could be synthesized. We expressed the
process of refactoring by a simple mathematical model that relates
algebraic factoring to artifact refactoring, and program synthesis
to expression evaluation. Refining and composing XML docu-
ments was critical to our work, and we were able to verify a cor-
rect feature refactoring by successfully executing ATS build scripts
and running regression tests for all synthesized ATS tools. We
showed how an integral part of refactoring ATS, namely its need
for bootstrapping, could be explained by refinements. And most
importantly, our work revealed generic problems, solutions, and
an entire suite of tools that could be created to simplify future fea-
ture refactoring tasks. 

Our work is a valuable case study on the scalability of feature-
based program refactoring and synthesis. We believe our work
outlines a new generation of useful program refactoring tools that
can simplify future feature refactoring efforts.
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