

Automatic Remodularizat ion and Optimized

Synthesis of Product-Famil ies

Jia Liu and Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.

{jliu, batory}@cs.utexas.edu

Abstract. A product-family is a suite of integrated tools that share a common
infrastructure. Program synthesis of individual tools can replicate common
code, leading to unnecessarily large executables and longer build times. In
this paper, we present remodularization techniques that optimize the synthe-
sis of product-families. We show how tools can be automatically remodular-
ized so that shared files are identified and extracted into a common package,
and how isomorphic class inheritance hierarchies can be merged into a single
hierarchy. Doing so substantially reduces the cost of program synthesis,
product-family build times, and executable sizes. We present a case study of
a product-family with five tools totalling over 170K LOC, where our optimi-
zations reduce archive size and build times by 40%.

1 Introduction

Compositional programming and automated software engineering are essential to the
future of software development. Arguably the most successful example of both is rela-
tional query optimization (RQO). A query is specified in a declarative domain-specific
language (SQL); a parser maps it to an inefficient relational algebra expression; the ex-
pression is optimized; and an efficient query evaluation program is generated from the
optimized expression. RQO is a great example of automatic programming — trans-
forming a declarative specification into an efficient program, and compositional pro-
gramming — a program is synthesized from a composition of algebraic operators.

Our research is Feature Oriented Programming (FOP) which explores feature modu-
larity and program synthesis [3]. We believe that FOP generalizes the paradigm exem-
plified by RQO so that compositional programming and automated software develop-
ment can be realized in any domain. FOP supports the paradigm of mapping declarative
specifications (where users specify the features they want in their program) to an actual
implementation. This is possible because programs are synthesized by composing im-
plementations of the required features. The novelty of FOP is that it models software
domains as algebras, where each feature is an operation. Particular programs that can
be synthesized are compositions of operations.

The hallmark of the RQO paradigm is the ability to optimize algebraic representations
of programs using identities that relate domain operators. The commutability of joins
and the distributivity of project over joins are examples in relational algebra. In this pa-
per, we demonstrate an interesting example of automatic algebraic optimization and

dsb
Presented at Generative Programming and Component Engineering (GPCE) 2004,Vancouver, British Columbia.

reasoning to accomplish the remodularization and optimized synthesis of product-fam-
ilies.

A product-family is a suite of integrated tools that share a common code base. A Java
Integrated Development Environment (IDE) is an example: there are tools for compil-
ing, documenting, debugging, and visualizing Java programs. Engineers perform two
tasks when these tools are designed and coded manually: (1) they create and implement
a design for each tool and (2) integrate each design with the design of other tools to min-
imize code replication. A paradigm for automated software development achieves the
same result in a similar way. Individual tools are synthesized from declarative specifi-
cations. This allows, for example, multiple tools to be developed simultaneously be-
cause their implementations are completely separate. This is possible because the com-
mon code base for these tools is replicated. However, to achieve the “optimized” man-
ual design where common code is not replicated requires an optimization that (1) breaks
the modular encapsulations of each synthesized tool and (2) identifies the infrastructure
shared by all tools and factors it out into common modules. So not only must tools be
synthesized automatically, so too must the post-synthesis remodularization optimiza-
tion be done automatically.

In this paper, we present two optimizations that remodularize tool applications automat-
ically. The first resembles the common practice of extracting shared classes into a com-
mon library, but is more efficient with algebraic analysis than brute-force file compar-
isons. The second merges isomorphic class inheritance hierarchies into a single hierar-
chy, which delivers better results than extracting shared classes. Both optimizations
substantially reduce the size of executables, the cost of tool synthesis, and product-fam-
ily build times.

We present a case study of a product-family with five tools totalling over 170K LOC.
Our optimizations reduce its generation and build times by 40%. Although the percent-
age reductions are specific to the case study, the techniques we present are general and
are applicable to product-families in arbitrary domains.

2 FOP and AHEAD

AHEAD (Algebraic Hierarchical Equations for Application Design) is a realization of
FOP based on step-wise refinement, domain algebras, and encapsulation [1].

2.1 Refinements and Algebras

A fundamental premise of AHEAD is that programs are constants and refinements are
functions that add features to programs. Consider the following constants that represent
base programs with different features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and produces a refined or fea-
ture-augmented program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A multi-featured application is an equation that corresponds to a refined base program.
Different equations define a family of applications, such as:

app1 = i(f) // app1 has features i and f
app2 = j(g) // app2 has features j and g
app3 = i(j(f)) // app3 has features i, j, f

Thus, the features of an application can be determined by inspecting its equation.

An AHEAD model or domain model is an algebra whose operators are these constants
and functions. The set of programs that can be synthesized by composing these opera-
tors is the model’s product-line [2].

2.2 Encapsulation

A base program typically encapsulates multiple classes. The notation:

P = { A, B, C }

means that program P encapsulates classes A, B, and C.

When a new feature R is added to a program P, any or all of the classes of P may change.
Suppose refinement R modifies classes A and B and adds class D. We write that R encap-
sulates these changes:

R = { ∆A, ∆B, D }

The refinement of P by R, denoted R(P) or R•P, composes the corresponding classes of
R and P. Classes that are not refined (C, D) are copied:

R•P = { ∆A, ∆B, D } • { A, B, C }
= { ∆A•A, ∆B•B, C, D } (1)

That is, class A of program R•P is generated by composing ∆A with A, class B of R•P is
∆B•B, etc. (1) illustrates the Law of Composition, which defines how the composition
operator • distributes over encapsulation [1]. It tells us how to synthesize classes of a
program from the classes that are encapsulated by its features (e.g., base programs and
refinements).

2.3 AHEAD Tool Suite (ATS)

ATS is a product-family that implements the AHEAD model. All ATS source files are
written in the Jak (short for Jakarta) language; Jak is Java extended with refinement dec-
larations, metaprogramming, and state machines. Jak programs are indistinguishable
from Java programs, except those that express refinements and state machines.

As examples of Jak
source, Figure 1a shows
class C (which is identi-
cal to its Java representa-
tion). Figure 1b shows a
refinement ∆C which
adds variable y and
method h to C. In gener-

class C {
int x;
void g() {..}

}

refines class C {
int y;
void h() {..}

}

class C {
int x;
int y;
void g() {..}
void h() {..}

}

Figure 1. Class Definition, Refinement, and Composition

(a) C (b) ∆C (c) ∆C•C

al, a class refinement can add new data members, methods or constructors to a class, as
well as extend existing methods and constructors. The composition of ∆C and C, denoted
∆C(C) or ∆C•C, is shown in Figure 1c; composition merges the changes of ∆C into C
yielding an updated class. See [1] for more details about Jak specifications.

In general, an AHEAD constant encapsulates a set of classes (as in Figure 1a). An
AHEAD function encapsulates a set of classes and class refinements (as in Figure 1a-
b). That is, an AHEAD function refines existing classes and can add new classes that
can be subsequently refined. Thus, an AHEAD function typically encapsulates a cross-
cut, meaning that it encapsulates fragments (refinements) of multiple classes. Compos-
ing AHEAD constants and functions yields packages of fully formed classes [2]. As
AHEAD deals with cross-cuts, it is related to Aspect-Oriented Programming. We ex-
plore this relationship in Section 4.

ATS has five core tools that transform, compose, or introspect Jak files:

• jak2java translates a Jak file to its corresponding Java file,

• jampack and mixin are different implementations of the composition operator
for Jak files,

• unmixin uncomposes a composed Jak file, and

• mmatrix provides code browsing capabilities.

These tools are fairly large, the sum of their individual sizes exceeds 170K LOC in Java.

ATS has been bootstrapped, so that each ATS tool has its own AHEAD equation and
the tool itself is synthesized from this equation. The AHEAD synthesis process expands
a tool’s equation T = j•i•...•k using (1) so that each tool is equated with a set of ex-
pressions {e1, e2, e3, …}, one expression ei for each class that the tool encapsulates:

T = j•i•...•k
 = {e1, e2, e3, …}

Evaluating each of the ei generates a particular file of the target tool.

2.4 Optimizing Product-Families

Although different tools or members of a product-family are specified by different fea-
ture sets, tools can share features, and thus share a significant code base. In object-ori-
ented systems this corresponds to shared classes or shared methods. For example, when
a tool is synthesized from an AHEAD equation, all the classes that comprise that tool
— both common and tool-specific — are generated. Thus, if there are n tools, each com-
mon class will be generated n times. Not only does this result in longer build times, it
also leads to code duplication in tool executables, since every tool has its own package
where the classes are replicated.

For example, each ATS tool performs an operation — composition, translation, or in-
trospection — on a Jak file. This means each tool shares the same parser (which com-
prises 4 classes). ATS tools also share the same parse tree classes, which are represented
by an inheritance hierarchy of abstract syntax tree (AST) nodes.

Both the parser and the inherit-
ance hierarchy are generated
from the grammar of the Jak lan-
guage. Parser generation from a
grammar is well-known; less
well-known is our algorithm for
synthesizing the AST inherit-
ance hierarchy. Consider Figure
2a which shows grammar productions Rule1 and Rule2, where C1, C2 and C3 are ter-
minals. From this, the inheritance hierarchy of Figure 2b is inferred. Each production
and pattern is mapped to a distinct AST class. Production-pattern relations are captured
by inheritance.

The generated AST hierarchy corresponds to a single AHEAD feature that is shared by
all tools. Its classes have bare-bones methods and data members that allow ASTs to be
printed and edited. These classes are subsequently refined with new data members and
methods that implement tool-specific actions.

The Jak grammar has 490 rules, so the inheritance hierarchy that is generated has 490
classes. After refinement, over 300 of these classes are identical across Jak tools; those
that are different result in the different actions per tool. Clearly, such redundancies in-
crease the generation time and build time for ATS, and lead to larger executables. In the
following sections, we present two ways to automatically eliminate such redundancies.

2.5 Shared Class Extraction (SCE)

A common practice to eliminate redundancies is to factor files into tool-specific and
tool-shared (or common) packages. For example, in ATS tools domain-knowledge tells
us that the common parser files can be manually extracted into a common package, but
these are just 4 files. The vast majority of the common classes reside at various locations
in the AST hierarchy, and which files are common depends on the tools being consid-
ered. A brute-force way to identify common classes is by “diffing” source files. This
way one can only recognize identical files after all files have been composed and gen-
erated. To make the problem worse, the corresponding composed Java files have differ-
ent package declarations, so the diff utility that is used in file comparison would have
to ignore differences in package names. This involves a lot of unnecessary work.

Ideally, we want a procedure that automatically identifies all common files before they
are generated, and extracts them into a common library. No knowledge about product-
family design (e.g., common parser) should be needed for this optimization. This ideal
can be achieved using algebraic reasoning.

Solution. We introduce an operator ⊕ to compute the common classes from multiple
tools:

Common = T1 ⊕ T2 ⊕ ... ⊕ Tn (2)

The operator ⊕ is both associative and commutative, meaning that the order in which
tools are applied does not matter:

(T1 ⊕ T2) ⊕ T3 = T1 ⊕ (T2 ⊕ T3) (3)

Rule1 : C1
| Rule2
;

Rule2 : C2
| C3
;

Figure 2. Grammars and Inheritance Hierarchies

(a) (b) Rule1

 C3 C2

 C1 Rule2

T1 ⊕ T2 = T2 ⊕ T1 (4)

Each tool of ATS is defined by a set of equations, one equation for each artifact (Jak
file, grammar file) that the tool encapsulates. Suppose tools T1 and T2 both encapsulate
files x, y, z, and w. Further suppose the equations for these files for T1 are:

x = x3•x2•x1
y = y2•y1
z = z1
w = w2•w1

and the equations for these files for T2 are:

x = x3•x2•x1
y = y3•y1
z = z1
w = w3•w1

Without generating the files, we conclude from these definitions that files y and w are
different across the two tools, because their equations differ. On the other hand, file x
in T1 is the same as in T2, because both equations are identical1. By the same reasoning,
file z is also identical in T1 and T2. Thus, files x and z are shared by T1 and T2 and can
be placed in a shared package. Hence:

Common= T1 ⊕ T2
 = { x3•x2•x1, y2•y1, z1, w2•w1 }⊕ { x3•x2•x1, y3•y1, z1, w3•w1 }
 = { x3•x2•x1, z1 }

In effect, we are comparing the specifications of files to test for file equality, rather than
the files themselves. The efficiency of doing so is significant: equational specifications
are short (10s of bytes), and simple string matching is sufficient to test for equality. In
contrast, the files that they represent are more expensive to generate and are long (1000s
of bytes) where simple string matching is inefficient.

The algorithm, called shared class extraction (SCE), finds the common equations in an
arbitrary set of tools. It maps a set of n packages (one package per tool) to a set of n+1
packages (one package per tool, plus the Common package):

SCE({T1, T2, … Tn}) → {Common, T1’, T2’, … Tn’}

where:

Common = T1 ⊕ T2 ⊕ ... ⊕ Tn

T1’ = T1 − Common
T2’ = T2 − Common
...

Tn’ = Tn − Common

and − is the set difference operator. Of course, there are variations of this algorithm. A
file, for example, can be shared by some but not all of the input packages. For our study,
we found the additional savings of these variants not worth the complexity.

1. Package names are implicit in AHEAD specifications.

The SCE optimization produces the same results as file diffing in terms of code ar-
chives. But SCE is more efficient because instead of diffing generated files, it identifies
all common files by comparing file equations. In Section 3, we present our experimental
results and a comparison between file diffing and our SCE optimization. It is worth not-
ing that the SCE optimization does not rely on the fact that AHEAD tools are being
built. The SCE algorithm imposes no interpretation on equations, which means it should
be able to optimize the synthesis of arbitrary product-families in arbitrary domains.
The same holds for our next optimization.

2.6 Merging Class Hierarchies (MCH)

A more sophisticated optimization relies on the knowledge that ATS tools are variants
of a common design. Namely, all tools could be built using a common parser and a sin-
gle AST class hierarchy. Each class of the hierarchy would have the form:

class typical extends ... {
common methods and variables;
jampack-specific methods and variables;
mixin-specific methods and variables;
...

}

That is, each class would have a set of common methods and variables for traversing
and editing ASTs, plus methods and variables that are specific to each tool. This might
be the design of choice if ATS tools were developed manually. However, in typical FOP
designs we generate a distinct class hierarchies for each tool by composing correspond-
ing features. As a result common methods and variables are replicated in each class hi-
erarchy, and consequently common code are shared by the generated tools. In this sec-
tion, we show how the former design can be realized — and therefore the tool suite op-
timized — automatically using algebraic reasoning.

Consider the following general problem. Given tools T1, T2, …, Tn, we want an operator
⊗ that merges their designs so that a single tool Tn+1 has the union of the capabilities of
each individual tool:

Tn+1 = T1 ⊗ T2 ⊗ ... ⊗ Tn (5)

Tn+1 has, in essence, all the features of all the tools that are merged. Like the common
class extraction operator ⊕ , the merge operator ⊗ is also associative and commutative:

(T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3) (6)

T1 ⊗ T2 = T2 ⊗ T1 (7)

Further, ⊗ distributes over encapsulation. That is, the merge of two tools is the same as
the merge of its corresponding artifacts; tool-specific artifacts are just copied:

T3 ⊗ T4 = { a3, b3, c3 } ⊗ { b4, c4, d4 }
= { a3, b3⊗ b4, c3⊗ c4, d4 } (8)

That is, (8) is a special case of (1).

Example. Consider the merge of the jak2java and mixin tools. The class hierarchies
that are synthesized for jak2java and mixin are depicted in Figure 3a-b. A typical

class from jak2java has a set of common methods plus the reduce2java() method
among others that translate or “reduce” an AST in Jak to an AST in Java. A typical class
from the mixin tool has the same common methods. However, it has a compose()
method among others that compose ASTs of different Jak files. The result of jak2java
⊗ mixin is a class hierarchy where each class has the union of the methods in the cor-
responding classes in each tool (Figure 3c). Merging is not limited to classes in the AST
hierarchy; all classes in these tools participate. The parser classes, for example, do not
belong to the AST hierarchy but are merged also. Since the parser classes in both tools
are identical, they are simply copied to the merged tool.

In the following, we explain how class inheritance hierarchies are merged. We consider
the same issues and make similar assumptions as Ernst [4] and Snelting and Tip [10],
who studied the semantic issues of merging class inheritance hierarchies prior to our
work.

2.6.1 Conflict-Freedom

Two classes can be merged into a single class if they agree on the contents (variables,
methods, and constructors) that they share. Equivalently, classes cannot be merged if
they have different definitions for a shared variable, method, or constructor. The prop-
erty that two classes can be merged is called conflict-freedom or static non-interference
[10].

In general, two AHEAD sets are conflict free if they agree on the specifications of the
artifacts that they share. Consider sets A1, A2, and A3:

A1 = { r1, s1 }
A2 = { r1, t1 }
A3 = { r2, t1 }

Sets A1 and A2 are conflict free because they share artifact r and the definitions for r are
the same (both are r1). However, sets A1 and A3 conflict because they share artifact r and
have different definitions for r (r1 is different than r2). Similarly, sets A2 and A3 conflict.
They have r and t in common; the t’s are the same but their r’s differ.

common methods
reduce2java()

Rule1

common methods
reduce2java()

C1

common methods
reduce2java()

Rule2

common methods
reduce2java()

C2

common methods
reduce2java()

C3

(a) jak2java hierarchy

common methods
compose()

Rule1

common methods
compose()

C1

common methods
compose()

Rule2

common methods
compose()

C2

common methods
compose()

C3

common methods
reduce2java()

Rule1

compose()

common methods
reduce2java()

C1

compose()

common methods
reduce2java()

Rule2

compose()

common methods
reduce2java()

C3

compose()

common methods
reduce2java()

C2

compose()

Figure 3. Tool-Specific and Merged Class Inheritance Hierarchies

(b) mixin hierarchy (c) composite hierarchy

We can automatically deduce if two classes are conflict free in the following way. Each
tool to be merged is defined by a set of equations, one equation for each Jak class to
synthesize. From a previous page, we defined an equation for class w for tool T1 as:

w = w2 • w1 (9)

And the corresponding equation for w in tool T2 was:

w = w3 • w1 (10)

Each wi is a class or a class refinement that encapsulates a set of members. Suppose w1,
w2, and w3 are:

w1 = { a1, b1 }
w2 = { c2, b2 }
w3 = { d3, b3 } (11)

That is, w1 encapsulates members a1 and b1; w2 encapsulates c2 and b2, etc.1 We use
(11) and the law of composition (1) to expand equations (9) and (10) to synthesize
class specifications:

w = { a1, b2•b1, c2 } // tool T1
w = { a1, b3•b1, d3 } // tool T2

That is, class w for tool T1 has data members or methods a, b, and c; class w for tool T2
has data members or methods a, b, and d. Given these specifications, we see that they
conflict — the two tools differ on their definitions for member b. This means the spec-
ifications of the w classes cannot be merged, and thus the w classes are placed in their
tool-specific packages. If specifications can be merged, we merge them and place the
merged class into a shared package.

Reflection. Java’s reflection mechanism allows programs to do various kinds of self-
inspection, e.g. to retrieve the name of an object’s class and to determine the number of
methods in a given class. Although reflection was not used in ATS tools, merged classes
that use reflection may execute differently before and after a merge. There is no easy
solution other than “rewriting existing code on a case by case basis as is deemed neces-
sary” [14]. In our approach, a user can specify the classes that use reflection by listing
them in a configuration file; these classes are not merged and are placed into tool-spe-
cific packages [12]. We discuss how to merge specifications in the next section.

2.6.2 The Merge Operator ⊗

Suppose the equations for class y in tools T1 and T2, shown below, are expanded and
are found not to conflict:

y = y2 • y1 // tool T1
y = y3 • y1 // tool T2

What is the merge (y3•y1) ⊗ (y2•y1) of these equations?

1. We do not compare the source code of method and data member definitions. bi means the definition of
member b in file i. We assume bi ≠ bj for all i ≠ j.

The merge operator exploits the fact that its equations do not conflict and that it inte-
grates equations by preserving the partial order relationships of individual equations.
For example, the equations of y show that y2 and y3 are refinements of y1. Hence we
have:

y2 > y1,
y3 > y1

where > indicates a partial order relationship between the class refinements. A merge of
these partial orders yields another partial order.1 The merge operator generates an equa-
tion that contains every term in its input and preserves the order imposed by each equa-
tion. If no order is specified for a particular pair of elements, then both permutations are
legal. Thus, either of the following equations produce equivalent output:

(y2•y1) ⊗ (y3•y1)= y3•y2•y1
= y2•y3•y1

The correctness of a merge comes directly from its specification. Since there is no con-
flict, different refinements for a class in different tools are orthogonal — they do not
affect each other and the order of their composition does not matter. So the merging of
class specifications is correct as long as the compositional ordering in each equation is
preserved. Thus, the result of T1 ⊗ T2 is:

Common = T1 ⊗ T2
 = {x3•x2•x1, y2•y1, z1, w2•w1} ⊗ {x3•x2•x1, y3•y1, z1, w3•w1}

= { (x3•x2•x1) ⊗ (x3•x2•x1), (y2•y1) ⊗ (y3•y1), z1 ⊗ z1,
(w2•w1} ⊗ (w3•w1) }

= { x3•x2•x1, y3•y2•y1, z1 }

For files that are not merged (like w above) because of conflicts, they do not appear in
the merged result but do appear in the tool-specific packages T1’ and T2’:

T1’ = { w2•w1 }
T2’ = { w3•w1 }

Thus, three packages Common, T1’ and T2’ are synthesized.

Once tools are merged, it remains to be shown that the merged code is type correct and
that each merged tool has the same behavior as its unmerged counterpart [10]. We dem-
onstrate type correctness and semantic equality of the merged tools in the appendix.

1. This is true for all ATS tools and for all tools that we can imagine. If a cycle were created by a merge, it
would indicate either that the cycle could be eliminated by permuting features without changing tool seman-
tics, or that there is a fundamental error in the design of the domain model. We have encountered the former
which is easy to fix [2], but never the latter. In either case, the merge of the equations would fail, just as if the
equations were recognized to be in conflict.

3 Experiments

We applied the two optimizations on the
synthesis on the five ATS tools described
earlier. Currently the size of these tools is
170K LOC. In our experiments, we used a
desktop computer with an Intel Pentium III
733 Mhz microprocessor, 128 MB main
memory running Microsoft Windows 2000
and Java SDK 1.4.1. Table 1 shows the
number of classes, lines of code (LOC) and
archive size of each ATS tool. The LOC
measurement is calculated from the Java
source code of each tool, and the archive size is obtained from the generated Java JAR
files. In the original build without optimizations, a package is compiled for each tool.

Table 2 demonstrates the results of shared
class extraction optimization. The first five
rows summarize each tool-specific package
while the last row is the shared package.
Nearly 70% of the classes in each tool are
shared. Factoring these classes into a com-
mon package reduces the volume of code
and executables by over 45%.

Table 3 lists the corresponding results for
the merging class hierarchy optimization.
All conflict-free classes are merged into the
shared package, which leaves only conflict-
ing classes in each tool-specific package.
Conflicts in ATS tools are rare — of 500
classes in each tool, only 10 or 11 (includ-
ing 5 dynamic interferences discussed in
the appendix) conflict. This yields even
greater reductions — more than 65% — in
code and archive volume. Note that in Table
2 and Table 3, the number of classes in a tool-specific package plus the shared package
is slightly larger than that of the original tool package shown in Table 1. For example,
in Table 2 the total number of jak2java classes (165) and shared classes (347) is 512,
whereas the original jak2java package has 511 classes as Table 1 shows. This is be-
cause some classes are not needed by all the tools, but they still can be factored out by
SCE or merged by MCH optimization processes.

Package Classes LOC(K) Archive(KB)

jak2java 511 38 546

jampack 496 38 556

mixin 495 35 483

mmatrix 499 34 467

unmixin 496 34 457

total 2497 178 2,509

Table 1. Product-Family Statistics w/o
Optimization

Package Classes LOC(K) Archive(KB)

jak2java 165 13 246

jampack 150 13 257

mixin 149 10 189

mmatrix 153 9 170

unmixin 150 9 160

shared 347 25 294

total 1,114 80 1,316

Table 2. Product-Family Statistics of SCE
Optimization

Package Classes LOC(K) Archive(KB)

jak2java 10 2 32

jampack 11 3 46

mixin 11 3 35

mmatrix 10 2 25

unmixin 10 2 24

shared 510 43 689

total 562 55 851

Table 3. Product-Family Statistics of MCH
Optimization

Table 4 illustrates the times of the unopti-
mized and optimized builds that include
overhead for optimizations. It also shows
the brute-force method to find common
files by diffing generated files (Diff). In an
unoptimized build, each class has to be
composed from its featured source, com-
piled and finally packaged into jar files.
Brute-force diffing reduces build times by
28%. SCE eliminates the need for unnecessary file generation and reduces build times
by 39%. Comparing file specifications takes only three seconds since there is no file I/
O. MCH has better performance as it reduces build times by 47%.

4 Related Work

Three topics are relevant to our work: composing class hierarchies, on-demand modu-
larization, and AOP.

4.1 Composing Class Hierarchies

Refining a class hierarchy is equivalent to hierarchy composition. AHEAD, Hyper/J[7],
and AspectJ[6] are among the few tools that can compose class hierarchies. Few papers
address the semantic issues of hierarchy composition.

Snelting and Tip present algorithms for merging arbitrary class hierarchies [10]. Our
work is a subproblem of what they addressed, and there are four basic differences. First,
there is no known implementation of their algorithms [11]. Second, inheritance hierar-
chies that we merge are isomorphic by design. As mentioned earlier, the features that
are composed in AHEAD have an implementation that conforms to a master design; this
is how we achieve a practical form of interoperability and composability. Without prag-
matic design constraints, features that are not designed to be composable won’t be (or
arbitrarily difficult problems may ensue). This is a variation of the architectural mis-
match problem [5]. Third, the algorithm in [10] requires assumptions about the equiv-
alence of methods in different hierarchies; we can deduce this information automatical-
ly from equational specifications. Thus our representations lead to more practical spec-
ifications of program relationships. Fourth, the means by which semantic equivalence
is achieved in [10] requires verifying that each method call in the original and merged
tools invoke the same method. Thus, if there are n tools, c is the number of classes per
tool, m the number of methods per class, and k the number of calls per method, the cost
of their algorithm to verify behavioral equivalence is O(n*c*m*k). We achieve the
same effect by comparing method signatures of each class to test for dynamic interfer-
ence; our algorithm is faster O(n*c*m) because it is more conservative.

Ernst considered a related problem of merging and reordering mixins [4]. Mixins ap-
proximate class refinements; the primary difference is that refinements can add and re-
fine existing constructors, whereas mixins cannot. Ernst defines how mixins can be
composed and how compositions of mixins can be merged. The technique of merging
compositions is based on preserving partial orderings of compositions, just like our

Build
Time

Original Diff SCE MCH

optimize 0 24 3 15

compose 170 170 134 110

compile 300 150 150 129

jar 26 14 14 7

total 496 358 301 261

Table 4. Build Time Comparisons

work. However, the concept of composition is implicit in [4], and merging is the only
explicit operator to “glue” mixins together. To us, composition and merge are very dif-
ferent operators that are not interchangeable — (A•B)⊗ (B•C) ≠ (A•B)•(B•C). Thus,
our model is more general.

4.2 On-Demand Remodularization

Ossher and Tarr were the first to recognize and motivate the need for on-demand re-
modularization (ODM), which advocates the ability to translate between different mod-
ularizations [7]. While Hyper/J and AHEAD are tools that can be used for ODM, there
are few published results or case studies on the topic.

Mezini and Ostermann proposed language constructs called collaboration interfaces to
mix-and-match components dynamically [8]. The approach is object-based, where ob-
jects that fulfill contracts specified in collaboration interfaces are bound. The loose cou-
plings of the implementations and interfaces allow collaborations to be reused inde-
pendently. Here the purpose of remodularization is to meet the needs of different client
programs, where in contrast we remodularize to optimize the program synthesis.

Lasagne [13] defines an architecture that starts with a minimal functional core, and se-
lectively integrates extensions, which add new features to the system. A feature is im-
plemented as a wrapper and can be composed incrementally at run-time. Dynamic re-
modularization is supported by the context sensitive selection on a per collaboration ba-
sis, enabling client specific customizations of systems. Our work also composes
features, but it is done statically and AHEAD equations are algebraically optimized.

Our work remodularizes packages automatically by extracting common files into a
shared package, thus eliminating redundancy and improving system build times. A sim-
ilar result is described by Tip et al. [12], where Java packages are automatically opti-
mized and compressed through the compaction of class inheritance hierarchies and the
elimination of dead-code. Our work and [12] allows the user to specify where reflection
occurs so that the corresponding classes may be properly handled to avoid errors. Our
work is different because we split class inheritance hierarchies into multiple packages
in order to optimize program achieve size and build time.

4.3 Aspect-Oriented Programming

AHEAD refinements have a long history, originating in collaboration-based designs
and their implementations as mixins and mixin-layers (see [9] for relevant references).
They also encapsulate cross-cuts, a concept that was popularized by Aspect-Oriented
Programming (AOP) [6]. There are three differences between AOP and AHEAD. First,
the concept of refinement in AHEAD (and its predecessor GenVoca) is virtually iden-
tical to that of extending object-oriented frameworks. Adding a feature to an OO frame-
work requires certain methods and classes to be extended. AHEAD takes this idea to its
logical conclusion: instead of having two different levels of abstraction (e.g., the ab-
stract classes and their concrete class extensions), AHEAD allows arbitrary numbers of
levels, where each level implements a particular feature or refinement [1].

Second, the starting points for AHEAD and AOP differ: product-lines are the conse-
quence of pre-planned designs (so refinements are designed to be composable); this is

not a part of the standard AOP paradigm. Third, the novelty and power of AOP is in
quantification. Quantification is the specification of where advice is to be inserted (or
the locations at which refinements are applied). The use of quantification in AHEAD is
no different than that used in traditional OO frameworks.

5 Conclusions

The synthesis of efficient software from declarative specifications is becoming increas-
ingly important. The most successful example of this paradigm is relational query opti-
mization (RQO). Replicating this paradigm in other domains and exploring its capabil-
ities is the essence of our research.

In this paper, we focused on a key aspect of the RQO paradigm, namely the optimiza-
tion of algebraic representations of programs. We showed how algebraic representa-
tions of the tools of a product-family could be automatically remodularized (refactored)
so their shared infrastructure need not be replicated. We presented two optimizations
that remodularized synthesized tool packages: extracting shared files and merging class
hierarchies. Our optimizations are examples of equational reasoning; they were defined
algebraically, were automatic, and required minimal domain knowledge. Further, our
optimizations were efficient and practical: in both cases, we improved upon algorithms
that previously existed. We presented a case study of a product-family of five tools and
achieved a reduction of 40% in build times and archive size.

We believe our results contribute further evidence that algebraic representations of pro-
grams coupled with algebraic reasoning is a powerful way to express software designs
and manipulate them automatically.

Acknowledgements. We thank Jacob Sarvela, Kurt Stirewalt, William Cook, and Mark
Grechanik for their helpful comments on earlier drafts of this paper.

6 References

[1] D. Batory, J.N. Sarvela, and A. Rauschmayer, "Scaling Step-Wise Refinement", IEEE
Transactions on Software Engineering, June 2004.

[2] D. Batory, J. Liu, J.N. Sarvela, “Refinements and Multi-Dimensional Separation of Con-
cerns”, ACM SIGSOFT 2003 (ESEC/FSE2003).

[3] D. Batory, "The Road to Utopia: A Future for Generative Programming". Keynote presen-
tation at Dagstuhl for Domain-Specific Program Generation, March 23-28, 2003.

[4] E. Ernst, “Propagating Class and Method Combination”, ECOOP 1999.

[5] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch: Why it is hard to Build
Systems from Existing Parts”, ICSE 1995.

[6] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm, W.G. Griswold. “An overview
of AspectJ”, ECOOP 2001.

[7] H. Ossher and P. Tarr, “On the Need for On-Demand Remodularization”, Position Paper
for Aspects and Dimensions of Concern Workshop, ECOOP 2000.

[8] M. Mezini and K. Ostermann. “Integrating independent components with on-demand re-
modularization”, In Proceedings of OOPSLA '02, 2002.

[9] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-Oriented Implementation Tech-
nique for Refinements and Collaboration-Based Designs”, ACM TOSEM, March 2002.

[10] G. Snelting and F. Tip, “Semantics-Based Composition of Class Hierarchies”, ECOOP
2002, 562-584.

[11] G. Snelting, personal communication.

[12] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. “Practical experience with an application
extractor for Java”, In Proceedings of OOPSLA, pages 292--305, November 1999.

[13] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten, and B. N. Jrgensen. “Dynamic and Se-
lective Combination of Extensions in Component-Based Applications”. In Proceedings of
the 23rd International Conference on Software Engineering (ICSE'01), Toronto, Canada,
May 2001.

[14] O. Agesen. Concrete Type Inference: Delivering Object-Oriented Applications. Ph.D. the-
sis, Stanford University, 1995.

Appendix

This appendix demonstrates type correctness and semantic equality of the merged tools.
Static type correctness is simple. All ATS tools are variants of a master design. A design
defines a set of class hierarchies; AHEAD refinements add more members to existing
classes or add new classes only as bottom-level leaves to pre-defined hierarchies.
Changing superclass relationships in inheritance hierarchies is not permitted, nor is de-
leting classes. Thus, the inheritance hierarchies that are present in a tool prior to merg-
ing remain the same after merging. Similarly, since methods are never deleted, the set
of method signatures that are present in a class prior to merging are present afterwards.
Thus, all objects created in an unmerged tool will be of the same type as that in the
merged tool; all methods in the unmerged tool are present in the merged tool. If the un-
merged tool is type correct, its corresponding code in the merged tool is type correct.

Proving behavioral equivalence between the unmerged and merged tools is more diffi-
cult. Although the general problem is undecidable, Snelting and Tip [10] have shown
for merging class hierarchies, behavior equivalence can be checked via static analysis
of dynamic interference. To verify that two tools (before and after merging) do not have
dynamic interference, [10] requires us to show that (a) both define methods in the same
way and (b) both invoke the same methods in the same order.

Same Method Definitions. The
only problematic scenario is that
in an unmerged program a class
inherits a method from its super-
class, but after merging this
method is overridden. Figure 4a
illustrates a class hierarchy be-
fore merging, where the method
foo() is inherited by class Two.
After merging, a different version
of foo() is inserted in class Two
that overrides the inherited method.

class One {
void foo() {...}

}

class Two extends One {
void main() {
 Two t = new Two();
 t.foo();

}
}

class One {
void foo() {...}

}

class Two extends One {
void main() {
 Two t = new Two();
 t.foo();

}
void foo() {...}

}

(a) (b)

Figure 4. Method Overridden in a Class Composition

A variant of (1) allows us to prop-
agate the contents of class ances-
tors to its subclasses. Figure 5a
shows a hierarchy of three classes
and the members that they locally
encapsulate. Figure 5b shows the
contents of class encapsulation
after propagation. Note that a
method refinement (∆m1 for example) extends the original method m1 by performing
some task intermixed with a super call.

Given this, we can determine the variables and methods of every class in each tool and
the merged tool, along with their specifications by tracing back along the inheritance
chains. Let Ci denote a class from tool Ti and Cm denote the corresponding class in the
merged tool. If Ci does not conflict with Cm, we know Cm includes the same variables and
methods of Ci and defines them in the same way. By performing this test over all classes
in all original tools, we can prove that all methods in the original tools are present and
are defined in the same way as in the merged tool.

Same Methods Called.
We still need to prove
that the same methods are
called. Consider the class
hierarchy of Figure 6a.
When the main method
is executed, the
foo(One x) method is
invoked. Now consider
the addition of a special-
ized foo(Two x) method in Figure 6b. When main is now executed, foo(Two x) is
called. Here is an example where all of the original methods in Figure 6a are present in
Figure 6b, but at run-time a different, more specialized method is invoked, thus leading
to different behavior. This is the problem of ambiguous method invocations.

To detect this problem, we again return to the members that we computed for class Ci

and Cm. Although we have been using simple names, like “m1”, to denote a class mem-
ber, the actual name of a member is its type signature. By comparing type signatures of
two methods we can tell whether one method is a specialization of another. If there is
any method in the set difference Cm−Ci (i.e., the methods in the merged class that are not
members of the original class) that could be a specialization of a method in Ci, ambigu-
ous invocation as in Figure 6 is possible. In our optimization process, potential ambig-
uous invocations are detected, and the corresponding classes are not merged and are put
in tool-specific packages.

So assuring that all methods in the original tools are present and are defined in the same
way as in the merged tool, and ambiguous method invocations are not possible, we
guarantee the absence of dynamic interference, thus behavior equivalence between the
unmerged and merged tools.

 X = { m1, m2 }

Y = { ∆m1, m3 }

Z = { ∆m2 }

X = { m1, m2 }

Y = { ∆m1•m1, m2, m3 }

Z = { ∆m1•m1, ∆m2•m2, m3 }

(a) (b)

Figure 5. Propagating Contents Down A Hierarchy

class One {
void foo(One x) {...}

}

class Two extends One {
void main() {
 Two t = new Two();
 t.foo(t);

}
}

class One {
void foo(One x) {...}

}

class Two extends One {
void main() {
 Two t = new Two();
 t.foo(t);

}
void foo(Two x) {...}

}

(a) (b)

Figure 6. The Problem of Method Specialization

