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Abstract: Software is becoming increasingly pervasive and complex. The greatest challenge for the
industry today is how to produce more code without compromising quality or cost. GenBorg is a
programming paradigm whose answer is to scale the units of reuse from components of individual
applications to components of application suites (e. g., MS Office). While traditional approaches
trade size of code units for flexibility, GenBorg uses techniques from generative programming and
feature-oriented programming in order to provide models that instantiate code and non-code artifacts
of customizable application suites. Because developing software is not limited to writing code, but
current ways of automating development are, a lot of human energy is wasted for keeping related
data such as documentation and formal properties consistent with source code. GenBorg manages to
evolve all these artifacts automatically and in parallel. GenBorg’s ideas are backed by a theoretical
foundation, the GenBorg algebra. The Java application Probe is a first implementation of the GenBorg
programming paradigm and uses a simple, file-based data structure for defining GenBorg models. Its
graphical user interface makes it easy to navigate through and instantiate from large models.
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Chapter 1

Introduction

Software is becoming increasingly pervasive and complex (table 1). The greatest challenge for the
software industry today is how to produce more code without compromising quality or cost. One way
of achieving this—and the main driving force behind the industry’s adoption of OOP1—is to improve
code reuse. Most approaches for improving reuse have focussed on vertical scaling, the idea that if
one increases the size of the building blocks in, for example, a library, more code is reused each time
one of these blocks is deployed. Accordingly, OOP’s units of reuse have been scaled up from classes
to components to frameworks.

Alas, the increased size of a block of code (which we will henceforth call a component, regardless
of its size) usually means that it becomes more specialized and the number of potential applications
decreases: The performance of a component becomes unacceptable, because it cannot be optimized for
a specific task. Adding new features that have not been considered when the component was initially
designed is often difficult. Unneeded features might incur performance penalties. Or the component
sometimes is just incompatible with the rest of the software.

The remedy to these problems is horizontal scaling. We want to create variations of a component so
that it can meet many different needs. These variations can, for instance, mirror the design decisions
during the creation of the component. Each decision can be seen as a feature of the final component,
feature variations provide alternatives to the choices that have been made. Traditional implementation
techniques face what Biggerstaff calls the vertical/horizontal scaling dilemma [Biggerstaff, 1997]: To
increase code reuse, we want to scale a component vertically. To counter the negative effects of vertical
scaling, we want to scale the component horizontally. But implementing every meaningful permutation
of features and feature variations results in a combinatorial explosion of custom components. Singhal
gives an example of this in [Singhal, 1996]: Booch’s reusable library begins to exhibit signs of the

1object-oriented programming

Product Lines of code
MS-DOS 1.0 (1981) 4,000
Microsoft Windows 3.1 (1992) 3 million
Microsoft Windows 95 15 million
Microsoft Windows 98 18 million
Microsoft Windows NT (1992) 4 million
Microsoft Windows 2000 35 million
Windows XP (2001) 45 million
Red Hat Linux 6.2 (2000) 17 million
Sun Solaris (1998-2000) 7-8 million

Table 1.1: The evolution of the Microsoft Disk Operating System exemplifies how software is growing
in size (and therefore in complexity). The last two entries list the sizes of other operating systems, as
a point of reference [Wheeler, 2001]

3
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Figure 1.1: Horizontal or feature scaling of Booch Library

scaling dilemma even for comparatively small components. The library contains 17 abstractions that
are mostly data structures such as stacks, queues and trees. These abstractions are organized according
to four global features (figure 1.1):

1. Concurrency—if and how data inside a component is shared by multiple tasks. (4 variations)

2. Boundedness—can a component grow in size? (2 variations)

3. Garbage collection—how will data be garbage-collected? (3 variations)

4. Iterator—whether or not the data structure provides an iterator. (2 variations)

In addition to these global features, there are features that are specific to certain abstractions, such
as deques or queues; for example:

• Balking—can an element be removed only from the front or back of a deque or queue or also
from inside these data structures? (2 variations)

• Priority—is the deque or queue ordered by the value of a field of its entries? (2 variations)

Booch reports that there are 26 meaningful combinations of these features for queues. Introducing just
one new feature (e. g., persistence) with two variations would mean that there are now 52 variations.
Thus, because this library explicitly scales horizontally, it becomes quickly impossible to populate it
using traditional programming paradigms.

Current research efforts concentrate on increasing the expressiveness of object-oriented languages to
better handle horizontal scaling. These so-called post-object programming (POP) mechanisms provide
the means to decompose software: We want to break it up into pieces representing features. Producing
a custom-configured component is then a matter of composing the features it should have. Instead of
having to populate the library with one concrete component (an instance of a composition) for every
possible permutation of features, we just offer a set of features and let the client of the library decide
what he needs. Features are also easier to understand than a monolithic body of software, because
they are independent pieces of code dedicated to one purpose only.
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In chapter 2, we present several POP programming paradigms and show what problems they solve.
The first examples, aspect-oriented programming and multi-dimensional separation of concerns, spe-
cialize on decomposition. We argue that further domain-specific abstractions and optimizations that
span several features are necessary to scale more successfully in both dimensions. These are areas
generative programming, our last example, specializes in.

Chapter 3 introduces our solution, the GenBorg generative programming environment. GenBorg in-
cludes ideas from all of the paradigms of our survey and adds the following original contributions:
Features are scaled further, non-code artifacts can be generated easily and there is a strong theoretical
foundation for all these mechanisms, the GenBorg algebra.

Probe, a first tool of the GenBorg environment, helps in navigating and defining a structured base of
software. One can also compose features or perform other transformations on the software and gets
a visual representation of the result. The ideas behind Probe are explained in chapter 4. Chapter 5
contains a tutorial that demonstrates how the program is used in practice.

We summarize our contribution in chapter 6 and give an outlook on currently planned enhancements
of GenBorg and Probe.
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Chapter 2

Background

During the last few years, many ideas have been proposed to enhance object-oriented programming
and design. In the following sections, we present three approaches and discuss what contributions
they make: Aspect-oriented programming, multi-dimensional separation of concerns, and generative
programming. We also give an example for an aspect-oriented programming mechanism, mixin layers,
and introduce the generative programming system GenVoca.

In the next chapter, we present our solution to the issues raised by these post-object mechanisms,
GenBorg, which is based on GenVoca.

2.1 Aspect-Oriented Programming

2.1.1 Problem

Aspect-oriented programming (AOP) recognizes that source code can be seen as an aggregation of
concerns, parts of software that are relevant to a particular concept, goal or purpose [Ossher and
Tarr, 2000]. Concerns are thus roughly equivalent to what we until now have called a feature. We
would like to support horizontal scaling by encapsulating concerns in software units (which AOP calls
aspects). Mixing and matching (composing) aspects could then produce feature-varied components.

Object-oriented languages are not flexible enough for encapsulating concerns which cut across their
unit of encapsulation, the class. That means that concerns are often scattered and tangled in object-
oriented software. The code of a concern is scattered if it does not reside in one place but is spread
over the program. An example for this would be tracing functionality. It has to be added separately
to each function one wants to observe. Entanglement occurs when several concerns overlap in one
spot, e. g., when the same class of a drawing program takes care of both displaying and saving itself.

Tangling and scattering make it very difficult to retrofit functionality like tracing in programs or to
eliminate it from them. We would also like to add or remove this kind of functionality non-invasively,
without touching the source code, because the source might not be available and because it reduces
the probability of introducing new bugs.

2.1.2 Solution

AOP languages eliminate tangled and scattered code by unifying all the statements related to a
concern in one place and by quantifying them like this: In program P, whenever condition C arises,
perform action A. Composing quantified statements with a program leads to the code of the action
being (re)distributed throughout the program. Distribution is static and happens at compile-time,
but the condition can contain dynamic elements such as a reference to the state of the call stack.

Quantification alone is not enough to reach the goals stated above, though: Traditional object-oriented

7
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inheritance, for example, provides a limited form of quantification. If one edits a superclass, the
changes get propagated to the subclasses. For this to work, the programmer has to be cooperative,
he must follow an implicit contract (namely, to call every super method he overrides) that cannot be
programatically enforced and is invasive. That is why AOP supports obliviousness, existing code does
not have to be prepared for the addition of new functionality.

The language construct to implement quantification and obliviousness is called a join point. It is
a certain well-defined point in the execution flow of a program and serves as a hook for adding
functionality. The following elements provide the environment in which join points are used [Kiczales
et al., 2001]:

• Join point model : Defines what join points are and how they can be described.

• Pointcuts: A means for selecting join points; the condition part of a quantified statement. It
filters out a subset of all the join points in the program flow.

• Advice: The specification of behavior at a join point; the action part of a quantified statement.

• Aspect : The unit that encapsulates point cuts and behavior; the AOP version of packages or
modules.

• Weaving : The process of attaching aspects to programs (and therefore of defining the program
part of a quantified statement). This involves various decisions, especially if more than one
advice is added to a join point: In what order are the changes to be applied? When? Should
behavior be overridden? etc.

2.1.3 Examples

We have slightly modified a few examples from [Kiczales, 2001] of how the AOP concepts are imple-
mented in practice. These examples are written in the AspectJ programming language which extends
Java with AOP constructs.

pointcut intAccess():
call(void Point.set*(int)) ||
call(int Point.get*())

This pointcut named intAccess identifies all calls to methods of class Point that have an int pa-
rameter and a name that starts with set or that return an int and have a name that starts with
get. The following advice references the pointcut we have just defined and adds behavior after each
method call that the pointcut identifies.

after(): intAccess() {
System.out.println("An int has been accessed!");

}

The final example defines an aspect that provides simple tracing by printing a message before certain
operations occur in class Display.

aspect SimpleTracing {

pointcut traced():
call(void Display.update()) ||
call(void Display.repaint(..));

before(): traced() {
System.out.println("Entering:" + thisJoinPoint);

}
}
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Layer 1

Layer 2

Layer 4

Layer 3

Class CClass A Class B

Role A1

Role A2

Role A4

Role B1

Role B2

Role B3

Role B4

Role C1

Role C3

Role C4

Figure 2.1: Example collaboration decomposition. Each of the classes A, B and C participates in
several collaborations (layers). E. g., A plays role A1 in layer 1, role A2 in layer 2 and role A4 in layer
4

The aspect SimpleTracing encapsulates the pointcut traced and an advice. The pointcut selects all
void methods in class Display that are either parameterless and called update or have any number of
methods and the name repaint. The advice refers to pointcut traced and adds an output statement
after everyone of the traced method calls. Other features of AspectJ are pointcuts filtering on
properties of methods other than their signatures, join points not related to method calls, etc.

2.2 Mixin Layers

Although mixin layers [Smaragdakis and Batory, 1998] predate AOP, it is an AOP mechanism. We
shall see later how mixin layer and AOP terminology correspond.

If one looks at OOP’s smallest unit of abstraction, the object, one realizes that it is rarely self-sufficient.
Instead, to implement a feature, several objects work together and adhere to a protocol (conventions
about how to interact); they form a collaboration. The part of an object that implements a protocol is
called the object’s role in that collaboration. The same object can play a role in several collaborations
(figure 2.1).

Thus, to unite in one place all the parts of the classes that participate in a collaboration, one has to
decompose (break up) each class so that each piece plays exactly one role. Object-oriented program-
ming languages already have a mechanism that can be used to take classes apart—inheritance. But
inheritance poses two problems:

1. It breaks encapsulation and

2. you cannot arbitrarily mix and match the parts.

The reason for this is that (1) derived classes refer to the implementation of a superclass (2) with a
static link. Mixin classes1 [Flatt et al., 1998] solve the problem by generalizing inheritance. That is,

1also called abstract subclasses
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a

b c d

Layer 1

a b d e

Layer 2

a

b d e

a

b c d

Layer 2 o Layer 1

Figure 2.2: The new layer Layer 2 ◦ Layer 1 is created by composing Layer 1 and Layer 2. Note
how white b and gray a are both inserted after white a in the resulting inheritance chain. But gray a
is part of a class called a and is therefore a direct successor of white a. Conversely, white b is part of
class b, a subclass of class a, and inserted after the last addition to class a has been made.

a mixin is a template for a class whose superclass is specified via a parameter (1) that is typed by an
interface (2). Eventually, one turns a set of mixins into a concrete class by filling in the superclass
parameters.

A mixin layer is the construct that encapsulates a collaboration, each of the roles in the collabora-
tion is implemented by a mixin class. To create a component, we compose (combine) the layers that
implement the features we want that component to have, exactly like we do in aspect-oriented pro-
gramming. Note that two composed layers are again a layer, only now the mixins that were originally
part of the same class are joined (figure 2.2). Each class inside a layer has two coordinates: (1) What
class it should be attached to when composing layers and (2) what role it plays in the collaboration.
[Smaragdakis and Batory, 1998] simplifies that by standardizing both on the class name (classes refer
to each other by name and each mixin class finally is part of a composed class of the same name). It
should now be obvious how mixin layer constructs correspond to AOP mechanisms: A role is a join
point, a mixin class is advice. A collaboration is a concern and its encapsulation, the mixin layer, is
an aspect. The process of weaving corresponds to composing layers.

Just like a mixin class has the parameter superclass, a layer can be viewed as having a parameter
superlayer. This is just one example of how mixin layer and mixin class are isomorphic which implies
that we can build layers of layers etc. The next chapter will follow up on this idea of scaling layers.

2.3 Multi-Dimensional Separation of Concerns

Multi-dimensional separation of concerns (MDSOC) takes a different view on concerns than AOP:
The definition of a concern is the same, but MDSOC recognizes that there are different kinds, or
dimensions, of concerns. Examples for dimensions of concerns are:

• Data (classes in object-oriented programming)

• Features (printing, display)

• Aspects (persistence, logging etc.)
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Domain A:
Problem space

(domain-specific language,
parameters)

translated
to

Domain B:
Solution space

(general-purpose language,
concrete component)

Figure 2.3: Generative programming translates between a problem and a solution space

• Configurations (specifying members of a family of programs, see the section on generative pro-
gramming)

• Documentation

• Design rules (see next chapter)

• Performance properties

Most of today’s programming languages are limited to decomposing along one dimension of concern
and unable to express concerns that cut across dimensions, something Tarr, Ossher, Harrison and
Sutton call the “tyranny of the dominant decomposition” [Tarr et al., 1999].

MDSOC defines a coordinate system that helps understand the notion of dimensions. First, we have to
make some preparatory definitions: Software consists of artifacts, parts of software that are expressed
in a (formal or informal) language. Each syntactic construct is called a unit. If the construct is atomic,
it is called a primitive unit. Non-primitive units comprise other units2 and are called compound. A
concern space contains all units of a body of software plus means for identifying, encapsulating and
integrating (composing) concerns. These mechanisms thus aid in organizing units by separating
concerns.

Hyper/J, an augmentation of Java that supports MDSOC [Ossher and Tarr, 2000], uses a concern
space that is called hyperspace. It is a multi-dimensional matrix. Each axis represents a dimension of
concerns, each concern is a point along the axis. As an example, classes, the dominant decomposition of
object-oriented programming are points along the “data” dimension of concerns. Units are placed into
this coordinate system according to what concerns they affect. One coordinate per dimension names
the affected concern (or “none” if this dimension is unaffected). Therefore, each dimension partitions
the units according to a decomposition scheme and each concern is a hyperplane containing every
unit relevant to it. Hyper/J encapsulates arbitrary hyperplanes as hyperslices which are analogous
to aspects. Hyperspaces are convenient in that they explicitly state the dimensions of interest, what
concerns are part of a dimension and that each unit belongs to exactly one concern per dimension (or
none).

Two properties distinguish Hyper/J from AOP languages as exemplified by AspectJ: First, AspectJ has
one base class hierarchy, a model, that is refined by aspects. Aspects typically can only be understood
in their relation to the model. It is also impossible to integrate two aspects to form a new one. In
contrast, hyperslices are independent, arbitrarily composable, and not restricted by a common base
hierarchy. Second, Hyper/J permits on-demand remodularization. One can simultaneously decompose
along different dimensions, which is like having several overlapping (read and write) views on the
software.

2.4 Generative Programming

Giving a concise definition of generative programming (GP) is difficult, because the term is used
very broadly throughout the literature. Generative programming is a compilation process between

2primitive and compound
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two domains: A problem space is translated to a solution space (figure 2.3). Domain information is
specified in a language specific to that domain. Further examples below will clarify this notion, but
first we want to quote the definition of generative programming given by [Czarnecki et al., 1998].

“Generative programming is about modeling families of software systems by software en-
tities such that, given a particular requirements specification, a highly customized and
optimized instance of that family can be automatically manufactured on demand from
elementary, reusable implementation components by means of configuration knowledge.”

The goal of generative programming is to increase code reuse and evolvability of software by providing
the means for designing domain-specific abstractions (the ability to state the problem in terms of the
problem domain). Two difficulties involved in this are:

1. the semantic gap between domain-specific abstractions and general-purpose programming lan-
guages and

2. run-time perfomance penalties incurred by giving a system flexibility and generality.

Generative programming eliminates these difficulties by separating the problem space (parameters)
from the solution space (output) and by translating between them: The parameters of the generation
process are domain-specific, solving (1). The output is usually static customized code that can be
performance-optimized during the translation process. We have thus traded generation-time perfor-
mance (and flexibility) for run-time performance and solved (2). Let’s look at two generation processes
and how generative programming borrows from other programming paradigms to ease implementing
them.

Domain-specific languages (DSL) use the vocabulary of a problem domain to specify a solution,
therefore bridging the semantic gap mentioned above. Examples are markup languages and languages
for algebraic manipulation (like Mathematica). GP translates between the DSL (the problem space)
and an executable program (the solution space), usually by either interpreting the DSL (like HTML
in web browsers) or by compiling it (like Java server pages). Representing knowledge this way has the
advantage that domain-related optimizations are possible that cannot be achieved otherwise. Example:
In matrix algebra, A · E (multiplying a matrix A with the identity matrix E) can be simplified to
just A. This optimization is not possible (or rather, not recognizable) once this operation has been
compiled to, say, C code. Note that optimization is also a translation and that both problem and
solution space are the DSL. The generative programming system Draco [Neighbors, 1989] supports
optimizing translations from a domain to itself.

Generative programming is also used to create customized components. A user parameterizes a com-
ponent, e. g., by specifying what features it should have, and a GP system generates it. In the case
of parameters specifying features, aspect-oriented programming can be used by GP to integrate the
corresponding aspects. Going beyond AOP, GP is able to make optimizations that take properties
into consideration that are global to all parts making up the output. AOP can only optimize locally,
inside an aspect. As an example, think of a component implementing a dictionary data structure.
Given a parameter specifying whether the entries should be ordered by their key or not, generative
programming can automatically choose how they are stored: As a hashtable that is faster for most
applications or as a tree that is necessary for ordering the keys. AOP would help GP by giving it two
alternative aspects for data storage. Because data storage is specified abstractly (“order the keys!”)
and not concretely (“use a binary tree!”), a GP system can transparently substitute other, more effi-
cient, implementations for the tree aspect, once they become available. Generating components neatly
solves the problem of combinatorial explosion of custom components mentioned in the introduction,
without compromising efficiency: 3 features, with 3 variations each, can be implemented as 9 aspects
instead of 27 custom components (or some dynamic, but inefficient, mechanism). [Batory et al., 1993]
have presented a GP system that produces data structures in this manner.

We would like to introduce two more terms: Families of software are components or applications that
are built from a common set of assets [Weiss and Lai, 1999]. A Product line consists of the assets
used to produce the family. Therefore, generative programming can also be regarded as a tool for
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implementing product lines. None of the translation processes we have seen are mutually exclusive and
are often used together: [Batory et al., 2000b] give an example of components built using a domain
specific language for state machines.

2.5 GenVoca

GenVoca is an example of a generative programming system. It is a design methodology (and a set of
tools to support this methodology) for creating product-lines and building architecturally extensible
software—i. e., software that is extensible via component additions and removals.

GenVoca is based on scaling the well-known programming methodology called stepwise refinement that
originated in the writings of Wirth and Dijkstra in the late 1960s/early 70s [Wirth, 1971]. It advocates
writing of efficient programs by progressively revealing implementation details. Traditional notions
of refinement are both very concrete and only being used at a small scale; an example refinement is
to replace a literal with a subroutine call. Programming this way, even small programs necessitate
numerous refinements. GenVoca abstracts stepwise refinement and scales it to a component or layer
granularity, so that each refinement adds a feature to a program, and composing a few refinements
yields an entire application.

The key is to regard programs as constants and refinements as functions that add functionality.
Continuing the example for a traditional refinement, let a represent a program with a literal. The
refinement replacing the literal with a subroutine call (and defining the subroutine) is a function f(x)
that takes a program as input and produces a refined program as output. f(a) represents the result
of refining a. But refinements need not be restricted to simple substitution, each refinement could
add a feature or even several features. Consider the following constants that represent programs with
different features:

b // program with feature b
c // program with feature c

Each of the following refinements adds a feature:

g(x) // adds feature g to program x
h(x) // adds feature h to program x
i(x) // adds feature i to program x

A multi-featured application is then an equation that assigns a name to a composition of functions.
Different equations define a family of applications, such as:

app1 = g(b); // app1 has features b and g
app2 = h(c); // app2 has features c and h
app3 = g(h(i(b))); // app3 has features b, i, h and g

The set of all functions and constants that are available for program construction is called a model.
A model and the set of equations that it can produce constitute a product line. Note that in this
paradigm, each function not only defines a feature but also its implementation. This enables us to
represent distinct implementations of the same feature by different (e. g., indexed) functions:

j1(x) // adds feature j (with implementation 1) to x
j2(x) // adds feature j (with implementation 2) to x

To optimize the performance of a program that needs feature j, one therefore needs to rewrite its
equation so that it contains the optimal ji for the task at hand. [Batory et al., 2000a] shows that it
is thus possible to automatically create software (or rather, its equation) that is optimal with regard
to some qualitative criteria, given a set of declarative constraints for a target application.
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As a refinement typically cannot be applied to arbitrary programs and not all combinations of features
make sense, GenVoca also provides the means to constrain function applications both semantically
and syntactically [Batory and Geraci, 1997]. A typical syntactic constraint is that a program must
implement a set of well-defined Java interfaces, semantic constraints can require the implementation
of the interfaces to satisfy certain properties.

One of the advantages of the GenVoca paradigm is its generality. Refinements can be implemented in
a number of ways, e. g., as mixin layers or in a domain-specific language (Batory et al. give an example
of a domain-specific language for state machines in [Batory et al., 2000b], but the DSL might even
describe something non-executable like documentation). In the next chapter we will present GenBorg,
another generative programming system that extends GenVoca’s ideas in several interesting ways.



Chapter 3

GenBorg

We present our answer to the difficulties of scaling software: The generative software environment
GenBorg. We introduce it informally and then define a theoretical foundation in the form of an
algebra (section 3.2).

3.1 Informal Introduction

When working with GenVoca, it became apparent that there were two areas where one would like to
improve it, while retaining its simple theoretical and practical elegance:

1. Scale: The common way of implementing a GenVoca refinement, a mixin layer, operates on a
scale that is too small for some applications. On the other hand, when composing mixin layers,
we are not only refining at layer, but also at sub-layer level where classes extend each other. Both
this increase and decrease in scale when applying a refinement should be practically supported
and theoretically described in a generative software environment.

2. Support for non-code artifacts: Most efforts regarding separation of concerns have so far con-
centrated on code. But what about other, non-code, artifacts such as documentation, design
rules, performance properties, or language-related resources? They are also part of a body of
software and therefore should not be excluded in a programming paradigm. We seek a model
that allows the automatic generation of code as well as of non-code artifacts.

The following sections elaborate these points.

3.1.1 Scaling Refinements

A GenVoca model allows one to specify and generate a subsystem or an application, but cannot
generate several programs that cooperate with a common goal. These application suites are becoming
increasingly important in software engineering. A classic example of an application suite is an “Office”
product: A word processor, a spreadsheet program and a presentation program work together to create
documents that contain a mix of textual, tabular and graphical data. Concerns such as support for
file formats cut across applications and are called facets.

To further illustrate the idea of a facet, we look at a development environment for customized ver-
sions of the Java programming language that consists of a compiler, a document generation tool and
a debugger. The base version of this application suite only implements pure Java and is therefore
equivalent to the Java Development Kit tools javac, javadoc and jdb. If we extend Java to support
matrix arithmetic, we have to simultaneously refine every member of the suite: the compiler, docu-
mentation generator and debugger need to handle new language constructs for manipulating matrices.
This kind of simultaneous refinement is an example of a facet. If each program is constructed from

15



16 CHAPTER 3. GENBORG
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Figure 3.1: This development kit is an example of an application suite. It has been created by
composing three facets and understands an extended version of Java with native support for matrices
and finite automata (FA).

a set of layers, a facet just adds a layer to it and can thus be represented as a set of layers. The
original programs are the base facet Java, the layers to support matrices are contained in the matrix
facet. Extending Java so that it natively understands finite automata results in similar refinements,
which we package as the finite automata facet. We can now compose these three facets to yield a
family of four different application suites: The development kit supports either pure Java, Java with
matrices, Java with finite automata, or Java with matrices and finite automata (figure 3.1).

The next step is to find out how we can express a facet theoretically. GenVoca’s accomplishment
was to represent refinements as functions and applications as equations. The idea of a refinement
cleanly scales to application suites. A model for a family of collaborating programs is a set of facets.
Each facet is either a base suite represented as a constant or a refinement of a suite represented as a
function. An equation describes an instance of the model, i. e., a concrete application suite.

While we can represent a facet as a function, it is also a set of functions, namely, refinements imple-
mented as layers. One kind of layer, a mixin layer, has a structure that is similar to a facet (compare
figure 2.1 and 3.2): Both mixin layers and their constituents, mixin classes, are representable as func-
tions. This pattern of a refinement’s double duty as a function and a set of functions continues if we
take mixin classes to be sets of methods1 and method overriding to be a form of refinement. Therefore,
facet, layer and class form a hierarchy with facet at the root, where each level is similar in structure
to every other level (figure 3.3), a property that we call self-similarity2. GenBorg provides the tools
to adequately describe this kind of self-similarity. Following the discussion of the introduction, being
able to use facets in GenBorg should improve code reuse, because the size of a refinement has increased
compared to GenVoca and aspect-oriented programmming (where a refinement is implemented as an
aspect).

1A data member can be regarded as a combination of two methods: One method for reading the value of the data
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Figure 3.3: A facet is a self-similar hierarchy: At every level, the same structure is repeated—facet,
layer and class are at the same time a function and a set of functions.
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Figure 3.4: Composing the related artifacts code, documentation and performance properties for the
equation f(g(a)) in parallel, instead of generating each one separately.

3.1.2 Generating Non-Code Artifacts

There is a dimension of concerns called “refinement”. Until now, we have only looked at one member
of the hyperplane at each refinement, source code. But many non-code artifacts such as documen-
tation, formal properties and performance properties are related to the code artifact implementing
the refinement. A difficulty arises when composing only the code artifacts: One also has to update
the related non-code artifacts in parallel. If, for example, the GenVoca constant a and the refine-
ments f() and g() have the components code (acode , fcode(), gcode()), documentation (adoc , fdoc(),
gdoc()) and performance properties (aperf , fperf (), gperf ()), then when generating application code
appcode = fcode(gcode(acode)), one has to generate the documentation appdoc = fdoc(gdoc(adoc)) and
the performance properties appperf = fperf (gperf (aperf )), too. The problem of course is, that these
other artifacts must be kept in sync manually (which itself is costly and error-prone). What we would
like our generative software environment to do, is to evolve related artifacts automatically and in
parallel (figure 3.4).

3.1.3 Collectives

From now on, we will stop differentiating between functions and constants. In our algebra, there will
be only one kind of entity, called unit. It is the algebraic representation of a facet, a layer, a class,
a documentation file etc. Instead of applying functions such as f(g(a)), we compose units using a
composition operator ◦ as in f ◦g ◦a. This is mathematically equivalent and better expresses the kind
of symmetry we have found between units that represent the same kind of artifact. It also allows us to
introduce other operators in the future. Applications that before were naturally impossible, because

member and one for changing it.
2Other examples for self-similar constructs are wavelets, probability constructs and fractals.
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Figure 3.5: Composition of layers, as introduced in figure 2.2 on page 10.
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Figure 3.6: The composition of layers from figure 3.5 represented as a composition of the collectives
V2 and V1. Each rectangle displays the role of a unit, the indices are only shown to indicate the source
of units. Where necessary, we annotated units with their equation. The gray line between a2 and b2

denotes the inheritance relation which is not expressed inside the algebra.

constants could not be applied to other entities, can be prevented through GenVoca’s design rules
which fill the important need to describe semantic constraints in GenBorg.

The algebraic construct that allows us to both scale layers (up and down) and to evolve different
dimensions of a refinement in parallel is called a collective. A collective is a set of units (which are
sometimes called the subunits of the collective). What makes a collective so powerful is that it is a unit,
too, mirroring the double (self-similar) nature of facets, layers and classes we have discovered above.
Therefore, collectives can be nested and every collective is a tree whose inner nodes are collectives
and whose leaves are primitive (non-collective) units. How does this solve our problems? Let’s look
at each one in turn.

As the abstraction of, for instance, a layer is a set of functions (units), it is obvious that one can
model its structure using nested collectives. What is missing is the means to compose collectives in
a way that preserves the semantics of composing layers. First, we have to define how primitive units
are composed. This depends on what kind of artifact is represented by the unit. For example, if units
m2 and m1 correspond to methods, composing them results in m2 overriding m1. Composition of the
classes c2 and c1 leads to c1 becoming the superclass of c2. Second, whether we compose two facets,
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Figure 3.7: Composing the collectives, F ◦G, refines the dimensions code, documentation and perfor-
mance properties automatically and in parallel. Each rectangle denotes a unit and is tagged with an
index indicating the file represented by the unit.

two layers or two classes, we always have to make sure that the members of the refining entity are
applied to the correct members of the refined entity. So, to be able to compose two collectives V2

and V1, we need to know what units of V2 and V1 should be composed in the result set V2 ◦ V1. To
that effect, we use the same mechanism as in mixin layers and tag each element in a collective with
a role, the GenBorg version of a join point. Roles direct what units of V2 refine units of V1. V2 ◦ V1

contains a composition v2 ◦ v1 for every pair of units v2 ∈ V2 and v1 ∈ V1 that have the same role.
The remaining subunits are added as they are, uncomposed. We have to recurse this algorithm for
non-primitive units v2 and v1. Representing the composition of layers in figure 3.5 as a composition
of collectives, we get the exact same result as before (figure 3.6). If collectives represent facets, roles
indicate what application a subunit (which is a layer) belongs to; in classes, method type signatures
(as, e. g., defined in the Java language report [Gosling et al., 2000]) are used as roles. We have thus
reached our first goal and provided a scalable, generic mechanism for composing sets of units that
subsumes the constructs used in GenVoca. Note that we currently constrain units to play exactly one
role and roles to be played by at most one unit per collective. Dropping this constraint is the subject
of ongoing research.

Similar to a mixin class in a layer, a unit has actually two coordinates of identification: A “horizontal”
identifier among the fellow members of the collective (the role of a mixin in a collaboration) and a
“vertical” identifier that brings the refinement and the refined together (the name of the class a mixin
eventually becomes part of). Part of the elegance of GenBorg arises from the fact that the role serves
both purposes, i. e., we normalize the two coordinates to one.

Returning to the problem of co-evolving multiple dimensions of the same refinement, we find that
we can solve it by again using collectives and roles. Take two layers consisting of a set of classes
(Java source code as primitive units). In order to support more dimensions than just source code, we
replace these primitive units by collectives that contain documentation and performance properties in
addition to the code. When a class collective F refines a class collective G, we want the code of F to
refine the code of G, the documentation of F to refine the documentation of G etc. (figure 3.4). This
can be achieved by giving code the same role in G and F and by doing the same for documentation
and performance properties (figure 3.7). In a composition of class collectives, every dimension of a
refinement is composed automatically and in parallel—which is what we sought to achieve.

3.2 GenBorg Algebra

In the following sections, we define a formal algebraic foundation of the concepts we have informally
introduced in the last chapter, namely, the GenBorg algebra which consists of a data structure called
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Mammal
void eat(Food myFood)
void sleep(float hours)

Human
void eat(Food myFood)
void philosophize(String subject)

is a

Figure 3.8: Inheritance between a superclass Mammal and a subclass Human.

Java GenBorg
all methods and classes of a program unit space
inheritance composition
class collective
subclass relation subtype relation
method unit
type type
signature role

Table 3.1: Corresponding concepts in Java inheritance and GenBorg composition

unit and one operator, composition. We tried to stay loosely compatible with the terminology used
in section 2.3.

3.2.1 Review

As an introduction to the concepts we are about to define, we review something that the reader should
already be familiar with and present it in the terms of the GenBorg algebra: Inheritance of classes
in Java. Take the example of superclass Mammal being extended by subclass Human (figure 3.8). We
can also view subclassing as composition where both the superclass and the subclass are a set of
methods (figure 3.9). Note that the name Human stands for both the refinement and the result of
the composition. When combining the sets of the two classes, methods in Human override (refine)
methods in Mammal that have the same signature (method name plus the types of the arguments). A
requirement that is always trivially fulfilled by inheritance is that a refinement has to be a subclass
of its argument. GenBorg demands that this condition hold for collectives that are to be composed.
Table 3.1 compares the terminology of Java inheritance and GenBorg composition.

3.2.2 Units

Any body of software can be decomposed into atomic pieces (what exactly constitutes atomicity
depends on the language they are expressed in and on the application of the algebra). We call these
pieces primitive units. A compound unit is a set of primitive and compound units. Compound units
are also called collectives. As a collective can contain any kind of unit and is itself a unit, progressive
nesting of sets of units results in a tree of units whose inner nodes are collectives and whose leaves are
primitive units. The root of such a tree is called the root unit. The units contained in a collective V
are subunits or child units of V ; direct subunits are only members of V (and not of a collective that is
nested in V ). Additionally, each unit in a collective has a role that is unique in that collective. These
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Figure 3.9: The inheritance of figure 3.8 represented as composition

concepts are expressed in the following definition.

Definition 3.1 (Unit space). A unit space U is a tuple (U,R, uroot, role) where

1. U is the set of all units in a body of software. A unit is either primitive or a set of units V ⊂ U ,
in which case V is called compound or a collective. A collective cannot be an element of itself3.

2. R is a set of role symbols.

3. uroot ∈ U is the root unit, a specially designated unit that contains all other units.

4. role : U → R is a function that assigns each unit a role. There cannot be two units with the
same role in one collective.

5. roles : C → 2R returns the set of roles of the subunits of a collective V . It is defined as
roles(V ) := {role(v)|v ∈ V }.

6. CU ⊂ U is the set of all collectives in U . We usually omit the index and just write C if the
context is clear.

3.2.3 Types

We now introduce a type system for units that is motivated by type systems of object-oriented
languages. We assign each unit a type, which is usually related to what language the unit is expressed
in and what is being described. It is used for expressing whether units can be composed or not. Types
are partially ordered through a subtype relation.

Definition 3.2 (Typed unit space). A typed unit space U is a tuple (U,R, uroot, role, T, type, subof)
where U,R, uroot, role are defined as above and

1. T is a set of of type symbols.

2. type : U → T is a function that assigns each unit a type.
3This guarantees that a collective has a tree structure.
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3. subof ⊂ T × T is the subtype relation, a reflexive partial ordering which can be a forest. No
primitive unit can have a type that is a subtype of the type of collective and vice versa (i. e.,
primitive and compound types are disjoint).

3.2.4 Composition

A model contains a unit space and introduces composition for primitive units. We will see shortly
how composition of primitive units induces a composition for all units.

Definition 3.3 (Model). A model M is a tuple (U , ◦) where

1. U = (U,R, uroot, role, T, type, subof) is a typed unit space.

2. ◦ : (U −C)× (U −C) → (U −C) is the composition operator for primitive units (U −C is the
set of primitive units; we use set-theoretical difference to express the fact that every unit that
is not a collective is a primitive unit).

3. The type of a composition has to be a subtype of the right operand’s type: type(v ◦ w) subof
type(w), where v, w ∈ U (we use the more general set U instead of U − C as a preparation for
extending composition of primitive units, below). The reason for this constraint is that we want
a refined unit to stay compatible with the original unit.

Composition of primitive units can apply to any kind of unit. The idea is that once one has defined
composition for primitive units (say, composition for similar artifacts—how to compose code, how
to compose documentation, etc.), composition of collectives follows naturally. This kind of canonical
composition of collectives is called composition by role.

Definition 3.4 (Composition by role). Given a unit space U = (U,R, uroot, role, T, type, subof),
composition by role ◦ extends composition of primitive units as follows (v, w ∈ U): The result V ◦W
of composing them is the union of the following sets.

1. Units whose role exists in both collectives appear as a composition in the result:

{v ◦ w | v ∈ V,w ∈ W ∧ role(v) = role(w)}

2. Units in V whose role is not element of roles(W ) are simply copied:

{v | v ∈ V ∧ role(v) /∈ roles(W )}

3. The same applies to the units of W :

{w | w ∈ W ∧ role(w) /∈ roles(V )}

3.2.5 Conclusion

In this chapter, we’ve seen how the software environment GenBorg elegantly solves many difficulties
related to software reuse. A theoretical foundation, the GenBorg algebra, clarifies the notions of units
and composition by giving precise mathematical definitions. The next two chapters will demonstrate
how GenBorg’s concepts can be applied practically. They introduce Probe , an implementation of
GenBorg, by first explaining the ideas behind it and then walking through a tutorial.
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Chapter 4

Probe

Probe is a program that uses a graphical user interface to perform and visualize compositions of a
GenBorg model and its instances. In this chapter, we introduce the main concepts behind Probe. The
next chapter is a tutorial that shows how to use Probe by walking through a concrete example.

Note that currently, Probe’s primitive units are artifacts (i. e., files). We’ve imposed this constraint to
simplify the initial design, but GenBorg can handle cases more general than that, for example method
units that are a fraction of a .java file. The type system is also relatively simple and mainly provides
a syntax-based mechanism for enforcing the difference between functions and constants, a legacy of a
previous version of the algebra.

4.1 Defining a Model

Ideally, we want models to be as simple to define as possible. It turns out that the most natural
way of expressing the tree-structured unit space of a model is to encode primitive units as files and
collectives as directories. Consider a model whose root unit contains a set of layers that in turn consist
of mixins comprising at most one code and one documentation artifact (figure 4.1). To define it using
the file system, we create one directory per mixin that contains code and documentation for this
mixin. Several mixin directories are grouped by the directory of a layer, the model directory contains
zero or more layer directories.

A model directory’s nested subdirectories are almost everything that is needed to define a unit space.
The rest of a model’s data is specified in a schema. It also contains information that helps in translating
between1 directories and a unit space. The schema is encoded in the Extensible Markup Language
(XML) and stored as a file named schema.xml in the model directory. XML’s tree structure makes
it a good choice for expressing information about unit spaces. The main purpose of the schema is
to identify categories of similar units and to specify their properties, such as their types. Layer, for
example, is a category in the above model. A category describes what units it comprises by specifying
the files they are based on. We’ll walk through a series of examples to introduce the elementary
features of schemas. The most basic schema file for our example model describes the file structure of
the model directory (figure 4.2) as a tree of categories.

1 <schema>
2 <directory category="Model">
3 <directory category="Layer">
4 <directory category="Mixin">
5 <artifact category="Code">
6 </artifact>
7 <artifact category="Doc">
8 </artifact>

1back and forth, as we shall see later.

25
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Figure 4.1: There is a straightforward mapping between the contents of a model and its storage
format, the model directory : Directories store collectives and files store primitive units.
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Figure 4.2: The structure of the example model directory expressed as a tree of file categories: A
model directory contains a set of layers. Each layer directory contains one or more mixin classes with
a code and/or documentation file each.
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9 </directory>
10 </directory>
11 </directory>
12 </schema>

We see that each node of the schema tree defines a category of units by stating what files these units
are based on: Units in category Model are based on directories (line 2), units in category Code are
based on artifacts (line 5) etc. To further restrict what files belong to a category, one can use patterns
that are matched2 against file names. The mapping of files to categories is actually bijective; we’ll see
in section 4.5 why this is necessary. Our schema with file patterns looks like this:

<schema>
<directory category="Model" file="*">

<directory category="Layer" file="*">
<directory category="Mixin" file="*">

<artifact category="Code" file="*.java">
</artifact>
<artifact category="Doc" file="*.html">
</artifact>

</directory>
</directory>

</directory>
</schema>

The file patterns are specified through the XML attribute file. The star in strings such as "*" is
used as a wildcard, just like in Unix or MS-DOS shell programming. Used on its own, it matches any
string, prepended by a literal string p it matches any string whose prefix is p, appended by a literal
string s, it matches any string whose suffix is s. Therefore, any subdirectories of a layer directory
belong to category Mixin and .java files in a mixin are all part of category Code. Category Code and
Doc pose a problem, though. There should be only one code and one documentation file in a mixin.
The base of both file names must be the same as the role of the mixin (so that code in mixin A is
stored in the file A.java). We’ll be able to enforce this restriction later. By adding the XML attribute
role to a category declaration, we can specify role names for the units in this category:

<schema>
<directory category="Model" file="*" role="*">

<directory category="Layer" file="*" role="*">
<directory category="Mixin" file="*" role="*">

<artifact category="Code" file="*.java" role="code">
</artifact>
<artifact category="Doc" file="*.html" role="doc">
</artifact>

</directory>
</directory>

</directory>
</schema>

Because there will be only one code and one doc artifact per mixin, they play the constant roles code
and doc (similar to figure 3.7 on page 20). The role specification of category Layer, on the other hand,
is variable and refers to whatever string has been matched by the wildcard in the file attribute. This
means that the role name of a layer unit is the same as the name of the directory on which it is based.
The above schema turns the following file structure (taken from figure 4.1) into a unit tree.

mymodel/

2Matching, which is also called semi-unification, is a concept borrowed from unification theory.
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When loading a model, Probe traverses the model directory tree and tries to match the category
patterns with file names3. A successful match results in the creation of a unit that is based on the
matching file. Files that do not match are ignored. In our example, directory mymodel/ matches
category Model, directory mymodel/layer1/ matches category Layer and file mymodel/layer1/A.
java matches category Code—in that order, because Probe only tries matching the children if the
parent matched. The roles for the units produced from these files are derived from the file names as
stated in the schema (what exactly happens here is explained later). They are mymodel, layer1 and
code, respectively.

We briefly mention two features of the schema (consult appendix A for a complete reference on
schemas): By specifying the fully qualified name of a Java class in the schema, one can provide a
custom implementation for a category of units (that defines, for example, how to compose or display
new kinds of artifacts) and for operations that are invoked on units through a context menu. The
following fragment from a schema file shows how this is done; the names of the classes implementing
category Code and operation OpGenerate are underlined.

<artifact category="Code" file="*.java" role="code"
class="genborg.artifact.Code">

<menu>
<operation menuName="Generate code"
class="genborg.operation.OpGenerateCode"/>

</menu>
</artifact>

Groups, a mechanism for putting files in the same directory into separate collectives without changing
the file structure, are also explained in appendix A.

4.2 Properties

Probe has a generic mechanism for specifying properties that describe certain characteristics of the
units that are created by a category. Role, file name and class of a unit are examples of properties. A
unit stores its properties as a set of key-value bindings where each key is unique per unit. It inherits
all properties from its ancestors in the unit tree and can either override existing properties (shade
them for its descendants) or define new ones. Because the role property of a unit needs to be visible
in the descendants, its key is the name of the unit’s category; choosing the same key role for all units
would mean that children always override (and hide) their parent’s value of this property. All other
property names are obvious, like file, class etc. Until now, we’ve always used the non-generic way
of assigning values to properties, through attributes of the directory and artifact tags. Look at
the following XML code which is taken verbatim from the last schema example:

<directory category="Layer" file="*" role="*">

3Additionally, file patterns of directory categories only match the names of directories.
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The above fragment assigns the properties file and role for every unit produced by category Layer,
but uses the XML attributes file and role which are syntactic sugar for generic assigment. We can
achieve the same result generically:

<directory category="Layer">
<property name="file" value="*"/>
<property name="Layer" value="*"/> <!-- Role assigned here -->

The definition of property file above makes it obvious that we never specify concrete property values
in the schema but rather templates that instantiate concrete values. A template is a string containing
a sequence of variables and literal (constant) text. A variable whose name is varName is inserted
as $varName$ into a template. The * wildcard used in the definition of file is also a variable and
syntactic sugar for $WILDCARD$.

A template serves two purposes in a schema:

1. It can be used for output. If we have just created a new unit u, a template t instantiates a
text string that can be assigned to one of u’s properties. Instantiation depends on t and u (or
rather, its properties) and works as follows. A variable in t whose name is equal to that of a
(potentially inherited) property of u is bound to the value of that property. All other variables in
t are called free. A template that contains only literals and bound variables can be instantiated.
An instance inst(t, u) of t is the result of replacing every variable with the value it is bound to
(literals are not changed).

Take the example of a unit u with the properties { flower 7→ "rose", bird 7→ "lark" };
u has no inherited properties. The template string "There is a $bird$ on this $tree$"
contains variable bird that is bound to the value "lark" of property bird. Variable tree is
free. Before and after variable bird, there is literal text. Template t = "A $bird$ does not
eat a $flower$." only has bound variables and can therefore be instantiated to the string
inst(t, u) = "A lark does not eat a rose.".

2. Every template t can be used for input, as well. In that case, it functions as a pattern that
is matched against a string s. The matching algorithm is defined as follows: If we can create
properties in u so that all variables in t are bound and inst(t, u) is equal to s, the match succeeds.
Otherwise, it fails. We eliminate ambiguities by demanding that there cannot be two adjacent
variables in t and that every literal has to appear in inst(t, u) as early as possible. The properties
of u that were created during matching are called match-created. Let’s assume the same unit u
as in the above examples to illustrate matching:

Template t String s Does t match s?
"Let’s go $location$" "Let’s go home" Yes, we have to match-create one

new property for u: location 7→
"home"

"It’s still a $flower$" "It’s still a lily" No, the value of property flower is
not equal to "lily"

"Hello $bird$" "Goodbye lark" No, the literal text doesn’t match

So we see that property file and property Layer in the last schema use the same template string
"*", but the former for input and the latter for output. We can now rewrite this schema so that it
enforces the constraint that the base name of Java and HTML files be the same as the role of the
their parent mixin.

<schema>
<directory category="Model" file="*" role="*">

<directory category="Layer" file="*" role="*">
<directory category="Mixin" file="*" role="*">

<artifact category="Code" file="$Mixin$.java" role="code">
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</artifact>
<artifact category="Doc" file="$Mixin$.html" role="doc">
</artifact>

</directory>
</directory>

</directory>
</schema>

4.3 Types

Types in Probe are a simple, syntactic way of ensuring that a function can be applied to a constant.
The type of a function f is t → u, that of a constant c is → v (or short, v), where t, u and v are
alphanumeric text strings. f can be composed with c if t equals v. The type of f ◦ c is then u. Types
are specified in the schema through the type property. To demonstrate the use of types, we rename
the mixin directories of mymodel/ so that they indicate whether the corresponding unit should be a
function or a constant. The file structure is as follows.

mymodel/
layer1/

constA/
A.java
A.html

layer2/
funcA/

A.java
A.html

constB/
B.java
B.html

Note that we want the new directory structure to produce the same model as before. Therefore, even
though we’ve changed the name of, for example, mixin directory A/ to be constA/, the role of its unit
should still be A. The prefix of the directory name is just a hint of how to type the unit. We can now
type mixins automatically if we change the schema to use more complicated matching patterns.

<schema>
<directory category="Model">

<directory category="Layer">

<directory category="ConstMixin" file="const*" role="*">
<property name="type" value="$ConstMixin$"/>
<artifact category="Code" file="$ConstMixin$.java" role="code">

<property name="type" value="code"/>
</artifact>
<artifact category="Doc" file="$ConstMixin$.html" role="doc">

<property name="type" value="doc"/>
</artifact>

</directory>

<directory category="FuncMixin" file="func*" role="*">
<property name="type" value="$FuncMixin$->$FuncMixin$"/>
<artifact category="Code" file="$FuncMixin$.java" role="code">

<property name="type" value="code->code"/>
</artifact>
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<artifact category="Doc" file="$FuncMixin$.html" role="doc">
<property name="type" value="doc->doc"/>

</artifact>
</directory>

</directory>
</directory>

</schema>

If no type is specified explicitly, the default is type="role ->role ". Thus, the type of layer1 is layer1
→ layer1 and the type of layer2 is layer2 → layer2. The trick used in this schema is to have two
different categories, ConstMixin and FuncMixin, for mixin classes, that instantiate correctly typed
units depending on the prefix of the directory name. Only the suffix of the directory name is used for
the role.

4.4 Property Files

Property files allow one to override the property defaults instantiated by the schema. Accordingly,
the value part of a property specification is a literal string in the property file and a template in the
schema. In order to define properties for a collective, one puts an XML file named properties.xml
inside the collective’s directory. A property file can additionally define properties for any unit of the
collective, however deeply buried inside. As an example, we want to change the type of layer1 so
that layer2 can be applied to it. A quick (and somewhat dirty) way of doing this is by creating a
property file mymodel/layer1/properties.xml that assigns layer1 the type layer2. The content of
properties.xml is:

<collective>
<property name="type" value="layer2"/>

</collective>

To demonstrate how property files can also specify properties for primitive units (which are not
defined by a directory and therefore can’t have their own property file), we assign to a hypothetical
color property of the unit whose role path is layer2/A/code. We achieve this by putting a property
file mymodel/layer2/constA/properties.xml into the directory of its parent unit, the mixin whose
role is layer2/A4. The property file contains the usual property definition, but inside a unit tag that
indicates that we want this definition to apply to a subunit of A, whereas top-level property definitions
apply to A:

<collective>
<unit file="A.java">

<property name="color" value="blue"/>
</unit>

</collective>

Note that the subunit is identified by file name which makes it easier for external tools to create
property files.

4.5 Project Directory

The parts of Probe we have introduced can read a model’s content from disk into RAM. But we also
want to create and save equations. We found that the easiest way to make the result of an equation

4Watch out for the difference between roles/role paths and files/file paths! The unit that plays role layer2/A is based
on the directory mymodel/layer2/constA/.
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Figure 4.3: The result of the equation newLayer = layer2 ◦ layer1 is added back into the unit
tree. Every node contains its role, nodes that resulted from the composition are annotated with their
equations where necessary. Indices in the annotation indicate the source of a constituent.
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browsable is to put it back into the unit tree. It becomes a member of the same collective as the
units that have been used in its creation and has to be assigned a role that is unique in that collective
(figure 4.3). Essentially, this generalizes the notion of a collective which can now contain functions
and expressions (composed from these functions or even other equations). Probe keeps track of the
source (a composition or the model) of each unit by tagging it with an owner object; equations have
different owners from uncomposed units. The owner of an equation takes care of saving it (see below).

Because the same model might be shared by different projects, Probe creates one project directory
per project and saves equations inside it. A project directory has the same structure as a model
directory, including property files which are automatically created if the user wants to override any
of the computed values. But it does not contain a schema file. Instead, there is a manifest, an
XML file that is stored in the root of the project directory as manifest.xml. The manifest points
to the model directory of the project and also records all the compositions that have been made.
Every time Probe loads a new project into RAM, it first reads its model and then recomputes the
recorded equations. That means that while the model is persistently stored on disk, the result of an
equation is not. The files of the equation’s result are only written to disk when the users issues a menu
command. This on-demand approach is slower at project load time, but quicker when creating new
equations and makes it unnecessary to save computed properties like role and type. The following
XML code is the content of a manifest file that stores two compositions, newLayer = layer2 ◦ layer1
(line 2–5) and anotherLayer = layer2 ◦ newLayer (line 6–9). It also points to the model directory
/data/models/mymodel and contains the version of the file format, 1.0.0 (both in line 1).

1 <manifest modelDir="/data/models/mymodel" version="1.0.0">
2 <composition role="newLayer">
3 <unit rolePath="layer2"/>
4 <unit rolePath="layer1"/>
5 </composition>
6 <composition role="anotherLayer">
7 <unit rolePath="layer2"/>
8 <unit rolePath="newLayer"/>
9 </composition>

10 </manifest>

We are now ready to explain why the mapping from file names to roles specified in the schema has to
be invertible. In the model of figure 4.3, if the user asks Probe to generate the artifacts of newLayer,
it has to know where in the project directory it should create the new files. The solution is to first
translate each path of roles into a file path. This path is then taken to be relative to the directory
of the owner of a unit and turned into an absolute file path. Take the role path newLayer/A/doc5

which refers to the result of composing layer2/A/doc with layer1/A/doc. It translates to the relative
file path newLayer/A/A.html6. The owner directory of doc is the project directory, say /home/john/
demo_proj. Therefore the final absolute path name is /home/john/demo_proj/newLayer/A/A.html.

4.6 The Unit Tree as a Relation

Apart from the obvious presentation as a tree, Probe also displays a model as a relation. This solves
several problems related to browsing that we will motivate first. Let’s take another look at the example
model of section 2.2 (repeated in table 4.1). The advantage of showing this model to the user as a tree
(figure 4.4) is that it corresponds to how the model is saved in RAM and on disk and that navigating
a tree graphically is well understood. Java’s GUI library, Swing, even provides a standard control for
displaying trees. Traversing the tree, it is easy to find out which mixin classes belong to Layer2 ; we
are looking at the rows of table 4.1 (1). But what if we want to know what parts make up class A, a

5By convention, role paths do not include the root role.
6Here we are facing the limits of the legacy type system and have to use the older schema from page 25, which did

not automatically type units based on file names. The auto-typing schema on page 30 would incorrectly create a file
path newLayer/funcA/A.html that does not correspond to its constant type. This is due to the way Probe propagates
categories in a composition.
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A1 B1 C1 Layer1
A2 B2 Layer2

B3 C3 Layer3
A4 B4 C4 Layer4
Class A Class B Class C

Table 4.1: The example from section 2.2 as a GenBorg model. Cells represent mixin classes, rows
layers and columns complete classes. The numeric indices are only used to indicate the source layer
and do not appear in the model.

model

Layer1 Layer2 Layer3 Layer4

A B C A B B C A B C

Figure 4.4: The model of table 4.1 displayed as a tree.

column of the table (2)? It is very difficult to browse the tree to get an answer. Probe’s solution is to
transform the tree into a database relation. Browsing a model then means to query the relation in a
database language. The following rules turn the model tree into a relation:

1. The relation holds all units of the model with the exception of the root unit. The key of a record
is the path (excluding root) to the unit as an array of roles. When we display a record, we omit
the unit field.

2. If a schema has n levels, the maximum length of a path is n−1. A key that is shorter than n−1
contains null roles to fill the empty columns. Null roles are displayed as <widgets> around
the name of the unit’s category (e. g., <Layer>). If the unit is primitive, null roles are inserted
before the last role in its path7. Null roles in the paths of collectives are inserted at the end.

3. The roles in the i-th column are all from level i of the unit tree (the level of root is 0). Accordingly,
the title of that column is “Level i”. If there is only one category at level i in the schema tree,
we rename the column to be the name of that category (we also call the last column “Artifact”).

Applying these rules to the example model from figure 4.4 produces the relation

7This has the effect of right-justifying the roles of leaves, uniting the roles of artifact units in the last column.
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Rel :=

Layer Artifact
Layer1 <Layer>
Layer1 A
Layer1 B
Layer1 C
Layer2 <Layer>
Layer2 A
Layer2 B
Layer3 <Layer>
Layer3 B
Layer3 C
Layer4 <Layer>
Layer4 A
Layer4 B
Layer4 C

Now we can answer both of the above questions, instead of just the first one: Listing the content of
Layer2 is achieved by the SQL statement

select * from Rel where Layer="Layer2" (1)

The result of this query is

Layer Artifact
Layer2 <Layer>
Layer2 A
Layer2 B

It lists all paths that start with role Layer2 : Row 1 refers to Layer2 itself whose path is too short and
filled with a null role in column Artifact. Row 2 holds the path to artifact A, a child of Layer2, and
row 3 lists artifact B ’s path. The following statement retrieves all the mixins that contain a class A.

select * from Rel where Artifact="A" (2)

It returns

Layer Artifact
Layer1 A
Layer2 A
Layer4 A

For visual browsing, we want to get rid of SQL and represent a query as a tuple8. Any query

select * from Rel where keyi1=valuei1 and ... and keyim=valueim

(where keyj is the title of column j , valuej is any of the values in that column and 1 ≤ ik ≤ n− 1)
can be converted to a tuple t ∈ (π1(Rel) ∪ {∗})× . . .× (πn−1(Rel) ∪ {∗}) as follows. The projection
function πj(s) returns the set of values of column j of relation s.

tj :=
{

valuej : if j ∈ {i1, . . . , im}
∗ : otherwise

The tuples for example (1) and (2) are (Layer, *) and (*, A). The graphical user interface for
specifying t is a set of n− 1 select lists Lj that display πj(Rel). That way, select list Lj presents all
possible values for component tj of the query tuple. Our example model has the following two select
lists:

8reminiscent of the query language Query by Example from IBM [Zloof, 1975].
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Layer Artifact
Layer1 A
Layer2 B
Layer3 C
Layer4 <Layer>

Selecting value valuej in list Lj means that tj = valuej , selecting nothing indicates that tj = ∗. When
one selects strictly from left to right and does not skip a list (i. e., zero or more lists on the left are
selected, the remaining lists are unselected), the user experience is similar to browsing the file system
in Mac OS X (née NeXTStep) or navigating the class hierarchy in SmallTalk.



Chapter 5

Tutorial

This chapter is a tutorial for Probe. We’ll use the model HTMLCompose to demonstrate the features
of this program. HTMLCompose is actually used by Probe to compose HTML files.

5.1 Model Directory

Before we start, we want to examine the model directory of HTMLCompose. It consists of the following
files:

HTMLCompose/
|-- Begin
| |-- Action.java
| |-- Constants.java
| |-- Decl.java
| |-- Doc.html
| |-- Error.java
| |-- HTMLfile.java
| |-- MLObject.java
| |-- Main.java
| |-- Pair.java
| |-- Parse.java
| |-- ProgramText.java
| |-- StringWrapper.java
| |-- blocks.gif
| |-- comp1.gif
| |-- comp2.gif
| ‘-- properties.xml
|-- Call
| |-- Constants.java
| |-- Doc.html
| |-- Parse.java
| |-- call.java

| ‘-- properties.xml
|-- Copy
| |-- Constants.java
| |-- Copy.java
| |-- CopyFile.java
| |-- Doc.html
| |-- FileName.java
| |-- HTMLfile.java
| |-- Parse.java
| |-- StringPair.java
| ‘-- properties.xml
|-- Extend
| |-- Constants.java
| |-- Doc.html
| |-- Extend.java
| |-- Parse.java
| ‘-- properties.xml
|-- Method
| |-- Constants.java
| |-- Doc.html
| |-- Pair.java
| ‘-- Parse.java
‘-- schema.xml

The model’s schema file HTMLCompose/schema.xml is

1 <schema>
2

3 <directory category="Model">
4

5 <directory category="Layer">

37
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6

7 <property name="type" value="Layer->Layer"/>
8

9 <menu>
10 <operation
11 menuName="Compose layers"
12 class="genborg.operation.OpCompose"/>
13 <operation
14 menuName="Delete code"
15 class="genborg.operation.OpDeleteCode"/>
16 <operation
17 menuName="Delete documentation"
18 class="genborg.operation.OpDeleteDocumentation"/>
19 <operation
20 menuName="Generate code"
21 class="genborg.operation.OpGenerateCode"/>
22 <operation
23 menuName="Generate documentation"
24 class="genborg.operation.OpGenerateDocumentation"/>
25 </menu>
26

27 <group category="Code">
28 <artifact
29 category="JavaCode"
30 file="*.java"
31 role="*" groupRole="Code"
32 class="genborg.artifact.Code">
33

34 <menu>
35 <operation
36 menuName="Generate code"
37 class="genborg.operation.OpGenerateCode"/>
38 </menu>
39 </artifact>
40 </group>
41

42 <group category="Doc">
43 <artifact
44 category="HTML"
45 file="*.html"
46 role="*"
47 groupRole="Doc"
48 class="genborg.artifact.Documentation">
49

50 <menu>
51 <operation
52 menuName="Generate documentation"
53 class="genborg.operation.OpGenerateDocumentation"/>
54 </menu>
55 </artifact>
56 </group>
57 </directory>
58 </directory>
59 </schema>

Let’s go through the categories.

• Model (line 3): The category of the root collective.
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• Layer (line 5) overrides the type default and defines several operations a user can perform
on a layer (line 9–25). Each operation is implemented by a Java class, for example, class
genborg.operation.OpCompose implements an operation that provides a graphical user inter-
face for composing layers. After the user has specified what layers he wants to compose, class
OpCompose internally invokes methods on unit objects that perform the composition. Operations
are implemented by overriding a method of an abstract superclass (see section D.2).

• Code (line 27) is a new kind of category, a group, which behaves like a virtual directory : Units
of files that match its direct subcategories are put into collectives that do not correspond to a
file or directory. So files in the same directory will be in separate collectives, as if one created
directories where these files now are and moved them there. Consult appendix A for details.

• JavaCode (line 28): Artifacts in this category are implemented through the Java class genborg.
artifact.Code (line 32). The purpose of this class is to implement composition for JavaCode
artifacts and to tell Probe how to display them. If no class is given, Probe uses the default
implementations genborg.base.Artifact for artifacts and genborg.base.Collective for col-
lectives. These classes take care of most of the algebraic book-keeping (creation and typing of
composed units etc.), but do not modify files or display units. Custom implementations subclass
Artifact and Collective to add new functionality (see section D.1), such as transformation
of files or a special way of presenting a unit’s data. External tools are integrated into Probe by
wrapping their invocation in a custom unit implementation.

There is one operation that can be performed on JavaCode, “Generate code” (line 35).

• Categories Doc and HTML work analogously to Code and JavaCode.

5.2 Files in the Model Directory

The property files in layer directories explicitly assign types where the defaults given in the schema
don’t apply. For example, Begin/properties.xml specifies that layer Begin (line 2) is a constant and
also overrides type defaults as constants for its subunits:

1 <collective>
2 <property name="type" value="Layer"/>
3 <unit file="Action.java">
4 <property name="type" value="Action"/>
5 </unit>
6 <unit file="Constants.java">
7 <property name="type" value="Constants"/>
8 </unit>
9 <unit file="Decl.java">

10 <property name="type" value="Decl"/>
11 </unit>
12 [several entries omitted here]
13 </collective>

Part of the elegance of the current GenBorg implementation stems from the fact that the source
code files in a model directory contain pure Java. Each file under Probe defines a mixin class1.
Therefore, the only addition to Java that is needed is a parameter for the superclass, as this is the one
distinguishing characteristic between normal classes and mixins. This parameter is only filled in when
the layer of a mixin class is used in a composition. It is determined by what (potentially accumulated)
collective is refined and by what role the mixin class plays. The former specifies a set of classes that
can be refined, the latter selects a member from this set (which is the final value of the parameter).
Because the equation is defined externally, all we have to do is to state the role of a class. Probe takes

1We generalize a traditional Java class, which is also called a base class, to be a mixin class whose “superclass”
parameter is null (empty).
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Figure 5.1: Class B extends class A0, class A1 refines A0, and then A2 refines A1 (left). Therefore,
B is inserted into the inheritance chain after the most refined version of A and A1 directly after A0

(right).

the class name to be the role of the class.2 Thus, every class is a mixin that refines other classes with
the same name, if there are any, and a base class, otherwise.

Note that there is a difference between class A1 refining class A0 and class B extending A0. Subclass-
ing, the latter case, always applies to the most refined version of a class (figure 5.1). So if we view
the final inheritance chain, there might be a couple of other classes between A0 and B that have been
added by subsequent layers (as refinements of A0). The only thing that distinguishes extension and
refinement of A0 is therefore the point of insertion of a class into the inheritance chain: The former
inserts A1 “right now”, the latter waits with inserting B until all refinements for A0 have been added.
The syntax for extending a class is identical to Java, even if the superclass (or rather, “superrole”) is
in another layer.

5.3 Composition of Non-Code Artifacts

The idea behind composing the non-code artifact HTML file is that if you can transfer the concepts
method and overriding from object-oriented programming to HTML, then it is easy to express com-
position. We define Methods in an HTML file to be labeled sections of HTML code that have been
bracketed by a pair of <method name="..."> and </method> tags. The method tags themselves are
ignored3 by HTML browsers, but they play an important role in extending an HTML file. All content
of an extension file is appended to the data that has been accumulated so far, the exception being
methods that override other methods (this happens when the name labels are equal). The overriding
method is moved out of its surroundings and replaces the content it overrides (figure 5.2). To reuse an
overridden method, a <super> tag is placed inside the body of the overriding method. A copy of the
content of the former replaces the <super> tag in a composition. The extension file can also define

2This is the canonical way of defining roles in the schema. In general, the only requirement is that there be a one to
one correspondence between roles and class names.

3Other, less obtrusive, ways of marking methods can easily be swapped for this mechanism: Hiding the markers
inside comments, using attributes for the standard <div> tags, etc.
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Content A
Method Foo1

Method Bar
Content C

Content B

Base HTML file

Extension HTML file

Method Foo2

Content D

Content A
Method Foo2

Method Bar
Content C

Content B

Content D

Composition

Figure 5.2: Composing two HTML files. The extension file overrides method Foo1 with Foo2 (indices
only indicate the location of a method and do not appear in the method names). Otherwise, the two
files are just concatenated.

new methods that can be overridden by subsequent extensions.

This file format specializes in documenting method definitions in Java classes. Therefore, composition
of these HTML files mimics the way subclasses would be constructed from Java source code if one
had to copy the content of a superclass instead of referencing it: The source code of a superclass A
and subclass B would be concatenated and any overriding method of B would be moved to replace
the text of the overridden method in A. The following two files demonstrate composition of HTML4.
The first file is a base file.

<!-- Base file -->
The composition is capable of
<method name="capabilities">
singing
</method>

The second file refines the base file.

<!-- Extension file -->
<method name="capabilities">
<super>
and dancing.
</method>
And it also <i>looks good</i> while doing it.

The composition of these two files looks like this:

<!-- Base file -->
The composition is capable of
<method name="capabilities">
singing
and dancing.
</method>
<!-- Extension file -->
And it also <i>looks good</i> while doing it.

We still have not explained the GIF files in HTMLCompose/Begin/: blocks.gif, comp1.gif and
comp2.gif. These files are referenced by Doc.html. They correctly do not appear in the schema5

(the idea is that an HTML file encapsulates its content), but are copied along when composing HTML.
4There is a prototype tool, called XC, that accomplished much of what is said in these examples. The primary

difference is that XC distinguishes a method declaration from a method call, which the examples given here don’t.
5XC also has the capability of copying image files directly when composing .html files. Alternatively, we could have
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Figure 5.3: Probe starts up and shows the model

5.4 Starting Probe

Probe is packaged as a Java archive (JAR) file that contains everything that’s needed for running the
program. If one starts it without any arguments, Probe gives a short usage description. The following
lines show an interaction with the application in the Unix shell tcsh.

[~/probe] % java -jar Probe1.0.jar
Usage:
Load project: java genborg.gui.Viewer projDir/
Create project dir: java genborg.gui.Viewer -model modelDir/ projDir/

This implies that, to work with Probe, we initially need to create a project directory and specify a
model directory. In subsequent sessions, providing the program with a project directory is enough,
as it contains a reference to the model directory. The following shell command creates a new project
directory proj whose model directory is HTMLCompose and starts Probe.

[~/probe] % java -jar Probe1.0.jar -model HTMLCompose/ proj/

Probe’s window comes up (figure 5.3). The window is split in half: The left side is used for browsing
and offers two methods for selecting units (as indicated by the tabs on top): A tree view of model and
project (tab Tree) or a relational view that can be queried as explained in section 4.6 (tab Query).
The right side displays a selected unit in three different modes: one can view the content of a unit
(tab Display), edit it (tab Edit) or modify the properties (tab Info).

modified the schema to admit .gif files as an artifact type, and have such artifact instances “copied” for us during the
composition of .html files. Note, however, that we would not define composition (refinement) operators on .gif files.
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Figure 5.4: Selecting the Action unit that contains Java code

5.5 Tree Browsing

The Tree displays the unit tree in its natural format, as a hierarchy. A first glance shows us that all the
subdirectories of the model directory are there, as layers. Exploring layer Begin confirms that the Java
and HTML files in its directory have been turned into units, as well. If we click Begin/Code/Action,
the unit pane on the right displays its Java code as a syntax-highlighted listing (figure 5.4). The
content of Begin/Doc/Doc is shown as rendered HTML (figure 5.5). Let’s try the other ways of
viewing a unit’s content. Click on tab Edit and an editable field with the HTML source in plain text
comes up. If we modify the source, the save button becomes active and we can save the changes
(figure 5.6). Clicking on tab Info makes it possible to view the properties of unit Doc. It only makes
sense to edit property type and once we do that, the buttons Reset and Save are enabled, permitting
us to either discard or commit what we have changed (figure 5.7).

There are two ways of invoking the operations defined in the schema on the currently selected unit: Ei-
ther as a popup (context) menu or as a pulldown (menu bar) menu (figure 5.8). To create an equation,
we choose operation “Compose layers” for any layer. A dialog box comes up that lets us specify the
role (left-hand side of the equation) and the composition (right-hand side of the equation). The left
half of the dialog lists all potential operands for the composition, which is displayed in the right half,
using the legacy application notation. Clicking on any part of the composition deletes this part. Our
equation is HTMLComposer = Method◦Extend◦Copy◦Call◦Begin (figure 5.9). After we click OK,
the composed unit is added to the tree under its new role HTMLComposer. It shows up in the left half
of the Probe window and can be browsed as usual. Testament to HTMLComposer ’s subunits being dif-
ferent from the other units is the information given for the Info tab: It lists both the composition and
its parts (figure 5.10). Also, the Display tab of, e. g., HTMLComposer/Code/Parse only shows the
text message Artifact file "/Users/rauschma/probe/proj/HTMLCompose/HTMLComposer/Parse.
java" not yet generated. The missing artifact file obviously has to be generated before it can be
displayed. We invoke operation “Generate code” on layer HTMLComposer and can now look at
Parse’s content.
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Figure 5.5: Selecting the Doc unit that contains HTML code

Figure 5.6: The Edit tab lets one edit the content of the Doc unit
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Figure 5.7: The Info tab shows Doc’s properties

Figure 5.8: There are two ways of accessing a unit’s operations: As a popup menu (left) or as a
pulldown menu (right).

Figure 5.9: Composition dialog for specifying an equation. The left half shows a list of units that is
available for composing, the right half displays the current composition. The role text field gives the
equation a name.
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Figure 5.10: The info for HTMLComposer/Code/Parse shows that this is a composed unit and lists
its parts.

5.6 Query Browsing

The Query tab in the top left corner provides us with more sophisticated means for browsing: The
unit tree is displayed as a relation and can be queried through a column of select lists (figure 5.11). At
first, the whole model is displayed in the results. Notice that the unit that was last selected under the
Tree tab is selected here, too. The selections of the two tabs are always synchronized. The equivalent
of the tree gadget is only the right half of the tab, the query result; the select lists narrow the results,
but are not used for activating units. Therefore, specifying a query has no effect on what unit is
currently displayed. We perform two queries: First, we want to find out what’s in layer Begin and
click on its role in list Layer. The query results change and display an answer to our question (figure
5.12). Before we execute the second query, we clear our selection by clicking on the Deselect all
button (we also could have clicked on the title of the Layer select list, which deselects just this one
list). Then we click on role Pair in list Artifact which shows us what layers Pair is part of. The
titles of the select lists also change to reflect the current query results (figure 5.12).

5.7 Project Directory

Look at the files that have been generated for the new layer HTMLComposer. The project directory
now contains:
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Select lists

Result of the query

Figure 5.11: The Query tab shows the model as a relation that can by queried. The parameters of
the query are given in the select lists.

Figure 5.12: Example queries. Left: What are the contents of layer Begin? Right: What layers is
Pair a part of? These queries represented as a tuple (see section 4.6) are: (Begin, *, *) for the left
and (*, *, Pair) for the right query.
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proj
|-- HTMLCompose
| ‘-- HTMLComposer
| |-- Action.java
| |-- Constants.java
| |-- Copy.java
| |-- CopyFile.java
| |-- Decl.java
| |-- Error.java
| |-- Extend.java
| |-- FileName.java
| |-- HTMLfile.java
| |-- MLObject.java
| |-- Main.java
| |-- Pair.java
| |-- Parse.java
| |-- ProgramText.java
| |-- StringPair.java
| |-- StringWrapper.java
| ‘-- call.java
‘-- manifest.xml

The project directory has one subdirectory for the model HTMLCompose and one for the composed
layer HTMLComposer. Each file in the latter subdirectory is the result of composing one or more
units. File Parse.java, for instance, depends on units from layers Begin, Call, Copy, Extend, Method,
as shown in figure 5.10. The project manifest file proj/manifest.xml records that we have made one
composition:

<manifest modelDir="/Users/rauschma/probe/HTMLCompose" version="1.0.0">
<composition role="HTMLComposer">

<unit rolePath="Method"/>
<unit rolePath="Extend"/>
<unit rolePath="Copy"/>
<unit rolePath="Call"/>
<unit rolePath="Begin"/>

</composition>
</manifest>

This concludes our tutorial of Probe. By walking through a practical example, we have seen how
Probe defines a persistent data structure for a GenBorg model, acts as a make-like build tool, and
visualizes parameterization and result of the build process.



Chapter 6

Conclusion

6.1 GenBorg

The major achievement of GenBorg compared to other approaches like Hyper/J and AspectJ is that
it has theoretical underpinnings that explain what a composition of artifacts means. AspectJ looks
just at the practical side and Hyper/J’s model only explains how and why atomic units of code are
grouped. Both programming paradigms also fail to support non-code artifacts. It is briefly mentioned
as necessitating future research for Hyper/J in [Ossher and Tarr, 2000] and ignored in AspectJ.
Conversely, GenBorg already has a working prototype, Probe, that can compose and generate both
code and documentation. Composition of other artifact types, such as JavaSM, an extension of
Java that supports state machines [Batory et al., 2000b], is understood—the same mechanisms for
generating code must be carried over to non-code artifacts. Implementing GenBorg as Probe has
already helped us to considerably simplify the GenBorg algebra. Our work on Probe also brought up
ideas about how to improve GenBorg. It currently lacks two capabilities of Hyper/J that should be
easy to add:

1. On-demand remodularization: Hyper/J allows almost arbitrary cuts through an existing pro-
gram using hyperslices. Several hyperslices can be extracted from the same compiled Java classes
and integrated just like hand-written hyperslices. This process is called on-demand remodular-
ization and leads to a variety of maintenance and integration problems if you want to evolve
two different hyperslices based on the same classes. It also makes composition unnecessarily
complicated in Hyper/J. We think insights into the structure of a development project should
be reflected in its source code and favor refactoring [Fowler, 1999] by splitting a collective if it
becomes apparent that it contains tangled concerns. And refactoring usually is not handled by
a programming paradigm, but rather supported by the tools that are based on it. It would make
sense, though, to theoretically back parameterized read-only views of collectives by a projection
operator. The beginnings of such an operator can be seen in the query feature of Probe.

2. Powerful means of quantification: Hyper/J’s mechanisms for distributing pieces of code inside
an existing code base are very complex. Conversely, GenBorg’s composition by role, while
being simple and clean, is less powerful. Take the example of the concern “execution tracing”
that can be implemented as a hyperslice which adds tracing code to each of a set of methods.
Implementing it as a mixin layer is currently not possible. Fortunately, because the idea of
refinements as functions is so universal, nothing prevents us theoretically from adding more
complicated ways of implementing refinements. There are several directions we will explore
in this regard: Instead of composing the subunits in two collectives if they have the same
role (composition by role), GenBorg could introduce arbitrary mappings from the roles of one
collective to the roles of the other collective. The composition operator ◦ could be extended to
allow a refinement to modify several units at once, in which case it would probably also play
multiple roles. We are also thinking about adding more operators to GenBorg which could,
for example, provide other ways of composition or projection (like we’ve mentioned above).
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Figure 6.1: The concept of derivation demonstrated by the example of Java source and class files. The
class files on the right are derived from source files on the left. Source files can be composed. But to
compose class files, one has to compose the source files on which the elements of the composition are
based, compose these source files and then derive the result class file. Indices have been added to file
names (and are not part of them) where different files have the same name.

A completely different alternative for implementing refinements is to use meta programming
[Batory et al., 1993].

Another potential improvement for GenBorg is as well inspired by our work on Probe: A new relation
between artifacts. Sometimes one artifact is derived from another, which means that the source of
the derivation can be composed, but generally not the target. An example of this is a Java class file
being derived (i. e., compiled) from source code (figure 6.1). The next version of the GenBorg algebra
might explicitly state these relations by integrating Probe and the GenBorg model with the concepts
of makefiles.

The type system and the composition operator are other candidates for revision, because the current,
inheritance-based, approach to composition can be made more general by dropping the constraint
that the result type of a composition A ◦ B be a subtype of B. But to ensure correct typing of an
equation that contains several compositions, we only have to require that the type of the result of the
last, i. e., leftmost, composition be a subtype of the expected type. The expected type depends on the
context of the equation.

6.2 Probe

Probe is the first implementation of the GenBorg programming paradigm. The main innovations
of Probe are how it defines models and how it makes them accessible. First, using directories for
defining a model proved to be simple and robust, because it relies on a way of persistence that is
natural to current operating systems. Second, we found that navigating a model as a tree only was
to constricting, it relied too much on traversing the model’s dominant decomposition, collectives,
top-down. Representing the model as a relation enabled new ways of browsing that make working
with large models more practical. Combining easy definition and navigation of models with pluggable
custom implementations of categories and operations makes Probe a probe a powerful build tool. This
already delineates the direction current development efforts for Probe are taking: We’d like to further
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improve Probe’s build functionality by basing it on the make-like building tool Ant [Foundation, 2001]
and by factoring it out as a build kernel. That kernel can be invoked as a command line tool and
integrated into automated build processes. Probe’s graphical user interface will be just another way
of communicating with the kernel.

Other features need to be enhanced, as well: The type system should closer follow GenBorg’s lead,
traces of the old distinction between constants and functions will be eliminated. Categories as sets of
similar units are too closely related to types and will be superceded by that mechanism. Furthermore,
model and project directory are so alike in structure that it makes sense to unify both concepts: A
model directory instantiates project directories that are again model directories (and can therefore
instantiate new project directories etc.). By discarding the constraint that primitive units be files,
Probe will finally adopt the GenBorg idea of classes as collectives of methods. An elegant and logical
extension of current features, this makes the method level browsable in a fashion that is similar to the
SmallTalk development environment.

New capabilities of Probe will borrow from GenVoca or implement current GenBorg constructs: Gen-
Voca’s design rules need to take care of semantic constraints regarding composition where types take
care of syntactic constraints. Derivation is a relation between units (very often artifacts) that we have
mentioned above and that is motivated by make files. Thus, it is only natural to add it to the future
Probe kernel which is to become more like a make tool. Many of the tasks a user currently has to
perform by hand can be taken care of by Probe. We have experimental tools that automatically type
units by parsing the files and directories they are based on. Optimization of equations with regard to
certain criteria (such as performance properties), which has already been implemented for GenVoca
[Batory et al., 2000a], will be transferred to GenBorg and Probe.

Our vision for the future is to make Probe a tool for programmers and non-programmers alike. Domain
experts will get a graphical user interface where they express their needs in domain-specific metaphors.
Probe can then write an equation for them that produces the software they want. [Lopez-Herrejon
and Batory, 2001] present an example of such a user interface. It uses multiple-choice questions (in a
wizard-like fashion) and creates an optimized equation for non-programmers so that they don’t have
to assemble it by hand (figure 6.2).

The current version of Probe is but a small first step in exploring the possibilities of GenBorg’s
concepts. Numerous new ideas of how to extend and improve it—some of them mentioned in this
chapter—should make Probe an interesting development project for some time to come.



52 CHAPTER 6. CONCLUSION

Figure 6.2: An example of a wizard automatically composing an equation for a user. The Wizard
bases the equation (in the bottom left corner of the window) on several simple questions it asks the
user (top half).



Appendix A

Schema Reference

Section 4.1 contains an introduction to schemas and several examples. Chapter 5 contains a long
real-world schema.

A.1 Notation

• Meta variables are typeset in an italic roman font. So the value $category$ means $Layer$ if
the name of the current category is Layer.

• The sections below that describe the tags of a schema or property file contain the entry “Inner
tags”. This entry shows what tags can be used inside the current tag. It is expressed in Extended
Backus-Naur Format.

A.2 Rules for Using Variables

There are a few limits on using variables in the value part (the right-hand side) of a property definition
if the variable references a property in the same node. There are no limits on referencing properties
in ancestor nodes. Note that when matching, there cannot be two consecutive variables without
separating literal characters. The reason for this is that every match must be non-ambiguous.

• Only file and role can introduce new (match-created) properties in their value string.

• file and role have to match-create the same properties.

• The only properties from the same node a value can refer to are the file, role and match-
created properties.

• Only file and role can introduce new (match-created) properties in their value string, because
they are the only properties that are ever matched against something. Match-created properties
are thus not defined by key and value (their name never appears on the left-hand side of a
property definition), but by their name appearing as a variable in a pattern that is matched
against a string; that matching gives them their value. Property * (or rather, property WILDCARD)
is usually match-created.

• file and role have to match-create the same properties. The reason for this is that we have to
be able to translate between these two properties. Each of them is alternately used for input and
output and, when used for output, has to be instantiable (all its variables have to be bound).

• The only properties from the same node a value can refer to are the file, role and match-
created properties. This follows from the fact that when instantiating properties, file and

53



54 APPENDIX A. SCHEMA REFERENCE

role are introduced first. No guarantees are made for the order of introduction of the remaining
properties.

A.3 Tag Reference

Below, we enumerate all valid tags for a schema file. The standard name of a schema file is schema.xml.
It has to be in the root of the model directory.

schema

Attributes: name, dbColumnNames
Inner tags: directory | group | artifact

Attribute Default Description
name – Gives a human readable name to the

schema, ignored by Probe.
dbColumnNames "Level 1, ...,

Level n-2,
Artifact"

Defines titles of the database columns.
n is the height of the category tree.

directory, group, artifact

Attributes: category, role, groupRole, file, class
Inner tags: property* menu (directory | group | artifact)

Attribute Default Equivalent property Description
category mandatory – Assigns this category a name.
file * file Pattern that specifies what files this

category applies to. Cannot be used
for groups.

role * category Role of units created by this cate-
gory. Cannot be used for groups.

groupRole mandatory in subcate-
gories of a group

parent category Can only be used by direct subcate-
gories of a group and provides a key
for grouping them.

class Use default implemen-
tation

class Qualified class name that provides a
custom implementation for units in
this category.

The tags directory, group and artifact define categories. A custom implementation for a category
of units can be used if specified in the class attribute. This class extends either genborg.base.
Collective (for directories or groups) or genborg.base.Artifact (for artifacts), see section D.1 for
an example. Its tasks are to implement composition, to indicate how to display the content of a file,
etc.

The concept of a group needs to be explained. It can be seen as a virtual directory that groups a set
of files. Let category A be the direct supercategory of a group B. The direct subcategories (defined by
either directories or files) of B, categories C1, . . . , Cn, define patterns for files in the directory of A and
a key for each matching file (attribute groupRole). Units for files with the same key are put in one
collective (an instance of group B). Its role is the value of attribute groupRole. Properties are stored
in a tree that is isomorphic to the unit tree (appendix C), but property nodes of children of a group
are the exception to that rule: They are direct children of the parent of a group (and therefore siblings
of the group). Only through this trick, we can have the same rules about file patterns for grouped
and ungrouped units. Otherwise, children of a group would have been unable to access any ancestor
properties in the file pattern (now they can at least read the properties of every non-group ancestor),
because it is the file pattern that determines what group a unit belongs to; ancestors would only have
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been accessible after matching. Another benefit is that the property tree data structure can use file
names for identifying child units, just like property files do, because a path from a node to the root of
the tree never contains groups, exactly mirroring the file structure. We also don’t have to rearrange
property nodes (which are created ahead of their units if there are nested entries in property files)
each time we create a group.

property

Attributes: name, value
Inner tags: –

Attribute Description
name Key part of the specification of a property default.
value Value part of the specification of a property default.

Properties given in the schema actually instantiate defaults for properties of units, using strings with
embedded variables as explained above.

menu

Attributes: –
Inner tags: operation*

The menu tag is a container for operations.

operation

Attributes: menuName, class
Inner tags: –

Attribute Description
menuName Gives a human readable name to the operation that can be displayed in menus

etc.
class Specifies the class that implements the operation.

Classes that implement an operation extend the abstract class genborg.operation.Operation, see
section D.2 for an example.
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Appendix B

Property Reference

Chapter 4 contains sections introducing properties (4.2) and property files (4.4) and gives examples
for the latter. See section A.1 on the notation used below.

B.1 Properties and Defaults

Property Default Allowed in
prop file?

Description

category * no The role property.
parent category * no The group role property. Units in a

group assign the parent role.
file * no File name of a unit.
type $category$->$category$ yes Type of a unit. Currently not inher-

ited, i. e., if no value is given, a unit
always gets the default type, regard-
less of what has been defined in the
ancestor property nodes.

class * no Qualified name of a Java class that
provides a customized implementa-
tion for this unit.

constant false yes Hack that cuts off the domain of a
type signature. Unlike type, this
property is inherited.

ignoreFiles – yes Hack. A space-separated string of
file names that should be ignored in
this directory and its subdirectories
(i. e., it is inherited). Will be inte-
grated into the schema in the future.

B.2 Property File Tags

Below is a list of all valid tags inside a property file. The standard name of a property file is
properties.xml, it has to be placed inside of the directory whose collective’s properties it is to
define.
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collective

Attributes: –
Inner tags: property* | unit*

collective is the root container for everything that’s in a property file. Any direct child tag property
defines properties for the collective that is created from the directory of the property file.

unit

Attributes: file
Inner tags: property* | unit*

Attribute Description
file To identify a subunit that is a directory or an artifact, one has to provide the

name of its file.
role To identify a group subunit, one has to provide its role.

The unit tag allows one to define properties for (non-directory) artifacts which can’t have their own
property file (only directories can). Identification is done by file name.

property

Attributes: name, value
Inner tags: –

Attribute Description
name The key part of a property definition.
value The value part of a property definition.

This tag defines a property.



Appendix C

Data Structures

In this appendix, we briefly describe the data structures Probe uses to represent a model in RAM.
These are (figure C.1):

• Category tree: Saves the schema as a tree of category objects. The category describes common
attributes of a set of units, such as how their role names are produced or what operations can be
performed on them. Given a file name that matches its pattern, a category object is responsible
for creating a unit object.

• Unit tree: Hierarchically stores model and equations. A unit object contains references to the
category that created it, to the owner of the unit, and to its property node. The tree uses owners
to signal additions (through composition or when the model is read from disk at the start of the
program) to its nodes.

• Property tree: Created in parallel with the unit tree. The two trees are isomorphic. Unit objects
are created from data files and property objects from property files. Therefore, properties briefly
grow ahead of units during creation time if the property file of a collective contains information
about nested units. The responsibilities of a property object are to load and save itself if provided
with the unit and the unit’s owner.

• Owner : There are two kinds of owners, a model owner and a project owner. Thus, an owner tags
the source of a unit, i. e., if it was read from a model directory or created through composition.
A model owner notifies registered listeners1 of additions to the unit tree. A project owner
additionally logs compositions to the project manifest file. Both owners provide properties and
(in the case of the project owner) units with the absolute path name of a directory when they
want to save themselves to disk.

• Database: Registers as a listener with both owners and stores each new unit in a relation as
described in section 4.6.

Figure C.2 shows a UML diagram of the class hierarchy. The abstract superclass Unit has been split
into parts that become active at different phases in the life of a unit, or sometimes never. BaseUnit
is always there and contains attributes that every unit has. ComposableUnit is only enabled when a
unit is the result of a composition. VisibleUnit takes care of functionality that is related to public
display and saving. Invisible units are, for example, intermediate results within an equation: For the
equation f ◦ g ◦ h ◦ a, there is one unit for every pair of operands. So the unit tree contains units
representing h ◦ a, g ◦ (h ◦ a) and f ◦ (g ◦ (h ◦ a)), but only the last one is visible.

1the observer part of the publish-subscribe pattern, see [Gamma et al., 1995]
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Figure C.1: The data structures Probe uses to represent a model in RAM
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Figure C.2: Class hierarchy of Probe’s data structures



Appendix D

Custom Implementations

This chapter gives examples for implementations of categories and operations.

D.1 Example Implementation of a Category

A custom implementation of a category of units overrides either class genborg.base.Collective
(if the units to be implemented are collectives) or class genborg.base.Artifact (if the units are
primitive). The following is a custom implementation of an artifact category.

public class CustomArtifact extends genborg.base.Artifact {

/** @overrides Artifact */
public Unit composeWith(Unit[] args, Collective parentUnit)

throws IllegalCompositionException
{

super(args, parentUnit);
if ((args.length != 1)

|| (! args[0].getRole().toString().equals("Foo")))
{

throw new IllegalCompositionException("Can’t compose!");
}

}

A custom implementation can override any method of its superclasses. In this example, we override
composeWith so that a CustomArtifact can only be composed with one unit whose role is Foo. All
other compositions are made impossible by throwing an exception. We have to call super, because
the overridden composeWith takes care of many important tasks related to composition.

D.2 Example Implementation of an Operation

Operations only need to override one method of their abstract superclass Operation: method perform(
UserInterface, Unit). UserInteface is an interface that abstracts any kind of interaction with a
human or a non-human client (for example, through a graphical or text-based user interface), the Unit
parameter references the unit this operation has been invoked on. The following operation displays
an error whenever it is invoked.

public class CustomOperation extends genborg.operation.Operation {
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public void perform(UserInterface ui, Unit unit) {
ui.displayError("Operation cannot be performed on unit "

+ unit.getRole());
}

}
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