
On The Importance and
Challenges of FOSD

Don Batory
Department of Computer Science
University of Texas at Austin

October 6, 2009
1

• I’ve been building programs by composing
features for 25 years

• called them “legos” back then (no term for ‘features’)

• prior to work on software architectures, components, mixins
• at the time when step-wise refinement was abandoned

(back then it didn’t scale)

• my background was databases, not software engineering

• my ignorance in software engineering was a blessing;
then current issues were irrelevant to what is now FOSD

Introduction

2

• Created family of database systems from features
• I didn’t know about product lines back then (not sure term existed)

• “legos” that I could snap together to build different DBMSs
» never been done before

• DBMS community reaction was interesting
» they were interested in DB technology, not software technology

• Remember visiting Digital Equipment’s Database Program in Colorado

“Our software is too complicated to be built in that way!”

• Key issue was taming software complexity
• $$ expired and Genesis wasn’t finished
• if it wasn’t for a feature-based structure, I could not have finished it
• not a DBMS problem, it was a core problem of software engineering

Initial Work: Genesis

3

• Little to go on:
• find a domain and understand it
• identify features and their meaningful combinations
• create tools to define feature modules and compose them

• After a few domains, you see similarities and patterns

“We’ve done this so often,
we’ve got it down to a science…”

• Start of a Science of (Automated) Design…

Initial Work Continued

4

• Disparate phenomena, want a theory to both explain them
and predict others

• Programs that do similar things are existing phenomena
• theory is one of atomic construction
• features are the atoms; feature models define legal compositions
• the ability to create new programs that had never been written before

Scientific Part from Physics

5

theorydomain

First Meta-Level Challenge

• I needed a language in which to
express my ideas

• system development =
layered development

• adding one layer at a time
• layer was an increment

in functionality

• Mid-1980s I realized that
elementary mathematics
provided a language

• Based on an ancient idea
• programs were values
• “features” are functions
• clean model of composition

6

P =

P = C2 • C1 • B

where • denotes function composition

B base

C1 capability#1

C2 capability#2

• Start from practice and work towards a theory

• Using mathematics as a language to define and illustrate its
founding principles

• give precise description to vague concepts

• mathematics brings simplicity, clarity, principled foundation
for automated software design & tools

• imposes architectural abstractions upon tools, implementations;
other contemporary approaches have no such constraints

Distinguishing Characteristics of FOSD

7

• A (reasonably) fresh view on all of this

• And the challenges ahead, as identified by polling
members of the Software Engineering Community

• Am grateful to those who responded to my survey
• “Quotes”
• “(paraphrasing)”

• Regrets…
• see my web site (soon)

This Talk

8

Feature Oriented Software Development

• Key: Stepwise Refinement bridges practice & theory
• The immediate challenges today for FOSD are:

Before I move on

9

10

• Domain is defined by a set features
• feature is an increment in program functionality
• build programs by composing features

F1, F2, F3, …. Fn

• Symmetric description (inspired by work of Apel & Lengauer 2008)

• only one base program (empty program) �
• all features are unary functions F(x)
• start with nothing, add this, add this, add this, to produce program P

Basic FOSD

11

�F1 •F2 •F5 •F6 •F7 •P =

• Since � is always present, drop it to simplify notation

• Enables us to express fundamental concepts cleanly…

• Design of a program is an expression

• Expressions can be optimized � designs can be optimized
• no greater example than relational query optimization
• basis of automatic programming

• Synthesis is expression evaluation

Basic FOSD

12

• �P = F7 • F6 • F5 • F2 • F1

• Not all combinations of features are meaningful

• Role of feature models (Kang 1990)
• declarative graphical DSL for specifying legal combinations of features
• set of all legal combinations yields a product line

Feature Models

13

Car

BodyTransmissionEngineCruise

AutomaticManualElectricGasoline

and

or: 1+ alternative
choose1

• A feature model is a representation of a propositional formula
• each feature maps to a Boolean variable
• variable is true if feature is selected, false otherwise

• program = set of selected features that satisfy the formula
• each solution is a program, set of all solutions is a product line
• see D. Benavides (SPLC*), K. Czarnecki (GPCE*), T. Thüm (ICSE09)

on recent advances in editing and analyzing feature models

Mathematical Foundations

14

Car

BodyTransmissionEngineCruise

AutomaticManualElectricGasoline

and

or: 1+ alternative
choose1

Eng ��(Ele v Gas) ^

Tr�choose1(Auto,Man) ̂

Car�CB ^ Car�Cr ^

Car � true

Car�Eng ^ Pt�Car ^

•• ••F1 F2 F5 F6 F7

• Express features of a domain not as a set but as an ordered array
• model of a product line is a 1D array of features

• Projection – eliminate unneeded features
• feature models define legal projections

• Contraction – compose remaining features to produce a scalar

Conjectured Foundations of FOSD

15

F1 F2 F3 F4 F5 F6 F7 F8

F1 F2 F3 F4 F5 F6 F7 F8

P =

Program
synthesis is
projecting

and
contracting
1D arrays of

features

F1 F2 F5 F6 F7

in
composition

order

• A function (feature, transformation) can be decomposed into a composition of
simpler functions (features, transformations)

F1 = F11 • F12 • F13 • F14

• Principle of Uniformity
• use features to build any kind of document (ICSE 2003, TSE 2004)

(code, makefiles, documentation, formal models)

• Multi-Dimensional Models
• formalization of Multi-Dimensional Separation of Concerns (ASE 2002, SIGSOFT 2003)

• Product Lines of Product Lines
• evolution of product lines by features (ASE 2002, SIGSOFT 2003, Völter SPLC 07)

Basic Mathematics

16

• A product line is an array of composable features (transformations)

Starting Point

17

f1 f2 f3 f4

• All documents (code, makefiles, documentation, models) are refined by features
• Each document type is another dimension

Principle of Uniformity

18

f1 f2 f3 f4
r1

r2
r3

• All documents (code, makefiles, documentation, models) are refined by features
• Each document type is another dimension

Principle of Uniformity

19

f1 f2 f3 f4
r1

r2
r3

• All documents (code, makefiles, documentation, models) are refined by features
• Each document type is another dimension

Principle of Uniformity

20

f1 f2 f3 f4
r1

r2
r3

• “Expression Problem” (Reynolds 76, Cook 90, Wadler 98)

• dimension for data types or data structure
• dimension for operations

Multi-Dimensional Models

21

f1 f2 f3 f4
r1

r2
r3o2

o1

o3

o4

o5

Models of Product
Lines are

n-dimensional
arrays of xforms

are Kubes

• Program P is a subkube:
• operations (o2, o3, o5)
• structures (f2, f3, f4)
• representations (r1, r2)

Product Lines are Kubes

22

f1 f2 f3 f4
r1

r2
r3o2

o1

o3

o4

o5

• Eliminates unnecessary elements
• legal projections are defined by a feature model

Kube Projection

23

f1 f2 f3 f4
r1

r2
r3

o1

o2

o3

o4

o5

• Composes elements by dimension (in any order) to
produce a scalar (expression) – which synthesizes P

Kube Contraction

24

f2 f3 f4
r1

r2o2

o3

o5 P

Projection &
contraction of

Kubes seem to
underlie mathematical

models of
product lines

• Product line
• Product line of product lines
• Product line of product lines of product lines

Kube Scalability

25

See:

Völter SPLC 07
ASE 2002
SIGSOFT 2003

• Mathematics is a language that unifies and expresses
fundamental principles in FOSD and in software design in
a simple way

• Against this backdrop, tremendous challenges lie ahead

• use Kubes to illustrate some of these challenges

Recap

26

27

– “The major problem I come across is Feature Interaction because
either due to the feature itself or the state of the code base features
interact with each other at the specification or implementation level.”
– D. Thomas

– “Recovering feature descriptions and interactions within a single
legacy system (is very important).”
– J. Gray

– “Feature implementations that behave correctly in isolation may lead
to undesired behavior in combination (feature interaction problem)”
– S. Apel

Observations

28

• For almost 20 years, I never noticed interactions among features

• reason: domains that I studied allowed interactions to be hidden

• when I added a feature X, I knew all the features Y that had to be present for X
to work

• I extended “hook” methods of Y appropriately
• packaged the X with its core introductions AND its interactions (how it changed

other features) as the features in Y were not optional
• no need to distinguish core introductions from interactions

• Lesson: don’t see or recognize everything in decades
of work, so be careful about claims…

Feature Interactions

29

• Lots of others did notice, esp. in telecommunications
• bi-annual “Feature Interaction” conference
• C. Prehofer (ECOOP 1997) 1st to propose usable definition features &

interactions

• Current state: Early work by Liu, recent work by Kästner
reinforces the need to separate features from their
interactions

• I now see feature interactions everywhere

• Lesson: Only when you experience 1st-hand a problem
will you appreciate research on it

• human nature

To Credit Others

30

• Easy to recognize

• A feature introduces new classes, and adds new fields and methods to
existing classes – core of a feature

• Feature F interacts with feature G (F|G) when feature F modifies the
introductions of G

• Interactions are unavoidable – when you introduce new classes and
members, you must integrate their functionality into an existing
program by modifying existing introductions

“Structural” Feature Interactions

31

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

JButton format = new JButton(“format”);

ContentPane.add(format);

format.addActionListener(...);

void formatResultString() {...}

4-Program SPL with 3 Features

base = sub �format �

new methods

new fields

extend existing methods

new methods

new fields

extend existing methods

p1p2p3p4

32

f|b f|s f

• As a 3�3 kube:

Visualize 2-Way Interactions

33

s|b s s|f

b b|s b|f

base

sub

format

0f0f|b 0

0s0 0

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

JButton format = new JButton(“format”);

ContentPane.add(format);

void formatResultString() {...}

4-Program SPL with 3 Features

base = sub �format �

new methods

new fields

extend existing methods

new methods

new fields

extend existing methods

p1p2p3p4

34

s|b

0b 0

ff|b 0

s 0

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

JButton format = new JButton(“format”);

ContentPane.add(format);

void formatResultString() {...}

4-Program SPL with 3 Features

base = sub �format � p1p2p3p4

35

s|b

0b 0

• Matrix captures 2-way interactions
• 3-way interactions require 3D kube
• n-way interactions require nD kube (ouch…)

• Know: 3+ way interactions are rare in telecommunications
• don’t seem particularly common in software either

• Q: what tools do we need to visualize and recognize
structural interactions?

• See:
• Kästner’s Colored IDE (CIDE)
• Czarnecki’s template models

Degrees of Interactions

36

– “I think a major open problem in (FOSD) and related approaches is
the reconciliation with modularity. This may sound contradictory, since
the goal of (FOSD) is to increase the modularity, but on the other hand
(FOSD) is also often anti-modular in that it presupposes a global view
on the software or software domain.”
– K. Ostermann

• Features interact – no way to avoid it

• If you build programs by composing features (but ignore their
interactions), your program will likely not work

• Period

An Interesting Observation

37

• Features are anti-modular?

• This is a fundamental problem:
• features are building blocks of programs
• they are also building blocks of modules

• Modules (compound features) interact
• see Sullivan 1994 on mediators

• If we want declarative specifications where users select the
features that they want, a domain engineer MUST
understand how features interact if synthesized programs
are correct – this requires a global view

Does this Mean That…

38

39

– “How (do we) ensure consistency of feature selections and
correctness of generated software in a way that supports evolution
and maintenance?”
– P. Sestof

– “(Evolution is mostly a manual process; can more be automated?)”
– S. Jarzabek

– “New customer requirements, technology changes, and internal
enhancements lead to the continuous evolution of a product line…
PLE should thus treat evolution as the normal case and not the
exception.”
– P. Grünbacher

Evolution of Product Lines

40

• Parnas noted that successful programs evolve

• Refactorings are devoted to automating tedious and
repetitive tasks of software evolution

• Challenge: how can product lines be refactored?

Evolution

41

Rename_A_to_B =

Rename_A_to_B =

• Distributivity laws that simplify (parallelize) refactorings of
kubes of arbitrary size, compositions

Conjecture

42

• • •

R =

=

= R R R R•• •

R

R

R

R

R

R

R

R

R

R

R

R

=

RR

• Most (all?) refactoring engines work on entire program,
not fragments of a program

• it may be difficult to build tools

• Remember: refactorings affect not just code, but other representations
as well (xml)

• must change all representations consistently

• Important area
• see M. Kuhlemann’s work (GPCE 09), R. Johnson & students

as steps in this direction

Engineering Challenge

43

44

• Today we can produce 10s, …, 1Ms of customized programs quickly

• Can say nothing on the semantic correctness of these programs
• correctness (verifying selected properties) in general is hard
• 2007 grand challenge of Hoare, Misra, Shankar “verifying compiler”

• Hope: we are dealing with very specialized subproblems
• units of modularity (features) are increments in semantic functionality
• not arbitrary pieces of code, but refinements
• features should be based on compatible assumptions, single consistent

vocabulary s.t. reasonable analyses and tests are possible
• this is our biggest advantage – we have already structured the problem

• 3 topics: Formal Methods, Feature Refinement of Theorems, Testing

Correctness

45

– “How do we verify compositions of features to ensure that the
requirements of each feature are satisfied, and there are no
conflicts?”
– D. Hutchins

– How can we ensure that our feature implementations (e.g., feature
modules) behave as expected both in isolation and in all possible
combinations?
– S. Apel

– “How can we be sure of – or at least aware of – the unintended
consequences of adding a feature? … Something akin to a spec for
a feature is needed.”
– S. Nedunuri

Formal Methods

46

• If we know property T holds in state machine S
• How can we characterize a refinement of S such that T always holds?

• Large amount of work on formal modeling
• connect to existing research results
• see: Krishnamurthi & Fisler (circa 2004)

Challenge Problem

47

S
property T holds

T should
hold in all refinements

– “Currently, research has focused too much on syntactic issues.”
– P. Heymans

• True
• but… I see this as general syntactic structure that applies to all documents,

including semantic documents like theorems

• Revealing example of is E. Börger’s 2001 JBook
that uses Abstract State Machines (ASMs)

• ASMs – abstract language based on state machines
that makes program development and proofs easier

• 350 pages of ASM definitions, manual proofs, etc.

Feature-Refinement of Theorems

48

StmE

ExpE

ExpO

StmC

ExpC

• JBook presents structured way using ASMs to incrementally develop
the Java 1.0 grammar, interpreter, compiler, and bytecode (JVM)
interpreter (that includes a bytecode verifier)

• incrementally refine sublanguage of imperative expressions

Overview of JBook

49

ExpI

StmI

grammar interpreter compiler JVM

StmE

ExpE

ExpO

StmC

ExpC

• JBook presents structured way using ASMs to incrementally develop
the Java 1.0 grammar, interpreter, compiler, and bytecode (JVM)
interpreter (that includes a bytecode verifier)

• incrementally refine sublanguage of imperative expressions

Overview of JBook

50

ExpI

StmI
�

�

�

�

�

�

Java1.0=

grammar compiler JVMinterpreter

• When entire Java 1.0 is created, various properties are considered
• ex: correctness of the compiler
• equivalence of interpreter execution of program and

the JVM execution of compiled program

• Here’s what we realized…

Structure of JBook

51

Java
Program

Java
AST

parser byte
code

compiler

InterpRun

interpreter

JVMRun

JVM
interpreter

proof

• Modularize and refine theorems like other program representations

• What did we learn?
• Theorem of Correctness: Statement
• Theorem of Correctness: Proof

Apply Principle of Uniformity

52

Java
Program

Java
AST

byte
code

compiler

InterpRun

interpreter

JVMRun

JVM
interpreter

proof

parser
Expl
Stmt
ExpC
StmC
ExpO
ExpE
StmE

grammar compiler interp JVM theorem

• Statement of T is
a list of invariants

• 14 invariants in all

• Don’t need to know
the specifics of the
invariants for this
presentation

Theorem T is Correctness of Compiler

53

Statement of Correctness

54

Theorem 14.1.1 (Correctness of the Compiler). There exists
a monotonic mapping � from the run of the ASM for a Java
program into the run of the ASM for the compiled JVM
program such that the following invariants are satisfied:

(reg)

(begE)

(bool1)

(bool2)

(exc) (exp)

(new)

(exc-clinit)

(fin)

ExpI

(begS)

(stm)

(abr)

StmI �

(stack)

(clinit)

ExpC �StmC �ExpO �ExpE �Java1.0 = StmE �

As features are composed, the theorem statement
is refined by adding new invariants

there’s more...

• StmI feature defines (abr)
invariant:

• conditions_1 do not
apply to exceptions

• ExpE adds exceptions
and refines invariant (abr)
by adding qualifying condition

• And introduces (exc)
invariant to cover case
when abruption is an
exception

Invariants Can Be Refined Too!

55

As features are composed, the theorem statement
is refined by the addition of new invariants and

the refinement of existing invariants.
(Refinement of existing invariants are feature interactions)

there’s more…

• Is a case analysis using structural induction to show correctness of
compiling each kind of expression

• Proof is a list of cases that show invariants hold
• 83 cases in all

Proof of Correctness

56

• New proof cases appear
• Theorem gets understandably longer in a very structured and

controlled manner

As Features are Added…

57

we introduce more proof cases, but there’s more…

Proof Cases Can Be Refined Too!

58

As features are composed, the proof
is refined by the addition of new cases and

the refinement of existing cases.
(Refinement of existing cases are feature interactions).

original
proof
case of
ExpI

part
that is
added
by StmI

• Proofs, like code and grammars, have a similar syntactic structure when
given feature representations

• Just one case study – how does it generalize, if at all??

• Challenge: How can we modularize, compose, and verify proofs
by composing features? And do so efficiently?

• Lesson: others are working with features that we don’t know about
and that don’t know about us. When you find an opportunity to
work with them, pursue it vigorously – it will pay off!

Observations on Semantic Documents

59

• Type systems for languages have soundness theorems

• Feature-extensible languages require a feature-extensible type system,
which in turn requires feature-extensible soundness theorems…

• How could such a type system & its theorems be defined?

• Could they be refined incrementally as in JBook?

• See Hutchins09 thesis, Delaware SIGSOFT’09, …

Challenge Problem for PL Types…

60

• Although formal methods can be enormously helpful,
we can’t prove correctness of everything

• may be able to prove abstract algorithms correct

• but not our hand-written implementation

• Eventually, we will have to test…

Testing

61

– “(How do we test a particular product in an SPL?)”
– M. Grechanik

– “With an SPL of possibly millions of potential products, can we test
them all (possibly in parallel)?”
– C. Kästner

– “The deeper challenge is to understand how to specify the interaction
of features within SPL members. It is unlikely that poor humans would
be able to properly specify these interactions, which is why testing may
solely be focused on the accumulative test cases simply to ensure that
feature F, when present, is operating properly.”
– G. Heineman

• Challenge: feature interactions are the key. Demonstrating
that a particular feature F in isolation is “correct” in some
sense isn’t the problem. How F is altered (structurally,
behaviorally) by other features should be our focus.
We know these alterations – we should be able to say
something useful. Stay tuned…

Testing Product Lines

62

– “(How does model-based testing fit in?)”
– B. Cheng, A. Schurr

– “(A key problem) is generating test suites specific to chosen features
… and specialize unit tests for a particular specialization of (features)”
– P. Sestoft

– “Wouldn't it be great to have the ability to generate all possible
combinations of features and pass these configurations into a tool that
would identify 'detectable interactions' and generate appropriate test
cases to ensure proper behavior was being managed? I feel nervous
about trusting any auto-generated test cases, but I keep coming
across papers whose titles suggest they have techniques to do this,
so perhaps this is not as far-fetched as one might think.”
– G. Heineman

• Little that I can point you to (see Uzuncaova 2008)

Testing Product Lines

63

64

– “The high number of features and components in real-world
systems means that modelers need strategies and mechanisms to
organize the modeling space. A particular challenge lies in
understanding and modeling the dependencies among multiple
related product lines.”
– P. Grünbacher

• Many domains have a rather small number of features
• database systems [50…250]
• fire support systems [50…150]
• AHEAD [100]

• Automobile companies claim to have 10K features!
• Windoze [200…1000] easily (treat services as features)

Scaling the Number of Features

65

• Nature of FOSD and its tool support will change

• Large #s of features do exist

• Central problem: where are the examples???
what are the domains???

• Lesson: if you have such a domain, you’re set for years!

• some thoughts…

Scaling the Number of Features

66

– “It would be helpful to identify some "killer apps" – it would help the
rest of the community better understand and appreciate the value
of features.”
– B. Cheng

• Lot of work on customizing Linux

• Linux itself has lots of features – may not be in the exact
form that we want, but so what?

Time to Look Elsewhere…

67

• Another source: Eclipse (2M+ LOC)
• plug-ins are large-scale features
• feature dependencies too!

• Open Universe
• clearly large #s of features
• requires different implementation of feature composition

• Challenge:
What are large-scale features?
How are they implemented?
How does the theory change (if at all) ?
How do features compose dynamically?

Time to Look Elsewhere…

68

Observation: as features become “conceptually larger”
standard notions of frameworks, plug-ins and standard
interfaces become a natural way to implement features

69

– “This area won't really be solid until it is integrated in mainstream tools and
programming languages, i.e., not macros, or obscure meta-programming,
but a change in paradigm with full language support. (We must emphasize)
modular type safety, so that configurable components have a meaning on
their own without having to consider the entire program they participate in.”
– Y. Smaragdakis

– “We would like to have modular type checking and separate compilation of
features for certain specific languages, like Java, instead of a generic tool
which pre-processes source files.”
– D. Hutchins

– “I believe that FOSD must be an integral part of the underlying programming
language, rather than being implemented via external tool chains.”
– K. Ostermann

Observations

70

• I’ve been disappointed in the general PL community
• basic ideas of feature modules circa 1990 with mixins, nested mixins

• I went route of preprocessors waiting for better languages to arise

• What I’ve learned (to quote Bracha) : costs of learning, tooling
and interoperability argue for the status quo
(on programming languages)

• ex: if we add a “feature” construct to an existing language,
do you honestly think that people will rewrite their refactoring engines
to accommodate this?

• maybe if you’re Sun (Oracle), but not us…

Personally…

71

– “Is (feature-based development) a language problem, a design problem,
or a tool problem?” – C. Kästner

• Yes, it is obviously a design problem – we are creating new
design and synthesis methods

• Yes, it is a language problem, but we can’t wait for PL community
to help
– work on languages MUST continue (see S-S. Huang PLDI’09)

• No, in interim, main thrust must be through the development of
non-invasive tools that don’t require language support
– see C. Kästner (ASE’08), B. Delaware (SIGSOFT’09)

• Advice: press on with both tool & language support

Fundamental Question

72

73

– “I am living in the reality where beautiful theories are murdered by
gangs of ugly facts” – J. Bosch (knowingly misquoting T. Huxley)

• True. We all are in this same reality.

• Been this way since the beginnings of classical Science
• Copernicus 1500s
• Weight of evidence was against him
• His only evidence was that his heliocentric theory was simpler
• He didn’t have all the answers: If the Earth was moving, why didn’t we feel

it?
• Heliocentric theory meant that stars could be different distances from earth,

and as the earth moved in its orbit, we should see movement of these stars
(called parallax). But no one ever saw this (because movements were so
small). Copernicus could only contend that all stars were too distant to see
parallaxes.

• http://www.friesian.com/hist-2.htm

Closing Thoughts

74

I Don’t Have All The Answers, Either…

• Immediate Challenges

Tools

Case Studies

Integrative Theories

Repository of Papers

• Long Term Challenges

Feature Interactions

Evolution of Product Lines

Correctness

Scaling Case Studies

Languages vs. Tools

75

• Find the scientific principles behind software design and
program synthesis

• can’t possibly be ad hoc – there is a simple mathematics behind it

• There’s evidence that features (increments in functionality) can help

• FOSD is tied to incremental development (refinements)
• key to controlling complexity
• that will never grow old

• Astonishing results are waiting to be found
• if you don’t look, you won’t find them
• if you do, you will

Our Job is to Look to the Future…

76

• To see their ideas, see my web site (to be updated shortly)

Special Thanks To

77

First Last
M Aksit
S Apel
E Börger
J Bosch
B Cheng
W Cook
E Denny
U Eisenecker
C Ghezzi
J Gray
M Grechanik
P Gruenbacher
G Heineman
P Heymans

First Last
D Hutchins
S Jarzabek
J-M Jezequel
C Kaestner
R Lopez-Herrejon
J McGregor
S Nedunuri
K Ostermann
A Schurr
P Sestoft
Y Smaragdakis
D Thomas
S Trujillo
F van der Linden
M Völter

