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Abstract. Computational Design (CD) is a paradigm where both program design
and program synthesis are computations. CD merges Model Driven Engineering
(MDE) which synthesizes programs by transforming models, with Software
Product Lines (SPL) where programs are synthesized by composing transforma-
tions called features. In this paper, basic relationships between MDE and SPL
are explored using the language of modern mathematics.

Note: Although jointly authored, this paper is written as presented by Batory in
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1  Introduction

The future of program design and development lies in automation — the mechaniza-
tion of repetitive tasks to free programmers from mundane activities so that they can
tackle more creative problems. We are entering the age of Computational Design (CD),
where both program design and program synthesis are computations [39]. By design, I
mean “what are the steps to create a program that meets a specification” (i.e., do this,
then this, etc.). Such a script is called a metaprogram. By synthesis, I mean “execute
these steps to produce the program”. This is metaprogram execution.

At the forefront of Computational Design are two complementary but different tech-
nologies: Model Driven Engineering (MDE) and Software Product Lines (SPL). These
technologies have much in common and may soon be hard to distinguish. But
abstractly for this paper, I will refer to “pure” MDE as defining high-level models of
an application, and transforming these models into low-level artifacts, such as executa-
bles. “Pure” MDE is a general paradigm for program synthesis. In contrast, I will refer
to “pure” SPL as a domain-specific paradigm for program synthesis. It exploits the
knowledge of problems in a particular domain, tried-and-tested solutions to these prob-
lems, and the desire to automate the construction of such programs given this knowl-
edge. Both “pure” MDE and “pure” SPL are synergistic: the strengths of one are the
weaknesses of the other. MDE and SPL are clearly not mutually-disjoint technologies,
but I will present their strengths as such here.
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In a prior lifetime, I was a database researcher. My introduction to program synthesis
was relational query optimization (RQO) [32]. The design of a query evaluation pro-
gram was defined by a composition of relational algebra operations, a.k.a. a relational
algebra expression. Expressions were optimized by applying algebraic identities called
rewrite rules. Applying rules was the task of a query optimizer. It took me years to
appreciate the significance and generality of RQO: it is a compositional paradigm for
program synthesis and is a classic example of Computational Design. RQO fundamen-
tally shaped my view of automated software development more than any software
engineering course (in the 1980s and maybe even now) could have.

My research focusses on SPLs, where the goal is to design and synthesize any member
of a family of related programs automatically from declarative specifications. The
thrust of my early work was on language and tool support for SPLs. More recently, my
interest shifted to elucidate the foundational concepts of SPL and MDE. Early on, I
needed a simple modeling language to express program design and synthesis as a com-
putation. I discovered that modern mathematics fit the bill. 

Here’s the reason: software engineers define structures called programs and use tools
to transform, manipulate, and analyze them. Object orientation uses methods, classes,
and packages to structure programs. Compilers transform source structures into byte-
code structures. Refactoring tools transform source structures into other source struc-
tures, and metamodels of MDE define the allowable structures of model instances:
transformations map metamodel instances to instances of other metamodels for pur-
poses of analysis and synthesis. Software engineering is replete with such examples.

Mathematics is the science of structures and their relationships. I use mathematics as
an informal modeling language (not as a formal model) to explain Computational
Design. Certainly I claim no contributions to mathematics, but I do lay claim to expos-
ing its relevance in informal modeling in SPLs. The foundation of my work rests on
ancient ideas: that programs are data or values, transformations map programs to pro-
grams, and operators map transformations to transformations [11]. This orientation
naturally lead me to MDE, with its emphasis on transformations.

The goal of this paper is to expose a set of concepts on which MDE, SPL, and Compu-
tation Design are founded. Although the concepts come from category theory [25][30],
a general theory of mathematical structures and their relationships, this paper is aimed
at practitioners who do not have a mathematical background. I show how MDE and
SPL ideas map to categorical concepts, and throughout this paper, I explain the bene-
fits in making a connection. Table 1 summarizes the terminological correspondence.
Basic concepts of category theory are in use today, but I suspect members of the SPL
and MDE communities may not appreciate them. Also, as this conference is about

Paradigm Object Point Arrow

MDE metamodel model transformation

SPL program feature

Table 1. MDE, SPL, and Category Theory Terminology



modeling, it is worth noting that mathematicians can be superb modelers, and leverag-
ing their ideas is largely what this paper is about. I begin by explaining a simple rela-
tionship between MDE and categories.

2  MDE and Categories

In category theory, an
object is a domain of points
(there does not seem to be a
standard name for object
instances — I follow Law-
vere’s text and use ‘points’
[25]).1 In Figure 1a, an
object is depicted with its
domain of points, shown as
a cone of instances. This
diagram is familiar to the MDE community as a metamodel and its model instances
(Fig. 1b). “Pure” MDE focuses on a particular technology implementation (e.g., MOF,
Ecore) of metamodels and their instances. However, the ideas of objects and instances
are more general. This observation has been noted by others, e.g., Bézivin’s technical
spaces [24] and GROVE [34]. So one can think of a Java “object” whose instances are
Java programs, a bytecode “object” whose instances are Java bytecode files, an XML
“object” (XML schemata) whose instances are XML files, and so on.

Recursion is fundamental to category theory: a point can be an object. Fig. 2a depicts
such a situation, which readers will recognize as isomorphic to the standard multi-level
MOF architecture of Fig. 2b:

The MOF architecture is not interesting in category theory without arrows. An arrow is
a map or function or morphism between objects, and whose implementation is unspec-
ified.2 Figure 3a shows an external diagram [25] that displays two objects, S and J, and

1.  I recommend Pierce’s text on category theory [30] with concrete examples in [12] as illustra-
tions; Lawvere’s text is also quite accessible [25].

Fig. 1.  Objects as Domains of Points
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an arrow A that maps each point of S to a point in J. (Arrows are always total, not par-
tial, maps [30]). Figure 3b shows a corresponding internal diagram that exposes the
points of every object of an external diagram and the mapping relationships among
points. In general, there can be any number of arrows that connect objects; Figure 3c
shows an arrow B that is different from A.

In this paper, I use the following terminology: an arrow is a mapping relationship, a
transformation is an implementation of an arrow as expressed by an MDE transforma-
tion language (e.g., QVT [29], ATL [21], RubyTL [16], GReAT [1]), and a tool is a any
other (e.g., Java, Python) implementation of an arrow. 

Now consider the following example: the external diagram of Fig. 4 shows that a mes-
sage sequence chart (MSC) can be mapped to a state chart (SC) via a model-to-model
transformation (M2MX). A state chart can be mapped to a Java program by a model-to-
text transformation (M2TX). And a Java program is mapped to bytecode by the javac
tool. Each arrow is realized by a distinct technology. In addition to these arrows, there
are also identity arrows for each object.

There does not seem to be a standard name for such diagrams in MDE. Common
names are tool chain diagrams [29] and megamodels [14] (both of which have slightly
different graphical notations). Fig. 4 is also isomorphic to a UML class diagram, where
metamodels are classes, transformations are methods, and fields of classes are private
or hidden [10][34]. External diagrams are also standard depictions of categories. A cat-
egory is a collection of objects and arrows, where each object has an identity arrow
(i.e., identity transformation). Fig. 4 is an external diagram of a category of four
objects and three non-identity arrows.

Besides objects and arrows, categories have the following properties [25][30]:

2.  A morphism is not necessarily a function; it can express a relationship, e.g., ≥ .
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• Arrows are composable: given arrows f:A→B and g:B→C, there is a composite
arrow g•f:A→C.

• Composition is associative: given arrows f:A→B, g:B→C, and h:C→D (with A, B, C,
and D not necessarily distinct), h•(g•f) = (h•g)•f.

• For each object A, there is an identity arrow idA:A→A such that for any arrow
f:A→B, idB•f = f and f•idA=f.

Identity and composed arrows are often omitted from external diagrams.

The above properties allow us to infer that there is an arrow T:MSC→ByteCode that
maps message sequence charts to Java bytecodes, where T=javac•MT2X•M2MX (T is not
displayed in Fig. 4). In general, there needs to be tool support for these abstractions, so
that all arrows, regardless on how they are implemented, can be treated uniformly.
GROVE [34] and UniTI [37] are steps in the right direction.

Category theory defines arrows that map one
input object to one output object. But in MDE, it
is common in model weaving to map multiple
models as input and produce multiple models as
output [15]. Category theory has an elegant way
to express this. The idea is to define a tuple of
objects (called a product of objects [25][30]), and this tuple is itself an object. Projec-
tion arrows are defined so that each component of a tuple can be extracted. Fig. 5
depicts an arrow F:[O1,O2,O3]→[O4,O5] which maps a 3-tuple of objects to a pair of
objects, along with projection arrows.

Now, let’s look at Fig. 6, which depicts an internal diagram of Fig. 4. Although only
one point is shown for each object, the relationships between these points (m1,s1,j1,b1)
is also a category, sometimes called a trivial category, i.e., a category where each
object represents a domain with a single point.

In general, categories lie at the heart of MDE and can be found at all levels in a MDE
architecture. Category theory provides an elegant set of ideas to express transformation
relationships among objects that arise in MDE. The ideas are straightforward, if not
familiar and have an elementary benefit: they may provide a clean foundation for MDE
(e.g., such as a language and terminology to express MDE Computational Designs). A
nice example of a formal use of categories in MDE is [19].

O1 O2 O3 O4 O5

O123 O45F
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arrows

Fig. 5.  Products of Objects

Fig. 6.  An Internal Diagram of Fig. 4
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Now let’s look at the connection between product lines and categories.

3  SPL and Categories

A software product line is a set of similar programs. Programs are constructed from
features, which are increments in program functionality that customers use to distin-
guish one program from another. For example, program P is constructed from program
G by adding feature F. This is expressed by modeling F as a function: P=F(G).

The code of a product line of calculators is shown in Fig. 7. Associated with each line
of code is a tag, which indicates the feature that adds that line. This makes it easy to
build a preprocessor that receives as input the names of the desired features and strips
off the code belonging to unneeded features. As can be imagined, this approach is brit-
tle for problems of larger scale and complexity. Nevertheless, we use it as a reference
to define what changes occur when a feature is added to a program.

The first program P1 of the
calculator SPL defines a
calculator class and its gui
class. The base calculator
only allows numbers to be
added. The second program
P2=sub(P1), extends the base
with a subtraction operation
(both the calculator and
gui classes are updated). The
effect of the sub feature is to
add new methods and new
fields to existing classes, and
to extend existing methods
with additional code. More
generally, features can add
new classes and packages as
well. The third program
P3=format(P2) adds an out-
put formatting capability to a
calculator, where again new
methods and new fields are
added, and existing methods
are extended. A fourth program, P4=format(P1), extends the base program with the
format feature. One can push these ideas further, and say the base program is itself a
feature, which extends the empty program 0, i.e., P1=base(0). Feature base adds new
classes (the base calculator class and the base gui class) to 0.

These ideas scale: twenty years ago I built customizable databases (80K LOC each),
ten years ago I built extensible Java preprocessors (40K LOC each), and more recently

class calculator {
int result;
void add( int x ) { result=+x; }
void sub( int x ) { result=-x; }

}

class gui {
JButton add = new JButton("add");
JButton sub = new JButton("sub");
JButton form = new JButton("format");

  void initGui() {
ContentPane.add( add );
ContentPane.add( sub );
ContentPane.add( form );

}

  void initListeners() {
 add.addActionListener(...);
 sub.addActionListener(...);
 form.addActionListener(...);

}

  void formatResultString() {...}
}

base
base
base
sub
base

base
base
sub
form

base
base
sub
form
base

base
base
sub
form
base

form
base

Fig. 7.  Complete Code of the Calculator SPL



the AHEAD Tool Suite (250K LOC). All used the ideas that programs are values and
transformations (features) map simple programs to more complex programs.3

Now consider the connection of SPLs to MDE.
Fig. 8 shows a metamodel MM and its cone of
instances. For typical metamodels, there is an
infinite number of instances. An SPL, in contrast,
is always a finite family of n similar programs
(where n may range from 2 to thousands or
more). So an SPL is a miniscule subset of a
metamodel’s domain. In fact, there is an infinite
number of SPLs in a domain. If MM is a meta-
model of state charts, it would not be difficult to
find SPLs for, say, an IBM disk driver domain, a
portlet flight booking domain, and many others.

As mentioned earlier, SPLs define relationships
between its programs. How? By arrows, of course.
Fig. 9 shows the calculator product line with its four
programs, along with the empty program 0, which
typically is not a member of an SPL. Each arrow is a
feature. From the last section, it is not difficult to rec-
ognize that an SPL is itself a trivial category: each
point is a domain with a single program in it, there
are implied identity arrows and implied composed
arrows, as required.

Embodied in our description of SPLs is a fundamental approach to software design and
construction, namely incremental development. Programs are built, step-by-step, by
incrementally adding features. Not only does this control program complexity and
improve program understandability, it also allows for the reuse of features (i.e., multi-
ple programs in a product line could share the same feature). More on this shortly.

By composing arrows (features), the programs of an SPL are created. A program’s
design is an expression (i.e., a composition of arrows), and a program can have multi-
ple, equivalent designs. For example, program P3 has two equivalent designs: P3=for-

mat•sub•base(0) (which we henceforth abbreviate to P3=format•sub•base) and
P3=sub•format•base. Evaluating both expressions yields exactly the same program.
Features sub and format are said to be commutative because they modify mutually dis-
joint parts of a program.

3.  Readers who are familiar with the decorator pattern will see a similarity with features: a dec-
orator wraps an object to add behaviors. Features can be dynamically composed, but in this
paper, they are statically composed to produce programs. Another difference is scale: decorators
wrap a single object, whereas features often modify many classes of a program simultaneously.

Fig. 8.  SPLs and Metamodels
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3.1  Pragmatics of Software Product Lines

If there are n optional features, there can be 2n

different programs. We see a miniature exam-
ple of this in Fig. 9: there are 2 optional fea-
tures (format and sub) and there are 22=4
programs in the product line. A slightly larger
and more illustrative example is Fig. 10. We
want to create an SPL of many programs; we
know the arrows that allow us to build each of
these programs, and many programs use the same feature, e.g., the thick arrows of
Fig. 10 denote the application of the green feature to 4 different programs, and the
dashed arrows denote the application of the blue feature to 3 different programs. It is
the reuse of arrows that makes them more economical to store than programs.

As an aside, features are like database transactions: they
make changes to a program that are not necessarily localized:
changes can appear anywhere in a program. But the key is
that either all changes are made, or none are. Further, fea-
tures can produce non-conforming programs (non-conform-
ing models). Fig. 11 depicts an arrow F that relates programs
P3 and P6, both of which conform to metamodel MM. But by
arrow composibility, we see that F=F3•F2•F1. Applying F1 to
P3 yields program P4, and applying F2 to P4 yields program
P5, and P6=F3(P5). Note that programs P4 and P5 do not con-
form to MM. It is common for existing features to be decom-
posed into compositions of smaller features, the individual
application of which does not preserve conformance properties of the resulting pro-
gram or model.4 The reason why these smaller arrows arise is that features often have a
lot of code in common. Commonalities can be factored into small features (small
arrows) that are shared in implementations of larger arrows. We will see examples of
small arrows in the next section.

3.2  Arrow Implementations

There are two ways in which arrows are implemented. First is to implement arrows in
the ATL, GReAT, etc. languages. The second and standard way for SPLs is that arrows
are program or model deltas — a set of changes — that are superimposed on existing
models (e.g., AHEAD [9], Scala [28], Aspectual Feature Modules [5], and AspectJ
[22]). In effect, deltas can be viewed as a specific example of model weaving [15].
Which approach — writing modules that are to be superimposed or writing transfor-
mations— is “better”? This is not clear; I am unaware of any study to compare their
trade-offs. In this paper, I focus solely on the use of deltas, so that core concepts in
SPLs can be given their most direct MDE interpretation.

4.  Conformance for a program could be whether it type checks or not.

0

Fig. 10.  Reuse of Arrows in SPLs
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Here is an example. Fig. 12a shows the AHEAD representation of the sub feature of
our calculator SPL. It states that the calculator class is extended with a “void
sub(int x)” method, and the gui class is extended with a new field (JButton sub),
and its existing methods (initGui() and initListeners()) are wrapped (effectively
adding more lines of code to these methods). We mentioned in the last section about
decomposing a feature (arrow) into smaller features (arrows). Fig. 12b defines the
AHEAD arrow (subcl) that changes only the calculator class, Fig. 12c defines the
AHEAD arrow (subgui) that changes only the gui class. Composing subcl and sub-
gui in either order produces sub (Fig. 12d). The subgui arrow could be decomposed
even further, as a composition of arrows that introduce fields and wrap individual
methods.

The same ideas hold for MDE models. In two different product lines, fire support sim-
ulators [7] and web portlets [35], customized state machines were created by having
features encapsulate fragments of state machines. By composing fragments, complete
state machines were synthesized.

To me, the essential entities that programmers create in “pure” MDE are complete
models (points); in “pure” SPLs they are features (arrows representing model deltas).
Hence, there is discernible distinction between these paradigms, and exposing this dis-
tinction reveals an interesting perspective. Fig. 13a shows the metamodel MM, its cone
of instances, and a particular product line PL whose members are m1, m4, and m5. The
domain of a more general metamodel, called an arrow metamodel MM, is a superset of
MM. Fig. 13b exposes the arrows that relate models in the PL product line, showing how
models and features can be placed in the same cone of instances. Each model m is rep-

refines class calculator {
void sub( float x ) { result=-x; } 

}

refines class gui {
JButton sub = new JButton("sub");

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}
}

refines class calculator {
void sub( float x ) { result=-x; } 

}

refines class gui {
JButton sub = new JButton("sub");

void initGui() {
SUPER.initGui();
ContentPane.add( sub );

}

void initListeners() {
SUPER.initListeners();
add.addActionListener(...);

}
}

(a) sub=subcl•subgui=subgui•subcl

(b) subcl

(c) subgui

(d)
sub

subgui

subgui subcl

subcl

Fig. 12.  AHEAD Arrow Implementations



resented by an arrow 0→m. Fig. 13c erases MM and its cone to reveal that the instances of
MM are arrows. The subset of arrows that define PL is indicated in Fig. 13c, and so too
are other sets of arrows (not necessarily disjoint) that are used to create other product
lines. By combining a set of arrows with a feature model (i.e., a specification that
defines what composition of arrows are legal), the original product line PL within MM’s
cone of instances can be generated (Fig. 13d).5 

From a modeling perspective, the SPL approach to program construction recognizes a
basic fact: all program artifacts — MDE models, Java programs, etc. — are not created
spontaneously. They are created by extending simpler artifacts, and these artifacts
come from simpler artifacts, recursively, until 0 is reached. The connection between
successive artifacts is an arrow (from the simpler to the more complex artifact). By fol-
lowing arrows forward in time starting from 0, an artifact (program, model, etc.) is
synthesized. In effect, SPLs add a dimension of time to program or model designs. Pro-
ceeding forward in time explains how a program was developed in logical steps. Or
stated differently, program synthesis is an integration of a series of well-understood
changes.

5.  Support for deltas in conventional programming languages is largely absent. One can only
define programs, not changes one wants to make to an existing program and encapsulate and
compose such changes. It is as if one-half of a fundamental picture is absent.

Fig. 13.  Metamodels and Arrow MetaModels
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3.3  Recursion

Product lines of models will be common,
but product lines of metamodels, a form
of product lines of product lines [8], will
also be common. Fig. 14 depicts the
MDE architecture. A product line of four
metamodels is shown, along with the
arrows that connect them. Such arrows
could be metamodel deltas (as we have
described previously), or they could be
refactorings [33][38]. Normally, when a
metamodel is changed, one would like to
automatically update all of its instances.
The model-to-model transformation that
is derived from a metamodel-to-metamodel transformation is called a co-transforma-
tion [33][38]. Co-transformations map product lines of one metamodel to product lines
of other metamodels.

3.4  Recap

Categories lie at the heart of SPLs, and again the ideas are straightforward. Well-stud-
ied ideas in mathematics offers a clean language and terminology to express SPL Com-
putational Designs. See [12] for an example. Now, let’s see what happens when MDE
and SPLs are combined into model-driven software product lines (MDSPL).

4  MDSPL and Categories

A fundamental concept in category theory is the commuting diagram, whose key prop-
erty is that all paths from one object to another yield equivalent results. The diagram of
Fig. 15a is said to commute if f2•d1=d2•f1. Commuting diagrams are the theorems of
category theory.

Fig. 14.  Co-transformations
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Commuting diagrams arise in MDSPL in the following way. Consider Fig. 15b, which
shows arrow A that maps object S to object B. A small product line of S instances is
depicted, and these points are mapped by A to a corresponding set of points in B. In
general, horizontal arrows are MDE transformations and vertical arrows are SPL fea-
tures. Note that feature fS that relates s1 to s2 is mapped to a corresponding feature fB
that relates b1 to b2. Mapping a feature (arrow) to another feature (arrow) is an opera-
tor or update translation [4]. Operator A relates features fS and fB in Fig. 15c by
fB=A(fS).

From our limited experience, operators can sometimes be easy to write; generally they
pose a significant engineering challenge. As a challenge example, let S be the domain
of Java source and B be domain of Java bytecodes. Suppose feature fS is a delta in
source code that maps the source s1 of program P1 to the source s2 of program P2. fB is
the delta that is applied to the binary of s1 to yield the binary of s2 (i.e., b2=fB(b1)).
Implementing operator A requires separate class compilation, a sophisticated technol-
ogy that can compile Java files individually and delay complete type checking and
constant folding optimizations until composition time [2]. In the next sections, we
present examples of operators we have implemented.6

Note: The generalization of metamodel S to the arrow metamodel S as
explained in Section 3.2 also applies to the generalization of arrows. That is,
the external diagram consisting of objects S and B and arrow A:S→B can be
generalized to the external diagram with objects S and B and arrow A:S→B.
This is the A operator discussed above.

Note: A is a homomorphism: it is a mapping of S expressions (compositions of
one or more S arrows) to a corresponding B expression (compositions of one
or more B arrows). Let x and y be arrows of S. The commuting relationship of
a homomorphism is:

A(x•y) = A(x) A(•) A(y)

where A(•) typically maps to function composition (•). We talk about the
practical benefits of such relationships next.

5  Benefits of Mapping Arrows

In the last two years, we discovered several uses for mapping arrows in MDE product
lines: simplifying implementations [17], improving test generation [36], understanding
feature interactions [23], explaining AHEAD [12], and improving the performance of
program synthesis [35]. In the following sections, I briefly review two recent results.

6.  Gray has noticed that the kind of commuting diagrams shown here often require transforma-
tions that involve different technical spaces (using Bezivin's terminology). These are often hard
to compose in practice, yet seem easy in these diagrams [18]. As mentioned earlier, there is a
strong need for relating these tool chains [34][37]. 



5.1  Lifting

MapStats is an MDSPL where applications are written in SVG and JavaScript. Map-
Stats applications display an SVG map of the U.S. where the map can be customized
by adding or removing charts, statistics, and controls (Fig. 16).

The SPL design was a collection of MapStats features (arrows) and its feature model,
which defined the legal combination of MapStats features. All MapStats features were
implemented as XML documents or XML document deltas. By composing arrows
using XAK, a general language and tool for refining XML documents [3], customized
MapStats applications were synthesized. Early on, we discovered that a particular sub-
set of arrows, namely those that implemented charts, were tedious to write. We used a
basic concept of MDE to create a domain-specific language (DSL) to define charts and
chart features. Each Chart feature was mapped to its corresponding and low-level Map-
Stats feature by an operator (τ:Chart→MapStats). In effect, we “lifted” chart arrows
from their MapStats implementation, to arrows in a Charts DSL (Fig. 17). By doing so,
we simplified the writing of Charts arrows using the Charts DSL, and we automated
the tedious implementations of their corresponding MapStats arrows. 

Fig. 16.  A MapStats Application

Fig. 17.  Lifting Arrows
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As an example, Fig. 18a shows a simple DSL spec S of a pie-chart that displays age
population for the ranges 30-39 and 22-29. Fig. 18b shows a specification of a chart
arrow R that adds the range 18-21 to a Chart spec. The underlined code defines a point-
cut that identifies nodes in an XML document, and the advice is to append the 18-21
range item to selected nodes. Applying R to S (evaluating expression R(S)) yields the
Chart spec of Fig. 18c. The τ operator maps a Chart arrow to a MapStats arrow. The
result of τ(R) is the MapStats arrow of Fig. 18d. Note that τ maps the Chart pointcut to
the corresponding MapStats pointcut, and maps the Chart advice to the corresponding
MapStats advice written in JavaScript. τ was written in XSLT.

A homomorphism relates Chart arrows (Sk) to MapStats arrows (Ck):
τ(Si•Sj) = τ(Si)•τ(Sj) = Ci•Cj (1)

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“green” name= ...
<item attr=“AGE_22_29” color=“cyan” name=...

</chart>

(a) chart specification

<xr:refine xmlns:xr="http://www.atarix.org/xmlRef ...
<xr:at select="//chart[@data-type='age-population' ...

<xr:append>
<item attr="AGE_18_21" color="blue" ...

</xr:append>
</xr:at>

</xr:refine>
(b) a Chart arrow

<xr:refine ... >
<xr:at select="//function[@data-type='age-population'] 

[@parentId='ChartArea2'][@name='buildData']"...>
<xr:append>

<statement>
this.chartAttrArray.push("AGE_18_21");
this.chartNameArray.push("18-21");
this.chartColorArray.push("blue");

</statement>
</xr:append>

</xr:at>
</xr:refine>

(d) corresponding MapStats arrow

<chart data-type=“age-population” type=“pieChart” ...
<item attr=“AGE_30_39” color=“green” name= ...
<item attr=“AGE_22_29” color=“cyan” name=...
<item attr=“AGE_18_21” color=“blue” name=...

</chart>

(c) a refined chart specification

Fig. 18.  MapStats and Chart Arrows



We used (1) in two ways. First, when a particular MapStats application was specified
as a composition of MapStats arrows, we used (1) to generate MapStats chart arrows.
For example, let Mi denote non-chart arrows of MapStats. A MapStats application P is a
composition of M arrows followed by C arrows. We translated P into equivalent expres-
sions using (1) and evaluated either of these new expressions to synthesize P:

P  = C2•C1•C0•M1•M0 // given

 = τ(S2•S1•S0)•M1•M0 // by (1)
 = τ(S2)•τ(S1)•τ(S0)•M1•M0 // by (1)

The second use of (1) was for verification: it defined a set of constraints that hold
between pairs of Charts and MapStats features and their compositions. Here, as in pre-
vious experiences [35], our tools did not satisfy these constraints (meaning the equali-
ties of (1) did not hold). This exposed bugs in our tools which we had to fix.7 Now we
have greater confidence in our tools as they implement explicit relationships in our
MDSPL models. This is a win from an engineering perspective: we have insights into
domains that we did not have before, and we have a better understanding, better mod-
els, and better tools as a result.

Lifting is a general technique that can be applied to many product lines. For more
details, see [17].

5.2  Test Generation

Testing members of SPLs is a fundamental problem. We can synthesize different pro-
grams, but how do we know these programs are correct? In such cases, specification-
based testing can be effective. Starting with a specification (or model) of a program,
we want to derive its tests automatically. Alloy is an example of this approach [20].

Alloy works by translating an Alloy specification S into a propositional formula. A
SAT solver finds the bindings that satisfy the formula, called a solution. Let I denote
the set of all solutions for S. A test program is generated for each solution using the
TestEra tool [26]. The set of all tests, T, is the output. 

Alloy specifications can be developed incrementally by conjunction. That is, if pro-
gram P0 has specification S0 and feature F has specification SF, then the spec of F(P) is
S0∧SF. The conventional way to synthesize tests for a program is to compose the speci-
fications of all of its features, and then use Alloy and TestEra to produce its tests. We
know there is a commuting diagram behind this design, which Fig. 19 exposes. The
left column of objects are Alloy specifications, the middle column are spec solutions,
and the right column are tests. Horizontal arrows are the tools alloy:S→I and
TestEra:I→T. Features are vertical arrows. The right-most column of vertical arrows
are spec refinements. The middle column are solution refinements, and the right col-
umn are test refinements.

7.  Although we could not prove the equivalence of (1), we could demonstrate equivalence by
testing, as is done in conventional software development.



Only the conventional path, and no other,
has ever been taken. The challenge is to
determine how to implement an operator
τ:S→I to map spec arrows to solution
arrows and maybe another operator σ:I→T

to map solution arrows to test arrows. Uzun-
caova et al. discovered an elegant way to
realize τ (for details, see [36]). This discov-
ery exposed an alternative path, called the
incremental path, that first derives the solu-
tions for the base specification, and extends
each solution to zero or more solutions of an
incrementally more complicated specification. Once solutions to the target specifica-
tion are found, the TestEra tool is used to produce the corresponding set of tests. 

Initial experiments revealed that in a majority of cases, the incremental path synthe-
sizes test programs faster than the conventional path, and for some cases, the speedup
was 30-50× faster. Not surprisingly, other paths were found to be even more efficient
(i.e., extend a specification multiple times, then derive its solutions, then extend these
solutions). Of course, we know that there are test arrows that relate tests for different
programs, but here is a case where it is unlikely that creating an operator σ to map
solution arrows to test arrows would be useful — all the work in extending tests seems
to be in extending solutions. 

In general, commuting diagrams reveal new ways to solve problems, and in some
cases, these new solutions are better than existing solutions.

5.3  Recap of Benefits

Exposing commuting relationships in program synthesis, as illustrated in the previous
sections, has revealed a set of interesting problems and novel perspectives that have
lead to useful results. I expect many more applications of commuting diagrams in the
future. An even more interesting, longer-term, and open question is whether mathema-
ticians can leverage this connection of MDE and SPLs to provide deeper results.

6  Design Optimization

Design optimization is the most exotic part of Computational Design. If a program’s
design is an expression, then the expression can be optimized to produce an equivalent
and improved design. In the last section, we saw commuting diagrams offered different
paths to produce equivalent results. In the case of test generation, finding the right path
could shorten generation time substantially. There is a counterpart in SPLs which orig-
inates from relational query optimization, that I now briefly describe.

Relational query optimization makes a clean distinction between functional require-
ments and non-functional requirements. A functional requirement is an arrow (e.g.,
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relational operation); a non-functional requirement is a computable, estimatable, or
measurable property of a composition of arrows (e.g., performance) [32]. 

Fig. 20 depicts an SPL of multiple programs, all of which are derivable from 0. A sub-
set of these programs satisfy the functional requirements of a program spec. (This is
the inner set of programs in Fig. 20). Designers want a program of this inner set that
also satisfies non-functional requirements and/or optimizes some quality metrics (e.g.,
performance). In principle, by enumerating this inner set, evaluating each point on its
quality behavior, and selecting the point that exhibits the “best” quality (e.g., most effi-
cient program w.r.t. some criteria), that is the program to build. Of course, how one
enumerates or searches the inner set, how one evaluates or ranks points on the basis of
quality metrics, and to do so efficiently, is often a challenging engineering problem.
But this is the RQO paradigm: each relational algebra operation is an arrow, relational
algebra expressions are arrow compositions, and relational query optimization is
expression optimization with respect to performance.

At present, I am aware of only a few
examples of design optimization,
among them are RQO [32], data struc-
tures [6], adaptive computing [27],
middleware [40], and library synthesis
[31]. A general technology for optimi-
zation may be constraint satisfaction
[13]. The main challenge is finding
domains where there are different ways
of implementing the same functional-
ity. Usually, most SPLs have only one implementation of a feature, and without multi-
ple implementations, there may not be many opportunities for optimization a la RQO.

The key lesson is this: if you have a good conceptual framework, you will be able to
recognize more easily the relationship among different and disparate areas of research.
Much of what we do today as designers and implementors is to define and transform
structures. By making these abstractions and distinctions clear(er), we will be that
much closer to understanding the essence of MDE, SPLs, and Computational Design.

7  Conclusions

One of the key advances that brought database systems out of the stone age is rela-
tional query optimization. The relational model and the optimization of queries was
rooted firmly in set theory, using elementary operations on sets (select, project, join,
union). From a mathematical perspective, virtually nothing of set theory was used
except for the first few pages in a set theory text. It was these simple ideas from set the-
ory, not its deeper results, that made a lasting impact on databases.

The same may hold for category theory: its elementary ideas may find their way into
the practice of MDE and SPL program design and synthesis. There is preliminary evi-
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Fig. 20.  Optimizing Program Designs



dence that these ideas bring both pragmatic and pedagogical benefits. From an infor-
mal modeling viewpoint, the ideas I presented here are usable by engineers. Deeper
results may be forthcoming.

How often will commuting diagrams arise in MDSPLs? This is not yet clear. One thing
is clear: if you look, you will eventually find them. And if you don’t look, you won’t
find them! Their utility will be decided on a per domain basis.

As mentioned in the Introduction, the future of software design and synthesis is in
automation. Understanding fundamentals of Computational Design will tell us how to
think about program design and synthesis in a structured and principled manner. It is
clear that many ideas are being reinvented in different contexts. This is not accidental:
it is evidence that we are working toward a general paradigm that we are only now
beginning to recognize. Modern mathematics provides a simple language and concepts
to express Computational Design and exposes previously unnoticed relationships that
can be exploited for pragmatic benefit. This is a step in the right direction.
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