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Abstract. Program refactoring, feature-based and aspect-oriented software
synthesis, and model-driven development are disjoint research areas. How-
ever, they are all architectural metaprogramming technologies as they treat
programs as values and use functions (a.k.a. transformations) to map pro-
grams to other programs. In this paper, I explore their underlying connections
by reviewing recent advances in each area from an architectural metapro-
gramming perspective. I conjecture how these areas can converge and outline
a theory that may unify them.

1 Introduction

Among the greatest challenges that we face today is dealing with the alarming complex-
ity of software, and the alarming rate at which software complexity is increasing.
Brooks observed 20 years ago that programmers spent a majority of their time on acci-
dental complexity, rather than essential complexity [12]. Unfortunately, we often can’t
tell the difference between the two.
Complexity is controlled by imposing structure. This paper is about the essential com-
plexity of software structure. There are increasingly overlapping ideas in the areas of
program refactoring, program synthesis, and model-driven development, all of which
deal with program structure and maintenance. I conjecture how these areas can con-
verge and outline a theory that may unify them.
I have long believed there is a common conceptual foundation for what we do in pro-
gramming, software design, and maintenance. The results I expect from making these
foundations explicit are increasing automation, building better tools, writing better
code, and reducing program development and maintenance costs. All are worthy goals.
But there may be an even bigger prize: discovering the material that will be taught to
future graduates and undergraduates. 
By, say, 2020 (which I hope will be a good year), programmers will be writing func-
tions, objects, classes, and methods just as they do today. But there will be a difference
in the level of abstraction at which programs are written. I expect the rise of architec-
tural metaprogramming: the idea that programming and design is a computation, where
programs are values and functions (a.k.a. transformations) map programs to programs.
In the following sections, I sketch the ideas architectural metaprogramming, and then
reflect on recent advances in program refactoring [17][18], program synthesis [26], and
model-driven development [7][37] from its perspective.
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2 Basics of Architectural 
Metaprogramming

Programs are values. Figure 1a shows a value C
that is the Java definition of a class c. Figure 1b
shows another value D; it is the Java definition of a
class d. (I use Java, but any language could be used
provided that one shows how concepts translate).
Values can be added. The sum C+D is a program
with classes c and d. As another example: let C1 be
the definition of a class c with a comp() method (Figure 2a), and let C2 be another def-
inition of class c which has an x field and an inc() method (Figure 2b). C1+C2 yields
a single definition of class c (Figure 2c), formed by the disjoint union of the members
in C1 and C2.1

Summation (or simply “sum”) is disjoint set union [26] with the properties:
• Sum identity 0 is the null program or null value. For any program P: P+0=P
• Sum is commutative (as disjoint set union is commutative): A+P=P+A
• Sum is associative (as disjoint set union is associative): (A+B)+C=A+(B+C)

Values can be subtracted. Subtraction is set difference; if a program is formed by C+D,
and C is subtracted, the result is D: (D+C)-C=D. Subtraction has the properties:

• 0 is the identity: P-0=P and P-P=0
• Subtraction is left associative: P-C-D=((P-C)-D)
• Subtraction is not commutative: P-C ≠ C-P

A third operation is really a menagerie of operations called
distributive transformations (DTs). (The reason for the
name will become clear shortly). One is rename(p,q,r): in program p, replace name
q with name r. Recall program C2 (Figure 2b). Suppose we want to replace name “x”
with name “z”. The computation rename(C2,x,z) does this replacement and yields
value C3, shown in Figure 3.

1. Think of a primitive value as an aspect-oriented introduction that defines a member and
its class (e.g., “int c.x;”) [22]. The same for other declarations such as initialization
blocks, extends clauses, etc. When values are converted to source code, their members
are collected into classes, and classes into packages, to show their hierarchical modulari-
ties.

Figure 1   Values C and D

class c {
 int x;
void inc() {x++;}

}

class d {
int compute() {}

}

(a) value C

(b) value D

Figure 2   Sum

class c {
int comp() {}

}

(a) value C1

class c {
int x;
void inc() {x++;}

}

(b) value C2

class c {
int comp() {}
int x;
void inc() {x++;}

}
(c) value C1+C2

class c { 
int z;
void inc(){z++;}

}

Figure 3   Value C3



Consider another computation: rename(D,x,z) which equals D. That is, rename
leaves D unaltered as D does not reference x. In mathematics this is a fixed point, i.e., a
value x such that f(x)=x. DTs usually have many fixed points.
The key property of DTs is that they distribute over + and - (hence their name). That is,
a DT f of a sum equals the sum of the transformed values. The same for subtraction:

f(A+B) =  f(A) + f(B)
f(A-B) =  f(A) - f(B) (1)

As an illustration, consider renaming “x” to “z” in program C2+D. This computation,
rename(C2+D,x,z), is performed by applying rename to programs C2 and D individ-
ually, and summing their results:

rename(C2+D,x,z) 
= rename(C2,x,z) + rename(D,x,z) // distribution
= C3 + D // evaluation

DTs have other properties. Transforming a non-null value yields a non-null value:

f(x) ≠ 0 ; where x ≠ 0 (2)

That is, applying a DT to a non-null value will not nullify (erase, delete) that value, but
may alter it. If a value is to be deleted, subtraction should be used. And the null value
cannot be transformed:

f(0) = 0 (3)

Another property is composition. DTs are functions, and thus compose like functions.
If f1 and f2 are DTs, f1•f2 denotes their composition. Function composition is not
commutative (f1•f2 ≠ f2•f1) and is associative ((f1•f2)•f3 = f1•(f2•f3)).
Expressions that are formed by adding, subtracting, and transforming programs are ar-
chitectural meta-expressions or simply meta-expressions.
Before proceeding further, I use the term “structure” to mean what are the parts and
how are they connected? The structure of a cube, for example, is a solid bounded by six
equal squares, where two adjacent faces meet at a right angle. The term “property” is
an attribute that is given or is derivable from a structure. If E is the length of an edge (a
given property), derivable properties of a cube are its surface area (6*E2) and volume
(E3). The software analog: the structure of a program is its architectural meta-expres-
sion. Compilers prove properties of a program by analyzing its structure, such as the
property of type correctness. In this paper, I focus solely on program structure. Now
let’s look at some applications of architectural metaprogramming.

3 Recent Advances in Program Refactoring

A refactoring is a transformation that changes the structure of a program, but not its be-
havior [20]. Classic examples include rename method and move a method from a sub-
class to a superclass. Common Integrated Development Environments (IDEs), such as
Eclipse, Visual Studio, and IntelliJ, have built-in or plug-in refactoring tools. Discussed
below is an interesting problem in program refactoring.



The use of components (e.g., frameworks and libraries) is common in contemporary
software development. Components enable software to be built quickly and in a cost-
effective way. The Application Program Interface (API) of a component is a set of Java
interfaces and classes that are exported to application developers. Whenever an API
changes, client code that invokes the API must also change. Such changes are per-
formed manually and are disruptive events in program development. Programmers
want an easy (push-button) and safe (behavior-preserving) way to update their applica-
tions when a component API changes [17][18].
Figure 4 illustrates an API change called “move
method”. An instance method m of a home class (Fig-
ure 4a) becomes a static method m of a host class
(Figure 4b). The moved method takes an instance of
the home class as an extra argument, and all calls to
the old method are replaced with calls to the new
method.
Figure 4 shows the essence of the problem: above the
dashed lines is component code, and below is client
code. When the API is refactored, the client code
changes. As component developers do not have ac-
cess to client code, the client programmer must man-
ually update his/her own code.
This API change can be written as an architectural
meta-expression. Let value home.m denote the home
method m(), and let host.m denote the host method
m(). Let µ be the DT that transforms home.m to
host.m, and otherwise leaves all other primitive val-
ues unchanged. That is, µ(home.m)=host.m and for
all x≠home.m: µ(x)=x. Let φ be the DT that renames
all calls to home.m to calls to host.m, and otherwise
leaves primitive values unchanged. That is, φ(kcode.y)=kcode.y’ and for all prim-
itives x that do not call home.m: φ(x)=x. The meta-expression that relates the updated
program (Pnew) to the original program (Pold) is:

Pnew = φ•µ( Pold ) = µ•φ( Pold ) (4)

In this particular case, the order in which µ and φ are composed does not matter. The
reason is that each transformation changes different code fragments (much like two
pieces of aspect-oriented advice advising different join points [22]).
To see how computation (4) proceeds, let Pold=home.m+kcode.y+..:

φ•µ( Pold )
= φ•µ( home.m + kcode.y + .. ) // substitution
= φ•µ(home.m) + φ•µ(kcode.y) + .. // distribution
= φ(host.m) + φ(kcode.y) + .. // evaluation of µ
= host.m + kcode.y’ + .. // evaluation of φ
= Pnew

Figure 4   Move Method 

class host {}

class home {
void m() {}

}

class kcode {
void y(){ 

home h; 
h.m() 

}}}
}

class host {
static void m(home h)
{}

}

class home {}

class kcode {
void y’(){ 

home h;
host.m(h) 

}
}

(a)

(b)



Other API changes (refactorings) besides move method include: move field, delete
method (which is usually done after a method is renamed or moved), change argument
type (replace an argument type with its supertype), and replace method call (with an-
other that is semantically equivalent and in the same class) [17]. My preliminary work
suggests that these and other refactorings can be written as meta-expressions. 
In a recent paper, Dig and Johnson explored how APIs evolve [18]. They manually an-
alyzed the change logs, release notes and documentation of different versions of five
medium to large systems (e.g., 50K to 2M LOC), including Eclipse, Struts, and JHot-
Draw. They discovered that over 80% of the API changes were due to refactorings. This
means that a large fraction of API changes can be fully automated.
By 2020, programmers will use advanced IDEs that will “mark” API interfaces, classes,
methods, and fields. The only way marked elements can change is by refactorings.
When a new version of a component is released, the refactorings of its API are also re-
leased. These refactorings are applied automatically to the client code whenever a client
installs a new version of a component, thereby avoiding the tedious and error prone
changes that are now performed manually. In this way, the disruptive effects of updat-
ing component versions are minimized.
Underneath the covers, future IDEs will use architectural meta-expressions to perform
these updates. Assume that DTs θ are sufficient to express API refactorings. Further as-
sume that private edits to a component, which change component internals and are in-
visible to clients, are also modeled by transformations ε. Updating component V0 to ver-
sion V1 is an interleaved sequence of refactorings and private edits, such as:

V1 = ε6•ε5•ε4•θ3•ε3•ε2•θ2•θ1•ε1( V0 ) (5)

The IDE will keep a history of these changes. The modifications θ of V0 that may alter
client code are the API refactorings, which is the projection of the changes of (5) with
private edits removed:

θ = θ3•θ2•θ1 (6)

The metaprogramming function U automatically updates a client program P0 that uses
V0 to a program P1 that uses V1, where P1=U(P0):

U(x) = θ( x - V0 ) + V1 (7)

To see a computation, let client program P0=C+V0, where C is the client code to be up-
dated. Applying U to P0 updates P0’s code (transforming C to θ(C)) and replaces V0
with V1. This is the essential idea behind [18].

U(P0)
= θ( P0 - V0 ) + V1 // substitution of U
= θ( C + V0 - V0 ) + V1 // substitution of P0
= θ( C ) + V1 // subtraction
= P1

Note that U can be applied to any program P0, whose size can be arbitrarily large. One
of the benefits of architectural metaprogramming is that its concepts scale to large pro-
grams.



Perspective. By 2020, IDEs will be component evolution calculators. They will allow
programmers to edit components, and perhaps invisible to programmer actions, IDEs
will create metaprogramming update functions like U for distribution. When a client
wants a new version of a component, s/he will download a metaprogramming function
U rather than the new version itself. The client’s IDE will then apply U to the client’s
code base, automatically and safely updating the client’s program.1 An interesting re-
search problem is to generalize the above analysis to deal with refactorings that involve
value additions and subtractions, and to develop in detail an algebra for refactorings in
conjunction with a refactoring tool to show the connection between theory and practice.

4 Recent Advances in Program Synthesis

Declarative languages will be used to specify programs in 2020. Unlike past work that
relied on formal logic specifications (and compilers to derive program implementations
from such specifications), the languages I envision will be much simpler. They will ex-
ploit results from Software Product Lines (SPLs), an area of research that focuses on
designs for a family of systems and on automating system construction. A fundamental
idea in SPL is using features to describe and differentiate programs within a family,
where a feature is an increment in functionality [21][14].
Features are used in many engineering disciplines for product specification. At the Dell
web site, customers configure a personal computer (i.e., a product in a Dell product line)
by selecting optional hardware and software features listed on a web page [16]. Such
pages are Declarative Domain-Specific Languages (DDSLs) for Dell products. Another
example is BMW’s web site to customize an automobile [11]. 
Software can be specified
in the same way. Figure 5
shows an elementary
DDSL for a product-line
of Java programs. Called
the Graph Product Line
(GPL), each program im-
plements a unique combi-
nation of graph algo-
rithms [25]. A particular
program is specified by
selecting a set of features. The program specified in Figure 5 (reading selected features
from left to right) implements vertex numbering, strongly connected components, and
cycle checking using a depth first search (DFS) on a weighted, directed graph. More
generally, each feature can be customized via parameters (much like GUI components
have customizable property lists [2]), but the essential idea of declarative feature selec-
tions remains.

1. There is a database transaction-like quality to this update. If any refactoring of θ fails,
then the all changes are rolled back, and client-programmer intervention is needed to re-
pair the program for subsequent U application.

Figure 5   DDSL for the Graph Product Line



The compiler for the GPL DDSL outputs a meta-expression, shown below:
Number•StrongC•Cycle•DFS•Weighted(Directed)

As users select GPL features, terms are inserted into this expression. Evaluating the ex-
pression synthesizes the specified program. My students and I have built many exam-
ples of more realistic applications using this technology, ranging from customized or
extensible database systems twenty years ago [3], to extensible Java preprocessors ten
years ago [4], to web portlets [37] (which we’ll consider later). We call this technology
Feature Oriented Programming (FOP), where features are either metaprogramming
constants or functions [6]. A model of a product-line is an algebra: constants represent
base programs (e.g., Directed), and functions add features (Weighted, DFS, etc.) to
programs. Each domain has its own algebra, and different meta-expressions synthesize
different programs of that domain (product-line). How are features expressed by archi-
tectural metaprogramming? This is the topic of the next subsections.

4.1 A Look Inside Features
If we peer inside implementations of FOP functions and constants, we find two ideas
that have been popularized by Aspect Oriented Programming (AOP) [22]. (I will use
the ideas of AOP, rather than their AspectJ semantics which has problems [26].) The
first is introduction, also known as inter-type declarations. An introduction adds a new
member to an existing class, or more generally adds a new class or package to a pro-
gram. Introduction is metaprogramming addition.
The second idea is advice, which is the execution of additional code at points called join
points. Although it is not obvious, advice is a distributive transformation (see [26] for
an explanation, including examples of how complex pointcuts like cflow [22] are ex-
pressed transformationally). That is, applying advice A to a program P is the same as
applying A to each component of P and summing the results. Advice or the act of advis-
ing is quite different from a refactoring even though both are transformations: refactor-
ing is behavior preserving, whereas advise is behavior-extending. Neither AOP or FOP
support subtraction.
Here’s how introduction works. Start with a simple program P consisting of a single
class r with field b (Figure 6a), and incrementally add or introduce method foo (Figure
6b), integer i (Figure 6c), and class t (Figure 6d). From a metaprogramming viewpoint,
the original program in Figure 5a is P=r.b. That is, program P consists of a single mem-
ber b in class r. Introducing method foo adds another term to P’s meta-expression:
(P=r.b+r.foo). Introducing field i adds yet another term (P=r.b+r.foo+r.i). And

class r {
String b;

}

class r {
String b;
void foo()
{..}

}

class r {
String b;
void foo(){..}
int i;

}

class t {
String bar;
int cnt(){..}

}

class r {
String b;
void foo(){..}
int i;

}

(a)

(b) (c)

(d)Figure 6   Incremental Development of Program P



introducing class t adds even more terms (P=r.b+r.foo+r.i+t.bar+t.cnt). Eval-
uating the meta-expression for P in each figure synthesizes the listed program.
Now consider advice. Join points are events that occur during program execution, such
as when a method is called, or when a method is executed, or when a field is updated
[21]. Advice is a piece of code that is executed when designated join points occur. Al-
though advice is usually given a dynamic interpretation (i.e., when an event occurs at
run-time), it is also possible to give it a static metaprogramming interpretation “at this
point in the program, insert this code” [26]. The latter interpretation is common for im-
plementations of many aspect compilers, including the AspectJ compiler ajc [21].
Here’s how advice works. Consider program P of Figure 7a. It consists of a single class
c and an aspect with a single piece of advice. The advice extends each set method of
c by printing “hi”. A program that an aspect compiler synthesizes or weaves is shown
in Figure 7b. A metaprogramming explanation of weaving is that an aspect compiler in-
hales the program’s source, creates a meta-expression that sums all base code and in-
troductions, and then applies advice. The meta-expression for program P in Figure 7a is:

P = hi( i + j + setI + setJ ) (8)

where values i, j, setI, and setJ correspond to
the members of class c, and function hi is the ad-
vice. Evaluation of (8) proceeds incrementally.
First hi distributes over each term:

P = hi(i) + hi(j) + hi(setI) + 
hi(setJ) (9)

and then each term is evaluated:

P = i + j  + setI’ + setJ’(10)

Some terms are fixed points (e.g., hi(i)=i and
hi(j)=j, meaning that hi does not advise join
points in i and j), while others transform values
(hi(setI)=setI’ and hi(setJ)=setJ’).
Again, the view from an aspect compiler is to in-
hale aspect files and base Java files, construct a
meta-expression, and evaluate the expression to
synthesize the specified program [26].

4.2 Architectural Metaprogramming Implementation of Features
A base program in FOP is a constant, which is a sum of introductions. An FOP function
F(x) is a feature that advises or modifies (af) its input program x and introduces new
terms (if). In other words, F(x) adds new members, classes, packages to an input pro-
gram x, and integrates this new functionality by modifying or advising x. A general
form of all FOP features F is:

F(x) = if + af(x) 

Given a base program B and features F and G, their composition expands into architec-
tural meta-expressions. The FOP expressions B, F(B), and G•F(B) expand to:

Figure 7   Compiling Advice

class c {
int i,j;
void setI( int x )
{ i=x; }
void setJ( int x )
{ j=x; }

}

aspect asp {
after(): execution(

void c.set*(..))
{ print(“hi”); }

}

class c {
int i,j;
void setI’( int x )
{ i=x; print(“hi”); }
void setJ’( int x )
{ j=x; print(“hi”); }

}

(a)

(b)



B = b
F(B) = if + af(b)
G•F(B) = ig + ag(if + af(b)) = ig + ag(if) + ag•af(b)

A program’s code is synthesized by evaluating its meta-expression. This is how Gen-
Voca [3] and AHEAD [6], two different implementations of FOP, work.
Perspective. By 2020, many narrow domains will be well-understood, and whose pro-
grams are prime candidates for automated construction from declarative specs. The
complexity of these programs will be controlled by standardization, where programs
will be specified declaratively using “standardized” features, much like personal com-
puters are customized on Dell web pages. Programming languages will have constructs
to define features and their compositions (e.g. [31][29]). Compilers will become pro-
gram calculators: they will inhale source code, produce a meta-expression, perhaps
even optimize the meta-expression [5], and evaluate the expression to synthesize the
target program. Architectural metaprogramming will be at the core of this technology.

5 How are Advice and Refactorings Related?

Program refactorings and advice are transformations. What does it mean to compose
them? There is a lot of work on refactoring object-oriented code into aspects (e.g.,
[10][39]), but less work on refactoring programs that have both object-oriented code
and aspect code (e.g., [19][15]). Refactorings are not language constructs; they are
transformations that are defined and implemented by tools that are “outside” of a target
language. Thus, refactorings can modify both object-oriented code and aspect code. In
contrast, advice only applies to constructs within a host language, i.e. object-oriented
code and other aspect code, but not to refactorings. 
To illustrate, let P be the program of Figure 7a. Applying
the refactoring rename(P,set*,SET*) renames all low-
ercase set methods to uppercase SET methods, we obtain
the program P’ of Figure 8. Programs P and P’ have the
same behavior. The rename refactoring alters the Java
source (by renaming setI to SETI and setJ to SETJ), and
alters the advice declaration (by renaming set* to SET*).
How can this be explained in terms of architectural met-
aprogramming? Recall differential operators in calculus:
they transform expressions. The differential with respect to
x of a summation is straightforward: every term is trans-
formed:

(a+b) =  + 

rename is similar: it transforms each term of a meta-expression. Let β be a DT of re-
name, i and j be introductions, and a and b be advice. Beyond the distributivity of β
over + and - in (1), the β refactoring also distributes over advice application and com-
position:

class c {
int i,j;
void SETI(int x)
{i=x;}

void SETJ(int x)
{j=x;}

}

aspect adv {
after(): 
execution
(void c.SET*(..))
{ print(“hi”); }

}

Figure 8   Program P’
∂

∂x
------ ∂a

∂x------ ∂b
∂x------



β(a(i)) = β(a)(β(b)) (11)

β(a•b) = β(a) • β(b) (12)

A β transformation of expression i+b•a(x) is β(i)+β(b)•β(a)(β(x)). Mapping
terms of an expression in this manner is called a catamorphism [27], a generalization of
folds on lists in functional programming. Catamorphisms are grounded in category the-
ory, the theory of mathematical structures and their relationships [32]. More later.
Here’s how a meta-calculation proceeds. Given program P of Figure 7a, a compiler cre-
ates its meta-expression. The rename refactoring β is then applied to P; β distributes
over each term of P, and then each term is evaluated: β(hi)=HI, β(setI)=SETI, and
β(setJ)=SETJ. The terms β(i)=i and β(j)=j are fixed points. The result is the
meta-expression for program P’:

β(P)
= β( hi( i + j + setI + setJ ) ) // substitution
= β(hi)( β(i) + β(j) + β(setI) + β(setJ) ) // distribution
= HI( i + j + SETI + SETJ ) // evaluation
= P’ (13)

Perspective. Refactorings are operators on meta-expressions that have higher prece-
dence than advice. Interesting research problems are to determine if (a) all common re-
factorings can be expressed as meta-expressions, and (b) the exact relationship between
refactorings and advice, and (c) to show under what circumstances the relationship is
(or is not) a catamorphism. Catamorphisms are particularly simple mappings, and
knowing when they can (or cannot) be applied may be very useful when building tools.
Note that refactorings, advice, and introductions modify the structure of a program’s
code, but they could also be used to express and modify the structure of grammars,
makefiles, XML documents, and other non-code artifacts. We are now ready to make a
conceptual leap to generalize architectural metaprogramming to non-code structures.

6 Recent Advances in Model-Driven Development

Model-Driven Development (MDD) is an emerging paradigm for software creation. It
advocates the use of Domain Specific Languages (DSLs), encourages the use of auto-
mation, and exploits data exchange standards [13][33]. An MDD model is written in a
DSL to capture the details of a slice of a program’s design. Several models are typically
needed to specify a program completely. Program synthesis is the process of transform-
ing high-level models into executables, which are also considered models [9].
There are many MDD technologies. The most well-known is OMG’s Model-Driven Ar-
chitecture, where models are defined in terms of UML and are manipulated by graph
transformations [23]. Vanderbilt’s Model Integrated Computing [35] and Tata’s Mas-
tercraft [24] are pioneering examples of MDD. More recently, other groups have of-
fered their own MDD technologies (see [30] for a recent list).
MDD is an architectural metaprogramming paradigm. Models are values and transfor-
mations map models to models. To illustrate, consider two models: the Java source of
a program and its bytecode. The transformation that maps Java source to Java bytecodes



is javac, the Java compiler. If javac is a transformation, an interesting question to ask
if it is distributive. That is, can each Java file be compiled separately from other files,
and the bytecodes added? Does javac(C+D)=javac(C)+javac(D)? Unfortunately,
the answer is no: javac is not distributive. I note that research by Ancona, et al. on sep-
arate class compilation may lead to a future version of javac that is distributive [1]. 
A more conventional example of MDD is PinkCreek. It is an
MDD case study for synthesizing portlets, which are web com-
ponents [37]. Transformations map an annotated state chart to a
series of different platform-specific models. Figure 9 shows a
graph where models are nodes and arrows are transformations;
the most abstract model in a PinkCreek specification is a state
chart (sc), and the most implementation-specific is Java source
(code) and JSP code (jsp). The graph is created by a metapro-
gram that takes a state chart (sc) and applies transformations
successively to derive each representation. (That is, a transfor-
mation maps an sc model to a ctrl model, another transforma-
tion maps a ctrl model to an act_sk model, etc.).
As FOP and MDD are both metaprogramming par-
adigms, how can they be combined? Recall that fea-
tures extend the functionality of a program or a
model. Let S0 and S1 be the source code represen-
tations of programs P0 and P1. And let feature F(x)
relate S0 and S1 by S1=F(S0). Let B0 and B1 be the
bytecode representations of S0 and S1, and let G(x)
be the bytecode feature that relates B0 to B1, i.e.,
B1=G(B0). These relationships are captured by the commuting diagram of Figure 10.
It expresses a fundamental relationship in MDD between features (model-extension
transformations) and derivations (model-conversion transformations) [37]. Bytecode
B1 can be synthesized from S0 in two different ways: either derive B0 from S0 using
javac and then apply feature G, or extend S0 to S1 by applying feature F and then de-
rive B1 using javac. Their equivalence is expressed compositionally as:

javac • F = G • javac (14)

Another interesting point is the relationship between functions F and G. We know that
F and G are features of the form: F(x)=if+af(x) and G(x)=ig+ag(x). In effect, G is
a compiled version of F: both F and G advise their input programs x in equivalent ways
(F advises source and G performs the corresponding advise in bytecodes) and both add
equivalent introductions (F adds source members and G adds the corresponding mem-
bers in bytecode). We have seen this correspondence before. The relationship between
F and G appears to be a catamorphism: each source term of function F is mapped to a
corresponding bytecode term of function G. Exploring this connection may be an inter-
esting research problem.
Let’s now return to commuting diagrams. An important property of commuting dia-
grams is that they can be pasted together. Given a model in the upper-left corner, we
often want to compute the model in the lower right. Any path from the upper-left corner
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to the lower right produces the same result [32]. Three different paths are indicated in
Figure 11.
To make this idea concrete, consider how fea-
tures alter state charts in PinkCreek. In general,
a feature extends a state chart by (a) adding
new states, (b) adding new transitions, and (c)
altering existing annotations. Figure 12a de-
picts a state chart of a base portlet. Figure 12b
shows the result of a feature that adds a new
state and transitions to Figure 12a.

When a feature extends one representation, it may extend derived representations as
well. In the case of PinkCreek, all of the models in Figure 9 may be modified when the
state chart is extended. That is, if the state chart sc is extended, so too must its controller
ctrl, and its action skeleton (act_sk), etc. (Figure 13a). PinkCreek has a metapro-
gram that translates a state chart feature into a feature of each lower-level representa-
tion; as a rule, the ability to translate features of one model to features of another is not
always possible or practical. For PinkCreek, it was both possible and practical.
As features are composed, a multi-pleated commuting diagram is swept out (Figure
13b). Traversing this diagram synthesizes the representations of a target portlet. Syn-
thesis begins at the root of the base diagram and ends at the target models which are
produced by the last feature. Although all traversals produce the same results, not all
traversals are equally efficient. Diagram traversal is an interesting optimization prob-
lem. Finding the cheapest traversal is equivalent to finding the most efficient metapro-
gram that will synthesize the target portlet. This is a form of multi-stage programming
(i.e., writing programs that write other programs) and multi-stage optimization [36].
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Figure 11   Commuting Paths
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Perspective. Initially PinkCreek tools did not satisfy the properties of commuting dia-
grams: synthesizing via different paths yielded different results. This exposed previous-
ly unrecognized errors in PinkCreek tools and specifications. The significance of com-
muting diagrams became immediately clear: they provided validity checks on the cor-
rectness of model abstractions, portlet specifications, and tools. They offered
constraints on both individual transformations and compositions of transformations. In
short, commuting diagrams are very useful as they provided a better understanding of
the portlet domain and the PinkCreek model.
PinkCreek also revealed a theoretical backbone of architectural metaprogramming: cat-
egory theory, where catamorphisms and commuting diagrams arise. As mentioned ear-
lier, category theory is a theory of mathematical structures and relationships between
these structures. As we are studying the structure of software, and mathematics is the
science of structure, architectural metaprogramming may be a direct connection.
Although this connection is preliminary, I have already found that category theory uni-
fies several previously disconnected results in metaprogramming and software design
in a surprisingly simple and elegant way [8]. It points to an interesting and very different
way of teaching and understanding software design and construction with an emphasis
on science, and less on ad hoc techniques. Of course, much more work needs to be done
to confirm this conjecture, but so far results are encouraging.
And finally, refactorings are not limited to the restructuring of source code; they apply
to models and features as well (e.g. [34][38][40]), where the results of Section 3 and
Section 5 should be directly applicable. Demonstrating this unity should be both an in-
teresting and important research topic as it will further underscore the importance of ar-
chitectural metaprogramming in software design and maintenance.

7 Conclusions

Just as the structure of matter is fundamental to chemistry and physics, so too is the
structure of software fundamental to computer science. By structure, I mean what are
modules and how do they compose? Today, the structure of software is not well-under-
stood. Software design is an art form. As long as it remains so, our abilities to automate
key tasks in program design, synthesis, and maintenance will be limited.
Recent work in program refactoring, program synthesis, and model-driven design are
raising the level of abstraction in programming. Their individual successes are not ac-
cidental; I contend they focused on the essential complexities of software structure, and
not on accidental complexities. Like other results, they are examples of a general pro-
gramming paradigm that we are only now beginning to recognize. As is evident from
the discussions in this paper, many details of architectural metaprogramming are not
well understood and it is an open problem to nail them down precisely.
By 2020 the purview of software engineering, as before, will be to manage complexity.
Embracing the ideas of architectural metaprogramming offers an appealing future: they
will enable us to automate what is well-understood, to customize programs for perform-
ance, capability, or both, and to reduce maintenance and development costs, all on a
principled basis. It will lead to higher-level programming languages, declarative lan-



guages for specifying programs in narrow domains, IDEs as program evolution calcu-
lators, and compilers as program calculators. Our understanding of programs, their rep-
resentation and manipulation will be greatly expanded beyond code. But again, the
grand prize is discovering the material that we will be teaching our future graduates and
undergraduates that ties together these areas in an elegant way. An exciting future
awaits us.
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