
ExCIS: An Integration of Domain-Specific Languages
and Feature-Oriented Programming1

Don Batorya, David Brantb, Michael Gibsonb, Michael Nolenc

ExCIS is a methodology and tool suite that integrates the technologies of domain-specific lan-
guages (DSLs) and feature-oriented programming (FOP). DSLs offer compact specifications of
programs in domain-specific notations that are easier to write, maintain, and evolve. FOP raises the
level of abstraction in system programming from compositions of code-centric components to com-
positions of modules that implement individual and largely orthogonal features. ExCIS provides
state-of-the-art tools for creating easier-to-specify, easier-to-maintain, and easier-to-change sys-
tems. It is being developed for STRICOM to create next-generation simulators for the U.S. Army.

1 Introduction and Motivation

The Test and Evaluation (T&E) instrumentation community works within one of the most challenging development
environments. Test instrumentation is tightly coupled to the intended system under test (SUT). Functional and techni-
cal requirements for the instrumentation are driven by the SUT, and are often not known in detail until the SUT is
nearing the end of its development cycle. In practice, even after design level requirements are known, the SUT imple-
mentation continues to change until the actual test. Since the test instrumentation is dependent upon the SUT, any
changes in the SUT often must be reflected in the instrumentation.

This problem is not necessarily due to poor management or development practices employed in building the SUT. It
is intrinsic to the nature of software-driven systems. As the development of the SUT proceeds, knowledge is gained,
versions built, and lessons learned. This feeds an iterative learning process that drives development decisions. The
instrumentation developer must track and react to these changes – changes that often require altering the instrumenta-
tion. Without the ability to quickly respond to change, the instrumentation system will fail to fully support the tester,
often resulting in expensive work-arounds or an inferior test.

A second major challenge is the maintenance of the instrumentation system once developed. After deployment, the
SUT continues to evolve – fixes, performance improvements, and enhanced functionality all drive system changes.
Current practices can lead to the creation of instrumentation systems whose yearly maintenance costs equal the yearly
costs experienced during development. Thus, the cost of ownership is often beyond the resources available to the
tester. This can lead to instrumentation systems that quickly become burdens to their owners.

The challenges of decreasing software development cycle time and reducing the cost of ownership require novel
development approaches. A new way of approaching the problem must be explored.

2 New Thinking and New Technology

Today’s software development practices are too low-level – exposing classes, methods, and objects as the focal point
of discourse in software design and implementation. This makes it difficult, if not impossible, to reason about soft-
ware architectures in the context of functional requirements (a.k.a. component-based designs); to create, simple, ele-

1. U.S. Army Applied Research and Engineering Development (ARED) Contract #N61339-99-D-0010.

aUT Center for Advanced Research
in Software Engineering (UT ARISE)

University of Texas at Austin
Austin, Texas 78712

batory@cs.utexas.edu

bUT Center For Agile
Technology (UT CAT)

University of Texas at Austin
Austin, Texas 78712

brant@mail.utexas.edu

michael@arlut.utexas.edu

cExCIS Project Director
U.S. Army Simulation, Training, and

Instrumentation Command (STRICOM)

Michael_Nolen@stricom.army.mil
1

dsb
Presented at Workshop on New Visions for Software Design and Productivity: Research and Applications, Vanderbilt University, Nashville, Tennessee, December 13-14, 2001.

gant, and easily understood specifications of applications; and to build and critique software designs automatically,
given a set of high-level requirements.

Simple specifications that are amenable to automated reasoning, code generation, and analysis are indeed possible
provided that three fundamental advances occur. First, that the level of programming be raised from generic lan-
guages (C++, Java) to domain-specific languages (DSLs), where programs are expressed simply and compactly in
notations specialized for particular tasks. Because DSL programs are written in terms of domain-specific concepts
and relationships, it is well-known that their maintenance costs are lower, they are amenable to specialized analyses
and optimizations that general-purpose compilers could never attempt, and they produce superior software designs
(because the designs were created by experts) [5][3].

Second, the discourse on software architectures must be elevated from interactions among low-level, code-centric
components to that of units which encapsulate the implementation of individual and largely orthogonal features that
can be shared by multiple applications2. The intuitive rationale for this shift is evident when software products are
described: their descriptions typically are not in terms of the code modules and DLLs that are used, but rather in terms
of features the product offers its clients. That is, the focus of discourse is on features and not on code [8]. By moving
away from code-centric programming to feature-oriented programming (FOP)3, a revolution in the way software is
understood, constructed, modified, and analyzed can be achieved.

Third, by describing an application in domain-specific terms and creating easily manageable features that are under-
standable to a user, we can construct visual programming languages (VPL) to map a visual representation of domain
notation to a DSL that is specific to the subject matter addressed – thus allowing a knowledgeable user to directly
define and alter a program’s behavior in an intuitive manner. This direct connection between a user and the program
reduces cycle time, increases quality, and decreases cost.

The time required to alter the software of a typical instrumentation system can range from days to months. When a
user communicates his need to the programming staff, errors of miscommunication, transcription, and omission can
occur. Even if communicated accurately, the time from requirements definition to configuration management is rarely
less than several days — even for simple changes. By contrast, the use of a VLP allows direct manipulation of the
program’s behavior by a user. The effect of the resulting change is seen immediately. If the desired effect is not
obtained, the change is discarded or modified until the user is satisfied with the program’s behavior. By giving
selected users the power to modify a program, not only is cycle time reduced, but the quality of the resulting program
is also enhanced.

Quality can be judged by both how well and how reliably the system meets the user’s expectations. Allowing the user
to define, experiment, and redefine system behavior interactively maximizes the first aspect of quality. At the same
time, reliability is increased since the alterations made by the user may be automatically verified for their correctness
and rejected if the alterations would produce an incorrect system.

Naturally there will be changes that the VLP does not support; code-level changes will be required. However, signif-
icant improvements in cycle time and quality are expected. DSLs, FOP, and VLPs significantly reduce the size and
complexity of the program code – allowing the programmer to more quickly and reliably make changes. Furthermore,
the structure that the programmer works within facilitates the correct use of program components.

3 Example Application: Command and Control Simulation for T&E

ExCIS — Extensible C4I Instrumentation Suite — is both a methodology and a suite of tools that closely integrate
domain-specific languages and feature-oriented programming. The U.S. Army Simulation, Training, and Instrumen-
tation Command (STRICOM) is supporting its use and development to modernize the way Army command and con-
trol simulations are built, and to reduce subsequent development and maintenance costs.

2. A feature is a product characteristic that customers find important in describing and distinguishing members of a product-line
[7].

3. Aspect-oriented programming [10] is an example of FOP.
2

Command and Control (C2) simulation is an excellent test-bed for this technology because it demands aspects of both
entity-based and feature-based simulators. Instrumentation may be called upon to support a wide range of tests – from
small, lab-based exercises to corps-level exercises. The entity-based architecture scales nicely: it supports the cre-
ation of as many simulated command posts as required. Simulated entities may be readily distributed across computa-
tional nodes to achieve required performance and load balancing. Finally, this architecture allows easy
reconfiguration of the system to accommodate scenarios where all or only some of the command-posts are simulated.

Problems with entity-based simulators arise when it becomes important to understand the interactions between enti-
ties – to understand group behaviors. With entity-based simulators, group behavior is an emergent property. The
behavior of each entity is defined and the resultant behavior of a group of entities is determined by their interactions.
For even small numbers of moderately complex entities, it becomes infeasible to analytically predict group behavior.
In this case, experimentation is the only option for validation. A mission — i.e., a set of command posts that collabo-
rate in specific ways to achieve a goal — is a typical example of group behavior. Simulating missions is a key goal C2

simulators. While entity-based designs are a natural way to use and interact with C2 simulators, mission-based
designs are a natural way to understand and implement C2 simulators.

ExCIS technology enables a user to define the simulation in terms of a mission (which is a program “feature” or
“aspect”). The missions are composed, and code for each command post is generated. This approach allows the user
to specify simulation behavior in terms of missions, but the automatically generated program is based on entities. All
of the advantages of entity- and mission-based simulators are retained while avoiding the disadvantages.

A prototype of ExCIS [4], called GenVoca, was used to redesign the simulation subsystem of the Fire Support Auto-
mation Test System (FSATS) [1]. ExCIS differed from the original implementation of FSATS in that missions (fea-
tures) could be easily added, removed, or replaced, and were compactly expressed and implemented in terms of a
state-machine DSL. Code complexity (compared to the original implementation) was reduced by a factor of four, and
the system design was easier to understand and extend [4]. Preliminary work indicates that the integration of DSLs
and FOP, as ExCIS is doing, has the potential to improve program quality by over a factor of four [6]. The next-gen-
eration of FSATS is now being developed as an ExCIS application.

4 Current and Future Work

While these concepts have been demonstrated successfully in a variety of fields and are currently being deployed in a
major operational test instrumentation system, work must be done before this technology is ready for general use.

Debuggers. Domain-specific languages are not new languages, but rather extensions of current, standard languages.
So, standard development environments and debuggers can be used with DSLs. However, if the programmer works in
the context of the base language (C++, Java, etc.) rather than the extended language, much of the simplicity obtained
by using the DSL is lost. Therefore, DSL specific debuggers are required.

Since the intent of this work is not to support a single DSL, but rather to construct a set of tools that will enable a pro-
gramming team to construct a domain-specific development environment, the intent is to build a debugger designed
to support multiple DSLs.

Visual Programming Tool-kit. The ExCIS tool-kit supports the construction of domain-specific languages. This
simplifies the problem of producing a DSL, but does not assist in providing an interface between the user and the
DSL. An equivalent tool-kit for the construction of visual programming environments linked to a domain-specific
language is needed. Such a tool-kit would allow the DSL designer to easily specify a visual programming interface
that would generate the required DSL code. Some degree of round-trip engineering would be supported.

Program Composition Validation. The mechanisms used for the construction of programs using feature-based com-
ponents (Appendix A) lend themselves to automated validation for correct composition. Preliminary work shows that
relatively simple mechanisms can be employed to validate a proposed composition of features [2]. More sophisti-
cated algorithms from model checking may extend our capability to compose correct systems [9].

Program Composition Optimization. Any given program feature can usually be implemented in a variety of ways.
The best implementation for an application will depend upon non-functional requirements such as performance con-
3

straints or resource usage. A feature component library contains not only components, but also a characterization of
the component. By specifying both functional and non-functional requirements, the system assembler can optimize
the selection of components to satisfy both types of requirements [3].

Extension to other T&E areas. While this technology has demonstrated value in the area of command and control
for fire support, the general applicability of the technology should be investigated in other domains relevant to test
and evaluation.

5 Conclusion

While the ability to create and maintain software systems quickly, reliably, and affordably is a common desire, the
T&E community has drivers that mandate this ability. The integration of DSLs and FOP has a demonstrated capabil-
ity to reduce system complexity by a factor of four while increasing the potential for software reuse. These technolo-
gies show promise for reducing the cost of instrumentation, while increasing reliability. Prior experience with this
technology in a number of application areas – including communications, database management systems, avionics,
and mobile radios – coupled with our current work in C2 simulation, lead us to believe ExCIS has great potential to
support development and rapid evolution of T&E systems.

6 References

1. “System Segment Specification (SSS) for the Fire Support Automated Test System (FSATS)”, Applied Research
Laboratories, The University of Texas, 1999. See URL http://www.arlut.utexas.edu/~fsatswww/
fsats.shtml.

2. D. Batory and B.J. Geraci, “Composition Validation and Subjectivity in GenVoca Generators”, IEEE Transactions on
Software Engineering, February 1997, 67-82.

3. D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Programming Environments for GenVoca
Generators”, IEEE Transactions on Software Engineering, May 2000, 441-452.

4. D. Batory, C. Johnson, R. MacDonald, and D. von Heeder, “Achieving Extensibility Through Product-Lines and Domain-
Specific Languages: A Case Study”, accepted for publication ACM TOSEM, 2001.

5. A. van Deursen and P. Klint, “Little Languages: Little Maintenance?”, SIGPLAN Workshop on Domain-Specific Languages,
1997.

6. M. Gibson, personal communication, October 2001.

7. M. Griss, “Implementing Product-Line Features by Composing Component Aspects”, First International Software Product-
Line Conference, Denver, CO., August 2000.

8. K.C. Kang, et al., Feature-Oriented Domain Analysis Feasibility Study, SEI 1990. Technical Report CMU/SEI-90-TR-21,
November.

9. S. Krishnamurthi and K. Fisler, “Modular Verification of Collaboration-Based Software Designs”. International Conference
on Foundations of Software Engineering, September 2001.

10. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin, “Aspect-Oriented Programming”,
ECOOP 97, 220-242.

11. C. Simonyi, “The Death of Computer Languages, the Birth of Intentional Programming”, NATO Science Committee
Conference, 1995.

7 Appendix: GenVoca

GenVoca is a design methodology for creating product-lines and building architecturally-extensible software — i.e.,
software that is extensible via feature additions and removals. GenVoca is a scalable outgrowth of an old and practi-
tioner-ignored methodology called step-wise refinement, which advocates that efficient programs can be created by
revealing implementation details in a progressive manner. Traditional work on step-wise refinement focussed on
microscopic program refinements (e.g., x+0 ⇒ x), for which one had to apply hundreds or thousands of refinements
to yield admittedly small programs. While the approach is fundamental and industrial infrastructures are on the hori-
zon [11], GenVoca improves step-wise refinement by scaling refinements to a package or layer (i.e., multi-class-mod-
ularization) granularity, so that each refinement adds a feature to a program, and composing a few refinements yields
an entire application4.
4

The critical shift to understand software in this manner is to recognize that programs are values and that refinements
are functions that add features to programs. Consider the following constants that represent programs with different
features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input and produces a refined (or feature-augmented) program as
output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

It follows that a multi-featured application is specified by an equation that is a named composition of functions, and
that different equations define a family of applications, such as:

app1 = i(f); // app1 has features i and f
app2 = j(g); // app2 has features j and g
app3 = i(j(f)); // app3 has features i, j, and f

Thus, by casually inspecting an equation, one can readily determine features of an application.5

Note that there is a subtle but important confluence of ideas at play here: a function represents both a feature and its
implementation. Thus, there can be different functions that offer different implementations of the same feature:

k1(x) // adds feature k with implementation1 to x
k2(x) // adds feature k with implementation2 to x

So when an application requires the use of feature k, it becomes a problem of equation optimization to determine
which implementation of k would be the best (e.g., provide the best performance). It is possible to automatically
design software (i.e., produce an equation that optimizes some qualitative criteria) given a set of declarative con-
straints for a target application. An example of this kind of automated reasoning is presented in [3].

In practice, refinements typically cannot transform arbitrary programs. Rather, the input to refinements (functions)
must satisfy a type — a set of constraints that are both syntactic and semantic in nature. A typical syntactic constraint
is that a program must implement a set of well-defined Java interfaces; a typical semantic constraint is that the imple-
mentation of these interfaces satisfy certain behavioral properties. Thus, it is common that not all combinations of
features (or their implementations) are correct. A model for expressing program types and algorithms that can auto-
matically and efficiently validate equations has been developed and is part of ExCIS [2].

DSLs fit naturally within the GenVoca framework. As mentioned earlier, modules that implement features are conve-
niently expressed in terms of DSLs. The ExCIS prototype, for example, used a state machine DSL embedded in Java
to encode missions [4].

4. Progressive refinement of DoD system designs, starting from an Operational Requirements Document (ORD) and fleshing out
details to yield systems requirement documents, is common. Such refinements are unmechanized or unmechanizable. We are
advocating something quite different: that features be developed in this manner, and then to mechanize the composition of features
to build target systems. This provides extensibility (adding and removing features) that would not be present otherwise.

5. As systems grow in feature complexity, so too do their equations. As an alternative to writing complex equations, GUI tools are
used to allow architects to select the features that they want, and to generate the equation(s) that correspond to the features
selected. Thus, while system specification still relies on equations, GUI front-ends hide this level of detail.
5

	ExCIS: An Integration of Domain-Specific Languages and Feature-Oriented Programming
	Don Batorya, David Brantb, Michael Gibsonb, Michael Nolenc
	1 Introduction and Motivation
	2 New Thinking and New Technology
	3 Example Application: Command and Control Simulation for T&E
	4 Current and Future Work
	5 Conclusion
	6 References
	7 Appendix: GenVoca

