Fitting the Pieces logether:
A Machine-Checked Model of

Safe Composition

Benjamin Delaware
William Cook
Don Batory
University of Texas at Austin

' Safe Composition (7

* Features
* Word Processor has formatting, printing, spell check, tables..
e (Cut across traditional modularity boundaries
e Reify functionality into distinct feature modules

e Software Product Line (SPL)

 Multiple products from one code base
* Product = subset of features

e Safe Composition

* Type check all products
* Products are exponential in number of features

e Goal

* Sound type system
* Foundation for efficient implementation

Ca

C A Feature Example ¢

Ca

C A Feature Example ¢

e Features are sets of class definitions and refinements

Ca

C A Feature Example ¢

e Features are sets of class definitions and refinements

feature Account {
class Account extends Object {
int balance = 0;
void update(int x) {
Int newBal = balance + Xx;
balance = newBal;

}

11

0 A Feature Example (7

e Features are sets of class definitions and refinements

feature Account {
class Account extends Object {
Int balance = 0;
void update(int x) {
int newBal = balance + x;
balance = newBal;

}

» Account

Ve Composing Features (7

e Features are sets of class definitions and refinements

feature Account {
class Account extends Object {
Int balance = 0;
void update(int x) {
int newBal = balance + x;
balance = newBal;

}

» Account

e Composing Features (7

RetireAccount

Ca

_c InvestAccount ¢ Investor ¢ 71

RetireAccount

Ca

e

InvestAccount ¢ Investor G 7|

RetireAccount

class Account extends Object {
int balance = 0;
void update(int x) {
Int newBal = balance + x;
balance = newBal;

}
11

E InvestAccount * Investor ¢ 7|

Ca

" InvestAccount ¢ Investor ¢ 7|

RetireAccount

r

class Account extends- {
Account InvestAccount int balance = 0;

void uidate(int X) {
Int newBal = balance + x;

balance = newBal:;

| o xccount I

! RetireAccount * Investor ¢ 71

RetireAccount

! RetireAccount * Investor ¢ 71

class Account extends Object {
int balance = 0;
void update(int x) {
Int newBal = balance + x;
balance = newBal;

}
b

E RetireAccount * Investor G 7]

. RetireAccount * Investor ¢ 7|

InvestAccount

class Account extends -{

RetireAccount int balance = 0;

3
Account

; Feature Models (7

e A SPL has a set of available features:
{Account, RetireAccount, InvestAccount}

* Typically feature combinations are constrained

* A feature model represents these constraints
* Propositional formula is compact representation [Batory05]
RetireAccount Vv InvestAccount

* Product corresponds to truth assignment

* FMs should enforce implementation constraints

e Safe Composition
(RetireAccount Vv InvestAccount) A

(RetireAccount = Account) A (InvestAccount = Account)

3 Checking Safe Composition CE

 Could synthesize entire product line
e Computationally expensive:

; Checking Safe Composition CE

 Could synthesize entire product line
e Computationally expensive:

[] [Reti ccccccccc] [Employer]

E Checking Safe Composition CH

 Could synthesize entire product line
e Computationally expensive:

E Difficulties 7

e Combinatorial nature of SPLs problematic:

feature Payroll {
class Employer extends Obiject { . feature needs Account

Account EmployeeT; e Account needs 40| kbalance

Employee1.401kbalance += 10000; ° MUItiPIe ways to SatiSfy
* |ntroduction

Inheritance

B .

e Features are static
* Surrounding program is not

* Dependencies are resolved by a combination of features
* These features have their own set of dependencies

E Lightweight Feature Java G 7|

e Lightweight Java [Strnisa07]
 Minimal imperative subset of Java formalized in Cogq

e Lightweight Feature Java
* Lightweight Java extended with features

Feature Table
FT ::= {FD}
Product specification
PS ::= F
Feature declaration
FD ::= feature F {cld; rcld}
Class refinement
rcld ::= refines class dcl extending cl {fd; md; rmd}
Method Refinement
rmd ::= refines method ms {s; Super(); s; return y}

Formalized in the Coq Proof Assistant

g Composition in LFj ¢+

* Programs built from product specifications

LFJ
Product
Specification

composition]

e compose
* Refine existing classes
* Apply method refinement
* Introduce fields, methods
* Introduce new classes

* Recursively apply compose to specification

C L| Type System G

distinct(vary”)

type(cly) = ’7']{;

type(cl) =
[' =| varg][thls T

P(y) = 5" (WF-METHOD)

¢
PL sy
Pr—+" 4

P defined clkk

P . cl meth (clg varkk) {5¢° return y; }

* Program not available until composition

E L] Type System .-

distinct(varg)

(
t [
ype(c k)) Internal Checks

type(cl
[' =| varg " T

T'(y) =7" (WF-METHOD)

-
-
this

P . cl meth (clg varkk) {5¢° return y; }

* Program not available until composition

Cap

& L] Type System

(WF-METHOD)

L

PL sy
Pr—+" 4

. External Checks
P I-defined cl;

P . cl meth (clg varkk) {5¢° return y; }

* Program not available until composition

L

E Constraint-Based Typing ¢ 7|

* External premises become constraints

distinct(vars”)
k

type(cl) = 7 (WF-METHOD)
type(cl) = 7'
I' =[vary 7%"|[this 7]
' se | Cgﬁ
[(y) =71"

- cl meth (cly fuafrkk) {5¢° return y; } | {¥” 7/, defined clkk} U, C

e Compositional Constraints
* Uniqueness Constraints
e Structural Constraints

E Constraint-Based Typing € 7

* [wo typing phases
* Jyping Feature Tables

— FD§ | Wy
I—{FD|I<(} | U|<{|nFDk=>WF|<}
* Well-typed product specification

PS= U N =WF}

Feature Constraint
Compositional Constraints
Uniqueness Constraints
Structural Constraints

" 2 Soundness of LF) Type System ('}

Theorem:

—{FD«} | Ui{Ine=WF}
PS = U {In.=WF}

~, compose(PS)

* Space of products

] [Reti ccccccccc J Employer *

* First premise describes subset of type-safe products
* Second ensures product in this space

" 2 Soundness of LF) Type System ('}

Theorem:

—{FD«} | Ui{Ine=WF}
PS = U {In.=WF}

~, compose(PS)

* Space of products

] (Reti ccccccccc J Employer

* First premise describes subset of type-safe products
* Second ensures product in this space

" 2 Soundness of LF) Type System ('}

Theorem:

—{FD«} | Ui{Ine=WF}
PS = U {In.=WF}

~, compose(PS)

* Space of products

] (Reti ccccccccc J Employer *

* First premise describes subset of type-safe products
* Second ensures product in this space

Cap

 CValidating Feature Models CE

* Feature Models describe desired product space
e Should be contained in type-safe space

* Recall Feature Models are propositional formulas

* Describe type-safe space in propositional logic, WFs..
* Reduction from typing constraints

e Reduce to SAT:

FM = WF...

Cap

 CValidating Feature Models CE

* Feature Models describe desired product space
e Should be contained in type-safe space

* Recall Feature Models are propositional formulas

* Describe type-safe space in propositional logic, WFs..
* Reduction from typing constraints

e Reduce to SAT:

FM = WF...

Cap

 CValidating Feature Models CE

* Feature Models describe desired product space
e Should be contained in type-safe space

* Recall Feature Models are propositional formulas

* Describe type-safe space in propositional logic, WFs..
* Reduction from typing constraints

e Reduce to SAT:

FM = WF...

Ve Evaluation 0

e Checking validity coNP-complete in general
* Our formulas are highly structured

Product Line | # of Features | # of Programs | Code Base Program Jak/|Typechecking
Jak/Java LOC |Java LOC Time

JPL 70 56| 34K/48K 22K/35K <30s

* Previous implementation of approach [Thaker(07]

* |dentified errors in existing product lines
* Evidence of erroneous product

e Conclusion 0

e Feature-based Software Product Lines
e Safe Composition

* Lightweight Feature Java

* Verified in Coq proof assistant
 Constraints describe program space

* Validating Feature Models

e Reduce to SAT
e Efficient evaluation

Ne Questions! .

