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Abstract
Programs of a software product line can be synthesized by com-
posing features which implement some unit of program function-
ality. In most product lines, only some combination of features
are meaningful; feature models express the high-level domain con-
straints that govern feature compatibility. Product line developers
also face the problem of safe composition — whether every prod-
uct allowed by a feature model is type-safe when compiled and run.
To study the problem of safe composition, we present Lightweight
Feature Java (LFJ), an extension of Lightweight Java with support
for features. We define a constraint-based type system for LFJ and
prove its soundness using a full formalization of LFJ in Coq. In
LFJ, soundness means that any composition of features that satis-
fies the typing constraints will generate a well-formed LJ program.
If the constraints of a feature model imply these typing constraints
then all programs allowed by the feature model are type-safe.

Categories and Subject Descriptors F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Design, Languages

Keywords Product lines, Type safety, Feature model

1. Introduction
Programs are typically developed over time by the accumulation of
new features. However, many programs break away from this linear
view of software development: removing a feature from a program
when it is no longer useful, for example. It is also common to create
and maintain multiple versions of a product with different sets of
features. The result is a product line, a family of related products.

The inclusion, exclusion, and composition of features in a prod-
uct line is easier if each feature is defined as a modular unit. A given
feature may involve configuration settings, user interface changes,
and control logic. As such, features typically cut across the normal
class boundaries of programs. Modularizing a program into fea-
tures, or feature modularity, is quite difficult as a result.

There are many systems for feature modularity based on Java,
such as the AHEAD tool suite [4]. In these systems, a feature
is a collection of Java class definitions and refinements. A class
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feature Bank {
class Account extends Object{

int balance = 0;
void update(int x) {

int newBal = balance + x;
balance = newBal;

}}}
(a) Bank Feature

feature Sync {
refines class Account

extends Object{
static Lock lock

= new Lock();
refines void update(int x) {

lock.lock();
Super.update(x);
lock.unlock();

}}}
(b) Synchronized Feature

class Account extends Object {
int balance = 0;
static Lock lock = new Lock();
void update(int x) {

lock.lock();
int newBal = balance + x;
balance = newBal;
lock.unlock(); }}}

(c) A composed program: Sync•Bank

Figure 1: Account with synchronization feature

refinement is a modification to an existing class, adding new fields,
new methods, and wrapping existing methods. When a feature is
applied to a program, it introduces new classes to the program and
its refinements are applied to the existing classes.

Figure 1 is a simple example of a product line containing two
features, Bank and Sync. The Bank feature in Figure 1a imple-
ments an elementary Account class with setBalance and update
methods. Feature Sync in Figure 1b implements a synchronization
feature so that accounts can be used in a multi-threaded environ-
ment. Sync has a refinement of class Account that modifies up-
date to use a lock, which is introduced as a static variable. Method
refinement is accomplished by inheritance; Super.update(x) indi-
cates a substitution of the prior definition of method update(x).
Composing the refinement of Figure 1b with the class of Figure 1a
produces a class that is equivalent to that in Figure 1c. The Bank
feature can also be used on its own. While this example is sim-
ple, it exemplifies a feature-oriented approach to program synthe-
sis: adding a feature means adding new members to existing classes
and modifying existing methods. The following section presents a
more complex example and more details on feature composition.

Not all features are compatible, and there may be complex de-
pendencies among features. A feature model defines the legal com-
binations of features in a product line. A feature model can also
represent user-level domain constraints that define which combina-
tions of features are useful.

In addition to domain constraints, there are low-level implemen-
tation constraints that must also be satisfied. For example, a feature
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feature InvestmentAccount {
refines class Account extends WaMu {

int 401kbalance = 0;
refines void update (int x) {

x = x/2; Super(); 401kbalance += x;
}

}
}

feature RetirementAccount {
refines class Account extends Lehman {

int 401kbalance = 10000;
int update (int x) {

401kbalance += x;
}

}
}

feature Investor {
class AccountHolder extends Object {

Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}
}

}

Figure 2: Definitions of InvestmentAccount, RetirementAccount,
and Investor features.

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}

}

Figure 3: RetirementAccount•Bank

can reference a class, variable, or method that is defined in another
feature. Safe composition guarantees that a program synthesized
from a composition of features is type safe. While it is possible to
check individual programs by building them and then compiling
them, this is impractical. In a product line, there can be thousands
of programs; it is more desirable to ensure that all legal programs
are type safe without synthesizing the entire product line. This re-
quires a novel approach to type checking.

We formalize feature-based product lines using an object-
oriented kernel language extended with features, called Lightweight
Feature Java (LFJ). LFJ is based on Lightweight Java [11], a subset
of Java that includes a formalization in the Coq proof assistant [6],
using the Ott tool [10]. A program in LFJ is a set of features con-
taining classes and class refinements. Multiple products can be
constructed by selecting and composing appropriate features ac-
cording to a product specification - a composition of features.

We define a constraint-based type system for LFJ and prove
its soundness. The type system and its safety are formalized in
Coq. We then show how to relate the constraints produced by the
type system to the constraints imposed by a feature model, using
a reduction to propositional logic. This reduction mechanically
verifies that a feature model will only allow safe compositions of
features, guaranteeing that the resulting programs will be type safe.

Features modules are separated by implicit interfaces that gov-
ern their composition. One solution to type checking these mod-
ules is to require explicit feature interfaces. We instead infer the

class Account extends WaMu{
int balance = 0;
int 401kbalance = 0;
void update(int x) {

x = x/2;
int newBal = balance + x;
balance = newBal;
401kbalance += x;

}
}

Figure 4: InvestmentAccount•Bank

class Account extends Lehman{
int balance = 0;
int 401kbalance = 10000;
void update(int x) {

401kbalance += x;
}

}

class AccountHolder extends Object {
Account a = new Account();
void payday (int x; int bonus) {

a.401kbalance += bonus;
return a.update(x);

}
}

Figure 5: RetirementAccount•Investor•Bank

necessary feature interfaces from the constraints generated by the
LFJ type system, allowing us to check a full product line for safety
without generating each product individually.

2. The Problem of Safe Composition
Feature refinements can make significant changes to classes. Fea-
tures can introduce new methods and fields to a class and alter the
class hierarchy by changing the declared parent of a class. They can
also refine existing methods by adding new statements before and
after a method’s body or by overwriting it altogether.

The features in Figure 2 illustrate how these modifications affect
the Account class in the feature Bank. The RetirementAccount
feature refines the Account class by updating its parent to Lehman,
introducing a new field for a 401k account balance with an initial
balance of 10000, and rewrites the definition for the update method
to add x to the 401k balance. InvestmentAccount also refines
Account, updating its parent to WaMu and introducing a 401k field,
but it refines the update method to put half of x into a 401k before
adding the rest to the original account balance.

A software product line can be modelled as an algebra that con-
sists of a set of operations, where each operation implements a fea-
ture. We write M = { Bank, RetirementAccount, Investmen-
tAccount, Investor} to mean model M has the features (opera-
tions) Bank, RetirementAccount, InvestmentAccount, Investor
declared above. One or more features of a model are constants that
build base programs through a set of class introductions:

Bank a program with only the generic Account class
Investor a program with only the AccountHolder class

The remaining operations are unary functions on programs, and
are program refinements or extensions:

InvestmentAccount•Bank builds an investment account
RetirementAccount•Bank builds a retirement account

where • denotes function application and B • A is read as “fea-
ture B refines program A” or equivalently “feature B is added to
program A”. A refinement can extend the program with new defi-
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nitions or modify existing definitions. The design of a program is a
composition of features: a product specification.

P1 = RetirementAccount•Bank Fig. 3
P2 = InvestmentAccount•Bank Fig. 4
P3 = RetirementAccount•Investor•Bank Fig. 5

This model of software product lines is based on step-wise
development: one begins with a simple program (e.g., constant
feature Bank) and builds more complex programs by progressively
adding features (e.g., adding feature InvestmentAccount to Bank).

A set of n features can be composed in an exponential number
of ways to build a set of order n! programs. A product line is a
subset of these programs described by a feature model which con-
strains the ways in which features can be composed. A composition
of features might fail to meet the dependencies of its constituent
features, resulting in a program that fails to type check. Only a sub-
set of the programs built from a set of features is well-typed. The
goal of safe composition is to ensure that the product line described
by a feature model is contained in this set, i.e. that all the programs
in the product line are well-typed.

The combinatorial nature of product lines presents a number of
problems to statically determining safe composition. The members
and methods of a class referenced in a feature might be introduced
in several different features. Consider the AccountHolder class
introduced in the Investor feature: this account holder is the em-
ployee of a company which gives a small bonus with each pay-
check. Being a forward-thinking investor, the employee adds this
sum directly into the 401k balance in his account. In order for a
composition including the Investor feature to build a well-typed
Java program, it must be composed with a feature that introduces
this field to the Account class, in this case either InvestmentAc-
count or RetirementAccount. This requirement could also be met
by a feature which sets the parent of Account to a different class
from which it inherits the 401kbalance field. Since a parent of a
class can change through refinement, the inherited fields and meth-
ods of the classes in a feature are dependent on a specific prod-
uct specification. Each feature has a set of type-safety constraints
which can be met by the combination of a number of different fea-
tures, each with their own set of constraints. To study the interaction
of feature composition and type safety, we first develop a model of
Java with features.

3. Lightweight Feature Java
Lightweight Feature Java (LFJ) is a kernel language that captures
the key concepts of feature-based product lines of Java programs.
LFJ is based on Lightweight Java (LJ), a minimal imperative sub-
set of Java [11]. LJ supports classes, mutable fields, constructors,
single inheritance, methods and dynamic method dispatch. LJ does
not include local variables, field hiding, interfaces, inner classes,
or generics. This imperative kernel provides a minimal founda-
tion for studying a type system for feature-oriented programming.
LJ is more appropriate for this work than Featherweight Java [8]
because of its treatment of constructors. When composing fea-
tures, it is important to be able to add new member variables to
a class during refinement. Featherweight Java requires all mem-
ber variables to be initialized in a single constructor call. As a
result, adding a new member variable causes all previous con-
structor calls to be invalid. Lightweight Java allows such refine-
ments through its support of more flexible initialization of mem-
ber variables. In addition, Lightweight Java has a full formaliza-
tion in Coq, which we extended to prove the soundness of LFJ
mechanically. The proof scripts for the system are available at
http://www.cs.utexas.edu/~bendy/featurejava.php.

The syntax of LFJ extends LJ to support feature-oriented pro-
gramming is given in Figure 6. A feature definition FD maps a
feature name F to a list of class declarations cld and a list of class

Product specification
PS ::= FD

Feature declarations
FD ::= feature F {cld; rcld}

Class refinement
rcld ::= refines class dcl extending cl{fd; md; rmd}

Method refinement
rmd ::= refines method ms {rmb}

Method refinement
rmb ::= s; Super(); s; return y

Figure 6: Modified Syntax of Lightweight Feature Java.

refinements rcld . A class refinement rcld includes a class name
dcl , a set of LJ field and method introductions, fd and md , a set of
method refinements rmd , and the name of the updated parent class
cl . A method refinement advises a method with signature ms with
two lists of LJ statements s and an updated return value y . When
applied to an existing method, a method refinement wraps the ex-
isting method body with the advice. The parameters of the original
method are passed implicitly because the refinement has the same
signature as the method it refines. The set of features from which
a product line can be built is called the feature table. A product
specification PS is a sequence of distinct feature names.

3.1 Feature Composition
A LJ program can be modelled as a partial function from class
names to their definitions: CT : dcl → cld. In the operational
semantics of LJ, this function is concretely realized as the function
path : P → dcl → cld which looks up a class definition in a
given program. In this context, CT is simply the path specialized
on P : CT = pathP . Features are themselves functions from LJ
programs to LJ programs. Composition of a feature feature FD
{cld; rcld}with an LJ program P produces a new mapping, CT ′:

CT ′(dcl) =

(
pathcld(dcl) dcl ∈ cld

rcld • CT (dcl) dcl 6∈ cld
(1)

In the case that FD introduces a class named dcl, CT ′ returns
this class, ignoring any previous declarations and refinements of
that class. Otherwise, CT ′ finds the definition of dcl in the previous
program using the original CT function and returns the resulting
class definition, cld, refined by rcld. If a class refinement rcld in
rcld is named dcl, the • operator builds a refined class by first
advising the methods of cld with the method refinements in rcld.
The fields and methods introduced by rcld are then added to this
class and the parent of the resulting class is set to the superclass
named in rcld. Refinement fails if cld lacks a method with a
signature refined by rcld.

A product specification builds a LJ program by recursively
composing the features it specifies in this manner, starting with the
empty LJ program. Each LFJ feature table can construct a family
of programs from its features through composition; the set of class
definitions in a program is determined by the sequence of features
which produced it. The class hierarchy is also potentially different
in each product: refinements can alter the parent of a class, and
two mutually exclusive features can define the same class with a
different parent.

3.2 Safe Composition
A feature model is safe if it only allows the creation of well-
formed LJ programs. For any particular product specification, this
can be checked by composing the specification and then checking
the safety of the resulting program using the standard LJ type sys-
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tem. A naive approach to checking the safety of a feature model is
simply to iterate over all the programs it describes, type-checking
each individually. This approach considers a potentially exponen-
tial number of programs, making it a computationally expensive
process. Instead, we propose a type system that can statically ver-
ify that all programs described by a feature model are type-safe
without having to synthesize the entire family of programs.

The key difficulty with this approach is that features are typi-
cally program fragments which make use of class definitions made
in other features; these external dependencies can only be resolved
during composition with other features. Every LJ construct has two
categories of requirements which must be met in order for it to be
well-formed in the LJ type system. The first category consists of
premises which only depend on the structure of the construct, e.g.
the requirement that the parameters of a well-formed method be
distinct. The remaining premises access information from the sur-
rounding program through the CT function. For example, CT is
used to determine that the type of a variable y is a subtype of the
type of variable x when assigning y to x in a method body. Intu-
itively, these premises define the structure of the programs in which
LJ constructs are well-formed. In the standard LJ type system, the
structure of the surrounding program is known. In a software prod-
uct line, however, each feature can be included in a number of pro-
grams, and the final makeup of the surrounding program depends
on the other features in a product specification. Converting these
kinds of premises into constraints provides an explicit interface for
an LJ construct with any surrounding program. For a feature in a
given feature table, this interface determines which features must
be included with it in a product specification in order for its con-
structs to be well-formed in the final LJ program.

4. LFJ Type System
We present a constraint-based type system for LFJ based on a
constraint-based type system we have developed for LJ. The
constraint-based systems retain the premises that depend on the
structure of the construct being typed and convert those that rely
on external information into constraints. By using constraints, the
external typing requirements for each feature are made explicit,
separating derivation of these requirements from their satisfac-
tion. Generating a set of constraints for a feature is separated from
consideration of which product specifications have a combination
of features satisfying these constraints. The constraints used by

Composition Constraints
dcl introduces ms before F
dcl introduced before F

Uniqueness Constraints
cl f unique in dcl

cl m (vdk
k
) unique in dcl

Structural Constraints
cl1 ≺ cl2
cl2 ≺ ftype(cl1, f)
ftype(cl1, f) ≺ cl2

mtype(cl, m) ≺ clk
k → cl

defined(cl)
f 6∈ fields(parent(dcl))
pmtype(dcl, m) = τ

Figure 7: Syntax of Lightweight Feature Java typing constraints.

our type system are given in Figure 7 and are divided into three
categories. The two composition constraints guarantee successful
composition of a feature F by requiring that refined classes and

methods be introduced by a feature in a product line before F .
The two uniqueness constraints ensure that member names are not
overloaded within a class named dcl, a restriction in the LJ formal-
ization. The structural constraints come from the standard LJ type
system and constrain the set of members of a class and the class hi-
erarchy in the final program. The subtype constraint is particularly
important because the class hierarchy is malleable until composi-
tion time; if it were static, constraints that depend on subtyping
class could be reduced to other constraints or eliminated entirely.

Γ ` s | C Statement well-formed in context with constraints

Γ ` sk | Ck
k

Γ ` {sk} |
S

k Ck
(WF-BLOCK)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x; | {τ1 ≺ τ2}
(WF-VAR-ASSIGN)

Γ(x) = τ1 Γ(var) = τ2

Γ ` var = x.f ; | {ftype(τ1, f) ≺ τ2}
(WF-FIELD-READ)

Γ(x) = τ1 Γ(y) = τ2

Γ ` x.f = y; | {τ2 ≺ ftype(τ1, f)} (WF-FIELD-WRITE)

Γ(x) = τ1 Γ(y) = τ2

Γ ` s1 | C1 Γ ` s2 | C2

C3 = {τ2 ≺ τ1 ∨ τ1 ≺ τ2}
Γ ` if x == y then s1 else s2 | C1 ∪ C2 ∪ C3

(WF-IF)

Γ(var) = τ1 type (cl) = τ2

Γ ` var = new cl() | {τ2 ≺ τ1}
(WF-NEW)

Γ(x) = τ Γ(var) = π Γ(yk) = πk
k

C = {mtype(τ, meth) ≺ πk
k → π}

Γ ` var = x.meth(yk
k) | C

(WF-MCALL)

Figure 8: Typing Rules for LJ and LFJ statements.

The typing rules for LFJ are found in Figures 8-10 and rely on
judgements of the form ` J | ξ, where J is a typing judgement
from LFJ and ξ is a set of constraints, called a signature. The
signature ξ provides an explicit interface which guarantees that
J holds in any product specification that satisfies ξ. Typing rules
for statements, methods, and classes are those from LJ augmented
with signatures. Typing rules for class and method refinements
in a feature F are similar to those for the objects they refine,
but require that the refined class or method be introduced in a
feature that comes before the F in a product specification. Method
refinements do not have to check that the names of their parameters
are distinct and that their parameter types and return type are
well-formed: a method introduction which already performs these
checks must precede the refinement in order for it to be well-
formed. The signature of a product specification PS is the union
of the constraints on each of the features in PS .

Once the signature of a product specification PS is generated
according to the rules in Figure 10, we evaluate whether it is satis-
fied by PS using the rules in Figure 11. Compositional constraints
on a feature F are satisfied when a feature with the appropriate in-
troductions precedes F in PS . Uniqueness constraints are satisfied
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`τ,F md | C Method well-formed in class with constraints

distinct(vark
k) type(clk) = τk

k
type(cl) = τ ′

Γ = [vark 7→ τk
k][this 7→ τ ] Γ ` s` | C`

`
Γ(y) = τ ′′

`τ cl meth (clk vark
k
) {s`

` return y; } | {τ ′′ ≺ τ ′,defined clk
k} ∪

S
` C`

(WF-METHOD)

` cld | C Class well-formed with constraints

distinct(fj) distinct(mk) dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl, methk) = cl`,k
` → clk}

` class dcl extends cl {clj fj
j
; clk methk (cl`,k var`,k

`,k
) mbk

k

} |
S

k Ck ∪ {defined cl,defined clj
j} ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-CLASS)

`τ,F rmd | C Refined method well-formed in class of feature with constraints

type(cl) = τ ′ Γ = [vark 7→ τk
k][this 7→ τ ]

Γ(y) = τ ′′ Γ ` sj | Cj
j

Γ ` s` | C`
`

C = {τ ′′ ≺ τ ′, τ introduces cl meth (clk vark
k
) before F} ∪

S
j Cj ∪

S
` C`

`τ,F refines method cl meth (clk vark
k
) {sj

j ; Super(); s`
`; return y; } | C

(WF-REFINES-METHOD)

`F rcld | C Class refinement well-formed in feature with constraints

dcl 6= cl type(dcl) = τ `τ clk methk (cl`,k var`,k
`
) mbk | Ck

k

`τ,F rmdm | C′
m

m

ξ =
S

j{fj 6∈ fields(parent(dcl))} υ =
S

j{clj fj unique in dcl} υ′ =
S

k{clk methk (cl`,k var`,k
`
) unique in dcl}

ξ′ =
S

k{pmtype(dcl, methk) = cl`,k
` → clk}

`F refines class dcl extending cl {clj fj
j
;`τ clk methk (cl`,k var`,k

`,k
) mbk

k

; rmd`,k
`,k} |

S
k Ck ∪

S
m C′

m∪
{defined cl,defined clj

j
, dcl introduced before F, } ∪ ξ ∪ ξ′ ∪ υ ∪ υ′

(WF-REFINES-CLASS)

Figure 9: Typing Rules for LFJ method and class refinements.

when no two features in PS introduce a member with the same
name but different signatures to a class dcl. In LFJ, satisfaction of
structural constraints is evaluated as in LJ, replacing uses of path
with the CT function built by composition of the features in PS .

The compositional and uniqueness constraints guarantee that
each step during the composition of a product specification builds
an intermediate program. These programs need not be well-formed:
they could rely on definitions which are introduced in a later fea-
ture or have classes used to satisfy typing constraints which could
also be overwritten by a subsequent feature. For this reason, our
typing rules only consider the final product specification, making
no guarantees about the behavior of intermediate programs.

4.1 Soundness of the LFJ Type System
The soundness proof is based on successive refinements of the type
systems of LJ and LFJ, reducing them to the proofs of progress and
preservation of the original LJ type system given in [11]. We first
use our constraint-based type system for LJ, utilizing the structural
constraints listed in Figure 7 and the corresponding judgements

in Figure 11 to check constraint satisfaction. This type system is
shown to be equivalent to the original LJ type system, in that a
program with unique class names and an acyclic class hierarchy
satisfies its signature if and only if it is well-formed according to
the original typing rules. We then show that if a single LFJ product
specification is well-formed according to the constraint-based LFJ
type system, it produces a LJ program that is also well-formed. We
have formalized in the Coq proof assistant the syntax and semantics
of LJ and LFJ presented in the previous section, as well as all of the
soundness proofs that follow. For this reason, the following sections
elide many of the bookkeeping details, instead presenting sketches
of the major pieces of the proofs of soundness.

Theorem 4.1 (Soundness of the constraint-based LJ Type System).
Let P be a LJ program with distinct class names and an acyclic,
well-founded class hierarchy. Let C be the set of constraints gener-
ated by a class cld in P . cld is well-formed if and only if P satisfies
C: P ` cld ↔ P |= C where ` cld | C.
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` P | C Program well-formed with constraints

` cldk | Ck
k

P = cldk
k

distinct names (P )

` P |
S

k Ck
(WF-PROGRAM)

` F | C Feature well-formed with constraints

` cldk | Ck
k

`F rcld` | C`
`

` feature F {cldk
k
rcld`

`} |
S

k Ck ∪
S

` C`

(WF-FEATURE)

` PS | C Product specification well-formed with constraints

` ∅ | ∅ (WF-SPECIFICATION-NIL)

` F | C ` Fk
k | C′

` F, Fk
k | C ∪ C′

(WF-SPECIFICATION)

Figure 10: Typing Rules for LFJ Programs and Features.

Proof. The two key pieces of this proof are: showing that satisfac-
tion of each of the constraints guarantees that the corresponding
judgement holds, and that there is a one-to-one correspondence be-
tween the constraints generated by the typing rules in Fig. 9 and
the premises used in the declarative LJ type system. The former
is straightforward except for the subtyping constraint, which relies
on the path function to check for satisfaction. We can prove their
equivalence by induction on the derivation of the subtyping judge-
ment in one direction and induction on the length of the path in the
other. We can then show that the two type systems are equivalent
by examination of the structure of P . At each level of the typing
rules, the structural premises are identical and each of the external
premises of the rules appears as a constraint in the signature. As a
result of the previous argument, satisfaction of the signature guar-
antees that premises of the typing rules hold for each structure in
P . Having shown the two type systems are equivalent, the proofs
of progress and preservation for the constraint-based type system
follow immediately.

Theorem 4.2 (Soundness of the LFJ Type System). Let PS be a
LFJ product specification and C be a set of constraints such that
` PS | C. If PS |= C and Object is in the path of every class
introduced by a feature in PS , then the composition of the features
in PS produces a valid, well-formed LJ program.

Proof. This proof can be decomposed into three key lemmas, cor-
responding to the three kinds of typing constraints:

(i) Composition of the features in PS produces a valid LJ pro-
gram, P .

For each class or method refinement of a feature F in PS , a
composition constraint is generated by the LFJ typing rules. Each
of these are satisfied according to the definition in Fig. 11, allowing
us to conclude that a feature with appropriate declarations appears
before F in PS . Each of these declarations will appear in the
program generated by the features preceding F , allowing us to
conclude that the composition of PS will succeed.

ftype(P, τ1, f) = τ3 τ2 ∈ path(P, τ3)

P |= τ2 ≺ ftype(τ1, f)

ftype(P, τ1, f) = τ3 τ3 ∈ path(P, τ2)

P |= ftype(τ1, f) ≺ τ2

mtype(P, τ, m) = π′
k

k → π′ π′ ∈ path(P, π)

πk ∈ path(P, π′
k)

k

P |= mtype(τ, m) ≺ πk
k → π

type(cl) ∈ path(P, type(cl))

P |= defined(cl)

τ2 ∈ path(P, τ1)

P |= τ1 ≺ τ2

ftype(P,parent(dcl), f) = ⊥
P |= f 6∈ fields(parent(dcl))

mtype(P,parent(dcl), m) = ⊥ ∨
mtype(P,parent(dcl), m) = τ

P |= pmtype(dcl, m) = τ

FP = Ak
k
FB`

`
HCj

j

τ.ms ∈ H τ 6∈ introductions(B`
`
)

FP |= τ introduces ms before F

FP = Ak
k
FB`

`
HCj

j
dcl ∈ H

FP |= dcl introduced before F

type(dcl) = τ
∀A, B ∈ FP, τ.cl1 f ∈ A ∧ τ.cl2 f ∈ B → cl1 = cl2

FP |= cl f unique in dcl

type(dcl) = τ ms1 = cl m (vdk
k
)

ms2 = cl′ m (vd′
k

k
)

∀A, B ∈ FP, τ.ms1 ∈ Aτ.ms2 ∈ B → ms1 = ms2

FP |= cl m (vdk
k
) unique in dcl

Figure 11: Satisfaction of typing constraints.

(ii) P is typeable in the constraint-based LJ type system with con-
straints C′.

In essence, we must show that the premises of the constraint-based
LJ typing judgements hold. Our assumption that each class in PS is
a descendant of Object ensures that P has an acyclic, well-founded
class hierarchy. The premises for the LJ methods and statements
are identical, leaving class typing rules for us to consider. The LJ
typing rules require that the method and field names for a class be
distinct, but these premises are removed by the LFJ typing rules,
as the members of a class are not finalized until after composition.
This requirement is instead enforced by the uniqueness constraints
in Fig. 11, which are satisfied only when a method or field name
is introduced by a single feature. Since PS |= C, it follows that
the premises of the LJ typing rules hold for P and that there exists
some set of constraints C′ such that ` P | C′.

(iii) P satisfies the constraints in C′ and is thus a well-formed LJ
program.

We break this proof into two sublemmas:

(a) C′ ⊆ C.
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The key observation for this proof is that every class, method, and
statement in P originated from some feature in PS . The most
interesting case is for the constraints generated by method bodies:
a statement contained in a method body can come from either the
initial introduction of that method or advice added by a method
refinement. In either case, the statement was included in some
feature in PS and thus generated some set of constraints in C.
Because method signatures are fixed across refinement, the context
used in typing both kinds of statements is the same as that used
for the method in the final composition. This does not entail that
C = C′, however, as there could be some construct introduced in
PS that is overwritten by an introduction in a subsequent feature.

(b) For any structural constraint K, if PS |= K, then P |= K.

This reduces to showing that class declaration returned by CT (dcl)
is the same as the class with that identifier in P . This follows from
tracing the definition of the CT function down to the final introduc-
tion of dcl in the product line. From here, we know that this class
appears in the program synthesized from the product specification
starting with this feature. Further refinements of this class are re-
flected in the • operator used recursively to build CT (dcl); each
refinement succeeds by (i) above. Since the two functions are the
same, the helper functions which call path in P (i.e. ftype, mtype)
and those that use CT in PS return the same values. We can thus
conclude that the satisfaction judgements for PS and P are equiv-
alent.

All constraints in C′ appear in C, so PS |= C′. By (b) above,
it follows that P |= C′. P must therefore be a well-formed LJ
program by Theorem 4.1.

5. Feature Models
A feature model represents the dependencies and constraints be-
tween features that make up a product line. One common represen-
tation for feature models is a feature diagram. A feature diagram
is a hierarchy of features where each node in the tree corresponds
to a feature. Annotations on the tree represent constraints. Features
required by a parent are marked with a dot.

5.1 Feature Diagrams
Consider an elementary automotive product line that differentiates
cars by transmission type (automatic or manual), engine type (elec-
tric or gasoline), and the option of cruise control. Figure 12 shows
the feature diagram of this product line. A car has a body, engine,
transmission, and optionally a cruise control. A transmission is ei-
ther automatic or manual (choose one), and an engine is electric-
powered, gasoline-powered, or both.

Figure 12: Feature diagram

Besides hierarchical relationships, feature models also allow
cross-tree constraints, although these are more difficult to repre-
sent in a feature diagram. Such constraints are often inclusion or
exclusion statements of the form: if feature F is included in a prod-
uct, then features A and B must also be included (or excluded).

A cross-tree constraint is that cruise control requires an automatic
transmission.

Feature models are compact representations of propositional
formulas [5]. We exploit this representation in relating feature
models to the constraint-based type system for LFJ.

5.2 Propositional Representation of Feature Models
A feature model determines the set of legal combinations of fea-
tures in the algebra that defines product lines. A given program
specification can be tested for validity by checking if it satisfies the
constraints expressed in a feature model. For example, the feature
model Auto of the automotive product line is:

(Body ∧ (Automatic ∨ Manual) ∧
(Electric ∨ Gasoline) ∧ (Automatic ↔ ¬ Manual))

where Body is the lone constant. Some products (i.e. legal expres-
sions or sentences) of this product line are:

c1 = Automatic•Electric•Body
c2 = Cruise•Automatic•Electric•Gasoline•Body

c1 is a car with an electric engine and automatic transmission.
c2 is a car with both electric and gasoline engines, automatic
transmission, and cruise control.

6. Safe Composition for Feature Models
By the soundness of the LFJ type system, the satisfaction of the
signature of every feature in a product specification is sufficient
to guarantee that its composition is a well-formed program. The
signature of a feature F provides an interface with other feature
modules. This interface can be translated into a propositional for-
mula describing the minimal structural requirements that any prod-
uct specification built from a feature table FT which includes F
must satisfy in order for the constructs in F to be well-formed.
The conjunction of these formulas builds a formula φsafe which
any product specification must satisfy in order to produce a well-
formed program. The safety of a feature model can then be stati-
cally verified by using a SAT solver to check that its propositional
representation implies this minimal formula.

InA : Feature A is included.
PrecA,B : Feature A precedes Feature B.
Styτ1,τ2

: τ1 is a subtype of τ2.

Figure 13: Description of propositional variables.

The propositional variables of φsafe have three basic forms,
described in Figure 13. Note that a satisfying assignment to the
In and Prec variables describes a unique product specification as
long as it obeys the properties of the precedence relations. The
propositional constraints that impose these properties are given in
14. The first three formulas enforce that a precedence relation is
total on all features included in a product specification, that it is
asymmetric, and that it is irreflexive. The next four constraints
ensure that each product specification dictates an assignment to
the Sty variables corresponding to its class hierarchy. In effect,
the STY TOTAL rule builds the transitive closure of the subtyping
relation, starting with the parent/child relationships established by
the last definition of a class in a product specification; this mirrors
the construction of the subtyping relation used in the original LJ
type system. A satisfying assignment to WFSpec , the conjunction
of all these constraints, represents a unique product specification.

The makeup of the program built from a product specifica-
tion depends upon the ordering of features and their introductions
and refinements. The rules in Figure 15 generate a propositional
formula for each kind of typing constraint. A satisfying assign-
ment to a formula in Figure 15 which also satisfies WFSpec rep-
resents a product specification which satisfies the associated con-
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PREC TOTAL: ∀A, B, A 6= B, InA ∧ InB ↔ (PrecA,B ∨PrecB,A)
PREC ASYM: ∀A, B,PrecA,B → ¬PrecB,A

PREC IRREFL: ∀A,¬PrecA,A

STY REFL: ∀τ,Styτ,τ ↔
W
{InF | cld ∈ clds(F ) ∧ type(name(cld)) = τ}

STY OBJ: StyObject,Object

STY ASYM: ∀τ1, τ2,Styτ1,τ2
→ ¬Styτ2,τ1

STY TOTAL: ∀τ1, τ2, τ3,Styτ1,τ2
↔((Styτ1,τ3

∧ Styτ3,τ2
)∨W

{InF | ∃cld ∈ clds(F ), type(name(cld)) = τ1 ∧ type(parent(cld)) = τ2}∧V
{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V
{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1}∨W
{InF | ∃rcld ∈ rclds(F ), type(name(rcld)) = τ1 ∧ type(parent(cld)) = τ2 ∧

name(rcld) 6∈ names(clds(F ))}∧V
{InG → PrecG,F | G 6= F ∧ ∃cld ∈ clds(G), type(name(cld)) = τ1}∧V
{InG → PrecG,F | G 6= F ∧ ∃rcld ∈ rclds(G), type(name(rcld)) = τ1} )

STY WF: ∀A, ∀c ∈ clds(A), InA → Styty(name(c)),Object

Figure 14: Constraints on the precedence and subtyping relations.

straint. The Final and FinalIn abbreviations ensure that introduc-
tions and refinements in features appearing before the feature with
the final introduction are ignored. The composition and uniqueness
constraints have straightforward propositional representations that
govern the valid orderings and makeup of product lines. The trans-
lations of the structural constraints rely on the mutability of the
class hierarchy; since the class hierarchy of the product line is flex-
ible, any class cl1 that has a required field or method could ulti-
mately satisfy a constraint on the members of another class, cl2, if
cl2 ≺ cl1 in the final product specification.

Let φF be the conjunction of the formulas built from each
constraint in the signature of a feature F according to the rules
in Figure 15. φF describes the structure of all product specifica-
tions in which F is well-formed. φsafe is constructed by first build-
ing a clause for each feature F stating its inclusion implies φF :
InF → φF . The propositional constraints generated by STY WF
in Figure 14 are then added to this formula to ensure that the class
hierarchy of a product specification is acyclic by requiring that each
class included in a product specification be a subtype of Object.

The representation of a feature model in propositional logic,
FM , describes the assignments that represent legitimate specifi-
cations of a product line, defining the family of programs it con-
tains. It is possible to build FM using the variables in Figure 13.
By construction, a satisfying assignment to φsafe which sets InF to
true also satisfies φF . It follows that any satisfying assignment to
WFSpec → φsafe represents a product specification which satisfies
the signatures of each of the features in it. By Theorem 4.2, such
a product specification produces a well-formed LJ program. Since
FM and the minimal well-formedness formula share the same vari-
ables, a SAT solver can check whether FM ∧ WFSpec → φsafe

is valid. If so, the set of programs described by the feature model
is a subset of those allowed by φsafe . Thus, the composition of
any product specification which satisfies the syntactic constraints
of such a feature model is well-formed.

6.1 Feasibility of Our Approach
While checking the validity of FM ∧WFSpec → φsafe is co-NP-
complete, the SAT instances generated by our approach are highly
structured, making them amenable to fast analysis by modern SAT
solvers. We have previously implemented a system based on this
approach for checking safe composition of AHEAD software prod-
uct lines [12]. The size statistics for the four product lines analyzed
are presented in Table 1. The tools identified several errors in the
existing feature models of these product lines. It took less than 30
seconds to analyze the code, generate the SAT formula, and run

Product # of # of Code Base Program
Line Features Prog. Jak/Java LOC Jak/Java LOC
PPL 7 20 2000/2000 1K/1K
BPL 17 8 12K/16K 8K/12K
GPL 18 80 1800/1800 700/700
JPL 70 56 34K/48K 22K/35K

Table 1: Product Line Statistics from [12].

the SAT solver for JPL, the largest product line. This is less than
the time it took to generate and compile a single program in the
product line.

7. Related Work
Our strategy of representing feature models as propositional formu-
las in order to verify their consistency was first proposed in [5]. The
authors checked the feature models against a set of user-provided
feature dependences of the form F → A ∨ B for features F , A,
and B. This approach was adopted by Czarnecki and Pietroszek [7]
to verify software product lines modelled as feature-based model
templates. The product line is represented as an UML specification
whose elements are tagged with boolean expressions representing
their presence in an instantiation. These boolean expressions corre-
spond to the inclusion of a feature in a product specification. These
templates typically have a set of well-formedness constraints which
each instantiation should satisfy. In the spirit of [5], these con-
straints are converted to a propositional formula; feature models
are then checked against this formula to make sure that they do not
allow ill-formed template instantiations.

The previous two approaches relied on user-provided con-
straints when validating feature models. The genesis for our current
approach was a system developed by Thaker et al. [12] which gen-
erated the implementation constraints of an AHEAD product line
of Java programs by examining field, method, and class references
in feature definitions. Analysis of existing product lines using this
system detected previously unknown errors in the feature mod-
els of these product lines. This system relied on a set of rules for
generating these constraints with no formal proof showing they
were necessary and sufficient for well-formedness, which we have
addressed here.

If features are thought of as modules, the feature model used
to describe a product line is a module interconnection language
[9]. Normally, the typing requirements for a module would be
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τ1 ≺ τ2 ⇒ Styτ1,τ2
τ2 ≺ ftype(τ1, f) ⇒

W
{Styτ2,cl ∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F ), ∃cl, cl f ∈ fds(cld)}∨W
{Styτ2,cl ∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F ), ∃cl, cl f ∈ fds(rcld)}

ftype(τ1, f) ≺ τ2 ⇒
W
{Stycl,τ2

∧ Styτ1,type(cld) ∧ FinalInname(cld),F | ∃cld ∈ clds(F )∃cl, cl f ∈ fds(cld)}∨W
{Stycl,τ2

∧ Styτ1,type(rcld) ∧ Finalname(rcld),F | ∃rcld ∈ rclds(F ), ∃cl, cl f ∈ fds(rcld)}
mtype(τ, m) ≺ πk

k → π ⇒
W
{Stycl,π ∧

V
k Styπk,clk

∧ FinalInname(cld),F | ∃cld ∈ clds(F ),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(cld)}∨W

{Stycl,π ∧
V

k Styπk,clk
∧ Finalname(rcld),F | ∃rcld ∈ rclds(F ),

∃cl, clk
k
, vk

kcl m(clkvk
k
) ∈ mds(rcld)}

defined(cl) ⇒
W
{InF | ∃cld ∈ clds(F ),name(cld) = cl}

τ introduces ms before F⇒
W
{InG ∧PrecG,F∧

V
{InH → PrecF,H ∨PrecH,G | ∃cld′ ∈ clds(H)), type(name(cld′)) = τ}

| ∃cld ∈ clds(G), type(name(cld)) = τ ∧ms ∈ methods(mds(cld))}∨W
{InG ∧PrecG,F ∧

V
{InH → PrecF,H ∨PrecH,G | ∃cld′ ∈ clds(H)), type(name(cld′)) = τ}

| ∃rcld ∈ rclds(G), type(name(rcld)) = τ ∧ms ∈ methods(mds(rcld))}
dcl introduced before F ⇒

W
{InG ∧PrecG,F | ∃cld ∈ clds(F ),name(cld) = dcl}

cl f unique in dcl ⇒
V
{¬InF | ∃cld ∈ clds(F ),name(cld) = dcl ∧ ∃cl′, cl′f ∈ fds(cld) ∧ cl 6= cl′}∧V
{¬InF | ∃rcld ∈ rclds(F ),name(rcld) = dcl ∧ ∃cl′, cl′f ∈ fds(rcld) ∧ cl 6= cl′}

cl m (vdk
k
) unique in dcl ⇒

V
{¬InF | ∃cld ∈ clds(F ),name(cld) = dcl ∧ ∃cl′, vd′

k

k
, cl′m (vd′

k

k
) ∈ mds(cld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}∧V

{¬InF |∃rcld ∈ rclds(F ),name(rcld) = dcl ∧ ∃cl′, vd′
k

k
, cl′m (vd′

k

k
) ∈ mds(rcld) ∧ cl 6= cl′∨

(
W

k vdk 6= vd′
k)}

f 6∈ fields(parent(dcl)) ⇒
V
{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl |
∃cld ∈ clds(F ),name(cld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(cld)}∧V
{InF ∧ Finalname(rcld),F → ¬Stytype(dcl),cl |
∃rcld ∈ rclds(F ),name(rcld) = cl ∧ dcl 6= cl ∧ ∃cl′, cl′f ∈ fds(rcld)}

pmtype(dcl, m) = τ ⇒
V
{InF ∧ FinalInname(cld),F → ¬Stytype(dcl),cl | ∃cld ∈ clds(F ),name(cld) = cl

∧dcl 6= cl ∧m ∈ methods(cld) ∧mtype(cld, m) 6= τV
{InF ∧ Finalname(cld),F → ¬Stytype(dcl),cl | ∃rcld ∈ rclds(F ),name(rcld) = cl

∧dcl 6= cl ∧m ∈ methods(rcld) ∧mtype(rcld, m) 6= τ
where
FinalIncl,F ↔ InF ∧

V
{InG → PrecG,F | cl ∈ names(clds(G)) ∧G 6= F}

Finalcl,F ↔ InF ∧
V
{InG → PrecG,F | cl ∈ names(clds(G))}

Figure 15: Translation of constraints to propositional formulas.

explicitly listed by a “requires-and-provides interface” for each
module. We infer this interface automatically by considering the
minimum structural rules required of a feature module by the type
system. We verify that these interface constraints are satisfied by
the implicit interface given to each module by the feature module. If
composition is a linking process, we are guaranteeing that there will
be no linking errors. The difference with normal linking is that we
check all combinations of linkings allowed by the feature model.

A similar type system was proposed by Anacona et al. to type-
check, compile, and link source code fragments [1]. Like features,
the source code fragments they considered could reference exter-
nal class definitions, requiring other fragments to be included in
order to build a well-typed program. These code fragments were
compiled into bytecode fragments augmented with typing con-
straints that ranged over type variables, similar to the constraints
used in the LFJ typing rules. The two approaches use these con-
straints for different purposes, however. Anacona et al. solve these
constraints during a linking phase which combines individually-
compiled bytecode fragments. If all the constraints are resolved
during linking, the resulting code is the same as if all the pieces
had been globally compiled. Our system uses these constraints to
type-check a family of programs which can be built from a known
set of features.

The existing work on type-checking feature-oriented languages
has focused on checking a single product specification, as opposed
to checking an entire product line. Apel et al. [3] propose a type

system for a model of feature-oriented programming based on
Featherweight Java [8] and prove soundness for it and some further
extensions of the model. gDEEP [2] is a language-independent
calculus designed to capture the core ideas of feature refinement.
The type system for gDEEP transfers information across feature
boundaries and is combined with the type system for an underlying
language to type feature compositions.

8. Conclusion
A feature model is a set of constraints describing how a set of fea-
tures may be composed to build the family of programs in a product
line. This feature model is safe if it only allows the construction of
well-formed programs. Simply iterating all the programs described
by the feature model is computationally expensive and impracti-
cal for large product lines. In order to verify statically that a prod-
uct line is safe, we have developed a calculus for studying feature
composition in Java and a constraint-based type system for this lan-
guage. The constraints generated by the typing rules provide an in-
terface for each feature. We have shown that the set of constraints
generated by our type system is sound with respect to LJ’s type
system. We verify the type safety of a product line by constructing
SAT-instances for the interfaces of each feature. The satisfaction
of the formula built from these SAT-instances ensures the product
specification corresponding to the satisfying assignment will gen-
erate a well-typed LJ program. Using the feature model to guide the
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SAT solver, we are able to type check all the members of a product
line, guaranteeing safe composition for all programs described by
that feature model.
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