
Proceedings of the 2nd International Workshop on

Feature-Oriented Software Development (FOSD’10)

October 10, 2010 – Eindhoven, The Netherlands

Editors:
Sven Apel (University of Passau, DE)

Don Batory (University of Texas at Austin, US)
Krzysztof Czarnecki (University of Waterloo, CA)
Florian Heidenreich (University of Dresden, DE)
Christian Kästner (University of Marburg, DE)
Oscar Nierstrasz (University of Berne, CH)

Proceedings published online in the
ACM Digital Library

www.acm.org

Printed proceedings sponsored by
Metop GmbH

www.metop.de

The Association for Computing Machinery
2 Penn Plaza, Suite 701

New York, New York 10121-0701
U.S.A.

ACM COPYRIGHT NOTICE. Copyright c© 2010 by the Association
for Computing Machinery, Inc. Permission to make digital or hard
copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers, or
to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept., ACM, Inc., fax +1 (212)
869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the
first or last page, copying is permitted provided that the per-copy
fee indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, +1-978-750-8400,
+1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles ACM intends to
create a complete electronic archive of all articles and/or other material
previously published by ACM. If you have written a work that was
previously published by ACM in any journal or conference proceedings
prior to 1978, or any SIG Newsletter at any time, and you do NOT
want this work to appear in the ACM Digital Library, please inform
permissions@acm.org, stating the title of the work, the author(s), and
where and when published.

ACM ISBN: 978-1-4503-0208-1

i

Preface

Feature orientation is an emerging paradigm of software development.
It supports the largely automatic generation of large software systems
from a set of units of functionality called features. The key idea of
feature-oriented software development (FOSD) is to emphasize the sim-
ilarities of a family of software systems for a given application domain
(e.g., database systems, banking software, text processing systems)
with the goal of reusing software artifacts among the family members.
Features distinguish different members of the family. A challenge in
FOSD is that a feature does not map cleanly to an isolated module of
code. Rather it may affect (“cut across”) many components/documents
of a software system. Research on FOSD has shown that the concept
of features pervades all phases of the software life cycle and requires
a proper treatment in terms of analysis, design, and programming
techniques, methods, languages, and tools, as well as formalisms and
theory.

The goal of the FOSD’10 workshop is to foster and strengthen the
collaboration between the different researchers who work in the field of
FOSD or in the related fields of software product lines, aspect-oriented
software development, service-oriented architecture, and model-driven
engineering. A keynote by Christian Prehofer, a leading researcher
in FOSD, will be an excellent start up for discussions on historical
perspectives, current issues, and visions of FOSD. The FOSD workshop
builds on the success of a previous edition, held at GPCE’09, and a
series of workshops on product lines, generative programming, and
aspect orientation, held at GPCE’06, GPCE’07, and GPCE’08.

We received an excellent number of 20 submissions. The review process
led to the selection of 11 papers for presentation. We would like to thank
the program committee and the authors for their contributions to the
success of the workshop.

ii

iii

Program Committee

Vander Alves (University of Brasilia, BR)
Danilo Beuche (pure-systems, DE)

Kathi Fisler (Worcester Polytechnic Institute, US)
Patrick Heymans (University of Namur, BE)

Kyo-Chul Kang (POSTECH, KR)
Thomas Leich (Metop Research Center, DE)

Christian Lengauer (University of Passau, DE)
Roberto Lopez-Herrejon (University of Linz, AT)

Neil Loughran (SINTEF, NO)
Klaus Ostermann (University of Marburg, DE)

Ina Schaefer (Chalmers University of Technology, SE)
Christine Schwanninger (Siemens, DE)

Thomas Thüm (University of Magdeburg, DE)
Salvador Trujillo (IKERLAN Research Centre, ES)

iv

v

Table of Contents

Keynote

Feature Oriented-Programming: Back to the Future . 1
Christian Prehofer

Research Papers

Automating Energy Optimization with Features . 2
Norbert Siegmund, Marko Rosenmüller, and Sven Apel

Assessment of Product Derivation Tools in the Evolution of Software Product Lines:
An Empirical Study . 10

Mário S. Torres, Leopoldo Teixeira, Elder Cirilo, Uirá Kulesza, Matheus Sousa, Paulo Borba,
Thais Batista, Rosana Braga, Paulo Masiero, and Carlos Lucena

Toolchain-Independent Variant Management with the Leviathan Filesystem . 18
Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schröder-Preikschat, and Daniel Lohmann

TypeChef: Toward Type Checking #ifdef Variability in C . 25
Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich

Patching Product Line Programs . 33
Martin Kuhlemann and Martin Sturm

Implementing Feature Variability for Models and Code with Projectional Language Workbenches 41
Markus Voelter

Pure Delta-oriented Programming . 49
Ina Schaefer and Ferruccio Damiani

Improving Reuse of Component Families by Generating Component Hierarchies . 57
Marko Rosenmüller, Norbert Siegmund, and Martin Kuhlemann

Language-Independent Reference Checking in Software Product Lines . 64
Sven Apel, Wolfgang Scholz, Christian Lengauer, and Christian Kästner

Raising Family is a Good Practice . 72
Vinay Kulkarni

Dynamically Adaptable Software Product Lines Using Ruby Metaprogramming . 80
Sebastian Günther and Sagar Sunkle

vi

Feature Oriented-Programming: Back to the Future

Christian Prehofer
Fraunhofer ESK

Munich, Germany
christian.prehofer@esk.fraunhofer.de

ABSTRACT
Feature-oriented programming has its origin in the old quest
of computer science: modular composition of software “ar-
tifacts” in software development. While there exist many
notions of modularity and composition, feature-oriented pro-
gramming tackles the case of highly-entangled software fea-
tures where typical module or component concepts fail. The
reasons for this are feature interactions and dependencies
which make it very hard to write modular software which
can be composed in a flexible way. In contrast to other
efforts like aspect-oriented programming, feature-oriented
programming has from the beginning focused on the seman-
tics or behavior of software, not just on code modularity.

In this presentation, we review the origins of feature com-
position and feature interactions, which first occurred as
an explicit research problem in telecommunication software.
We argue that feature interactions are pervasive in many
areas of software development and are a common source of
modularity and quality problems. Then, we present more
precise formalization of modularity and compositionality of
features. We discuss when adding features is modular or
“harmless” from a semantic or behavioral point of view. In
particular, we focus on modularity and interaction for mul-
tiple feature compositions. A future challenge for feature-
oriented software is the graphical modeling of features and
feature interactions. As we aim to have modular composi-
tion for graphical models and to generate code from these
graphical artifacts, it is important to have precise seman-
tics and clear refinement concepts. For this, we discuss how
features and interactions can be represented by state-based
specifications in a graphical way. Refinement concepts are
presented which allow the flexible composition of features
and interactions in statechart diagrams.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages, Theory

Keywords
Feature-oriented programming, modularity, composition, fea-
ture interactions, keynote

1

Automating Energy Optimization with Features

Norbert Siegmund
University of Magdeburg
Magdeburg, Germany

nsiegmun@ovgu.de

Marko Rosenmüller
University of Magdeburg
Magdeburg, Germany

rosenmue@ovgu.de

Sven Apel
University of Passau
Passau, Germany

apel@uni-passau.de

ABSTRACT
Mobile devices such as cell phones and notebooks rely on battery
power supply. For these systems, optimizing the power consump-
tion is important to increase the system’s lifetime. However, this
is hard to achieve because energy-saving functions often depend
on the hardware, and operating systems. The diversity of hard-
ware components and operating systems makes the implementation
time consuming and difficult. We propose an approach to automate
energy optimization of programs by implementing energy-saving
functionality as modular, separate implementation units (e.g., fea-
ture modules or aspects). These units are bundled as energy fea-
tures into an energy-optimization feature library. Based on aspect-
oriented and feature-oriented programming, we discuss different
techniques to compose the source code of a client program and the
implementation units of the energy features.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Algorithms, Design

Keywords
Software Product lines, Energy consumption, Feature-oriented pro-
gramming

1. INTRODUCTION
The widespread use of battery-supplied systems such as note-

books and mobile phones leads to a design shift toward energy op-
timization. Increasing the lifetime of a system is considered more
important than an optimal performance. Moreover, due to increas-
ing energy costs, energy optimization techniques such as virtualiza-
tion are also in the focus of research for systems with direct power
supply [37]. It is expected that energy cost of servers will soon ex-
ceed the purchase cost of the servers [7, 33]. Beside improvements
in hardware architecture, the efficient use of hardware by software
is a key factor to reduce energy consumption.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

Consequently, various compilers have been developed to reduce
energy consumption (e.g., by instruction reordering and loop trans-
formation [38, 16, 13]). Furthermore, operating systems provide
their proprietary functionality to optimize energy consumption. For
example, Windows Mobile1 comes with an integrated power-
management-component that can be used by applications to set
different power modes for hardware components within the de-
vice. The Advanced Configuration and Power Interface (ACPI)
defines an open standard for the power management related con-
figuration of a system’s hardware [19]. It enables applications to
tune the energy consumption according the current workload. Lap-
tops, desktops, and other hardware systems are deployed with this
interface. However, in its current specification,2 it consists of 727
pages, which reflects the complexity developers have to face and
the required implementation effort for its realization.
Although there is a considerable number of energy optimiza-

tion strategies, it has been observed that many applications do not
use them [18, 25]. Reasons are heterogeneity of hardware with
its unique energy-management functionality as well as complexity
of software solutions (e.g., for ACPI) [4]. Adapting a software to
different hardware devices and operating systems often increases
development time and cost. Business constraints and release dead-
lines hamper the implementation of energy optimization techniques
further.
The problem of handling variability and heterogeneity of hard-

ware and operating systems in software development is not new.
Software product line (SPL) engineering has shown to be a suit-
able approach to tackle this problem [12, 34]. An SPL consists of
a set of features that represent end-user visible characteristics of
a software. A user generates a tailor-made programs by selecting
features that satisfy her requirements. This way, different programs
can be generated based on a common code base.
We propose an approach to automate the application of energy-

saving techniques (referred to as energy features) based on SPL
engineering. The energy features are bundled in a feature library.
The library consists of energy optimization functions for different
hardware and operating systems. For example, a feature imple-
ments the functionality to activate and deactivate the WLAN for
the Windows Mobile OS. By selecting energy features according
to given system and user requirements, we can apply energy-saving
functions to a target program. We use the feature library to achieve
an improved separation of concerns regarding energy-saving tech-
niques. Furthermore, the library allows us to reuse the energy fea-
tures in different programs and to cope with the required variability
(e.g., different hardware and operating systems). We make two
contributions: (i) We provide means to ease the development of

1We consider OS version 5 and 6.
2Revision 4.0: http://www.acpi.info/

2

energy-efficient software and (ii) we propose a method for creating
a library of energy-saving techniques. The expected advantages
are:

• With the feature library, developers do not require deep knowl-
edge about energy optimization. Energy-efficient features
can be added without investigating which energy-saving tech-
nique is available for a particular system.

• Reusing energy features of the library reduces the develop-
ment time of new products.

• We provide a simple configuration interface to utilize energy-
reduction techniques. This allows even non-expert develop-
ers to optimize their programs.

We think that the energy feature library is needed to handle the
diversity of techniques and make them available for practical use.
As we describe see in Section 2.3, the kinds of optimization tech-
nique can heavily differ. Due to these differences, a variety of
interfaces are required to make the features usable. In our cur-
rent work, we concentrate only on those energy-saving techniques
that are accessible by means of method calls. These techniques
are commonly cohesive and generally applicable so that a reuse for
different programs is possible. We show how feature-oriented pro-
gramming [5] and aspect-oriented programming [23] can be used to
compose a program with energy features. Furthermore, we present
an approach to use energy-saving techniques by means of code in-
strumentation to access energy-management code.

This paper discusses ideas to apply feature-oriented software de-
velopment to new domains such as energy optimizations. Our work
concentrates on challenges that arise during design time of a soft-
ware. Although, this work is at a theoretical level, it identifies prob-
lems that exist in other domains and present possible solutions.

2. BACKGROUND
Our approach is based on a library of features that implement

different energy optimization techniques. We use feature-oriented
programming (FOP) [35, 5] as a technique for modularizing the
code that implements a feature. Next, we give a short overview of
modeling features and how they can be implemented using FOP. Fi-
nally, we present some important representatives of energy-saving
techniques.

2.1 Feature Modeling
We use a feature model to design the features of our library and

their relations. A feature model is a hierarchical structure consist-
ing of features and their constraints among each other [22, 14]. Fig-
ure 1 shows a feature model for the energy feature library. Manda-
tory features (e.g., feature OS of Figure 1) have to be included in
every variant (denoted with a filled bullet) when the parent feature
is selected. Optional features (denoted with an empty bullet; e.g.,
feature Backlight) are not required for each variant; it is up to the
user to select them during the product configuration process. There
are also groups of features representing additional variability. Al-
ternative groups require the selection of exactly one feature of the
group (not more than one); or groups allow the selection of one or
more features of the group.

2.2 Feature-Oriented Programming
FOP is a technique that enables the implementation of features

as fundamental modules of abstraction and composition [5]. This
means, a feature exactly corresponds to a feature module. A feature
module encapsulates the source code otherwise scattered across
different classes inside a single modular code unit. It can define
new classes or extend existing classes (as refinements) originally

Class ..Core

Query Engine

Transaction

DB QEngine TXN

Refines..

Refines..

Class ..

Refines.. Class ..

Possible variants

Figure 2: Decomposition of classes (vertical bars) with respect
to features (horizontal layers).

defined by other feature modules. To derive a program, a set of fea-
ture modules is incrementally composed. This composition obtains
final classes from classes and their refinements. In Figure 2, we
show the architecture of a database management system (DBMS)
implemented with FOP. Horizontal layers represent the features of
the DBMS and the vertical bars represent classes. Starting from
a base implementation of a class, multiple refinements, which be-
long to different features, are added resulting in a layered design.
Refinements add new members to classes such as methods and at-
tributes or extend existing methods with additional functionality.
For example, if a user selects feature Query Engine, class DB would
consist of the base implementation and a refinement to handle SQL
queries.

2.3 Energy-Saving Techniques
There are different kinds of energy-saving techniques. We di-

vide them into two classes: code transformation techniques and
hardware- and operating-system–dependent techniques. Before we
describe the two classes, we clarify the differences between power
and energy, because it is necessary for understanding the tech-
niques. Unfortunately, power and energy are often used inter-
changeably in literature [40]. The consumed power P of a system
is the consumed energy E per time unit t:

P =
E

t
(1)

Given that a system consumes energy3, the intended goal is to
save energy for a given task (in contrast to saving power). Consid-
ering Equation 1, reducing the power consumption may also reduce
the energy consumption, but not necessarily. For instance, a task
can either be performed with high power in a short time period or
with low power, but for a longer time period. It depends on the task
and algorithm what saves more energy. For example, constant time
tasks should be performed with low power.

Code Transformation Techniques. The first category of en-
ergy optimization techniques contains different code transforma-
tion approaches. We first describe some solutions based on com-
pilers and continue with source-to-source transformations that are
compiler independent. Compiler approaches transform a software
such that the energy consumption is reduced. One of the first so-
lutions was proposed by Tiwary et al. [38]. The main idea is to
reorder processor instructions such that less switches in CPU reg-
isters are necessary. Furthermore, they show how a reduction of
memory operands in a program can lead to energy savings. Other
optimizations are based on method inlining and loop unrolling [26]
as well as on an energy efficient scheduling of a program’s instruc-
tion set [39]. A more recent approach allows developers to define
3For example, batteries are charged with a certain amount of energy
instead of power.

3

Energy Feature Library

Display

LCD Backlight

Communication

WLANBluetoothSensors

GPS

Acceleration Temperature

Light Pressure

Storage

EEPROM

FLASH HD

Algorithm Collection

OS

WinMobile Linux

Mandatory Alternative

Optional Or

Android

DevicesSortPersistent
Write

JouleSort InsertionSort

CPU

Hardware- and Operating-System-Dependent Techniques

Figure 1: Feature model of the energy feature library.

objective functions for the compilation process [13]. Based on the
objective function, the compiler selects suitable code transforma-
tions out of a pool.

Beside compiler-based optimizations, source-to-source transfor-
mations can also save energy. Fei et al. have shown that trans-
forming the source code based on the analysis of the program’s
control flow can achieve energy savings of up to 37.9% [15]. The
transformations reduce inter-process communication (reduces OS
overhead for context switches), minimize the number of concur-
rent processes, and reallocation of computations of one process to
another (reduces synchronization between processes).

Another study provides insights into energy consumption of lan-
guage constructs in the C# programming language [10]. For ex-
ample, dynamic anonymous methods consume 3 to 4 times more
energy than dynamic methods. Another interesting fact is that pro-
tected attributes require two times more energy than private or pub-
lic attributes. Of course, this may be different in other runtime en-
vironments; however, we observe that simple changes in the source
code can have a large impact on energy consumption.

Beside application-independent transformations of the source
code, the selection of a suitable algorithm is often more important
for large energy savings. Researchers proposed energy-efficient
algorithms such as for sorting large amounts of data [36] as well
as studies about choosing the optimal algorithm to reduce energy
consumption [11, 9] which can even be taken a step further to
combine hardware-dependent techniques with energy-efficient al-
gorithms. For example, Pisharath et al. reduces energy consump-
tion of queries in an in-memory database system by selectively set-
ting different memory banks into a certain power state [31]. Con-
trolled by an intelligent query engine of the database system, en-
ergy consumption could be decreased by up to 68%. Solutions that
are very specific for certain application scenarios are very difficult
to encapsulate into a single implementation unit. Thus, reuse in
different programs is unlikely. Therefore, we currently focus only
on generic algorithms for the feature library that fulfill reoccuring
tasks in different programs.

Hardware- and Operating-System–Dependent Tech-
niques. Beside code transformation techniques, software can also
efficiently control hardware components to save energy. The most
prominent techniques are dynamic voltage scaling [29, 21] and fre-
quency scaling of CPUs [30, 32]. Both approaches are used to

reduce the power when a system has a low workload. Since the
power P depends proportionally on the frequency f and the voltage
v squared, reducing the frequency as well as the voltage decreases
the used power:

P ∝ f ∗ v2 (2)

For constant-time tasks, reducing power consumption propor-
tionally reduces energy consumption (as it follows from Equation
1). Therefore, both factors (cf. Equation 2), frequency and voltage,
should be adjusted depending on the current workload of the sys-
tem. Some approaches analyze applications statically to include the
scaling commands into the application (e.g., when certain events
occur) [41]. Other solutions dynamically change the frequency or
voltage in a pre-defined time interval [3]. These techniques use pro-
filing mechanisms to predict the future workload of the system so
that dynamic adaptations are possible. Currently, we do not address
this kind of optimization because it is difficult to provide a general
applicable approach that saves more energy than already existing
solutions provided by operating systems.
ACPI is an industry-driven specification for power management

of hardware devices. It allows the operating system to control dif-
ferent power states of the hardware. For example, a device could be
set in four different states; beginning with a full powered on state
(D0) and ending with powered off state (D3). The different states
can be set by programs by means of operating system API calls.
Operating systems for mobile devices provide special power

management solutions similar to ACPI. For example, Windows
Mobile comes with its own power management.4 Applications can
control the power states of different devices such as the backlight,
the screen, etc. Setting the device into a specific state requires API
calls to the operating system. Another example is the Android5

power management that requires Wake Locks to request CPU re-
sources. If there is no wake lock active, the CPU will shut down
(and saves energy). As Windows Mobile, Android supports differ-
ent power states. Unfortunately, setting the device into a specific
state differs in both operating systems.
The described operating-system techniques are used by means of

4For detailed information, see
http://msdn.microsoft.com/
en-us/library/aa923906.aspx.
5http://www.android.com/

4

API calls. Thus, a feature that utilizes the provided energy manage-
ment functionality of operating systems can be easily implemented
as a separate, self-contained implementation unit. The energy fea-
ture library contains especially such features because a reuse be-
tween different programs is easy to achieve.

3. TOWARDS
AN ENERGY FEATURE LIBRARY

Due to the multitude of possible energy-saving techniques, it is
hard for developers to know every possible mechanism wasting a
large quantity of possible energy savings. This problem even grows
if the target hardware and operating systems varies for the same
program. In this section, we present our approach to cope with
the heterogeneity of techniques by developing a library of energy-
saving technique. Our idea for an automated optimization is the in-
tegration of code of the feature library in a client program. Depend-
ing on the execution of a feature’s code of the client program, we
(i) replace this code with the code of the library or (ii) (de)activate
hardware components. Unfortunately, we cannot implement every
mechanism to reduce energy consumption with this approach. For
example, compiler-based optimizations cannot be applied with a
feature library.

Thus, we include only operating-system-dependent techniques
as well as some code transformations in the energy feature library.
However, the idea is that the library can be extended by others pro-
viding their own techniques. Next, we describe the envisioned fea-
tures of the library. We illustrate how application engineers can use
the energy feature library to select proper energy-saving techniques
for their program.

3.1 Modeling the Energy Feature Library
We use a feature model to relate the different techniques for en-

ergy management. This allows us to define a view on the energy
optimization domain as well as to use the feature model for the con-
figuration process. In Figure 1, we depict an initial proposal for the
energy feature library. The energy feature library contains of two
main parts: Algorithm Collection and Hardware- and Operating-
System–Dependent Techniques.

Algorithm Collection. We create a library of algorithms that
minimize the energy consumption. Subfeatures of Algorithm Col-
lection implement common, recurring algorithms in an energy-
efficient manner. For example, feature Sort in Figure 1 contains two
subfeatures that sort data with a minimal energy consumption [36,
8]. Developers of different domains can further add their domain-
specific algorithms to enrich this algorithm library. Possible exam-
ples are energy-efficient read and write of data from and to persis-
tent storage [20], different data aggregation strategies for network
communication [24, 6], or data caching algorithms to reduce com-
munication [28]. Although a large amount of such algorithms are
often only reusable in a certain domain, we expect that the benefit
for the domain is still considerable.

The idea of algorithm collection is to replace the algorithms in
the target application with the algorithm features of the Algorithm
Collection. This way, we can exchange an algorithm of a program
with another one that has an equal functionality but requires less
energy. To use an algorithm, a developer has to encapsulate the
corresponding algorithms with a proper interface in her program.
For example, if a developer wants to exchange the algorithm for
sorting data, she has to separate the sort algorithm into a single im-
plementation unit, i.e., a feature module. This implementation unit
can then be replaced by the feature module of the algorithm collec-

tion (e.g., feature InsertionSort). If the interface of the algorithms
do not match, developers have to implement an adapter to integrate
the algorithm of the library into the program. The rational behind
different sorting algorithms is that the efficiency of a sorting algo-
rithm regarding energy consumption depends on the amount and
kind of data to be sort. Depending on these factors, a user selects
the sorting algorithm that fits best to her workload.

Hardware- and Operating-System–Dependent Tech-
niques. To ease the selection of energy-saving techniques, we use
features for operating systems (feature OS and subfeatures) and for
hardware components (feature Devices and subfeatures). A selec-
tion of these features together map to the feature module(s) that im-
plement the energy-saving technique(s). In detail, feature OS pro-
vides energy management functions for different hardware compo-
nents as described in Section 2.3. Since these energy management
functions strongly dependent on the used device, we have to model
the hardware, too. The possible available hardware components
of a system are represented as subfeatures of feature Devices, in
Figure 1. Together with the selection of the operating system, we
can select a feature module that efficiently utilizes the hardware.
For example, if a developer selects feature WinMobile and feature
Backlight, we include the feature module in the program that pow-
ers the backlight on and off. The place for inclusion is defined
separately, as describe below. In Section 4, we show the usage of
features WinMobile and WLAN. Selecting the two features enables
a program to trigger the power mode of a WLAN device depending
on the current executed functionality. Overall, selecting the subfea-
ture of feature OS defines which operating system API calls have to
be composed and selecting a subfeature of feature Devices defines
which hardware component has to be controlled by the program.

3.2 Mapping Energy Features to Application
Functionality

To use energy features, we need a mapping between the function-
ality that has to be optimized and the feature module of the energy
feature. Thus, a developer configures the energy feature library for
client application feature that has to be optimized. This means,
each feature of the client program maps to a configuration of the
library. Based on this configuration, we derive the correct feature
module that maps to the functionality of the program. In Figure 3,
we show such a mapping between a program and the energy feature
library. In this example, the program is a variant of an SPL for data
management solutions targeting resource-constrained systems. On
the left side of Figure 3, we depict the features of the DBMS SPL
that should be optimized regarding energy consumption. For each
feature, we configure the energy feature library (right side of Fig-
ure 3) using the feature model of Figure 1. The configuration of
the energy library results in a set of feature modules that realize
the energy-saving functions. These feature modules are mapped
to the corresponding modules of the DBMS SPL (center of Figure
3). For example, to power the WLAN device only when feature
Distribution of the DBMS SPL is executed, we create a mapping
between this feature and the feature module W_W which is derived
from the configuration of the energy feature library. The result is
that the energy management for the WLAN device is controlled
by the program. The device is powered only when the program
uses its communication functionality. Establishing such mappings
is a straightforward process. It requires only little expert knowl-
edge about energy management of operating systems and hardware
components.
If a developer wants to use energy-efficient algorithms, she has

to create a mapping between the algorithm feature of the algorithm

5

WLANWinMobile

FAME-DBMS

Distributed

User Interface

Data Sort

...

Feature modules of selected
energy features

Win_WLan

Win_LCD

Application features / functionality
to optimize

Selected features of the energy
feature library

WinMobile

WinMobile InsertionSort

LCD

... ...

Mapping

Win_IS

Win_BL Backlight

Figure 3: Mapping application features to energy features.

collection and the algorithm feature of her program. For example,
the mapping between feature Data Sort and feature module W_IS
in Figure 3 results in a DBMS variant that uses the InsertionSort
algorithm for sorting data; instead of the original implementation.
Beside the reduced energy consumption, the developer has to take
additional effects on non-functional properties into account. For
example, by applying feature InsertionSort the performance may
be decreased. If performance is more important than energy con-
sumption, the mapping should not be established.

4. PRODUCT GENERATION
A key contribution of our approach is the application of energy-

saving techniques to programs with a very small implementation
effort for the developer. The technique requires only a mapping
between features of the application SPL and features of the en-
ergy feature library. Depending on the selection of an algorithm
feature or an hardware-dependent feature, different composition
mechanisms have to be used. For algorithm features, we have to
exchange the implementation unit of the program with a feature
module of the feature library. When using FOP, this is a straight-
forward process because either the existing feature modules must
be physically replaced or the configuration of the application SPL
must be changed accordingly. For hardware-dependent techniques,
additional code from the library must be integrated into the pro-
gram. This requires new implementation techniques to connect
application features with energy-optimization code. We propose
three different implementation variants: Manual Layered Compo-
sition, Automated Layered Composition, and Energy Manager. We
explain all approaches in detail and discuss their advantages and
drawbacks.

4.1 Manual Layered Composition
The first approach to realize the integration of energy optimiza-

tion code is using the layered composition process of FOP. Fea-
tures modules are represented as layers. Similar to classes, meth-
ods are composed from multiple refinements resulting in a refine-
ment chain executing the functionality of all existing refinements
sequentially. This way, functionality of the method from differ-
ent feature modules is executed depending on the order of the re-
finement chain (or layers). To access the energy management, a
developer has to implement a feature module that refines the appli-
cation’s functionality. This means, a developer has to write method
refinements (consisting glue code) for those methods that have to be
optimized regarding energy consumption. To simplify manual im-
plementation, we envision a skeleton that enables a semi-automated
generation process. Such a skeleton can provide the implementa-
tion of the energy code for each feature of the energy feature li-

Feature Module WLAN_WinMobile_On (Win_WLan)

1 r e f i n e s c l a s s [CLASS_NAME] {
2 [RETURN_TYPE METHOD_NAME]([ARGS]) {
3 / / Turns t h e WLAN d e v i c e on
4 _energySplClass.SetDevicePower
5 (_energySplClass.getWirelessDeviceName(),1,0);
6
7 / / E x e c u t e t h e send f u n c t i o n a l i t y
8 [RETURN_TYPE RETURN_VALUE=]super::[METHOD_NAME(ARGS)];
9

10 / / Turns t h e WLAN d e v i c e o f f
11 _energySplClass.SetDevicePower
12 (_energySplClass.getWirelessDeviceName(),1,4);
13 [re turn RETURN_VALUE];
14 }
15 };

Figure 4: Skeleton of energy-optimization feature modules
(FeatureC++ example).

...

Communication

Deactivate Peripherie: WLAN

Activate Peripherie: WLAN

Method call

Distributed WLAN

Relationship Composition

Derived Program

Figure 5: Composing application features with energy opti-
mization code.

brary. It requires only the declaration of the method that is the
target for energy optimization. In Figure 4, we show an example
for such a skeleton based on FeatureC++6. FeatureC++ is a C++
language extension for FOP [1]. It comes with a source-to-source
compiler. FeatureC++ uses keyword super (Line 9) to execute the
next (above) method refinement of the composed method. In square
brackets, a developer has to include the name of the class and
method (Lines 1-2) that has to be refined with the energy-saving
code. Furthermore, if there is a return value, it has to be stored
temporarily (Line 8) and returned after the device is powered off
(Line 13). The benefits of this approach are the fine granularity
of changes to the program’s code (i.e., only selected methods are
surrounded with energy management code) and the direct control
of code changes by developers. This allows developers to have a
direct influence on the code changes.

4.2 Automated Layered Composition
Another solution to compose the energy features with the pro-

gram is based on aspectual feature modules7 [2], as illustrated in
Figure 6. The idea is to enclose the code of the program’s feature
with code of the feature library (cf. Figure 5) to manage hard-
ware components. In this solutions, features are implemented as
aspectual feature modules. An aspectual feature module can intro-
duce aspects, method refinements, and new classes to a program.
The aspects are weaved into the application to access the energy
management code. The energy management code can be imple-
mented, in turn, as classes, also part of the aspectual feature mod-
ule. In order to access the energy management functionality, we
use an around advice (Line 2–3) for each method belonging to a

6http://fosd.de/fcc
7Aspectual feature modules combine the concepts of FOP and
aspect-oriented programming (AOP) [23].

6

Aspectual Feature Module WLAN_WinMobile (Win_WLan)

1 a s p e c t WLAN_Energy_Management {
2 p o i n t c u t exWLAN() = e x e c u t i o n("%.Send_Receive%(...)");
3 advice exWLAN() : around (){
4 / / t u r n wlan on
5 _energySplClass.SetDevicePower
6 (_energySplClass.getWirelessDeviceName(),1,0);
7
8 proceed(); / / E x e c u t e t h e send f u n c t i o n a l i t y
9

10 / / t u r n wlan o f f
11 _energySplClass.SetDevicePower
12 (_energySplClass.getWirelessDeviceName(),1,4);}
13 }
14 c l a s s EnergySplClass {
15 / / Load o s s v c l i b r a r y
16 EnergySplClass(){..}
17 / / S e t d i f f e r e n t power modes
18 SetDevicePower(..){..}}
19 }

Figure 6: An Aspectual feature module to apply WLAN (de)
actionvation for feature Send_Receive (FeatureC++ example).

feature (of the application SPL) in a mapping. Depending on the
energy-optimization technique, the piece of advice activates or de-
activates different hardware. For example, we activate the WLAN
device in Lines 5–6 and deactivate it in Lines 11–12 (cf. Figure 6).
The whole aspectual feature module is stored in the library. The
only part which needs to be generated is the pointcut for each pub-
lic method of the program’s feature. In Figure 6, we include the
Send_Receive feature name in the execution pointcut. In order to
select join points of aspects of a single feature, the feature has to be
part of the pointcut definition.

4.3 Energy Manager
Another implementation technique is based on an energy man-

ager that stores the mappings between features of the application
SPL and the library. The energy manager is statically composed
with the program including the mappings. It is accessed each time
when the program execution reaches the code of a feature. Be-
fore feature code is executed, the manager checks whether it has
to activate or deactivate a certain device. For example, when the
DBMS calls the send method of feature Send_Receive, the man-
ager is called to check for existing mappings. In this case, we have
to execute the energy management to turn the WLAN on. To query
the manager for mappings, we have to integrate a method call at
the entry points of every method refinement of a feature. Such
a code instrumentation techniques is also used in dynamic AOP
approaches in which hook methods are generated to enable exe-
cution of additional code at runtime [17, 27]. FeatureC++ can be
used to generate such method calls during the composition pro-
cess for each program feature, which is the main difference to the
aspectual-feature-module solution. The method calls were orig-
inally intended to support activation and deactivation of features
at runtime. We use this technique to include a method OnExe-
cute(FEATURE_NAME). This method accesses the energy man-
ager to evaluate if there is an existing mapping for the current fea-
ture. If present, this code is executed (e.g., the WLAN device is
powered on). The device is turned off when the execution of the re-
finement has finished. This can be achieved by generating a method
OnExecuteExit(FEATURE_NAME) before each return statement.

4.4 Discussion

Reuse of Energy Features. Usually, features are reused
within different variants of a single software product line. In such
a case, reuse is the main goal of the design and architecture of fea-
tures. When using a library for energy optimization techniques,
features have to be reused in very different programs. For common
application features, a reuse would be very difficult to achieve. Ob-
vious reasons are application-dependent interfaces, heterogeneous
data structures, etc. However, the characteristics of energy opti-
mization techniques suggest that their reuse in very different pro-
grams is possible. Energy features that rely on code transformation,
are very generic. There is no application specific code in such a
feature. Features for utilizing the energy management for different
hardware components are often cohesive. That is, turning a hard-
ware component on and off does not require complex adaptations
of the application. An example for this case is ACPI that provides
an interface for energy management accessible in different operat-
ing systems.

Rapidly Switching Between Different Features. A prob-
lem arises if we quickly enter and leave the code of a feature that
belongs to a mapping. Putting a device in a certain power mode
consumes time, the performance decreases, and energy is wasted.
A possible solution is to use timers for the deactivation of hard-
ware. The time interval for deactivation should be defined during
the configuration and is stored together with the mapping. A finer
granularity may be used to set different timers for individual fea-
tures.

Performance. The execution of additional code due to the inte-
gration of the energy features may decreases the performance. This
is especially the case when using the energy manager implementa-
tion because we execute the OnExecute() method for each feature.
Hence, there is a trade-off between performance and energy opti-
mization. We have to evaluate how large the impact of such a real-
ization is. We will address this issue in further work. Nevertheless,
when an application performs a constant time task, performance
does not matter. This means, when we decrease the performance,
the performed task may not require more time to finish. For these
tasks, applying energy optimizations which come with small per-
formance degradation will not have a negative effect.

Architectural Adaptations. We need a feature model of the
program to create the mapping between program features and en-
ergy features. In some cases, a program’s feature has to be decom-
posed into two features when it is not feasible to apply the energy
management to the whole feature. For example, feature Distribu-
tion of the data management SPL consists of various functions that
realize data distribution for different databases. Only a small part of
this feature actually requires the WLAN device to send and receive
data. Thus, only this part should be mapped to an energy feature
of the library. Such an architectural change represents a way to ap-
ply the energy optimization code only at the point where it is really
needed. Thus, there is a trade-off between a good program design
and energy optimization. With additional implementation effort by
the application developers the manual layered composition and au-
tomated layer composition can solve this problem. For example,
pointcuts can be manually defined to address only the important
methods. This hampers a complete automated generation, but may
be more appropriate than a restructuring of the application SPL.
The first approach of the layered implementation already requires

7

Distributed Distributed

Send / Receive Core

... ...

Apply energy management No Optimization

Figure 7: Dividing feature Distribution into two subfeatures to
apply the optimization only to the Send / Receive functionality.

a partial manual implementation of energy feature modules.

Handling Method Calls Inside Encapsulated Methods.
If the control flow leaves the functionality of a feature with en-
ergy management before it is completely executed, we may waste
energy because hardware components only are powered off at the
end of the feature’s functionality. As an example consider the
Send_Receive feature, if we have to wait for user input (e.g., to type
in a password) in the send method, we might have to wait a long pe-
riod of time and thus waste energy. The question is whether to turn
the device off before leaving the method or keep it active. We think
that an appropriate decomposition of application SPL features can
reduce the occurrence of such problems.

Application SPL. Currently, we consider programs developed
as SPLs, i.e., decomposed into features. However, this is not neces-
sarily required. We only need a description of the functionality of
the program that maps one-to-one to implementation artifacts (e.g.,
a feature model or a component model). We use this description
to attach energy optimizations to the application’s functions. This
way, we can determine which functionality requires which device
and can thus be optimized regarding energy consumption. To sum
up, a serious reduction of energy consumption may require a design
shift of software development towards energy optimizations. This
means, a program needs an appropriate design of its features with
respect to energy optimization (as we already discussed).

5. CONCLUSION
We presented an approach that allows programmers to use

energy-saving techniques without the need of special knowledge
about energy optimization. Developers do not have to invest time
to learn different energy saving techniques and to apply them to
their programs. We use software product line (SPL) techniques to
model and implement different energy-saving techniques such as
operating-system- and hardware–dependent functions. The func-
tionality is implemented as separate implementation units (feature
modules) and bundled in an energy feature library. Researchers
and developers can add their own energy-efficient algorithms as
features to the library.

To integrate the energy features into the program, we use map-
pings between program functionality and energy features. For ex-
ample, a feature for sending data in a software maps to a WLAN
feature of the energy feature library. Such a mapping is used to
compose the source code of the energy features with the code of the
program. We presented three approaches to implement this compo-
sition. The first two approaches use the layered design of feature-
oriented programming. Layers represent features (or functionality)
of a program. A program’s feature can be composed with a feature
of the library. The composition can be performed semi-automated
(based on a skeleton class that contains energy-optimization code)

or automatically by generated pointcuts of aspects. Furthermore,
code instrumentation can also be used to insert an access method
each time the program reaches feature code. The access method
calls an energy manager that checks for existing mappings. If a
mapping of the current feature exists the related energy optimiza-
tion is executed.
In future work, we will evaluate the different approaches regard-

ing energy-savings and the impact on performance. Furthermore,
we will analyze if such an approach can also be used to optimize
other non-functional properties such as performance and memory
consumption.

Acknowledgement
Norbert Siegmund is funded by the ministry of education and sci-
ence BMBF, number 01IM08003C. Marko Rosenmüller is funded
by the German research foundation, project number SA 465/34-1.
Apel’s work is supported in part by the DFG projects #AP 206/2-1
and #AP 206/4-1. The presented work is part of the ViERforES8,
MultiPLe9, FeatureFoundation10, and SafeSPL projects.

6. REFERENCES
[1] S. Apel, T. Leich, M. Rosenmüller, and G. Saake.

FeatureC++: On the Symbiosis of Feature-Oriented and
Aspect-Oriented Programming. In Proceedings of the
International Conference on Generative Programming and
Component Engineering (GPCE), volume 3676 of Lecture
Notes in Computer Science, pages 125–140. Springer-Verlag,
Sept. 2005.

[2] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Transactions on Software Engineering (TSE),
34(2):162–180, 2008.

[3] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,
A. Veidenbaum, and A. Nicolau. Profile-based dynamic
voltage scheduling using program checkpoints. In
Proceedings of the International Conference on Design,
automation and test in Europe, page 168. IEEE Computer
Society, 2002.

[4] L. A. Barroso. The price of performance. Queue, 3(7):48–53,
2005.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355–371, 2004.

[6] L. Becchetti, A. Marchetti-Spaccamela, A. Vitaletti,
P. Korteweg, M. Skutella, and L. Stougie.
Latency-constrained aggregation in sensor networks. ACM
Trans. Algorithms, 6(1):1–20, 2009.

[7] C. Belady. In the data center, power and cooling costs more
than the it equipment it supports. Electronics Cooling, 13(1),
2007.

[8] C. Bunse, H. Hopfner, E. Mansour, and S. Roychoudhury.
Exploring the energy consumption of data sorting algorithms
in embedded and mobile environments. In Proceedings of the
International Conference on Mobile Data Management:
Systems, Services and Middleware, pages 600–607. IEEE
Computer Society, 2009.

[9] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour.
Choosing the "best" sorting algorithm for optimal energy
consumption. In Proceedings of the International Conference

8http://vierfores.de
9http://fosd.de/multiple

10http://fosd.de/ff

8

on Software and Data Technologies (ICSOFT), pages
199–206, 2009.

[10] K. Chantarasathaporn and C. Srisa-an. Object-oriented
programming strategies in c# for power conscious system.
International Journal of Computer Science {Online}, 1(1),
2006.

[11] A. Chatzigeorgiou and G. Stephanides. Energy metric for
software systems. Software Quality Control, 10(4):355–371,
2002.

[12] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[13] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive
optimizing compilers for the 21st century. J. Supercomput.,
23(1):7–22, 2002.

[14] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[15] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha.
Energy-optimizing source code transformations for operating
system-driven embedded software. ACM Trans. Embed.
Comput. Syst., 7(1):1–26, 2007.

[16] S. V. Gheorghita, H. Corporaal, and T. Basten. Iterative
compilation for energy reduction. J. Embedded Comput.,
1(4):509–520, 2005.

[17] W. Gilani and O. Spinczyk. Dynamic Aspect Weaver Family
for Family-based Adaptable Systems. In Proceedings of
Net.ObjectDays, pages 94–109. Gesellschaft für Informatik,
2005.

[18] Global Action Plan. An inefficient truth (white paper), 2007.
http://greenict.org.uk/sites/default/files/
An%20Inefficient%20Truth%20-%20Full%20Report.pdf.

[19] A. Grover. Modern system power management. Queue,
1(7):66–72, 2003.

[20] I. Hong and M. Potkonjak. Power optimization in disk-based
real-time application specific systems. In Proceedings of the
International Conference on Computer-aided design, pages
634–637. IEEE Computer Society, 1996.

[21] T. Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In Proceedings of
the International Symposium on Low power electronics and
design, pages 197–202. ACM, 1998.

[22] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, 1990.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), volume 1241
of Lecture Notes in Computer Science, pages 220–242.
Springer-Verlag, 1997.

[24] P. Korteweg, A. Marchetti-Spaccamela, L. Stougie, and
A. Vitaletti. Data aggregation in sensor networks: Balancing
communication and delay costs. Theor. Comput. Sci.,
410(14):1346–1354, 2009.

[25] M. S. Lane, A. Howard, and S. Howard. The energy
inefficiency of office computing and potential emerging
technology solutions. Journal of Issues in Informing Science
& Information Technology, 6:795–808, 2009.

[26] Y. Li and J. Henkel. A framework for estimating and
minimizing energy dissipation of embedded hw/sw systems.
pages 259–264, 2002.

[27] A. Nicoara, G. Alonso, and T. Roscoe. Controlled,
systematic, and efficient code replacement for running java
programs. SIGOPS Operating Systems Review,
42(4):233–246, 2008.

[28] M. Pedram. Power optimization and management in
embedded systems. In Proceedings of the Asia and South
Pacific Design Automation Conference, pages 239–244.
ACM, 2001.

[29] T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In
Proceedings of the International Symposium on Low power
electronics and design, pages 76–81. ACM, 1998.

[30] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings
of the ACM Symposium on Operating Systems Principles,
pages 89–102. ACM, 2001.

[31] J. Pisharath, A. Choudhary, and M. Kandemir. Reducing
energy consumption of queries in memory-resident database
systems. In Proceedings of the International Conference on
Compilers, architecture, and synthesis for embedded
systems, pages 35–45. ACM, 2004.

[32] C. Poellabauer, T. Zhang, S. Pande, and K. Schwan. K.: An
efficient frequency scaling approach for energy-aware
embedded real-time systems. In Proceedings of the
International Conference on Architecture of Computing
Systems, 2005.

[33] M. Poess and R. O. Nambiar. Energy cost, the key challenge
of today’s data centers: a power consumption analysis of
tpc-c results. Proc. VLDB Endow., 1(2):1229–1240, 2008.

[34] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, 2005.

[35] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 1241 of
Lecture Notes in Computer Science, pages 419–443.
Springer-Verlag, 1997.

[36] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis.
Joulesort: a balanced energy-efficiency benchmark. In
Proceedings of the International Conference on Management
of Data, pages 365–376. ACM Press, 2007.

[37] E. Saxe. Power-efficient software. Queue, 8(1):10–17, 2010.
[38] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques

for low energy: An overview. In Proceedings of Symposium
on Low Power Electronics, pages 38–39, 1994.

[39] H. Tomiyama, T. Ishihara, A. Inoue, and H. Yasuura.
Instruction scheduling for power reduction in
processor-based system design. In Proceedings of the
International Conference on Design, automation and test,
pages 855–860. IEEE Computer Society, 1998.

[40] M. A. Viredaz, L. S. Brakmo, and W. R. Hamburgen. Energy
management on handheld devices. Queue, 1(7):44–52, 2003.

[41] T. Yokoyama, G. Zeng, H. Tomiyama, and H. Takada.
Analyzing and optimizing energy efficiency of algorithms on
dvs systems a first step towards algorithmic energy
minimization. In Proceedings of the Asia and South Pacific
Design Automation Conference, pages 727–732. IEEE Press,
2009.

9

Assessment of Product Derivation Tools in the Evolution
of Software Product Lines: An Empirical Study

Mário Torres, Uirá Kulesza,

Matheus Sousa, Thais Batista
DIMAp-UFRN, Brazil

{mario, uira, thais, matheus}@dimap.ufrn.br

Leopoldo Teixeira, Paulo Borba

CIn-UFPE, Brazil
{lmt, phmb}@cin.ufpe.br

Rosana Braga, Paulo Masiero

ICMC-USP, Brazil
{rtvb, masiero}@icmc.usp.br

Elder Cirilo, Carlos Lucena
PUC-Rio, Brazil

{ecirilo, lucena}@inf.puc-rio.br

ABSTRACT

Product derivation approaches automate the customization
process of software product lines. Over the last years, many tools
have been proposed aiming at synthesize and generate products
from a set of reusable assets. These tools adopt different
techniques and strategies to implement and automate the product
derivation activities. In this paper, we analyzed six modern
product derivation tools (Captor, CIDE, GenArch, MSVCM,
pure::variants, XVCL) in the context of evolution scenarios of a
software product line. Our study has adopted several metrics to
analyze the modularity, complexity and stability of product
derivation artifacts related to configuration knowledge along
different releases of a mobile product line. The preliminary results
of our study have shown that approaches with a dedicated model
or file to represent the CK specification can bring several benefits
to the modularization and stability of a software product line.

Categories and Subject Descriptors

D.2.8 [Metrics]: Product Metrics.

General Terms

Measurement, Experimentation

Keywords

Product Derivation Tools, Measurement

1. INTRODUCTION

A software product line (SPL) [8] is a set of related software
systems from a particular market segment that share common
functionalities, but are sufficiently distinct from each other.
Existing approaches [9, 8] propose and motivate SPL
development by means of the specification, modeling and
implementation of features. A feature [9] is a system property or
functionality that is relevant to a stakeholder. It is used to capture
commonalities and discriminate variabilities among SPL systems.

SPL development involves the design and implementation of core
assets (components, frameworks, libraries and others) that
adequately modularize common and variable features during
domain engineering [9].

Product derivation [10] refers to the process of building a product
from the set of code assets implemented for a SPL. It encompasses
the selection, composition and customization of these code assets,
in order to address a specific SPL product (configuration).
Existing product derivation approaches [7, 6, 22, 4, 20, 13, 14, 3]
automate the synthesis and customization of SPL products. Over
the last years, many tools have been proposed with this aim. They
adopt different techniques and strategies to implement and
automate the product derivation activities, varying in different
perspectives, such as: (i) from visual and model-based tools to
textual and domain-specific approaches that specify the problem
space (e.g., feature model), solution space (e.g., code assets) and
configuration knowledge (mapping between features and code
assets) from the SPL; and (ii) they adopt a positive or negative
derivation process to customize and generate SPL products.

Many tools have been proposed, with several advantages of their
adoption in real and industrial scenarios [7, 6, 22, 4, 20, 13, 14,
3]. However, there are few studies addressing the assessment and
comparison of these tools that demonstrates the real impact,
benefits and disadvantages of using a specific tool. Existing
research work focuses on qualitative tool analysis [18, 21, 16, 15].
None of the existing studies have explored or analyzed the
product derivation artifacts produced during the evolution of an
existing SPL. Besides, to the best of our knowledge, there is no
existing work that quantifies metrics that assess the modularity,
complexity and stability of product derivation artifacts during the
evolution of SPLs.

In this context, this work proposes to assess and compare existing
product derivation approaches considering the evolution releases
of a SPL. Our analysis focuses mainly on the modularity,
complexity, and stability attributes of derivation artifacts specified
to support the process of automatic product derivation. Existing
metrics adopted in other recent empirical studies [12, 19] are
adapted to quantify these attributes in product derivation artifacts
that specify the configuration knowledge (CK) between features
and code assets. The metrics are computed in the aspect-oriented
implementations of four evolution releases of MobileMedia [12],
a software product line for media (photo, video and audio)
management on mobile devices. The following six existing
product derivation tools are analyzed and compared in our study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSD’10, October 10, 2010, Eindhoven, The Netherlands.
Copyright 2010 ACM 978-1-4503-0208-1/10/10…$10.00.

10

from the perspective of CK specification: Captor [20, 13], CIDE
[14], GenArch [7], Hephaestus [5], pure::variants [3] and XVCL
[22]. The preliminary results of our study have shown that
approaches with a dedicated model or file to represent the CK
specification can bring several benefits to the modularization and
stability of a software product line.

The remainder of this paper is organized as follows. Section 2
presents the study settings of our comparative study: it overviews
the investigated product derivation approaches, it details the
phases and assessment procedures adopted, and finally, it
describes the metrics adopted to quantify the modularity,
complexity and stability of the SPL releases. Section 3 analyzes
and discusses the results obtained for the metrics considering the
different releases of MobileMedia. Some general discussions are
made on section 4. Section 5 relates our study to other existing
ones developed by the community. Finally, Section 6 concludes
the paper and provides directions for future work.

2. STUDY SETTINGS
This section presents detailed information about our assessment of
product derivation tools. The main aim of our study was to
analyze and observe the modularity and stability of existing
product derivation artifacts, and also to validate the usefulness of
some metrics in the quantification of these attributes. In Section
2.1, we present the approaches we have evaluated in this study.
Section 2.2 presents the phases and assessment procedures of our
preliminary study. Section 2.3 describes the metrics suite adopted
to enable the modularity, complexity and stability analysis of the
approaches.

2.1 Product Derivation Approaches
This section provides an overview of the evaluated approaches.
We discuss their particularities, identifying how the configuration
knowledge (CK) is expressed in each approach. In most of the

approaches, feature models [9] are used to represent the
commonalities and variabilities of the SPL, defining its scope.
Feature models denote the set of products that can be generated
for the SPL, through the relationships between features and their
types (alternative, optional, mandatory, and so on). The
approaches in our preliminary study were chosen according to the
following criteria: (i) they represent approaches that were
developed by our research groups (Captor, MSVCM and
GenArch) or they are considered relevant product derivation tools
in the research or industrial community (CIDE, pure::variants and
XVCL); (ii) they are code-oriented, meaning that when we refer

to reusable assets, we are mainly referencing code assets, such as
classes, aspects, interfaces, packages, except stated otherwise; and
(iii) there is an available implementation of the approach in order
to allow its use in the case study. Unfortunately, due to time
restrictions, it was not possible to include or consider other
product derivation tools in this preliminary study. We intend to
extend and consider new approaches in a future and more
controlled study.

Captor. The Captor tool is a Configurable Application Generator
used to support the development of applications on a specific
domain [20]. It covers domain and application engineering. It uses
an Application Modeling Language (AML), used in a way similar
to a feature model, that can be specified through a graphical user
interface, or directly in XML. The CK is also composed by

templates with XSL tags, and a mapping file called rules.xml, that
links the defined AML with the templates. Captor also provides
pre and post processors, also specified on XML files, which can
be used to define tasks like copying mandatory files to the output
directory. The application engineer defines an instance of the
AML previously created to build and derive a product.

CIDE. The Colored Integrated Development Environment
(CIDE) is a SPL tool for decomposing legacy code into features
[14]. It follows the paradigm of virtual separation of concerns,
i.e., developers do not physically extract the feature code, but just
annotate code fragments inside the original code, in a similar
fashion to conditional compilation tags (#ifdef). However, instead
of using tags in comments throughout the code, it uses
background colors. So, code fragments belonging to a feature are
shown with the background color of the feature. Another
difference to conditional compilation is that annotations are
disciplined, in order to prevent syntax and type errors. The
underlying structure of the code to be annotated is considered,
allowing developers to annotate, and thus, remove from assets,
only program elements like classes, methods, or statements. These
annotations represent the CK information, associating these
elements to features.

GenArch. GenArch [7, 6] is a model-based tool for automating
the product derivation process. The GenArch approach is centered
on the definition of three models: feature, architecture and
configuration. The architecture model defines a visual
representation of the reusable assets in order to relate them to
features. The configuration model is responsible for defining the
mapping between features and assets, representing the CK. This
model is fundamental to link the problem space (features) to the
solution space (implementation assets), and to enable automatic
product derivation.

MSVCM. The Modeling Scenario Variability as Crosscutting
Mechanisms (MSVCM) approach [4] was initially proposed to
deal with requirements variability, but it has been extended to deal
with variabilities in source code and build files [5]. In MSVCM,
the CK is specified into a separate model, relating features and
their combinations (feature expressions) to transformations that
translate SPL assets into product specific artifacts. The approach
is named crosscutting because product derivation is resultant of a
weaving process that takes as input artifacts such as the feature
model, configuration knowledge, instance model, and so forth.
These models crosscut each other with respect to the resulting
product. If a given feature expression is evaluated as True for a
given product (defined in the instance model), the related
transformations are applied.

pure::variants. pure::variants [3] is a SPL model-based product
derivation tool. Its modeling approach considers mainly two
models: feature and family models. The family model describes
the internal structure of the individual components and their
dependencies on features. The family model is structured in
several levels. The highest level is formed by the components.
Each component represents one or more functional features of the
solutions and consists of logical parts of the software (reusable
assets). The physical elements can be assets that already exist,
assets that will be created and transformations that will be
performed based on the feature selection. A transformation can be
any activity, such as copying code assets from a repository to a
specific location, customizing configuration files, or even UML

11

models.

XVCL. The XML-based Variant Configuration Language (XVCL)
[22] is a language for configuring variability in textual-based
assets. XVCL is based on Bassett's frames [2], every file on its
structure needs to be a frame (XML file combined with code and
XVCL commands) linked to other frames. This hierarchical
structure is called x-framework. This approach has no specific
structure to organize the CK. Instead, we use XVCL variables to
set features and then validate if that feature should be present or
not in the derivated product. The XVCL processor then, given a
set of features (variables) and their values (selected or not)
processes the frames files in order to generate the product.

2.2 Study Phases and Assessment Procedures
Our study was organized in the following major phases: (i)
specification of the SPL artifacts related to product derivation
considering all the approaches presented in Section 2.1; (ii)
quantification of the selected metrics over the different derivation
artifacts produced for each one of the investigated approaches;
and (iii) quantitative analysis and assessment of the obtained
results for the different modularity, complexity and stability
metrics adopted in our study. Following we provide additional
details of these phases.

In the first phase of our study, the aspect-oriented
implementations of 4 releases (release 4 to 7) of MobileMedia
SPL [12] were considered to implement the different artifacts of
the product derivation approaches. The available documentation
of MobileMedia was used as a base to specify and implement the
derivation artifacts. MobileMedia (MM) was selected to be part of
our study for different reasons. First, because it is an expressive
SPL implemented with modern technologies, including an aspect-
oriented language (AspectJ) and the Java Micro Edition (Java
ME) API. Second, it has been used and validated in many other
empirical studies [12, 1]. Finally, MM provides different
evolution releases which allowed us to observe the effects of
change scenarios along derivation artifacts considering the
different approaches. This last criterion was preponderant to the
choice of MM to this preliminary study.

During the specification of the derivation artifacts, we established
alignment rules between the approaches in order to guarantee that:
(i) the best practices of each approach were used to implement the
artifacts; and (ii) the comparison between the derivation artifacts
was equitable and fair. Five researchers performed these
alignment activities. All misalignments found were discussed
between the study participants and eventual corrections were
applied to the artifacts implementation to guarantee their
alignment. It was ensured, for example, that: (i) the same set of
common and variable features were used in the derivation artifacts
considering each release of MM; (ii) every variability and
implementation artifacts were expressed using the appropriate
mechanisms of the product derivation approaches; and (iii) the
CK specifications in the different approaches are consistent
between them, which means that all product derivation
approaches are specifying the same products that can be
automatically produced from each MM release.

After implementing MM derivation artifacts using the six different
approaches, we applied and quantified the modularity, complexity
and stability metrics along these different artifacts. We considered
the artifacts that are responsible to specify the configuration

knowledge in the different approaches. Our main aim was to
quantify the tangling, scattering, size and instability of the
derivation artifacts in the light of change scenarios demanded by
MM evolution. Additional details about the adopted metrics to
quantify these properties are presented in the next section. Finally,
after the collection of all the metrics, the computed data was
organized in spreadsheets and graphics in order to be analyzed.
Results of this analysis are presented in Section 3.

2.3 The Metrics Adopted in Our Study
In order to compare the CK specification of the different product
derivation approaches, we have selected a metrics suite to enable
their quantitative analysis. The metrics are divided into three
main groups: (i) modularity, (ii) complexity and (iii) stability.

Modularity. The modularity metrics are adapted from previously
proposed metrics by Sant'Anna et al [19]. This previous work has
proposed a set of modularity metrics to measure the separation of
concerns in aspect-oriented implementations. The main goal of
these metrics is to quantify the degree of scattering and tangling of
concerns in aspect-oriented artifacts. They have been used and
validated not only in the assessment of aspect-oriented
implementations, but also to artifacts produced in other
development stages: such as requirements, architecture and
design, textual and model specifications [4,12]. In our study, we
have adapted these metrics to quantify the scattering and tangling
of CK specifications along product line assets (configuration files,
derivation models, templates and source code) that are
implemented to enable automatic product derivation.

We measure the scattering counting 1 for each SPL asset that
contains some sort of CK specification, including any textual
document or model associated with CK, when applied. In the
CIDE approach, we counted every code asset colored according to
a specific feature, as a unit of CK scattering. Tangling is
calculated in a similar way than the Concern Diffusion over Lines
of Code (CDLoC) metric, where we count the number of concern
switches in a given source code asset [19]. In our case, we
calculate this metric considering the CK specification as the
concern. Thus, for each derivation artifact that includes some sort
of CK specification tangled with specification or code related to
another concern (variabilities and implementation), there is a
switch, which we count. If the approach has a dedicated CK
model or textual specification, we do not take this model into
account for this metric, because it completely modularizes this
concern.

Complexity. The goal of this analysis is to measure the effort
needed by domain engineers to prepare the artifacts that support
the automatic product derivation in a specific approach.
Complexity is directly related to the size of configuration items
needed to represent the CK in each approach. Two metrics were
used: (i) number of tokens in CK sentence expressions; and (ii)
number of CK sentence expressions.

The first metric counts the number of tokens needed to build the
CK, i.e., the data that the domain engineer must effectively write
to configure the SPL according to the feature model. The counting
was based on the native tokens provided by each language/tool to
represent the CK. In the XVCL approach, for example, we define
the following expression for the feature Photo: <select
option="Photo"> <option value="yes">. Here we count

the total of 16 tokens, 8 for each statement. On the other hand, in

12

the GenArch tool, it is only necessary to provide the feature name
associated - in this case, Photo - with a specific code asset in the
configuration model. Thus the number of token in this case for
GenArch was 1, because that is all the domain engineer has to
write. The complete specification is transparent and is maintained
through the configuration model.

The second metric, number of CK sentence expressions, analyzes
the conciseness and expressiveness of the CK in the different
approaches. It quantifies the amount of CK sentence expressions
needed to support the product derivation process. When the SPL
evolves, the concision of these expressions becomes even more
important. In some approaches, it enables adding new assets
without requiring the inclusion of a new expression. We count the
number of CK sentence expressions by quantifying the amount of
feature expressions specified in the CK artifacts. Note that this
counting is independent of the effort to build the expression or its
size. These are addressed by the number of tokens in CK sentence
expressions metric.

Stability. The stability metric is used to analyze the impact of
evolving the SPL on the derivation artifacts (CK). The metric was
computed in terms of CK sentence expressions added, changed or
removed during the SPL evolution. We measure the difference
between releases, it is inspired on Yau and Collofello study [23].
A CK sentence expression is considered new when there is a new
feature expression in the CK for that release. When a new code
asset is included in the SPL, this not necessarily imply in the
inclusion of a new CK feature expression. This depends on the
approach. In some cases, an existing expression can be modified
to address the new code assets. With this metric analysis we can
measure the effort needed to evolve the CK during SPL
maintenance.

3. STUDY RESULTS
In this section, we present and discuss the collected results for the
modularity, complexity and stability metrics from our study. Our
analysis considers the specification of the derivation artifacts
considering 4 different releases of the Mobile Media SPL.

3.1 Modularity Analysis
The main goal of modularity analysis is to quantify the degree of
scattering and tangling of the CK over the SPL assets.

Configuration Knowledge Scattering. We measured the degree
of scattering of the configuration knowledge by quantifying all
SPL assets that have some sort of CK specification in them.
Source code, for example, might contain such information in the
form of a conditional compilation tag (#ifdef). Figure 1 shows the
results of the collected values for this metric considering the four
releases of MobileMedia specified using the different approaches.
We can observe that GenArch, pure::variants and MSVCM tools
presented more stable and lower values for this metric compared
to other approaches, even when new features and assets are added.
This happens mainly because these approaches provide a separate
model or configuration model to specify the configuration
knowledge with the mapping between features and code assets.
The CIDE, Captor, and XVCL approaches presented higher
values for the CK scattering, as shown in Figure 1. CIDE presents
a higher scattering because it does not provide dedicated support
to modularize the CK. In this approach, every colored element in
the code assets can be seen as a CK sentence expression that
relates the element to a feature. The Captor and XVCL

approaches also presented high values for the CK scattering
metric. The product derivation assets from these approaches are
composed by a set of specific files that describe transformation
rules, which represent a significant part of the CK specification.
Nonetheless, code assets also contain CK specification in the form
of tags. This explains why these two approaches got quite similar
values for CK scattering metrics in all MobileMedia releases. As
we see in Figure 1, the collected values for the CK scattering
metric were higher for the Captor and XVCL approaches.

Figure 1. Configuration Knowledge Scattering.

Figure 7 illustrates the product derivation artifacts specified for
five approaches that are responsible for the inclusion of the Photo
and Music features in the MobileMedia SPL. For example, XVCL
requires that each SPL asset that is processed to be a frame. In
order to transform an asset in a frame, we have to include basic
tags with some parameters, whether this frame has fine-grained
variability or not. In the right side of Figure 7 for example,
PhotoAndMusicAspect.aj.xvcl represents the correspondent
aspect specified as a frame. On the other hand, Captor also needs
to use XSL tags, and every variable asset has to be a template. The
right side of Figure 7 also shows PhotoAndMusicAspect.aj aspect
specified with a set of XSL tags used by Captor derivation
artifacts. The left side of Figure 7 illustrates the configuration files
of the Captor and XVCL approaches that are used to specify the
transformation rules mentioned above. The scattering of these
transformation rules and code tags along product derivation
artifacts and code was quantified by the degree of scattering
metric. Note that GenArch, MSVCM and pure::variants does not
contain CK information on the code asset. The CK is modularized
into a single file.

Configuration Knowledge Tangling inside Code Assets. Figure
2 shows the collected values for CK tangling metric. The Captor
and XVCL approaches presented higher values for the tangling
metric. This mainly occurs because both approaches must contain
specific headers and footers in any code asset associated with CK.
This information is used during the product derivation process of
each approach. Figure 7(right side) shows, for example, that the
PhotoAndMusicAspect.aj aspect needs to include configuration
tags for both Captor and XVCL approaches. All the code assets
associated with variabilities required the insertion of these same
configuration tags thus contributing to improve the CK scattering.
Precisely because GenArch, MSVCM and pure::variants, have the
CK properly insulated, there is no CK tangling inside code asset.

The CK tangling metric was quantified in CIDE by the
occurrence of color sentences spread along code assets. Because
of that, CIDE initially presented a low tangling considering the
MobileMedia release 4, but as the number of features increased,
values got higher compared to other approaches. It mainly

13

happens because with the increase of features to be managed,
feature expressions also become more complex. GenArch,
pure::variants and MSVCM had equivalent and the best results for
the CK tangling metric considering all the releases. On the first
three releases investigated (releases 4 to 6), the CK tangling for
these approaches was zero. This occurred because the CK was
adequately modularized into a dedicated model.

Figure 2. CK Tangling inside Code Assets.

We can also observe that fine-grained variability increases CK
tangling in code assets. The fact that most of MobileMedia
variations are well modularized with aspects contributed for the
lower values of the scattering and tangling metrics in releases 4-6.
However, release 7 has a particular case where one asset
(OptionalFeatureAspect.aj) contains fine-grained variability that
cannot be handled using only the CK model. Figure 3 illustrates
this aspect, where the arguments passed on the declare precedence
clause are variabilities and depend on the selection of specific
features to be included in the aspect code. Because of that, this
file needs to be processed using conditional compilation tags
(MSVCM and pure::variants) or template processing (GenArch
and Captor). Both techniques are used during product derivation
to decide if part of this asset will be included or not. This kind of
fine-grained variability usually happens on legacy SPLs[14]. Note
that all the approaches and metrics from this study suffer
influence of this fine-grained variability. This fine-grained
variability was responsible for the light increase in the collected
results for the CK tangling metric considering the Captor and
XVCL for the release 7 of MobileMedia.

Figure 3. OptionalFeatureAspect.

3.2 Complexity Analysis
The main goal of the two metrics on this group is to measure the
complexity/size of the CK specification in each approach, and
furthermore analyze how they behave when evolving the SPL.

Number of tokens in CK specification. The number of tokens
metric allowed us to distinguish the size and complexity of CK
specification on the different derivation approaches. Figure 4
shows the collected values for this metric. Captor is the approach
that requires the higher number of tokens in CK specification.
Reasons for that include the need for creating several CK decision
expressions (task calls and definitions), and headers and footers

specified in the code templates. XVCL also presented higher
values for the number of tokens in CK metric. This happens due
to the same reason of Captor, except that task definition and call is
specified directly in XVCL files. In MSVCM, values for this
metric are higher than GenArch since it is necessary to specify
asset names and mandatory associations as well.

Figure 7 shows how we count tokens in all approaches (except
CIDE), for the case of the PhotoAndMusicAspect asset. This
aspect is related to the joint selection of the Photo and Music
features. For this metric, in XVCL, Captor, GenArch, MSVCM
and pure::variants approaches, we count 94, 129, 3,3 and 15,
respectively. In the CIDE approach, since we just color code
elements with associated features, there is no textual CK
specification. Therefore, the metric values for all releases are zero.
GenArch, pure::variants and MSVCM have values much smaller
than other approaches. In GenArch, the architecture model that
abstracts all the code assets is built automatically by the tool.
Product line engineers only need to write feature expressions,
associating features to assets. So, metric values tend to be lower
for GenArch. This happens similarly in MSVCM.

Figure 4. Number of Tokens in CK specification.

Figure 5. XVCL – Sentence Expression.

Figure 6. Sentence Expressions in CK Specification.

Sentence Expressions in CK specification. Figure 6 shows the
number of sentence expressions for the different MobileMedia

14

releases specified in the six approaches. Similarly to the tangling
metric, the CIDE approach presented a considerable increase
when adding new features. A sentence expression in CIDE is
considered as a colored element. Therefore, these metric values
are somewhat correspondent to the scattering metric values for the
CIDE approach. The XVCL and MSVCM approaches can group
many assets into a single sentence. A difference is that in
MSVCM, we also specify the mandatory relationships as
previously mentioned. Figure 6 illustrates this grouping
characteristic of XVCL. It shows that, in release 6, the Photo
feature is associated with 5 assets. In the next release, 3 new
assets are added to this expression, and no other sentence needs to
be created. In Captor, pure::variants and GenArch, we need to add
3 sentence expressions. This can be mitigated in pure::variants
and GenArch by associating higher level abstractions, such as
packages, with feature expressions. However, if feature
implementation is highly scattered, it might not be possible to do

so. In Figure 7 the sentence expressions are showed for the
different approaches.

3.3 Stability Analysis
This analysis looks at three different perspectives of sentence
expressions between releases: added, modified and removed.

Added. Figure 8 (a) shows the number of sentence expressions
added in the configuration knowledge of each approach between
releases. When adding code assets, GenArch, pure::variants,
Captor and CIDE treat assets individually, so they have larger
effort than MSVCM and XVCL, which can group these assets. In
GenArch and Captor, the inclusion of an asset represents a new
sentence expression added to the configuration knowledge.

Changed. Figure 8(b) shows the number of sentence expressions
changed in the configuration knowledge. The releases 4, 5 and 6

Figure 8. Stability – Added (A), Modified (B) and Removed (C) .

Figure 7. Approaches and Metrics.

15

had many new assets and few expressions, or none in most cases,
that could be reused. Again, the approaches (GenArch, Captor and
pure::variants) that treat assets individually had larger effort than
the other ones. The CIDE approach has not changed items,
because when changes occur in an asset, you must remove its
color and then mark the new artifact with this color.

Removed. Figure 8(c) shows the numbers of sentence expressions
removed from the CK in each approach. This usually occurs when
code assets are removed. These metric results are very similar to
almost all approaches, variation happens only in cases that the
approach could reuse some expressions, reflecting on Figure 8(b).
The fact that CIDE cannot change the sentence expressions results
in the increase of the number of removed items.

4. DISCUSSIONS
In this section, we discuss interesting issues and lessons learned
related to the assessment of the product derivation approaches in
our preliminary evolution study.

General Analysis of the Study Results. The GenArch,
pure::variants and MSVCM approaches presented the best results
considering most of the modularity and complexity metrics. The
main reason that contributed to the good performance of these
approaches is the use of a separated CK specification. Captor and
XVCL obtained the less satisfactory results considering the
modularity and complexity metrics. This mainly occurred due to
the textual and complex nature of CK specification provided by
these approaches. Considering initial MobileMedia releases,
CIDE presented reasonable results for the modularity and
complexity metrics. However, it did not scale along the
subsequent ones in terms of CK scattering and tangling, because
of the increasing number of CK color sentences specified in the
code assets. Regarding the stability metrics, we have observed that
Captor, GenArch, MSVCM and XVCL required to add and
modify a small and stable number of CK sentence expressions
along the different releases. MSVCM was the approach that
presented the better stability for the CK expressions. On the other
hand, CIDE exhibited higher values for the number of removed
CK expressions due to the need to reassign new colors to CK
sentences that are changed in the code assets along the releases.

Automated and Model-driven Tools. Our study has revealed that
the CK specification in a dedicated model or file can bring several
benefits to the modularization, complexity and stability attributes.
That was the case for GenArch, MSVCM and pure::variants
approaches. Captor and XVCL did not obtained better results in
most of the modularization and complexity metrics. These
approaches require manually written transformation rules related
to the product derivation process. It is interesting to notice that the
simple automated support to the specification and generation of
the transformation rules that represents CK in both Captor and
XVCL approaches could bring equivalent results to the other
approaches.

CK Specification inside Code Assets. Another interesting issue
that our study has also revealed is the positive/negative impact of
the variability implementation technique in the modularization of
the product derivation artifacts. Most of the variabilities
implemented for MobileMedia releases were codified using
aspect-oriented programming. This contributed to the positive

values obtained for most of the modularity, complexity and
stability for the different approaches. Analysis of the
MobileMedia implementation using conditional compilation
(CC), for example, would find a large number of CC directives
(IFDEFs) spread and tangled along the different code assets. All
these CC directives can also contribute to the instability of the
product derivation artifacts during SPL evolution because they are
not adequately modularized. Although the adoption of aspect-
oriented programming in the MobileMedia implementation
brought advantages and benefits to the specification of the
product derivation artifacts, our study also illustrated that fine-
grained variabilities encountered inside code assets can lead to
difficult CK modularization scenarios, even for approaches that
provides a separate CK specification. This was illustrated in our
study by the OptionalFeatureAspect that establishes the
precedence between aspects (variabilities) that will be applied to
the SPL core.

5. RELATED WORK
To the best of our knowledge, we are not aware of empirical
research on the assessment of different product derivation tools
used in the evolution context for SPLs. Many works evaluate a
single approach for SPL implementation used in a SPL evolution
scenario. The original MobileMedia study [12] compares the
negative and positive impact of using aspects for implementing
SPLs, instead of conditional compilation. There are some
similarities to our work, since we are using the same releases and
adapting some of the used metrics. So, instead of evaluating the
code only, in this work we focus on how different CK
representations provided by the product derivation tools behave in
a SPL evolution scenario.

Mannisto et al. discuss the problem of managing configuration
knowledge evolution [17], describing key elements and presenting
an outline for future work. They present an approach based on the
Generic Product Structure Model and directions on how this
approach should be used. However, they do not evaluate its use in
a case study, as we focus on this work.

Dhungana et al. present a tool-supported approach for treating
evolution in Model-based Product Line Engineering [11]. The
approach decomposes large variability models into sets of
interrelated model fragments. Such fragments are merged to
provide full variability models. They report an experience of using
it in an industrial collaboration. Some of the approaches we
evaluate in this work (GenArch and pure::variants) are model-
based and provide similar functionality. A difference to our
evaluation is that due to model decomposition, they evaluate
multi-team support for creating and maintaining SPL variability
models. This is not something we investigated in this work, but it
could be targeted in future work.

Many works compare product derivation tools in a systematic, but
general way, not specifically focusing the CK. Rabiser et al. aim
to identify and validate requirements for tool-supported product
derivation [18]. Requirements are identified in a high-level way
through a systematic literature review and validated through an
expert survey. Sinnema and Delstra classify six variability
modeling techniques [21] using a running example. They define a
classification framework that lists a number of aspects that a
variability modeling technique should possess. Lisboa et al.
present a systematic review of domain analysis tools [16]. They

16

focus on identifying (i) whether current available tools support a
specific or generic process; (ii) their main functionalities; and (iii)
the development context, and where it is being used --- academia
or industry. Functionalities identified are categorized in priority
levels: essential, important, and low. Khurum and Gorschek also
conducted a systematic review of domain analysis solutions, but
only for tools that focus on software product lines [15]. They
focus on the usability and usefulness of the existing solutions, in
terms of scalability of introduction and use, better alternative
investment, and effectiveness. These works focus on comparing
functionalities that existing product derivation tools provide. As
mentioned, they do not focus on the configuration knowledge, nor
evaluate tools in the evolution context. Khurum and Gorschek
findings [15] indicate an absence of qualitative and quantitative
results from empirical application of the approaches. Such
absence, they argue, complicates the task of evaluating usability
and usefulness of existing solutions. In this work, we attempt to
fill this gap, through a quantitative and qualitative assessment of
the configuration knowledge using different releases of the
MobileMedia SPL.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a preliminary empirical study that focused
on comparing different product derivation approaches and their
configuration knowledge representation. We performed this
comparison through a quantitative analysis that measured
modularity, complexity and stability attributes along product
derivation artifacts produced for four evolution releases of a
mobile SPL. Different metrics were used to quantify these
attributes in terms of scattering, tangling, number of tokens and
amount of CK sentence expressions, and number of
added/removed/changed CK expressions considering all the SPL
releases. We noticed that the adoption of specific approach
strategies can lead to positive results in terms of the investigated
attributes. From a general analysis, we concluded that approaches
with a dedicated model or file to represent the CK specification
had better results on many aspects. It was also observed that
modest adaptations in some existing tools and approaches can
bring a significant improvement on their performance, such as: (i)
the automatic generation of headers and footers on Captor and
XVCL tools; and (ii) the introduction of the capability to relate
different sentence expression to two or more assets.

As a future work, we plan to replicate our study for different SPL
domains and different variability implementation techniques in
order to observe if the same obtained results of this study can be
found in other SPL evolution scenarios. Besides, we also intend to
include other existing product derivation tools in our future
empirical studies. We intend to define and run more controlled
experiments and case studies that follow the guidelines of the
empirical software engineering. Last but not least, we are also
working to adopt many of the findings and guidelines provided by
our study in the design and implementation of our product
derivation tools.

Acknowledgements. This work is supported in part by
Brazilian Council on Research (CNPq), grants 313064/2009-1
and 480978/2008-5 ; and CAPES/PROCAD, grant 090/2007.

7. REFERENCES
[1] J. Barreiros and A. Moreira. A Model-based Representation of

Configuration Knowledge. In FOSD ’09:, pages 43–48, New York, NY,
USA, 2009. ACM.

[2] P. Bassett. Framing Software Reuse - Lessons from Real World.
Prentice Hall, 1997.

[3] D. Beuche. Modeling and Building Software Product Lines with
pure::variants. In SPLC, page 358. IEEE Computer, 2008.

[4] R. Bonifácio and P. Borba. Modeling Scenario Variability as
Crosscutting Mechanisms. In AOSD’09, pages 125–136, USA.

[5] R. Bonifácio, L. Teixeira, and P. Borba. Hephaestus: A Tool for
Managing Product Line Variabilities. In III SBCARS 2009 – Tools
Session, pages 26–34, Natal, RN, Brazil, 2009.

[6] E. Cirilo, et al. Integrating Component and Product Lines
Technologies. In H. Mei, editor, ICSR, volume 5030 of Lecture Notes in
Computer Science, pages 130–141. Springer, 2008.

[7] E. Cirilo, et al. A Product Derivation Tool Based on Model-Driven
Techniques and Annotations. J. UCS, 14(8):1344–1367, 2008.

[8] P. Clements and L. M. Northrop. Software Product Lines: Practices
and Patterns. Professional. Addison-Wesley, 2001.

[9] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[10] S. Deelstra, et al. Product derivation in software product families: a
case study. Journal of Systems and Software, 74(2):173–194, Jan. 2005.

[11] D. Dhungana, T. Neumayer, P. Grunbacher, and R. Rabiser.
Supporting evolution in model-based product line engineering.
Proceedings of SPLC ’08, IEEE Computer Society.

[12] E. Figueiredo, et al. Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. Proceedings of of ICSE’08,
pages 261–270, New York, NY, USA, 2008. ACM.

[13] P. Junior and C. A. de Freitas. Geração de aplicações para linhas de
produtos orientadas a aspectos com apoio da ferramenta Captor-AO, MSc

Dissertation, University of São Paulo, Nov. 2008.

[14] C. Kastner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. Proceedings of ICSE 2008, Leipzig, Germany, May 10-18,
2008, pages 311–320. ACM, 2008.

[15] M. Khurum and T. Gorschek. A Systematic Review of Domain
Analysis Solutions for Product Lines. Journal of Systems and Software,
82(12):1982 – 2003, 2009.

[16] L. B. Lisboa, et al. A Systematic Review of Domain Analysis Tools.
Information and Software Technology, 52(1):1 – 13, 2010.

[17] T. Mannisto, H. Peltonen, and R. Sulonen. View to product
configuration knowledge modelling and evolution, Oct. 21 1996.

[18] R. Rabiser, et al. Requirements for Product Derivation Support:
Results from a Systematic Literature Review and an Expert Survey.
Information and Software Technology, 52(3):324 – 346, 2010.

[19] A. Garcia, et al. Modularizing Design Patterns With Aspects: A
Quantitative Study. Proceedings of AOSD´2005, pp. 3-14, Chicago, 2005.

[20] E. K. Shimabukuro Junior. Um Gerador de Aplicações Configurável,
MSc Dissertation, University of São Paulo, 2006.

[21] M. Sinnema, S. Deelstra. Classifying Variability Modeling
Techniques. Information and Software Technology, 49(7):717 – 739,
2007.

[22] S. Swe, et al. XVCL: A Tutorial. In Proceedings of SEKE´2002,
Ischia, Italy, 2002.

[23] S. S. Yau and J. S. Collofello. Design stability measures for software
maintenance. IEEE Transactions on Software Engineering, 11(9):849–
856, Sept. 1985.

17

Toolchain-Independent Variant Management
with the Leviathan Filesystem∗

Wanja Hofer1, Christoph Elsner1,2, Frank Blendinger1,
Wolfgang Schröder-Preikschat1, Daniel Lohmann1

1Friedrich–Alexander University Erlangen–Nuremberg, Germany
2Siemens Corporate Research & Technologies, Erlangen, Germany

{hofer,elsner,wosch,lohmann}@cs.fau.de

ABSTRACT
Preprocessor-configured software needs tool support for the
developer to be able to cope with the complexity introduced
by optional and alternative code blocks in the source. Cur-
rent approaches, which assist the software developer by pro-
viding preprocessed views, are all bound to a special in-
tegrated development environment. This eliminates them
from being used both in industry settings (where domain-
specific toolchains are often mandated) and in open-source
projects (where diverse sets of editors and tools are being
used and freedom of tool choice is crucial for the project
success).

We therefore propose to tackle the problem at a lower
level by implementing variant views at the filesystem level.
By mounting one or more variants using our Leviathan
filesystem, we enable the use of standard tools such as syn-
tax validators, code metric analysis tools, or arbitrary edi-
tors to view or modify a variant. The major benefit (and
challenge) is the support for automatically writing back to
the configurable code base when editing one of the mounted
variant views.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Program editors; D.2.6 [Software Engineering]:
Programming Environments; D.2.13 [Software Engineer-
ing]: Reusable Software

General Terms
Human Factors, Languages

∗This work was partly supported by the German Research
Council (DFG) under grants no. SCHR 603/4 and SCHR
603/7-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD ’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

Keywords
Leviathan, Software Product Lines, Variability Imple-
mentation, Preprocessor-Based Configuration, Toolchain-
Independent Variability Support, Filesystem Views

1. INTRODUCTION AND MOTIVATION
A lot of configurable software projects implement their

variability in the sources using a preprocessor, which in-
cludes or excludes annotated code blocks depending on a
given configuration. Preprocessor-based configuration is
supported by all major software product line tools (e.g.,
pure::variants [1], Gears [7], etc.) and is especially prevalent
in the domain of embedded systems and operating systems,
because preprocessor-based configuration causes no run-time
overhead. The matter of the fact, however, is that develop-
ers of systems such as Linux or eCos [11], an embedded
configurable operating system, have to face a myriad of pre-
processor directives and optional code blocks in the sources,
even though they might only be working on the implementa-
tion of a single feature at a time. Thus, it has long been rec-
ognized that tool support is needed to cope with that com-
plexity (colloquially termed #ifdef hell) to aid maintenance,
evolution, and testing of such configurable software [6, 14].
For instance, in a previous study, we have found feature im-
plementations in eCos to be highly scattered across different
source files and to be tangled within the source files [9], ren-
dering comprehension of certain files almost impossible.

Tools such as CIDE [6] or C-CLR [13] therefore each ex-
tend a special integrated development environment (IDE)
and provide preprocessed views on the configurable code
base depending on a given configuration. The main disad-
vantage of those approaches is that they force the developers
into using that special IDE to cope with preprocessor com-
plexity. This is infeasible both in industry projects, where
toolchains are often fixed, and in open-source projects such
as Linux, where the personal freedom of the developers to
choose their editors and toolchains is of paramount impor-
tance1. Embedded software product lines, for instance, are
developed in very heterogeneous setups: Engineers include
domain experts in operating systems, in the actual embed-
ded application, or specialized in drivers. Oftentimes, those
engineers work in different companies supplying parts of the
code, and they make use of different, special-purpose tools
while developing and maintaining their subsystems, such as
network analysis or real-time analysis tools. Most of those

1To put it bluntly: Kernel hackers hate Eclipse.

18

bar.c

#ifdef FEAT_A
int var_a;
#%endif
bar();
bar2();
something();

bar.c

int var_a;
bar();
bar2();
something();

bar.c

bar();
bar2();
something();

Leviathan Filesystem

Configurable Code Base

View on Variant 1

View on Variant 2

foo.c

foo_init();
#ifdef FEAT_A
do_feat_a();
#endif
#ifdef FEAT_B
do_feat_b();
#endif
foo_cleanup();

foo.c

foo_init();
do_feat_a();
foo_cleanup();

foo.c

foo_init();
do_feat_b();
foo_cleanup();

Mount
Engine

Write-Back
Engine

M4
CPP

plug in

Preprocessor Components

vim

emacs

Var0 = {}
Var1 = {FEAT A}
Var2 = {FEAT B}
Var3 = {FEAT A, FEAT B}

Variant Definitions

User

input (1.)

merge changes (7.) mount Var1 (3.)

write() (6.)

mount Var2 (4.)

notify (8.)

specify (2.)

select
variant
(3., 4.)

save (5.)

reload (9.)

Figure 1: Example Work Flow in Leviathan.

tools are either unaware of—or even incapable of dealing
with—configurable source code.

Unaware tools include debuggers, for instance, which
show the complete configurable base code in a debug ses-
sion although only one concrete variant is being debugged
at a time, possibly obfuscating program comprehension due
to #ifdef cluttering. Tools that are unaware of a source
code base being configurable simply do not work too well on
those code bases, or they do not work to their full potential.
Incapable tools, on the other hand, break when they are fed
configurable source code instead of stand-alone code. Such
incapable tools include many kinds of source analysis tools
such as for execution time analysis, call graph extraction,
deadlock detection, syntax validators, reverse engineering
tools that generate UML diagrams from source code, and
others. Liebig et al., for instance, report that existing tool
support for Java or C# is broken by CPP conditional com-
pilation [8].

In order to better support configurable software projects
in industry and the open-source community, we therefore
propose to implement variant views at the filesystem level.
Our Leviathan filesystem is given a configurable software
base with existing annotated code blocks (e.g., via CPP
#ifdefs), and it can then mount views (i.e., it creates a
virtual disk volume) depending on a user-provided config-
uration. The mounted views provide virtual directories and
files, enabling the developer to use arbitrary file-based tools
on that variant. Additionally, we aim at providing write-
back support in Leviathan, enabling the developer to di-
rectly edit the virtual variants; the changes are then au-
tomatically merged back into the configurable code base.
By providing generic, toolchain-independent, and language-
independent variant views, Leviathan can therefore ideally
support configurable software in industry and open-source
projects.

In this paper, we first describe Leviathan in an example

work flow, complemented by a classification of use cases we
envision our system to be used in (see Section 2). Then,
we detail Leviathan’s architecture and implementation in
Section 3 before providing a comprehensive description of its
challenging write-back feature (see Section 4). After that,
we discuss our approach and related work in Section 5 before
concluding with Section 6.

Without loss of generality, for the remainder of the paper
we assume the preprocessor directives to be #ifdefs and the
preprocessor to be the subset of the C preprocessor CPP
that is used for conditional compilation. The Leviathan
architecture, however, incorporates a plug-in mechanism to
support arbitrary preprocessors (see Section 3).

2. WORK FLOW AND USE CASES
Figure 1 shows an example work flow how a target devel-

oper would use Leviathan for software maintenance. First,
he localizes a given configurable code base that he wants to
reason about or work on (e.g., the Linux kernel sources) in
the base filesystem. Second, he defines one or more variants
as sets of enabled and disabled features (e.g., #define direc-
tives). Both of those pieces of information are fed into Levi-
athan as input (steps 1 and 2 in Figure 1). The developer
can then mount several variants simultaneously to different
mount points by specifying the variant names (steps 3 and
4). After that, the user can operate as usual on the virtual
directories and files, which are in fact slices of the original
configurable code base. Operation includes read-only tasks
such as reasoning about variants by viewing the differences
between them as well as editing the virtual files with arbi-
trary tools; Leviathan will merge back the changes into the
configurable code base transparently in the background.

The work flow just described is, however, only one pos-
sible setting in which Leviathan can come in handy. We
envisage four types of settings, differing in whether the ac-
tual user is human or a software tool, and whether read-only

19

Leviathan Filesystem

Base Filesystem

write()read()open()getattr() readdir() rename() ...

Caching Layer
Processed FileProcessed FileProcessed File

M4
CPP

Configured
Blocks

Evaluator

Block Structure

ParserP
re

pr
o
ce

ss
or

C
om

p
on

en
ts

W
ri
te

-B
ac

k
E
n
gi

n
e Parser

Generic Blocks

Merger

Blocks

Parser

Serializer

Serializer

Observer

m
o

d
ifi

ca
ti

o
n

ev
en

t
tr

ig
g

er
in

va
li

d
a

ti
o

n

p
a

ss
th

ro
u

g
h

u
n

p
re

p
ro

ce
ss

a
b

le
fi

le
s

Figure 2: Leviathan Architecture and Data Flow.

or also write-back support is necessary. Each of the following
four use cases provides an example for such a usage setting:

• WCET analysis: A real-time analysis tool shall be
used to calculate the worst case execution time of a
specifically configured variant (user is a tool, read-only
access).

• Code reasoning: A software developer wants to get
an understanding of the source code; the code of fea-
tures irrelevant for the main functionality shall be ex-
cluded to improve comprehensibility (user is human,
read-only access).

• Feature refactoring: A source code refactoring tool
(e.g., Coccinelle [12]) shall be applied to a certain sub-
set of features within the code base (user is a tool,
write-back support required).

• Maintenance changes: The software developer fixes
localized bugs in a configured variant and wants them
to be merged back to the original source code base
(user is human, write-back support required).

The different settings result in different general require-
ments for Leviathan. First, if a human user is involved,
configurable display options help to comprehend the source
code independent of the capabilities of the employed editor.
In some cases, marking the beginning and end of each fea-
ture block with a dedicated marker may hinder readability,
whereas, in other cases, such markers are crucial to under-
stand the prerequisites for a piece of code to be included.
Second, Leviathan’s write-back support must prevent or
handle cases of ambiguity when merging changes back to the

configurable code base. Depending on the fact whether the
user is human or a software tool, one strategy or the other
will be more appropriate for disambiguation. We will discuss
the corresponding write-back approaches in Section 4.

3. LEVIATHAN ARCHITECTURE AND
IMPLEMENTATION

In this section we will describe Leviathan’s architecture,
its implementation and present some preliminary evaluation
results.

3.1 Architecture and Implementation
Internally, Leviathan has a modular architecture and

several layers, as depicted in Figure 2.
The topmost filesystem layer communicates with applica-

tions such as editors via the standard Linux VFS filesys-
tem interface, which includes system calls such as open(),
close(), read(), and write() to be called on files. This
layer is implemented as a driver for FUSE [4], a framework
that allows its actual drivers to run in user space; only a
very small FUSE kernel module is executed in privileged
mode. Thus, the Leviathan filesystem driver can link to
any third-party libraries built to support application devel-
opment. FUSE supports various Unix variants as well as
Mac OS X. There are also projects aiming at porting FUSE
to Windows, making it the most portable framework for im-
plementing filesystems.2

When processing a read() request, Leviathan first de-
termines if the corresponding file needs to be preprocessed

2See http://sourceforge.net/apps/mediawiki/
fuse/index.php?title=OperatingSystems.

20

depending on its file type. Read requests on binaries, for
instance, are directly passed through to the base filesystem.
If a file does have to be preprocessed, Leviathan directs
that request to its cache, which holds contents and meta
data about files that have been processed before. An addi-
tional observer component monitors modification events on
the base filesystem (via the inotify Linux kernel subsys-
tem) and invalidates the corresponding cache entry appro-
priately upon changes. This is needed to synchronize both
with changes made directly to the configurable code base on
the base filesystem and with indirect changes to that code
base via another mounted Leviathan variant (see also steps
6–8 in Figure 1). Only when a cache miss occurs does Le-
viathan direct the read() request to the corresponding
preprocessor component.

The preprocessor component itself has a well-defined in-
terface concerning the block structure it has to output for
Leviathan to work on; it effectively encapsulates the syntax
parsing and expression evaluating for a concrete preproces-
sor, such as CPP or M4 [10]. When the content of a virtual
Leviathan file is requested for the first time or needs to be
recalculated, the preprocessor component reads the base file
from the base filesystem and uses its parsing subsystem to
delineate configuration blocks encapsulated by preprocessor
directives. The parser of our CPP preprocessor component,
for instance, uses the Boost::Wave lexer [2] for that pur-
pose, and it will only resolve those macros that are used
for conditional compilation; that is, #defines used for def-
inition of constants or #includes are not resolved in order
not to impair code comprehension of the mounted variant.
Each configuration block is bound to a preprocessor expres-
sion, which is stored together with the corresponding block.
An expression evaluator then accesses the configuration that
was handed to Leviathan at mount time and uses those
preprocessor variable definitions (e.g., #defines in the CPP
language) to evaluate if a given block is to be included in the
virtual file or not. Note that this configuration can in fact
be the output of an external feature modeling tool, which
assures correctness in terms of feature selection and met de-
pendencies.

Our CPP component parses the CPP expression and eval-
uates them. It supports some basic arithmetical operations
as the original C preprocessor does. As a special feature,
logical expressions are evaluated using three-valued logic;
CPP variables and whole expressions can evaluate to true,
false, or undecided. True blocks are included in the virtual
file, false blocks are excluded, and undecided blocks are out-
put together with their preprocessor annotations. As the
negation of undecided also evaluates to undecided, the #else
clause of an #if/#else statement evaluating to undecided is
also included. This way, the developer can explicitly express
partial configurations by setting features to undecided, be-
sides being able to activate and deactivate features.

The data structure as output by the preprocessor compo-
nent is then stored in Leviathan’s cache to serve future read
requests. Additionally, a serializer component computes the
plain data stream that the application that has issued the
read() call will be given as a result.

3.2 Preliminary Evaluation
Our preliminary evaluation of the Leviathan filesystem

has yielded promising results. We have tested its perfor-
mance by measuring the time required to read, parse, and

output the complete source tree of Linux (version 2.6.31) and
the eCos embedded operating system (CVS-version 2010-03-
29). The test system has an Intel Core 2 Quad CPU Q9550
processor clocked at 2.83GHz, equipped with 4GB of RAM.

For Linux, the time to read, preprocess, and output (to
/dev/null) its complete source tree of 408MB takes Le-
viathan 130 seconds. Directly reading and outputting the
source tree without employing Leviathan (and therefore
without preprocessing) took 14 seconds. Thus the slow down
factor as caused by Leviathan is about 10. As Leviathan
only parses the actually accessed files and we expect most
use cases for Leviathan to involve only a rather small num-
ber of files (a human user, for example, only can read one
file at a time), we do not consider this decrease to be a
show stopper. Furthermore, both the 130 and the 14 sec-
onds were produced without caching to ensure comparable
figures. When using caching (the operating system’s file
system caching as well as Leviathan’s caching), the figures
decrease considerably, to 12 seconds for Leviathan and to
1 second for direct reading. The fact that Leviathan is still
notably slower is caused by its implementation as a FUSE
filesystem in user space, which by design causes expensive
additional context switching overhead between kernel and
user space.

When using Leviathan to read, preprocess, and output
the eCos embedded operating system, which has a code base
of only 1MB, all figures drop well below 1 second and no
noticeable disruptions occur in the work flow of a user. Al-
though, in its current state of development, Leviathan is
not optimized for speed, we consider its performance suffi-
cient for the aspired use cases described in Section 2.

4. WRITE-BACK SUPPORT
In addition to offering read-only views for analysis tools

and tasks that work on a configured variant (e.g., code met-
ric tools or execution time analysis tools), we want to en-
able the software developer and his tools to edit a mounted
variant. For instance, if he wants to perform maintenance
changes (see also the corresponding use case in Section 2),
this provides him with the ability to specify a configuration,
mount the variant, debug it, and modify the variant code
directly to get rid of the bug, eventually saving the changes
in his editor (step 5 in Figure 1). In the background, the
Leviathan filesystem will handle the write request by the
editor appropriately by directing it to its write-back engine
(step 6 in Figure 1; see also the corresponding architecture
part in Figure 2).

The actual write-back support is challenging. To this
end, Leviathan needs the additional information that the
preprocessor component has computed—the mapping from
source configuration blocks (source code blocks enclosed in
preprocessor directives) to variant blocks (those configura-
tion blocks actually visible in a given configuration) includ-
ing their positions. Note that in the mounted view, changes
in the configuration block structure are not supported. That
is, if additional #ifdef blocks need to be introduced, for in-
stance, this has to be done directly in the configurable code
base.

Since Leviathan is editor-independent, it does not have
an actual edit protocol available that shows which lines were
changed in which manner. Instead, it needs to operate
on discrete file content snapshots provided only when the

21

foo.c

foo_init();
#ifdef FEAT_A
do_feat_a();
#endif
#ifdef FEAT_B
do_feat_b();
#endif
foo_cleanup();

foo.c (modified view)

foo_init();
do_feat_a();
a_new_line();
foo_cleanup();

Figure 3: Example Ambiguity Problem During
Write-Back.

write() system call is issued (by saving the changes in an
editor, for instance). Such discrete snapshots make it im-
possible to know for certain what the user actually did and
semantically intended to express. Consider, for instance,
which block to assign a line to that was inserted exactly be-
tween two variant blocks (see Figure 3). This example is but
one of several edit scenarios that causes potential ambigu-
ity in the write-back process. We have therefore found two
different ways to deal with write-back requests.

4.1 Write-Back Heuristics
Using heuristics to merge changes performed on a

mounted variant view back into the configurable code base
is feasible as long as two conditions hold:

1. The configuration blocks in the configurable code base
are rather large and therefore there are relatively few
edges between variant blocks and a lot of context for
merge algorithms to work with. A recent survey cov-
ering 40 software product lines suggests that this is a
valid assumption [8].

2. The changes in the mounted view are saved rather in-
crementally and therefore the change sets are relatively
small. Again, in that case, the merge algorithms have a
lot of unchanged lines serving as context to work with.
Maintenance changes would be a typical use case that
fulfills this property (see also Section 2).

If those assumptions hold, then Leviathan’s write-back
algorithm will provide proper merge results to be written
back to the configurable code base. If one of those conditions
does not hold, then it is Leviathan’s heuristics that will
make a decision in corner cases, such as which block to assign
an inserted line to, as described above and in Figure 3. In
any case, if the code base itself is checked into a revision
control system, then the merge results can still be double-
checked in a difference view before actually committing them
to see whether the changes have been applied by Leviathan
as intended.

The actual heuristics algorithm and, with it, the question
which decisions to make in critical corner cases, is currently
still work in progress. There are lots of different possibili-
ties how to match context lines that are unchanged or that
changed only to a certain degree, and how to match altered
variant blocks back to source configuration blocks to apply
the write-back operation. In order to offer an algorithm that
proves to be valuable in practice, we are preparing an analy-
sis of typical changesets in a couple of software product lines
to be able to make an informed decision about the heuristics
parameters.

4.2 Marker-Based Write-Back
If the developer’s changes on a mounted view have to

be a hundred percent unambiguous, Leviathan offers an
additional, optional mechanism called markers. Markers
are language-dependent comment lines that delineate for-
mer configuration blocks in the variant views. If Levia-
than is configured to generate marker lines at mount time,
those lines are generated by the serializer component when
presenting the virtual file contents to the applications (see
Figure 2). By leaving the marker lines in place and only
editing the lines between them, the Leviathan user can
fully convey what he intends to change and how.

Upon saving the changes, Leviathan’s write-back pars-
ing component parses the altered virtual file for the marker
lines and maps the variant blocks in between to configura-
tion blocks in the configurable code base (see Figure 2). The
merge component then updates the file block structure in
Leviathan’s cache for future read accesses; another serial-
izer component writes back the altered file together with all
of its original preprocessor directives to the base filesystem.

With its marker mechanism, Leviathan’s write-back sup-
port is completely unambiguous at the cost of slightly in-
creased clutter through the introduced marker lines. How-
ever, the mounted variant will still be a lot more maintain-
able than the original configurable code base, since non-
active configuration blocks and the corresponding directives
are not visible in it; only active blocks and their markers are
displayed in the view.

Optionally, editors can implement light-weight plug-ins to
interpret Leviathan’s markers and highlight the informa-
tion in an editor-specific way, for example using vim’s folds
or CIDE’s colors. This means that those tools can be used
complementary to Leviathan. In that way, those tools can
be seen as the independent view parts of a model–view–
controller architecture; the actual preprocessing part is pro-
vided by Leviathan.

5. DISCUSSION
In this section, we discuss how Leviathan compares to

existing tooling and how integration with those tools may
be achieved. Additionally, we discuss current limitations of
our approach and how to overcome them.

5.1 Using and Integrating Other Tools
Some of the use cases identified in Section 2 can also be

addressed with existing tooling. However, our approach is
the only one that is toolchain-independent and, thus, allows
to work on a variant with arbitrary file-based tools. In the
following, we will address each of the four use cases identified
in Section 2.

When a tool works on a variant file read-only (e.g., for
WCET analysis), a separate preprocessor tool could be ap-
plied to the code base before analysis. Integrating the pre-
processor with the filesystem may be more convenient than
manually executing an external preprocessor, but basically
both perform the same task equally well. Variability-aware
code reasoning up to now has required dedicated viewers
and editors such as CIDE [6] or C-CLR [13]. Our solution is
generic and can be used both with the developer’s favorite
open source editor as well as prescribed fixed editors in in-
dustrial settings. In case of feature-local refactorings, some
refactorings might be done with semantic patch tools such as

22

Coccinelle [12]. However, Coccinelle detects semantic con-
texts based on matching normalized source code strings only.
As the expressions are not evaluated, more complex Boolean
conditions might be matched erroneously, resulting in patch-
ing the wrong set of code blocks. Furthermore, the patch
transformations must be formulated in the Coccinelle lan-
guage, whereas, with the Leviathan filesystem, arbitrary
tools, such as sed, Perl, or source code transformation lan-
guages such as TXL [3] may be used. Maintenance changes
as well can be performed on a specific variant and be written
back to the source code base using the developer’s editor of
choice.

Although Leviathan’s toolchain independence allows de-
velopers to use arbitrary editors and IDEs to work on
mounted variants, even in scenarios where a developer em-
ploys variability-enabled editors such as CIDE [6] or Fea-
tureMapper [5], Leviathan may come in handy. As both
have their own means for internally dealing with variabil-
ity, Leviathan could be used to transparently supply them
with the variability file format they require, while the actual
source code variability is managed with a preprocessor such
as CPP. This means that those tools can be used comple-
mentary to Leviathan. In that way, those tools can be seen
as the independent view parts of a model–view–controller
architecture; the actual preprocessing part is provided by
Leviathan. For this purpose, the expression evaluator (see
also Figure 2) would be dispensable, as these tools do not
work on variant files, but on unconfigured code bases. Fur-
thermore, to actually integrate such tools, our serialization
and parsing mechanisms need to be adapted accordingly in
order to be able to write and read the variability file formats
of tools such as CIDE and FeatureMapper.

5.2 Limitations of the Approach
One current limitation of our approach is that it does not

support changing the structure of conditional blocks in a
mounted view. This means that it is not possible to add,
remove, or change the inclusion condition of such a block
when working on the mounted view. This limitation is un-
problematic for such use cases as feature-local refactorings
and incremental maintenance changes (as described in Sec-
tion 2), which do not affect the conditional structure. If,
however, changes to the conditional structure are necessary,
those changes can be performed directly on the configurable
code base. By means of its internal notification mechanism
(see also Section 3), Leviathan will be able to update all
of its mounted views where needed.

As mentioned before, Leviathan’s CPP component only
evaluates the subset of CPP constructs used for conditional
compilation such as #if, #ifdef, and #ifndef; it leaves out
#include or #define statements. As a drawback we cur-
rently cannot definitely evaluate expressions containing CPP
macros. However, only 2 of the 27,569 conditional expres-
sions used for feature-based configuration in Linux3 call
a macro function (e.g., #if LINUX_VERSION_CODE >=
KERNEL_VERSION(2,2,0) to query the kernel version).
We deal with such cases by simply setting such expressions
to undecided, which results in the inclusion of the corre-
sponding block including its CPP annotations into the pre-
processed file.

One very general concern about any tool that provides

3Each preprocessor variable used for configuration starts
with the prefix CONFIG_.

views on configurable code bases (such as Leviathan) is
the effect of a local feature change that was performed in
a view on other features that are not visible in the current
view. Consider, for instance, renaming a variable that is also
used in a hidden feature block; this refactoring will make
any variant that uses that feature stop from even compiling.
If such problems are to be avoided, either the write-back
results can be double-checked in the configurable code base,
or the change can be performed directly in the code base
itself, thereby effectively avoiding Leviathan’s advantage of
taming #ifdef clutter. This has to be decided on a case-by-
case basis, and some of the analyzed use cases (see Section 2)
will be more susceptible to that problem than others.

6. CONCLUSION AND FUTURE WORK
We have shown a way to deal with the complexity of

preprocessor-configured software—by using views as pro-
vided by our Leviathan filesystem. Our approach improves
on those based on special IDEs since it enables the use of
arbitrary toolchains that work directly on files. This is cru-
cial both in industry settings with fixed toolchains as well as
in open-source projects, where very heterogeneous tools and
development environments are used. Although some tools
may in fact be #ifdef-aware, Leviathan modularizes pre-
processor functionality by implementing it on the filesystem
level, providing true separation of concerns.

We still need to fully evaluate our Leviathan approach
and especially its write-back engine and approaches to be
able to exactly state its benefits and disadvantages; the
evaluation targets will be Linux and eCos, as well as a
department-internal operating system product line that is
used in classes. In future work, we additionally want to
tackle read and write support for code bases that imple-
ment optional features with patch sets, which are, for ex-
ample, prevalent for freshly implemented and experimental
features in Linux. Furthermore, we are working on a formal-
ization of our two write-back approaches to be able to grasp
their respective advantages and boundaries—and, therefore,
their applicability to different use cases.

7. REFERENCES
[1] D. Beuche. Variant management with pure::variants.

Technical report, pure-systems GmbH, 2006.
http://www.pure-systems.com/fileadmin/
downloads/pv-whitepaper-en-04.pdf%, visited
2010-08-23.

[2] Wave V2.0: Wave C++ preprocessor library.
http://www.boost.org/doc/libs/1_43_0/
libs/wave/index.html, visited 2010-07-29.

[3] J. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190–210,
Aug. 2006.

[4] FUSE: Filesystem in userspace.
http://fuse.sourceforge.net/, visited
2010-07-29.

[5] F. Heidenreich, J. Kopcsek, and C. Wende.
FeatureMapper: Mapping features to models. In
Proceedings of the 30th International Conference on
Software Engineering (ICSE ’08), pages 943–944, New
York, NY, USA, 2008. ACM Press.

[6] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in software product lines. In Proceedings of the 30th

23

International Conference on Software Engineering
(ICSE ’08), pages 311–320, New York, NY, USA,
2008. ACM Press.

[7] C. W. Krueger. BigLever software Gears and the
3-tiered SPL methodology. In Companion to the 22nd
ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications (OOPSLA
’07), pages 844–845, New York, NY, USA, 2007. ACM.

[8] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An analysis of the variability in forty
preprocessor-based software product lines. In
Proceedings of the 32nd International Conference on
Software Engineering (ICSE ’10), New York, NY,
USA, 2010. ACM Press.

[9] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and
W. Schröder-Preikschat. A quantitative analysis of
aspects in the eCos kernel. In Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer
Systems 2006 (EuroSys ’06), pages 191–204, New
York, NY, USA, Apr. 2006. ACM Press.

[10] GNU M4 – GNU Project – Free Software Foundation

(FSF). http://www.gnu.org/software/m4/,
visited 2010-07-29.

[11] A. Massa. Embedded Software Development with eCos.
New Riders, 2002.

[12] Y. Padioleau, J. L. Lawall, G. Muller, and R. R.
Hansen. Documenting and automating collateral
evolutions in Linux device drivers. In Proceedings of
the ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008 (EuroSys ’08), Glasgow,
Scotland, Mar. 2008.

[13] N. Singh, C. Gibbs, and Y. Coady. C-CLR: A tool for
navigating highly configurable system software. In
Proceedings of the 6th AOSD Workshop on Aspects,
Components, and Patterns for Infrastructure Software
(AOSD-ACP4IS ’07), pages 1–6, New York, NY,
USA, 2007. ACM Press.

[14] H. Spencer and G. Collyer. #ifdef considered harmful,
or portability experience with C News. In Proceedings
of the 1992 USENIX Annual Technical Conference,
Berkeley, CA, USA, June 1992. USENIX Association.

24

TypeChef: Toward Type Checking #ifdef Variability in C

Andy Kenner
Metop Research GmbH
Magdeburg, Germany

andy.kenner@metop.de

Christian Kästner
Philipps University Marburg

Marburg, Germany
kaestner@informatik.

uni-marburg.de

Steffen Haase,
Thomas Leich

Metop Research GmbH
Magdeburg, Germany

haase/leich@metop.de

ABSTRACT
Software product lines have gained momentum as an approach to
generate many variants of a program, each tailored to a specific
use case, from a common code base. However, the implementation
of product lines raises new challenges, as potentially millions of
program variants are developed in parallel. In prior work, we and
others have developed product-line–aware type systems to detect
type errors in a product line, without generating all variants. With
TypeChef, we build a similar type checker for product lines writ-
ten in C that implements variability with #ifdef directives of the
C preprocessor. However, a product-line–aware type system for C
is more difficult than expected due to several peculiarities of the
preprocessor, including lexical macros and unrestricted use of #ifdef
directives. In this paper, we describe the problems faced and our
progress to solve them with TypeChef. Although TypeChef is still
under development and cannot yet process arbitrary C code, we
demonstrate its capabilities so far with a case study: By type check-
ing the open-source web server Boa with potentially 2110 variants,
we found type errors in several variants.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; D.3.4 [Programming Languages]: Processors—Preproces-
sors; D.2.13 [Software Engineering]: Reusable Software

General Terms
Languages, Reliability, Theory

Keywords
Type system, conditional compilation, C, cpp, #ifdef, partial prepro-
cessor, disciplined annotations

1. INTRODUCTION
Software product line engineering is an efficient means to implement
variable software. By selecting from a set of features, a developer
can generate different program variants from a common product-line

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

implementation. However, variability comes at a price of increased
complexity. Instead of developing and testing a single variant, devel-
opers deal with potentially millions of variants in parallel. Already
with a few features, we quickly reach a point at which it is no longer
possible to compile and run every possible variant in isolation, due
to the vast number of variants (up to 2n variants for n features).

To address this problem, researchers have developed mecha-
nisms that check certain criteria for the entire product line, in-
stead of checking each variant in isolation. This ranges from sim-
ple guarantees of syntactic correctness [22], to dead-code detec-
tion [34, 35], to type checks and similar referential-consistency
checks [1, 2, 8, 16, 21, 36], and to behavioral checks using, among
others, model checking [7, 14, 24, 31]. Usually, the idea is to ana-
lyze source code before variant generation when it still includes its
variability mechanisms; the approaches check implemented variabil-
ity against the variability model, which describes all valid feature
combinations.

Especially, product-line–aware type checking (or reference check-
ing, or safe composition) has shown to scale [8, 20, 36]; type check-
ing an entire software product line with millions of variants is usually
as fast as checking a handful of variants in isolation. Product-line–
aware type checking has been explored for different variability im-
plementations, most prominently for AHEAD-style feature modules
and class refinements [1, 36] and for annotation-based implementa-
tions (typically using some form of conditional compilation, also
known as negative variability) [2,8,16,21]. However, corresponding
type systems were usually targeted at dialects of Java (or Feather-
weight Java) which limited their applicability to industrial software
product lines.

A typical setting to implement variability in industrial software
product lines is to use C as programming language [17] and use
conditional-compilation directives (#ifdef, #if, #elif, #else, #endif)
of the C preprocessor cpp to implement variability (despite broad
criticism on the C preprocessor, which is out of scope here). Al-
though we are unaware of any statistics or surveys on industrial
product-line implementation, our personal communication with tool
providers and developers indicates that actually a majority of indus-
trial software product lines are implemented with the C preprocessor.
For example, HP’s product line Owen for printer firmware with over
2000 features implements variability entirely with cpp [29, 32];
so do many open source programs [25], of which the Linux ker-
nel with over 8000 features is probably the most prominent exam-
ple [25, 33, 35]. Three more examples of industrial product lines
presented at last year’s Software Product Line Conference that im-
plement variability at least partially with preprocessors are Danfoss’
product line of frequency converters [18], Wikon’s product line
of remote control systems [30], and NASA’s product line of flight
control systems [11].

25

Our overall goal is to type check an entire product line written in
C and cpp with all its variants. To this end, we construct a product-
line–aware type checker called TypeChef (type checking #ifdefs).
Unfortunately, the transfer from a confined research setting in the
Java environment to industrial C code turned out much harder than
expected. Even though C’s type system is rather simple, the C pre-
processor cpp makes analysis difficult. In a nutshell, cpp works on
token level; it can be (and is) used at fine granularity and in patterns
that are very hard to understand by analysis tools. Additionally, file
inclusion and lexical macro substitution (which were not present in
previous Java settings) interfere with our analysis, especially when
macros are conditionally defined or have alternative expansions. Fi-
nally, also presence conditions for code are more complex; cpp does
not only allow propositional formulas after #if directives, but also
integer constants (which may be defined, redefined, or undefined
during preprocessing) and various operations on them.

In this paper, we describe the problems of type checking a product
line implemented with C and cpp and describe our solution with
TypeChef so far. Specifically, we designed a partial preprocessor
to tame cpp directives to a disciplined level; and we designed and
implemented a type checker that understands #ifdef directives and
checks them in a way similar to previous product-line–aware type
systems. TypeChef is work in progress; we cannot parse arbitrary
C code, yet; we do not support alternatives and some manual code
preparation is still necessary. Nevertheless, we have already applied
TypeChef to a small open-source implementation of the Boa web
server with 110 features and found several inconsistencies.

In summary, we make the following contributions: (1) We outline
the difficulties of product-line–aware type checking for C code.
(2) We present and implement an initial solution with TypeChef.
(3) In that context, we propose the concept of a partial preprocessor
to handle file inclusion and macro substitution. (4) We demonstrate
how TypeChef can detect inconsistencies in a small case study.

2. PRODUCT-LINE–AWARE TYPE CHECK-
ING

Let’s start by revisiting the basic idea behind product-line–aware
type systems, without considering the particularities of cpp, yet.

Consider the trivial code fragment in Figure 1. It does nothing
more than output a single line of text. However, which text this is
depends on preprocessor flags (or features in a product-line context).
Lines 4 and 7 are only compiled if the corresponding features are
selected; otherwise cpp removes the code before compilation. To
describe when a code fragment is included, we speak of a presence
condition pc; a code fragment is only included when its presence
condition evaluates to true for the given feature selection. Line 4
has the presence condition pc(line4) = WORLD, i.e., it is only
included when feature WORLD is selected.1 This small program,
which we can consider as product line, has two features (WORLD
and BYE) and can generate four possible variants (with neither
feature, with both features, or with either feature). Only two of these
four variants will compile though. The compiler will issue an error
for the second definition of variable msg (“Line 7: redefinition of
msg”) when both features are selected and will issue an error about
a dangling reference (“Line 11: msg undeclared”) when neither
feature is selected.

With a product-line–aware type system, we want to guarantee
that all potential variants of a product line are well-typed, without

1Deriving presence condition from #ifdef, #elif, and #else direc-
tives (including nesting) is straightforward; for a formal definition
see [34]. A code fragment that is not nested in #ifdef directives has
the presence condition true, i.e., it is included in all variants.

1 #include <stdio.h>
2
3 #ifdef WORLD
4 char * msg = "Hello World\n";
5 #endif
6 #ifdef BYE
7 char * msg = "Bye bye!\n";
8 #endif
9

10 main() {
11 printf(msg);
12 }

Figure 1: Example C program

generating all variants. That is, we want to check types before
running the preprocessor with a specific feature combination but
still guarantee that all variants compile after generation.

In a nutshell, we resolve references and compare annotations
in the original code, typically based on an underlying abstract-
syntax-tree representation. In Figure 1, printf references a function
that is declared in the included stdio.h file and msg references the
declarations in Line 4 or 7. Based on these reference pairs, we
compare the annotated features. The function call printf in Line 11
is not annotated by a feature, neither is the function declaration in
stdio.h; hence, both call and declaration are included in all variants
and do not cause type errors. However, variable msg is only declared
when feature WORLD or feature BYE is included, but referenced
in all variants, so we can predict that some variants will not compile.
Similarly, we can identify that there are variants in which both
variable declarations are included at the same time and issue an
error.

In most cases, checking annotations regarding all possible fea-
ture combination is too strict though. Typically, domain experts
restrict possible feature combinations in a product line, for exam-
ple, by specifying that either feature WORLD or BYE has to be
selected in every variant. In product-line engineering, it is best prac-
tice to document such domain knowledge in variability models. A
variability model describes the intended variability of the program.
Typical forms of variability models are feature models and their
graphical representation as feature diagrams [19], but some projects,
such as the Linux kernel, have their own variability-modeling lan-
guages [35].

A product-line–aware type system can use a variability model
as input and type check only variants allowed by the variability
model, instead of all feature combinations. Mathematically, check-
ing only allowed variants is expressed as VM → (pc(caller) →
pc(target)); that is, the presence condition of the caller must imply
the presence condition of the target in all variants allowed by the
variability model VM. Similarly, we can check for redefinitions of
variables or functions with VM → ¬(pc(def1)∧pc(def2)). If the
formula is not a tautology (determinable by a SAT solver or other
solvers), we issue an error message and can provide an example of
a feature selection that causes a type error. For reasoning in a type
system, most kinds of variability models can be translated directly
into logics [4, 36], and reasoning about them is tractable for even
very large models [27]. Our experience shows that the time spent by
SAT solvers to determine tautologies is negligible compared to the
remaining lookup processes [20].

Given a feature model VM = (WORLD∨BYE)∧¬(WORLD∧

BYE) that defines that exactly one feature must be selected in all
variants, we can statically guarantee that the code from Figure 1 is
well-typed in all variants: the check regarding printf is trivially a
tautology (VM → true → true), the reference check regarding

26

msg is a tautology (VM → true → (WORLD ∨ BYE)), and
also the condition to prevent redefinition is a tautology (VM →
¬(WORLD∧ BYE)).

Checked Properties. Our aim is to find type errors. That is, we
want to find the same errors for the entire software product line that
a compiler would find for a specific variant. We neither address
dynamic properties nor further static properties beyond the type
system, such as single assignment. That is, we ensure that each
variant compiles, but not that it has meaningful runtime semantics.
Adopting static analysis and behavioral checks to software product
lines are interesting but separate research challenges [7, 14, 24, 31].

The type system of C is considered as weak, because of implicit
type conversion, and unsafe, mainly because of casts between point-
ers. Chandra and Reps [6] summarize “In C, a pointer of a given
type can be cast into any other pointer type. Because of this, a
programmer can interpret any region of memory to be of any type.
Traditional type checking for C cannot enforce that such reinter-
pretation of memory is done in a meaningful way, because the C
standard allows arbitrary type conversions between pointer types.
For this reason, C compilers and tools such as lint do not provide
any warnings against potential runtime errors arising from the use
of casts.”

Still, there are many kinds of errors that the C type system de-
tects, including dangling variable references (as in Figure 1), dan-
gling function calls, function calls with an incorrect number of
parameters, redefinitions of functions and variables, references to
undefined types, and type mismatch for assignments and function
arguments [17]. Our long-term goal is to cover the entire type sys-
tem of C as specified in the standard [17]. Nevertheless, we start
by checking references (to variables, functions, type declarations),
because they are most problematic in a product-line setting, in our
experience.

3. PARSING PRE-CPP CODE IS HARD
The main challenge in type checking C code is to parse C code
that still contains cpp directives (pre-cpp code) into a representa-
tion that allows us to look up presence conditions and references
between elements. Already parsing preprocessed C code is difficult
in practice [5], but parsing pre-cpp code is a difficult challenge,
a challenge already faced by many refactoring and code-analysis
tools [3, 9, 10, 13, 26, 28, 37]. Solution strategies either use heuris-
tics [13, 28]—which is not suitable for type checking, since we
want to give guarantees—or parse only a subset of possible input
programs [3, 26].

A common subset strategy is to build a parser that understands
C code with preprocessor directives at certain locations only. For
example, #ifdef directives may only wrap entire functions or state-
ments, but not arbitrary tokens. We call such restricted use of #ifdef
directives disciplined annotations. Given disciplined annotations,
we can create an abstract syntax tree and assign presence conditions
to subtrees. Unfortunately, enforcing disciplined annotations may be
realistic when writing new code; but an earlier large-scale analysis
of 40 cpp-based product lines with a total of 30 million lines of
code [20] has shown that on average 11 % of all #ifdef directives
are not in a disciplined form. Consequently, without manual prepa-
ration or further tool support, hardly any file can be parsed with this
approach.

Additional difficulties come from macro substitution and file
inclusion. To parse C code (even when all conditional compilation
directives are disciplined), #include directives and macros must be
expanded. That is, although we want to parse pre-cpp code, we
need to handle file inclusion and macro substitution during parsing

1 #define P(msg) \
2 printf(msg);
3
4 main() {
5 P("Hello\n")
6 P("World\n")
7 }

(a) Macro-defined
syntactic structure

1 #ifdef BIGINT
2 #define SIZE 64
3 #else
4 #define SIZE 32
5 #endif
6
7 allocate(SIZE);

(b) Alternative
macro expansions

1 #ifdef SIZE==64
2 #define BIGINT
3 #endif
4
5 #ifdef BIGINT
6 //...
7 #endif

(c) Conditionally
defined features

Figure 2: Difficulties in parsing C code

nevertheless. For example, we can only check the reference of the
function call printf in Figure 1, if we include and parse stdio.h first
(and recursively the files it includes). To parse the statements in
Figure 2a, we need to expand the macro first, which inserts the
semicolon necessary to parse the body as two statements. To make
matters worse, a macro can have alternative expansions as shown
in Figure 2b, and we might need definitions of macros (which may
depend on other macros) in future presence conditions as illustrated
in Figure 2c.

Parsing pre-cpp code is the main challenge for type checking C
code, whereas detecting references on an abstract syntax tree and
checking presence conditions against a feature model is a straightfor-
ward adaptation. Undisciplined annotations, macro substitution, and
include directives were all not problems in prior approaches based
on Java and its restricted preprocessors or language extensions. In
the next section, we describe how we tackle these problems and
present a first solution with our tool TypeChef.

4. AN OVERVIEW OF TYPECHEF
TypeChef addresses the problem of analyzing pre-cpp code in mul-
tiple steps—partial preprocessor, expansion to disciplined annota-
tions, parsing, reference analysis, and solving—as illustrated in
Figure 3. We discuss each step and its challenges and solutions in
isolation.

4.1 Partial Preprocessor
First, we are interested in pre-cpp code because of its variability.
Nevertheless, we have to expand macros and file inclusions to be
able to parse the source code at all. To this end, we contribute a
partial preprocessor: We pursue the strategy to process macros and
file inclusion without affecting variability of conditional compilation
constructs. In the example of Figure 3, we recursively include all
code from stdio.h (for brevity we show only the declaration of
method printf) and replace all occurrences of the macro T by its
expansion char *. Note that the #ifdef directives are not changed.

Technically, we currently use a simple hack to implement the
partial preprocessor. With a script, we comment out all #ifdef direc-
tives (except include guards, see below) as illustrated in Figure 4,
then run the original preprocessor (which now sees only #include
and #define directives and processes them as usual), and finally
remove the comments to restore the #ifdef directives. Regarding
file inclusion, the preprocessor already provides #line directives to
maintain information where code came from; this is important to
display error messages at the correct location later on. Regarding
macro expansion, we do not store information about expansion, yet.

Include guards deserve special attention. An include guard is a
standard pattern in C to prevent multiple or recursive inclusions of a
file; it uses the same #ifdef or #ifndef directives as feature code, but
follows the pattern illustrated in Figure 5. The partial preprocessor
must process include guards, because otherwise indefinite loops can

27

1 #include <stdio.h>
2 #define T char *
3 main(){
4 T msg =
5 #ifdef WORLD
6 "Hello World\n";
7 #else
8 "Bye Bye!\n";
9 #endif

10 printf(msg);
11 }

(1) Partial Preprocessor ⇓

1 ...
2 int printf(const char *, ...);
3 ...
4 main(){
5 char * msg =
6 #ifdef WORLD
7 "Hello World\n";
8 #else
9 "Bye Bye!\n";

10 #endif
11 printf(msg);
12 }

(2) Expansion to Disciplined Annotations ⇓

1 ...
2 int printf(const char *, ...);
3 ...
4 main(){
5 #ifdef WORLD
6 char * msg = "Hello World\n";
7 #else
8 char * msg = "Bye Bye!\n";
9 #endif

10 printf(msg);
11 }

(3) Parsing ⇓

printf
(2: f. decl)

main
(4-11: f. def)

msg
(6: v. decl)

msg
(8: v. decl)

printf
(10: f. call)

greet.c
(1-11: file)

pc: WORLD pc: ¬WORLD pc: true

pc: true

pc: true

msg
(10: param.)

pc: true

pc: true

(4) Reference Analysis ⇓

VM → (true → true)

VM → (true → (WORLD∨ ¬WORLD))

VM → ¬(WORLD∧ ¬WORLD)

(5) Solving ⇓

“all variants are well-typed”

Figure 3: TypeChef steps

1 #include <stdio.h>
2 #define T char *
3 main(){
4 T msg =
5 //#ifdef WORLD
6 "Hello World\n";
7 //#else
8 "Bye Bye!\n";
9 //#endif

10 printf(msg);
11 }

Figure 4: Intermediate step of the partial preprocessor: Com-
menting out conditional compilation directions

1 #ifndef _FLAG
2 #define _FLAG
3 ...
4 #endif

Figure 5: Include-guard pattern

occur. Hence, we do not comment out preprocessor directives that
belong to include guards. Fortunately, we do not need to consider
include guards as variability in our type system; it is acceptable
to not have them in presence conditions. To distinguish between
include guards and #ifdef directives that implement variability, we
currently use a pattern matching mechanism: TypeChef recognizes
#ifndef and #define directives at the beginning of a file and #endif
at the end of a file as include guard. Alternatively, we could rely on
naming conventions, such as “flags for include guards start with an
underscore”, which are used in most projects anyway.

This simple partial preprocessor, based on comments, works
reasonably well. However, it has two limitations, which we currently
address in ongoing work. First, and most importantly, we cannot
support alternative macro definitions as illustrated in Figure 2b.
Second, we cannot use previously defined macros in the condition
of an #if directive as shown in Figure 2c. In ongoing work, we
are developing a more sophisticated partial preprocessor, which
can handle alternative macro definitions (by introducing additional
#ifdef directives at expansion) and conditionally defined feature
flags (roughly based on prior work on symbolic execution of cpp
directives [15, 23]).

4.2 Expansion to Disciplined Annotations
In a second step, we enforce disciplined annotations. As disciplined
annotations, TypeChef currently allows #ifdef directives that wrap
one or more entire top-level declarations and definitions (i.e., dec-
larations or definitions of function, structures, unions, and global
variables) and directives that wrap one or more statements inside a
function, or fields inside a structure or union. In contrast, TypeChef
considers conditional compilation directives at finer granularity or
around partial elements as undisciplined.

In general it is always possible to expand undisciplined annota-
tions to disciplined ones (not all of these expansions are necessarily
parseable or well-typed, of course). In the worst case, we can use
a brute-force mechanism which replicates the entire code for every
possible feature combination. To prevent the exponential complexity,
expansions at finer granularity are useful. For example, in Figure 3,
we replicate the statement and have two alternative statements in-
stead. In many cases, it might also be possible to manually rewrite
to code into a disciplined form, often by introducing additional
variables.

28

1 compilation_unit: external_declaration*;
2 external_declaration:
3 function_def |
4 variable_def |
5 ’#if’ cppexp ’\n’ external_declaration ’\n’ cppthenfunc;
6 cppthenfunc:
7 ’#endif’ ’\n’ |
8 ’#else’ ’\n’ external_declaration ’\n’ ’#endif’ ’\n’ |
9 ’#elif’ cppexp ’\n’ external_declaration ’\n’ cppthenfunc;

10 function_def ...

Figure 6: Extended C grammar

Name Type Scope Presence Condition

printf char * → int 0 true
msg char * 0 WORLD
msg char * 0 ¬WORLD

Figure 7: Extended symbol table for the example from Fig. 3

Currently, TypeChef does not yet automate this step, but a devel-
oper has to manually expand undisciplined annotations. In related
work, Garridio has implemented such expansion for refactoring C
code [12]; we plan a similar tool to automate the task.

4.3 Parsing
Once we have included all files, substituted all macros, and enforced
disciplined annotations, the remaining parsing is straightforward.
We take a standard C grammar and extend it with productions of
#ifdef directives as illustrated in Figure 6 (Lines 7–11 are added to
detect #ifdef directives around top-level declarations). From such
grammar, we generate a parser for TypeChef, which produces an
abstract syntax tree. Parsed #ifdef directives are either part of this
tree or can be reduced to presence conditions that are annotated at
every structural element as shown in Figure 3. For TypeChef, we
have implemented such parser with the parser generator ANTLR,
based on an existing GNU C grammar.

4.4 References Analysis
Based on the abstract syntax tree with presence conditions, Type-
Chef now looks up references that should be checked. As a result of
this step, TypeChef creates a set of formulas (one for each reference
or one conjunct formula for all references) that we can later feed
into a solver.

Reference lookup in C is mostly straightforward by iterating
once over the abstract syntax tree.2 A simple symbol table, as in
Figure 7, is sufficient to store all declared types, variables, and
functions, and their respective type, scope,3 and presence condition.
Whenever, we reach a declaration, we add a corresponding entry
in the symbol table; in case already an entry with the same name
is present (or even multiple), we produce a formula in the form
VM → ∧

i ¬(pc(newDecl) ∧ pc(prevDecli)) to check that all
declarations are mutually exclusive. When we find a function call
(or variable access or reference to a type), we look up the function’s
(variable’s, type’s) name in the symbol table and retrieve the corre-
sponding presence condition(s). We then produce a corresponding
formula VM → (pc(caller) → ∨

i pc(decli)).

2Technically, we implemented two iterations, which, however, could
be merged.
3A scope is necessary for variables to distinguish between variables
defined globally or in a function. The distinction is not relevant in
our small examples in this paper.

We check references to fields in structures and unions in a similar
way; the only difference is that we need to look up the type of
a local variable first. That is, right now, we can guarantee that
compilation will not fail due to dangling function invocations, and
dangling references to variables, fields, or types. In ongoing work,
we additionally add checks to ensure consistency between function
declarations and functions definitions, and to ensure matching types
for assignments, function arguments, and so on; so far, we check
only simple references. Also matching signatures in different object
files, as checked by the linker, will be addressed.

4.5 Solving
Finally, we need to solve the formulas produced during reference
analysis. Throughout this paper, we used propositional formulas
for presence conditions and variability models. Actually, the C
preprocessor supports more than that: It additionally supports nu-
meric constants and various operations, such as sum, comparison,
and bitwise shifting [17]. Therefore, TypeChef encodes presence
conditions and feature models as constraint satisfaction problem as
described by Benavides et al. [4], instead of using a propositional
formula. Technically, TypeChef uses the constraint-satisfaction-
problem solver Choco4 to check for tautologies. We check the
formula for each reference in isolation (instead of building one big
formula), so that we can trace an error directly to the reference
which causes it.

In case a formula is not a tautology, Choco finds a counter exam-
ple representing a specific variant which will not compile. We can
present the counter example to the user for further debugging. We
can produce an error message that mimics the style of a C compiler
(file, line, reason) and that additional provides information about
problematic variants.

5. CASE STUDY: BOA WEBSERVER
We implemented TypeChef as outlined above. As discussed, Type-
Chef is still work in progress, and there are still significant limita-
tions which prevent applying it to a large-scale industrial C project.
Especially, the manual expansion of undisciplined annotations is a
severe restriction. Still, we want to demonstrate TypeChef at this
stage with a (favorable) case study.

As subject of our case study, we selected the open-source web
server Boa, version 0.94.13.5 Boa is a lightweight, single-threaded,
and fast implementation of a web server, used mostly in embedded
systems and for fast delivery of static content (e.g., slashdot.org
uses it to deliver image files). It is written in C (6 200 LOC; 38
files) and contains some variability implemented with cpp’s #ifdef
directives. Together, there are 110 different #ifdef flags. Some of
these flags deal with low-level portability issues, but several can be
considered as features in the sense of a product line, for example
GUNZIP to support packed HTML files, USE_LOCALTIME to
switch between local time and GMT, INET6 to switch between
IPv4 and IPv6, three alternative hashing algorithms, and several
debug options (logging levels, extra supervision for hash tables,
and others). Unfortunately, features and their dependencies are not
documented. In theory, there are up to 2110 variants of Boa. Even
if we consider only some #ifdef flags that correspond to end-user
variability in a product-line sense (see examples above), we estimate
about a thousand possible variants. Hence, generating and checking
all variants in isolation does not scale.

We selected Boa because of its manageable size and because al-
most all of its #ifdef directives are in a disciplined form already. Af-
4http://www.emn.fr/z-info/choco-solver/
5http://www.boa.org/

29

1 #ifdef YYPARSE_PARAM
2 int yyparse (void

*YYPARSE_PARAM)
3 #else
4 int yyparse (void)
5 #endif
6 {
7 //method body
8 }

(a) Original undisciplined im-
plementation

1 #ifdef YYPARSE_PARAM
2 int yyparse (void

*YYPARSE_PARAM)
3 {
4 //method body
5 }
6 #else
7 int yyparse (void)
8 {
9 //method body

10 }
11 #endif

(b) Expanded disciplined im-
plementation

Figure 8: Alternative method signatures in Boa

ter applying the partial preprocessor, we only needed to expand eight
undisciplined annotations, such as the alternative method signatures
in Boa’s internal (generated) parser shown in Figure 8. Furthermore,
neither alternative macros nor conditional feature definitions (cf.
Sec. 4.1) cause serious complications in Boa. Boa is a favorable
case study that is not significantly affected by the limitations of our
current implementation. Nevertheless it is valuable to demonstrate
feasibility of our approach and to encourage further improvements
toward accepting more and larger C implementations.

With reference analysis, TypeChef detects 38 671 references
within the entire implementation of Boa (including references within
the included header files). These are 2 008 function calls, 7 250 ref-
erences to variables, 21 934 references to types, and 7 479 references
to fields of structures or unions. Of the 38 671 references, 35 478
(92 %) are obviously correct because the target code fragment is
not wrapped by #ifdef directives or because both elements have the
same presence condition. This left us with 3 193 references, which
we handed to the solver. Of these, 2 171 (68 %) were tautologies,
the remaining 1 022 references are potentially indicators of errors.
Additionally, there were 138 potential references for which we did
not find a target, which indicate dead or unmaintained code (or
incorrect header files in our environment).

We have to be careful with interpreting the solver’s results though.
To the best of our knowledge, Boa does not have a variability model,
neither explicitly nor implicit in some developer documentation. The
build environment (configure script) does not help either. Neverthe-
less, domain knowledge that might have been obvious to the original
developers might dictate certain dependencies between features,
which we were not aware of. Even a single missing dependency
in the feature model can lead to many error reports. Finally, there
are some false positives caused by limitations of TypeChef’s current
implementation. Hence, we manually inspected the reported errors.

With manual inspection, we could confirm a small number of
bugs or undocumented dependencies (we are not familiar enough
with the source code to make that judgment). Here, we show two
of them with a small code excerpt. First, as illustrated in Figure 9,
the flag DEBUG must never be included in any variant, otherwise
there will be a dangling reference to h in mmap_cache.c. Second, as
illustrated in Figure 10, the flag HAVE_SYS_FCNTL_H must be
included in all variants, otherwise there will be a compilation error
due to unknown types in included headers of alphasort.c.

TypeChef needs about one minute to check all variants (parsing,
reference analysis, and solving), whereas compiling a single variant
requires about four seconds on the same system. Solving all equa-
tions for the 3 193 non-trivial references takes six seconds with the
solver Choco. Hence, already with 20 variants, TypeChef is faster

1 struct mmap_entry *find_mmap(int data_fd, struct stat *s)
2 {
3 char *m;
4 int i, start;
5 ...
6 #ifdef DEBUG
7 fprintf(stderr, "New mmap_list entry %d (hash was %d)\n",

i, h);
8 #endif

Figure 9: Detected bug or undocumented dependency in in-
cludes of file mmap_cache.c

1 #ifdef HAVE_SYS_FCNTL_H
2 ...
3 typedef __darwin_off_t off_t;
4 typedef __darwin_pid_t pid_t;
5
6 ...
7 #endif
8
9 int sendfile(int, int, off_t, off_t *, struct sf_hdtr *, int);

10 ...
11 pid_t fork(void);

Figure 10: Detected bug or undocumented dependency in in-
cludes of file alphasort.c

than the brute-force strategy of compiling all variants in isolation,
which is in line with prior experience in product-line–aware type
systems for Java [20].

6. RELATED WORK
There have been many approaches to analyze pre-cpp code for
various purposes. One driving factor were refactorings, which—
compared to Java or Smalltalk—are very difficult to implement for
pre-cpp C code. For example, Vittek used a brute-force-expansion
mechanism as sketched in Section 4.2 [37] and Garridio developed
a sophisticated mechanism to expand undisciplined annotations at
fine granularity [12, 13]. With some heuristics, Garridio’s tool was
also able to deal with macro expansion and file inclusion, and it
could propagate changes back to the original pre-cpp code. Simi-
larly, Padioleau uses a sophisticated mechanism based on heuristics
(including a significant amount of per-project heuristics) to parse
pre-cpp code [28]. However, for type checking, we do not want
to rely on heuristics; hence, we decided to use a simpler but more
accurate mechanism of a partial preprocessor, which is sufficient
for type analysis (but would not have been sufficient for refactoring
because it cannot propagate changes back).

Additionally, there are several approaches that analyze cpp with-
out looking at the underlying code. For example, Tartler et al.
analyze C code (including the Linux kernel) for dead code, which
cannot be included in any variant [35] and extract presence condition
for every code fragment [34]. With a related goal, Hu et al. and
Latendresse used symbolic execution to determine presence con-
ditions for all code fragments, also for cases in which features are
defined or undefined within the source code as in Figure 2c [15, 23].
Favre extracts the exact semantics of cpp for further analysis [10].
These approaches work on lines of arbitrary source code, whereas
TypeChef looks in between preprocessor directives and analyzes the
underlying C code regarding references.

Aversano et al. were the first to suggest to type check a C pro-
gram including its #ifdef variability [2]. They primarily addressed
alternative declarations with different types, in contrast to our focus

30

on references. Their focus was low-level portability of C programs
instead of variability in a product line setting, but the solutions and
even proposed architectures are similar. In their work, they already
proposed an extended symbol table as we used in Figure 7, but,
unfortunately, this project was neither implemented nor continued.

The approach to parse pre-cpp C code by an extended grammar
after manual preparation toward disciplined annotations is often
credited to Baxter and Mehlicher [3], who also discussed their ex-
perience that 85 % of all #ifdef directives are disciplined and the
remaining directives received manual attention. In addition, there
are several suggestions to replace text-based preprocessors such
as cpp with a more restricted preprocessor that know the under-
lying structure [22, 26, 38]. Such approaches restrict conditional
compilation constructs to entire language fragments (as we do with
disciplined annotations) and either abandon macros or propose syn-
tax macros that are easier to handle. McCloskey and Brewer even
provide a semi-automatic migration tool for their disciplined pre-
processor ASTEC [26]. Unfortunately, we do not expect that we can
force developers to switch to a different preprocessor (especially
when huge amounts of legacy code are involved) or to manually
change their implementations toward disciplined annotations. There-
fore, in future work, TypeChef aims at preparing the source code
automatically during analysis by partial preprocessing and (in the
future) automatic expansion of undisciplined annotations.

Finally, in the context of more restricted languages (Java, Feath-
erweight Java, UML), there have been many approaches to check
for type errors, reference errors, and other kinds of errors in entire
software product lines, e.g., [1, 7, 8, 16, 21, 31, 36]. Their details
are beyond the scope of this paper, but the general idea, as outlined
in Section 2, is similar in most of them. For a detailed discussion
see [20].

7. CONCLUSION
The variability in software product lines provides many opportuni-
ties but also complicates development and testing, because a whole
family of related variants is developed in parallel. Our goal is to
detect implementation errors as early during product-line develop-
ment and without compiling and testing every variant in isolation.
With TypeChef, we transfer prior advances in type checking entire
software product lines to industrial C code, in which variability is
implemented with the C preprocessor cpp. Unfortunately, cpp has
several characteristics that make analysis of unpreprocessed code
very difficult. As we have described, to parse C code, we need to
expand macros and file inclusion directives and we have to deal with
preprocessor directives at every level of granularity and in many
undisciplined forms that are difficult to handle.

TypeChef makes first steps toward making C code accessible
for product-line–aware type checking. It combines several prior
approaches to analyze pre-cpp code. With a partial preprocessor,
we resolve macros and inclusion directives. With a specialized
parser, we can subsequently parse disciplined #ifdef directives, ana-
lyze references and types within the source code, and detect errors
with an off-the-shelf solver. TypeChef is work in progress, and in
ongoing work, we address limitations, such as alternative macro
expansions and undisciplined annotations. Nevertheless, we could
already demonstrate the feasibility of TypeChef in a favorable case
study, which is encouraging for further attempts to type check larger
code bases of industrial C code. Our long-term goal is to soundly
type check the entire Linux kernel with over 8 000 features and a
well-specified variability model.

Acknowledgments. Käster’s work is supported by the European
Research Council (grant ScalPL #203099).

8. REFERENCES
[1] S. Apel, C. Kästner, Größlinger, and C. Lengauer. Type Safety

for Feature-Oriented Product Lines. Automated Software
Engineering, 17(3):251–300, 2010.

[2] L. Aversano, M. D. Penta, and I. D. Baxter. Handling
Preprocessor-Conditioned Declarations. In Proc. Int’l
Workshop Source Code Analysis and Manipulation (SCAM),
pages 83–92. 2002.

[3] I. Baxter and M. Mehlich. Preprocessor Conditional Removal
by Simple Partial Evaluation. In Proc. Working Conf. Reverse
Engineering (WCRE), pages 281–290. 2001.

[4] D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated
Reasoning on Feature Models. In Proc. Conf. Advanced
Information Systems Engineering (CAiSE), pages 491–503.
2005.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A Few
Billion Lines of Code Later: Using Static Analysis to Find
Bugs in the Real World. Commun. ACM, 53(2):66–75, 2010.

[6] S. Chandra and T. Reps. Physical Type Checking for C. In
Proc. Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 66–75. 1999.

[7] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin. Model Checking Lots of Systems: Efficient
Verification of Temporal Properties in Software Product Lines.
In Proc. Int’l Conf. Software Engineering (ICSE), pages
335–344. 2010.

[8] K. Czarnecki and K. Pietroszek. Verifying Feature-Based
Model Templates Against Well-Formedness OCL Constraints.
In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), pages 211–220. 2006.

[9] J.-M. Favre. Understanding-In-The-Large. In Proc. Int’l
Workshop on Program Comprehension, page 29. 1997.

[10] J.-M. Favre. CPP Denotational Semantics. In Proc. Int’l
Workshop Source Code Analysis and Manipulation (SCAM),
pages 22–31. 2003.

[11] D. Ganesan, M. Lindvall, C. Ackermann, D. McComas, and
M. Bartholomew. Verifying Architectural Design Rules of the
Flight Software Product Line. In Proc. Int’l Software Product
Line Conference (SPLC), pages 161–170. 2009.

[12] A. Garrido. Program Refactoring in the Presence of
Preprocessor Directives. PhD thesis, University of Illinois at
Urbana-Champaign, 2005.

[13] A. Garrido and R. Johnson. Analyzing Multiple
Configurations of a C Program. In Proc. Int’l Conf. Software
Maintenance (ICSM), pages 379–388. 2005.

[14] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and
Model Checking Software Product Lines. In Proc. Int’l Conf.
Formal Methods for Open Object-Based Distributed Systems
(FMOODS), pages 113–131. 2008.

[15] Y. Hu, E. Merlo, M. Dagenais, and B. Laguë. C/C++
Conditional Compilation Analysis using Symbolic Execution.
In Proc. Int’l Conf. Software Maintenance (ICSM), pages
196–206. 2000.

[16] S. S. Huang, D. Zook, and Y. Smaragdakis. cJ: Enhancing
Java with Safe Type Conditions. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD), pages
185–198. 2007.

[17] International Organization for Standardization.
ISO/IEC 9899-1999: Programming Languages—C, 1999.

[18] H. P. Jepsen and D. Beuche. Running a Software Product Line

31

– Standing Still is Going Backwards. In Proc. Int’l Software
Product Line Conference (SPLC), pages 101–110. 2009.

[19] K. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI,
1990.

[20] C. Kästner. Virtual Separation of Concerns. PhD thesis,
University of Magdeburg, 2010.

[21] C. Kästner and S. Apel. Type-checking Software Product
Lines – A Formal Approach. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 258–267. 2008.

[22] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Guaranteeing Syntactic Correctness for all Product Line
Variants: A Language-Independent Approach. In Proc. Int’l
Conf. Objects, Models, Components, Patterns (TOOLS
EUROPE), pages 175–194. 2009.

[23] M. Latendresse. Rewrite Systems for Symbolic Evaluation of
C-like Preprocessing. In Proc. European Conf. on Software
Maintenance and Reengineering (CSMR), pages 165–173.
2004.

[24] K. Lauenroth, K. Pohl, and S. Toehning. Model Checking of
Domain Artifacts in Product Line Engineering. In Proc. Int’l
Conf. Automated Software Engineering (ASE), pages 269–280.
2009.

[25] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze.
An Analysis of the Variability in Forty Preprocessor-Based
Software Product Lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 105–114. 2010.

[26] B. McCloskey and E. Brewer. ASTEC: A New Approach to
Refactoring C. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE),
pages 21–30. 2005.

[27] M. Mendonça, A. Wąsowski, and K. Czarnecki. SAT-based
Analysis of Feature Models is Easy. In Proc. Int’l Software
Product Line Conference (SPLC), pages 231–240. 2009.

[28] Y. Padioleau. Parsing C/C++ Code without Pre-Processing. In
Proc. Int’l Conf. Compiler Construction (CC), pages 109–125.
2009.

[29] T. T. Pearse and P. W. Oman. Experiences Developing and
Maintaining Software in a Multi-Platform Environment. In
Proc. Int’l Conf. Software Maintenance (ICSM), pages
270–277. 1997.

[30] D. Pech, J. Knodel, R. Carbon, C. Schitter, and D. Hein.
Variability Management in Small Development Organizations
– Experiences and Lessons Learned from a Case Study. In
Proc. Int’l Software Product Line Conference (SPLC), pages
285–294. 2009.

[31] H. Post and C. Sinz. Configuration Lifting: Verification meets
Software Configuration. In Proc. Int’l Conf. Automated
Software Engineering (ASE), pages 347–350. 2008.

[32] J. G. Refstrup. Adapting to Change: Architecture, Processes
and Tools: A Closer Look at HP’s Experience in Evolving the
Owen Software Product Line. In Proc. Int’l Software Product
Line Conference (SPLC), 2009. Keynote presentation.

[33] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki.
The Variability Model of The Linux Kernel. In Proc. Int’l
Workshop on Variability Modelling of Software-intensive
Systems (VaMoS), pages 45–51. 2010.

[34] R. Tartler, J. Sincero, D. Lohmann, and
W. Schröder-Preikschat. Efficient Extraction and Analysis of
Preprocessor-Based Variability. In Proc. Int’l Conf.

Generative Programming and Component Engineering
(GPCE), 2010.

[35] R. Tartler, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann. Dead or Alive: Finding Zombie Features in the
Linux Kernel. In Proc. GPCE Workshop on Feature-Oriented
Software Development (FOSD), pages 81–86. 2009.

[36] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE), pages
95–104. 2007.

[37] M. Vittek. Refactoring Browser with Preprocessor. In Proc.
European Conf. on Software Maintenance and Reengineering
(CSMR), pages 101–110. 2003.

[38] D. Weise and R. Crew. Programmable Syntax Macros. In Proc.
Conf. Programming Language Design and Implementation
(PLDI), pages 156–165. 1993.

32

Patching Product Line Programs
∗

Martin Kuhlemann
Faculty of Computer Science

University of Magdeburg, Germany

martin.kuhlemann@ovgu.de

Martin Sturm
Faculty of Computer Science

University of Magdeburg, Germany

MartinSturm@gmx.net

ABSTRACT

Software product line engineering is one approach to imple-
ment sets of related programs efficiently. Software product
lines (SPLs) can be implemented using code transformations
which are combined in order to generate a program. A code
transformation may add functionality to a program or may
alter its structure. Though implemented with less effort, a
single malfunctioning SPL program is harder to patch be-
cause patches must effect the SPL transformations which
the program was generated from. In this paper, we present
a new approach to patch programs of a transformation-based
SPL. We demonstrate the feasibility of this approach using
a prototype.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms

Algorithms, Design

1. INTRODUCTION
A software product line (SPL) is a set of related programs

which are generated from a shared code base [6]. SPL pro-
grams are defined using features (user-visible program char-
acteristics [17]) and programs of an SPL differ in features.
Features can be implemented by program transformations,
which add functionality to a program or alter the structure
of a program. An SPL program then is generated by select-
ing features and executing code transformations which im-
plement those features. Reusing transformations across SPL
programs reduces the overall effort to implement the SPL

∗This paper summarizes and extends the Master’s Thesis
of Martin Sturm [31]. An extended version of this paper
with more technical details has been published before as a
technical report [21]. The authors thank Christian Kästner,
Don Batory, and Marko Rosenmüller for helpful comments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

programs. In prior studies on transformation-based SPLs,
however, we and others observed that errors were hard to
track and remove [2, 20, 33]. The solutions presented ac-
cordingly concentrate on syntactic correctness but semantic
correctness is not discussed, i.e., patching SPL programs is
not discussed.

As a first contribution of this paper, we provide an analy-
sis on how SPL programs can be patched (manually edited).
In particular, we compare the patching of SPL transforma-
tions with the patching of generated programs. As sample
transformations used in SPLs, we concentrate on superim-
positions and refactorings. From our analysis we argue that
patching the transformations of an SPL can be inappropri-
ate – we need techniques to also patch the generated code.

As a second contribution, we present and demonstrate a
new approach for propagating patches from generated SPL
programs to SPL transformations. That is, after the devel-
oper stepped through and patched the generated program, a
propagation tool identifies and propagates the patches to the
SPL transformations. In this approach, we combine an index
data structure with a transformation history data structure
to optimize patch propagation. We demonstrate the feasi-
bility of this approach with our prototype.

2. TRANSFORMATIONS IN SPLS

Superimposition. A number of approaches use superim-
position transformations to implement SPLs, e.g., [2, 4, 25].
A superimposition creates classes in its input program and
executes class refinements on this input program. A class re-
finement creates members in input-program classes and exe-
cutes method refinements. Method refinements create state-
ments in input-program methods. We use feature-oriented
programming to represent SPL techniques that use super-
imposition transformations; further, we use Jak as a sample
feature-oriented language [4]. Jak extends Java by superim-
position mechanisms.

In Figure 1a, we sample code which is similar to code of
an SPL from prior work where we integrated programs of a
compression-library SPL with environments, i.e., we bridged
incompatible structures between them [19]. A superimpo-
sition transformation Base is defined to transform a pos-
sibly empty input program by creating a class ZipArchive,
i.e., Base encapsulates ZipArchive. Superimposition Stats
encapsulates a class refinement of ZipArchive which extends
ZipArchive in the input program of Stats. This class refine-
ment encapsulates members (Lines 4-7) and a method refine-
ment (Lines 8-10). The method refinement ZipArchive.getID

33

Transformation Base

1 class ZipArchive{
2 int getID(){return 1;} }

Transformation Stats

3 refines class ZipArchive{
4 int counter=0;
5 void count(){
6 counter = counter/1;
7 System.out.print(counter); }
8 int getID(){
9 count();

10 return Super.getID(); } }

Transformation MakeCompatible

11 Rename method: ZipArchive.getID() 7→id

(a) SPL transformations.

1 class ZipArchive{
2 int counter=0;
3 void count(){
4 counter = counter/1;
5 System.out.print(counter);}
6 int getID(){
7 count();
8 return 1;} }

(b) SPL product generated
from Stats, Base.

1 class ZipArchive{
2 int counter=0;
3 void count(){
4 counter = counter/1;
5 System.out.print(counter);}
6 int id(){
7 count();
8 return 1;} }

(c) SPL product generated
from MakeCompatible,

Stats, Base.

Figure 1: Superimpositions and their composition
result.

of Stats extends method ZipArchive.getID in the input pro-
gram of Stats (method created by Base) and creates state-
ments in this method. The extended method is called with
Super (Line 10). The result of executing Base and Stats
from Figure 1a is shown in Figure 1b. A class ZipArchive
there encapsulates the members of both ZipArchive class
fragments it was generated from (members getID, counter,
count). Method getID encapsulates the code generated from
getID of Base and of Stats.

Refactoring. Program generation may involve configuring
the program’s structure using selectable refactorings. Refac-
torings are transformations which alter the structure of a
program but do not alter its functionality [13]. For example,
renaming a method of a program and updating all method
calls is a Rename-Method refactoring [13]. We use refactor-
ing feature modules (RFMs) [19] to represent SPL techniques
which use refactoring transformations.
We introduced RFMs to allow configuring the structure

of SPL programs [19]. RFMs allowed us to reuse SPL pro-
grams in different incompatible environments in which they
could not have been reused as is before. One selection of
refactorings then allowed us to reuse SPL programs in one
environment and another selection allowed us to reuse the
same programs in another environment.
In Figure 1a, we defined an RFM MakeCompatible in the

SPL code base. Executing Base, Stats and MakeCompatible
generates a class ZipArchive with members id, count, and
counter but no member getID, see Figure 1c.

Refactoring transformations have preconditions that spec-
ify which properties a piece of code must fulfill such that the
executed transformation does not alter the piece’s function-
ality [28]. The above refactoring of MakeCompatible (Re-
name Method: ZipArchive.getID 7→ id) requires that method
ZipArchive.getID exists and that no method ZipArchive.id ex-
ists in the code to refactor. (Further preconditions exist, but
are not important for now.)

Refactorings can replace pieces of code one-by-one, can
merge code, can multiplex code, and can create code in their
respective input programs. Since transformations with these
abilities are considered non-trivial [1, 8, 12, 38], refactorings
are non-trivial transformations in SPL technology. For ex-
ample, a Rename-Class refactoring inside an RFM replaces
(renames) a class of an input program one-by-one by a class
in the according output program [13]. A Pull-Up-Method
refactoring inside an RFM merges multiple methods of an
input program into one method in the according output pro-
gram.1 A Push-Down-Field refactoring inside an RFM mul-
tiplexes a single field of an input program in the according
output program.2 An Encapsulate-Field refactoring inside
an RFM creates a get and a set method for a field and no
code is removed for that [13].

3. PROBLEM STATEMENT
A generated SPL program may work incorrectly due to

bugs. As an example, we placed a bug in the code of Fig-
ure 1. The program in Figure 1c should print the oper-
ation count (consecutive numbers) but it prints zeros in-
stead. The reason is that the code in Line 4 is incorrect
and should be patched to “counter=counter+1;”. Finally,
however, this patch must affect Line 6 of the SPL transfor-
mations (Fig. 1a). To patch SPL programs, we can (a) patch
the transformations (Fig. 1a) and then regenerate the pro-
gram, or (b) patch the generated program (Fig. 1c) and later
possibly propagate the patches to the transformations. We
now discuss strengths and weaknesses of both approaches.

3.1 Mapping Problem
SPL transformations like superimpositions and refactor-

ings are executed one after the other such that the over-
all mapping of code in the generated program to code in
transformations is complex [12, 36]. A piece of code in the
generated program might be the result of merging, multi-
plexing, and replacing code during program generation, so
we should hide this complex mapping from the developer.
Additionally, the code shown to the developer should be in
a language which she is familiar with.

When patching generated programs, a patch must
be propagated to an SPL transformation T (we call this
transformation target). For that, all SPL transformations
T that follow T must be inverted (undone) in the generated
program. To invert a refinement we can instantiate a remove
operation; for a refactoring A, we can instantiate a refactor-
ing of which the type is hard-coded to invert A. Patches may
prevent a transformation of T being inverted. For example,
adding a method ZipArchive.getID to the code of Figure 1c
prevents inverting the transformation MakeCompatible (Re-

1Pull-Up Method moves a subclass method to a superclass
and removes equivalent methods of other subclasses [13].
2Push-Down Field generates a copy of the pushed field in
multiple subclasses and removes the superclass field [13].

34

SubArchive1
getID()g

SubArchive2
getID()g

SubArchive1
g

SubArchive2
g

ZipArchive
g

ZipArchive
getID()g

△ △

Pull-Up Method−−−−−−−−−−−−→

Figure 2: Pull-Up Method refactoring merges code.

name Method: ZipArchive.getID 7→ id) because otherwise
ZipArchive.getID would be generated twice in SPL programs
(which is an error in most languages). Approaches to patch
generated programs, thus, need a fallback strategy. The code
shown to the developer is in a language (Java) which is very
similar to the language the developer used to implement the
SPL (Jak+RFM), i.e., she should be familiar with it.
When patching SPL transformations and the code

executed in the generated program was created by a refac-
toring (code did not exist before), there is no code on the
level of the transformations to show to a developer accord-
ingly [38]. Showing transformation definitions instead is not
an option as they might not show the code they generate,
either. For example, RFMs define properties of code to gen-
erate but RFMs do not include this code [19], e.g., they
define which field to encapsulate but do not include get and
set methods. However, skipping this code is error prone [12].
If an executed method was merged by a refactoring from

multiple methods, each of these methods in the transfor-
mations is a valid (with respect to the generated program)
mapping value from the executed, generated method [38].
Showing the wrong method with respect to the transforma-
tions, however, causes confusion. In the example of Figure 2,
a Pull-Up-Method refactoring merges SubArchive1.getID and
SubArchive2.getID to ZipArchive.getID. Assume, the patch
tool defines SubArchive1.getID to represent the executed,
merged method ZipArchive.getID on the level of the trans-
formations. But if SubArchive2.getID was called on the level
of transformations the developer is confused seeing Sub-
Archive1.getID.
If executed code was merged by a refactoring from mul-

tiple methods, then breakpoints set in the transformations
to one of the original methods can match too often or too
rarely [1]. For example, methods SubArchive1.getID and Sub-
Archive2.getID in Figure 2 are merged by a Pull-Up-Method
refactoring. Assume, the patch tool maps the executed,
merged method ZipArchive.getID to SubArchive1.getID which
hosts a breakpoint in the transformations, then this break-
point will match for SubArchive2.getID, too incorrectly. A
breakpoint set to SubArchive2.getID (not referenced from the
generated program) will never match. This nondeterminism
hampers stepping through the program.
If executed code was generated by a refactoring which

multiplexes code, multiple values of variables from the gen-
erated program might need to be merged on the level of
transformations – this, however, might be impossible. As
an example, consider a Push-Down-Field refactoring on a
static field which generates multiple static fields in the gen-
erated program; these generated fields can expose different
values in the executed program but can only expose one
on the level of transformations. According values must be

merged to be presented as one value for the single (pushed)
field in the transformations. However, this is not possible
generally. Variable values then cannot be analyzed.

The code shown to the developer is in the language the
developer used to write the SPL, i.e., she should be familiar
with it. (Solutions exist for problems similar to the prob-
lems above [1, 14, 38]. However, approaches are limited to
languages for which conditional breakpoints and path anal-
yses can be compiled into binaries.)

3.2 Scattering Program Code
During patching an SPL program a developer should con-

centrate on this program’s bug in the first place. Just in the
second place other SPL programs should be considered.

When patching generated programs, code of other
SPL programs, i.e., code that does not contribute to the
patched program, is hidden and errors in these other pro-
grams are postponed until finishing program patching. Nev-
ertheless, the patches can be checked automatically against
all SPL programs, e.g., during propagation, and an error can
be reported when a patch introduces a program in error [33].

When patching transformations, code that contribu-
tes to one SPL program is scattered across transformations.
For that, the developer must execute the transformations
in-mind in order to foresee the code actually executed when
stepping over it, e.g., when stepping over a method call. The
developer needs similar knowledge to decide which methods
she can call in a patch of a transformation (“How do input
programs of a transformation-to-patch look like?”). Note,
if tools would visualize generated code they switch to the
patch-generated-programs approach.

As an example of in-mind transformation execution, re-
consider Figure 1a. In these SPL transformations, a devel-
oper may want to add to superimposition Base a method
that calls Element.id (not depicted). As Element.id is unde-
fined in Base the developer must generate the patched pro-
gram in-mind to verify that she is able to call this method in
Base. Transformations in the SPL code base which do not
contribute to the patched program distract the developer
from the bug to repair.

Code in unpatched superimpositions might be replaced or
overridden by a patch, accidentally, in the currently patched
SPL program or others. For example, when a developer ap-
plies a patch (not depicted) in Figure 1a such that she adds a
new superimposition AfterStats which follows Stats and such
that she adds a method ZipArchive.count to AfterStats, then
this AfterStats method replaces ZipArchive.count of Stats. It
can get worse. If Stats would not contribute to the patched
program but to a different program, the patch could replace
count in this other program, unnoticed. Current approaches
which validate the whole SPL [33] may help but execut-
ing them during patching hampers implementing the patch.
When a method created in a patch overrides a method in a
different SPL program accidentally current mechanisms do
not help; especially, when the developer intended to override
some different method.

3.3 Bounded Quantification Problem
Bounded quantification is a guideline to reduce complexity

in transformation systems [23, 26]. Bounded quantification
restricts code generated by a transformation to only access
code which exists in the transformation’s input program,
i.e., which has been generated by preceding transformations.

35

SPL

Generation
Tool
Propagation

Tool
1

3

2

¬=select SPL program
=patch SPL program
®=propagate patches

Figure 3: Use case for patching SPL programs.

Bounded quantification should hold before patching and af-
ter, e.g., no developer/tool should patch a class in a transfor-
mation A to subtype a class which is generated by a follower
transformation of A.3 Developers should be advised in which
transformation and how to implement a patch.
When patching generated programs, a patch is de-

tected and propagated automatically. Thereby, the tool can
advise in choosing a transformation to host the patch (tar-
get). The tool can further check that bounded quantification
is not broken with this advice, even in other SPL programs.
When patching transformations, the developer may

realize during patching that with the patch just implemented
she breaks bounded quantification. Then she might have
to move the patch (manually) into another transformation.
Additional complexity is put upon the developer when patch-
es break subsequent transformations (maybe in other SPL
programs). In the example of Figure 1a, a developer, who
aims to patch superimposition Base and, for that, adds a
method ZipArchive.id, breaks the follower RFM MakeCom-
patible because this RFM requires ZipArchive.id not to exist
in its input program. With a growing number of super-
imposition and refactoring transformations, the restrictions
imposed by transformations, which follow a transformation
to patch, become opaque and unmanageable [12].

3.4 Summary
Patching SPL transformations may present incorrect or no

code to the developer (cf. Sec. 3.1), may show scattered code
(cf. Sec 3.2), and may require to re-implement patches (cf.
Sec. 3.3). Patching generated programs may “just” require a
fallback strategy when transformations cannot be inverted.

4. PATCHING THE TRANSFORMATIONS
Some researchers argue to step through code and to patch

it on the level of transformations (there: high-level code),
e.g., [7, 15, 37]. From our analysis and in line with oth-
ers [1, 8, 12,36] we argue that stepping through code can be
meaningful at every level of abstraction. We show now how
code generated from transformations can be patched, too.

4.1 Conceptual Process
We propose to let the developer step through and patch

the generated program, and to propagate automatically each
patch to the best SPL transformation; this use case is de-
picted abstractly in Figure 3. The propagation tool is pro-
posed to find and link patches, prepare the propagation, per-
form the propagation, and to save the propagation.

3Some languages used for SPLs, e.g., Jak or AspectJ, do not
enforce bounded quantification. Patches to SPLs written in
these languages can break bounded quantification.

Index Key Index Value

ZipArchive.id [Base::ZipArchive.getID,
Stats::ZipArchive.getID]

ZipArchive [Base::ZipArchive,
Stats::ZipArchive]

ZipArchive.counter [Base::ZipArchive.counter]
ZipArchive.count [Stats::ZipArchive.count]

Table 1: Sample index for code of Figure 1c.

Find and link patches. At first, the propagation tool should
compare the patched program with an unpatched version of
this program to find patches. To ease propagation later, the
tool should link each patch to a qname (abbreviation for
fully-qualified name) which encapsulates the patch. In our
example of Figure 1, the propagation tool should find the
patch in Line 4 of Figure 1c and should link it to qname
ZipArchive.count.

Prepare propagation. To advise where, i.e., to which SPL
transformation, to propagate a patch best later (we call such
transformation target), the propagation tool should calcu-
late the origins of generated members and classes. For that,
it should analyze the executed superimposition transforma-
tions and refactoring transformations in execution order.
The propagation tool should record in an index structure
for every generated qname a (list of) qname from the trans-
formations of which the code includes the generated code. If
there is no such qname in the transformations, i.e., when an
RFM creates code, then an empty list is recorded as index
value for the qname of this code.

An index for the SPL program of Figure 1c is given in
Table 1. The index key is a qname from the generated pro-
gram and the index value is a list of qnames from code of the
transformations, prefixed with these transformations. For
example, ZipArchive.id is indexed to be generated from Zip-
Archive.getID in transformations Base and Stats.

To advise how a patch should be implemented in the tar-
get later, the propagation tool should record all code trans-
formations which executed in a transformation history. In
the transformation history of Figure 1c, MakeCompatible is
recorded to affect Base and Stats.

Perform propagation. To perform patch propagation, the
propagation tool first should calculate a good target and
then invert all transformations on the patch which executed
after the target during program generation. The tool should
calculate a good target in three steps: First, the tool ana-
lyzes the qnames which the patch relates/references to, e.g.,
qnames of called method and hosting classes – the origin of
these qnames is the best target for hosting the patch. Sec-
ond, to avoid that an inverted transformation cannot be re-
performed after propagation, the propagation tool should,
for every transformation to invert, analyze the qnames and
their relations in the respective transformation’s input pro-
gram. That is, the described index should also keep qnames
deleted during program generation and tag them. If qname
relations required by a transformation conflict a patch (dis-
allow to invert a transformation), then we apply a fallback
strategy. Third, the propagation tool should check whether
bounded quantification is broken when the patch is propa-

36

gated to its target – if so, the propagation tool should adapt
the target to be the follower of all transformations which
introduce code the patch references (required condition for
bounded quantification).
The fallback strategy we propose (there might be more):

When inverting a transformation fails, the propagation tool
creates a transformation which follows the non-invertible
transformation; a transformation which will replace the er-
roneous code in future SPL programs.
We want to exemplify patch propagation with the pri-

orly discussed patch for Figure 1c (“counter=counter/1;”
7→ “counter=counter+1;”). The patch is found and linked
to ZipArchive.count. In the index shown in Table 1, Zip-
Archive.count is recorded to be generated in Stats, so Stats
is calculated as target for the patch. The patch does not ref-
erence other qnames (bounded quantification cannot break)
and so the target remains Stats. The propagation tool finally
inverts MakeCompatible on the patch (nothing changes) and
provides this propagated patch as advice to the developer.
If MakeCompatible could not be inverted in the presence of
patched ZipArchive.count, the tool should advise our fallback
strategy, i.e., it should insert a new transformation as a fol-
lower of MakeCompatible with patched ZipArchive.count.
When a qname exists in the index but maps to an empty

list of value qnames (the piece of code got created by a refac-
toring), then the tool should propagate the patch along the
reverse global sequence of program transformations. Thereby,
it should invert SPL transformations until one transforma-
tion identifies the patched piece of code as “self-generated”
and provides a target. As an example, assume the patched
ZipArchive.count would have been created by MakeCompat-
ible (e.g., when MakeCompatible is an Encapsulate Field
refactoring) – then ZipArchive.count would occur in the index
but would map to an empty list. In this case, the transfor-
mations from MakeCompatible to Base would be inverted.
The inversion process of MakeCompatible would stop this
target-less propagation because at first it defines a new tar-
get for the patch. In this special case of MakeCompatible
creating count, the target would be a new follower of Make-
Compatible because RFM MakeCompatible does not encap-
sulate code to patch. If MakeCompatible would have merged
ZipArchive.count from multiple pieces of code, then the inver-
sion algorithm for MakeCompatible would generate multiple
targets and propagation continues.

Save propagation. We use metrics (origins of referenced
code) to identify the best target for a patch and so this
target might be suboptimal semantically though meaningful
and correct syntactically. A propagation tool, thus, should
advise a mapping to the developer but should ask the de-
veloper to confirm. For instance, the tool could save the
patched SPL transformations separately such that the de-
veloper can decide whether to accept the propagation. If
she accepts, the original SPL transformations are replaced.

4.2 Unsupported Patches & Transformations
The transformations available for program generation limit

the patches which can be propagated from the generated
program to the transformations. Depending on the trans-
formation language, no fallback strategy seems available.
As a first example, superimpositions in Jak cannot replace

constructors generated by preceding transformations [29].
Patches in constructor bodies must be propagated to the

transformation which created the constructor. If they can-
not be propagated, we emphasize the advice from the Jak
documentation to extract constructors into initialization
methods [29]; methods which then can be replaced with our
fallback strategy.4

As a second example, code removed from the generated
program might not be allowed to be removed in the trans-
formations, accordingly. If the deletion in the generated
program prevents to invert a transformation, a propagation
tool cannot propagate the patch but also cannot delete the
qname by adding a superimposition (because superimposi-
tions can only generate code) nor by adding a refactoring
(because refactorings can only change code structure).

Refactorings (e.g., of RFMs), refinements (e.g., of Jak) as
well as aspects [18] and rewrites [35] can be inverted such
that patch propagation is possible, but this is not the gen-
eral case. Higher-order rewrites (where pieces of code are
matched by incomplete patterns) [34] can only be inverted
when code matched with wildcards can be reconstructed. If
a transformation cannot be inverted, we propose to apply
our fallback strategy.

The mapping from the generated program towards the
transformations is specific to tools. If different tools trans-
late the same set of transformations differently, the index
creation tool must be parameterized with the transforma-
tion tool used. For example, for Jak at least 2 different
tools with 2 different translations into Java exist [3]. (Note,
this situation adds effort in every solution approach.)

5. PROTOTYPE & DEMONSTRATION
We demonstrate that stepping through and patching the

generated program and that propagating patches afterwards
is feasible for superimposition- and refactoring-based SPLs.
That is, we implemented the above concepts prototypically
and used the tool in a demonstrating example.

Our prototype finds patches and links them to qnames
(Phase 2 in Sec. 4.1), calculates the best target for every
patch (Phase 3), and stores the propagation advice sep-
arately (Phase 4). To do this, for every superimposition
(analyzed in composition order), the prototype collects the
qnames of code which is generated in these superimpositions
as index keys and as index values. Recorded transforma-
tions are executed on index keys but not on index values.
Thus, the index in the end maps qnames of the generated
program to qnames of the transformations. Our prototype
currently supports one transformation tool for Jak and one
for refactoring feature modules (RFMs) – error detection
based on qname relations during program generation is not
yet implemented (keeping and tagging deleted qnames). For
more implementation details, simplifications, and for more
demonstrating examples please consult [21, 31] – they are
omitted for readability.

Demonstrating example. We demonstrate the propaga-
tion approach using the Graph Product Line (GPL) which
has been proposed to be a standard benchmark for SPL tech-
nology [22]. Specifically, we use a version from prior work
in which we added RFMs to GPL in order to integrate GPL

4For patched field initializations (fields also cannot be re-
placed in Jak superimpositions) we envision to encapsulate
their initialization in methods, too, which can be replaced.

37

Transformation (Superimp.) Directed

1 class Graph{ ...
2 public void addEdge(Edge the edge){
3 Vertex start = the edge.start;
4 Vertex end = the edge.end;
5 edges.add(the edge);
6 start.addNeighbor(new Neighbor(end,the edge)); }}

Transformation (Superimp.) Weighted
Transformation (Superimp.) Shortest

Transformation (Superimp.) Benchmark
Transformation (Superimp.) adaptToClient

Transformation (RFM) VertexVerteximpl

7 Rename class: Vertex 7→VertexImpl

Transformation (RFM) GraphWgraph

8 Rename class: Graph 7→WeightedGraphImpl

Transformation (RFM) AddvertexAdd

9 Rename method:˜˜˜˜˜˜˜˜
WeightedGraphImpl.addVertex(VertexImpl) 7→add

Transformation (RFM) ShortestSmall

10 Rename method:
WeightedGraphImpl.ShortestPath(VertexImpl) 7→shortestPath

(a) Original SPL transformations

⇓

Transformation (Superimp.) Directed

1 class Graph{ ...
2 public void addEdge(Edge the edge) {
3 if(the edge != null){
4 Vertex start = the edge.start;
5 Vertex end = the edge.end;
6 edges.add(the edge);
7 start.addNeighbor(new Neighbor(end, the edge));
8 }else{
9 System.out.println(”Param the edge was null!”); } }}

Transformation (Superimp.) notInvertibleFor ShortestSmall

10 refines class WeightedGraphImpl{
11 public WeightedGraphImpl ShortestPath(VertexImpl s){
12 return shortestPath(s); }}

(d) Propagation advice (patched SPL transformations)

⇑

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the edge) {
3 VertexImpl start = the edge.start;
4 VertexImpl end = the edge.end;
5 edges.add(the edge);
6 start.addNeighbor(new Neighbor(end, the edge)); }}

(b) Generated SPL program ⇒

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the edge) {
3 if (the edge != null) {
4 VertexImpl start = the edge.start;
5 VertexImpl end = the edge.end;
6 edges.add(the edge);
7 start.addNeighbor(new Neighbor(end, the edge));
8 }else{
9 System.out.println(”Param the edge was null!”); } }

10 public WeightedGraphImpl ShortestPath(VertexImpl s) {
11 return shortestPath(s); }}

(c) Patched, generated SPL program

Figure 4: Stepping through and patching the code of the GPL class Graph/WeightedGraphImpl.

programs with incompatible environments [19].5 The refac-
torings we apply, Rename-Class and Rename-Method, pose
an important fraction when integrating programs [19].
We selected 9 features from GPL which correspond to pro-

gram transformations which in turn generate a compilable
program; 5 superimpositions and 4 RFMs. In Figure 4a, we
list the transformation names in execution order (top-down)
and show relevant code snippets from these transformations.
The superimpositions generate and refine the classes Edge,
Graph, Neighbor, and Vertex. The RFMs rename class Ver-
tex into VertexImpl, class Graph into WeightedGraphImpl,
method WeightedGraphImpl.addVertex(VertexImpl) into add,
and method WeightedGraphImpl.ShortestPath(VertexImpl)
into shortestPath. With these RFMs, the GPL program of
the 4 superimpositions can be configured to be reusable as
a library in a program with which this GPL program was
incompatible before [19]. As we did not find bugs in the

5We pruned the GPL version according to the current limi-
tations of our prototype.

GPL program, we patched this generated program at will to
cover interesting cases.

Using Figure 4, we want to demonstrate the proposed pro-
cess in a practical scenario for patching class Graph. At first
the developer executes the SPL transformations (Fig. 4a) to
generate the SPL program (Fig. 4b). Later, this program
is observed to not work properly, is stepped through, and
is patched (Fig. 4c). By comparing the generated program
(Fig. 4b) and the generated, patched code (Fig. 4c), the
propagation tool finds three patches applied to class Weight-
edGraphImpl – we underline them in Figure 4c. The tool
links these patches to qnames, e.g., it links the patch in
Line 3 to WeightedGraphImpl.addEdge(Edge). The method
addEdge(Edge) is found to be patched (not created) because
an index key exists. As a result, the tool computes from
its index that addEdge was generated lastly in the superim-
position Directed which becomes target (cf. Fig. 4a). The
propagation tool detects that code in the patch does not ref-
erence qnames others than the hosting method addEdge did

38

1 class VertexImpl{ ...
2 private boolean displayed = false;
3 public void display() {
4 System.out.print(”Pred ”+ predecessor + ”DWeight ”+

dweight + ””);
5 display$$eval$outWeighted$GG();
6 this.displayed = true;}
7 public boolean wasDisplayed(){
8 return displayed; }
9 public VertexImpl assignName(String name) {

10 this.name = name;
11 if(this.wasDisplayed()){
12 System.out.println(”was already displayed!”); }
13 return (VertexImpl)this; }}

Figure 5: Patches to Vertex/VertexImpl.

before, so Directed remains target. The propagation tool
inverts the 4 RFMs, which executed after target Directed,
on the patch and advises the developer to replace method
addEdge in transformation Directed (Fig. 4d, Lines 2-9).
The second patch (Fig. 4c, Lines 8-9) is linked to the same
qname WeightedGraphImpl.addEdge and is propagated to-
gether with the first one.
The third patch (Fig. 4c, Lines 10-11) requires the fall-

back strategy. The patch concerns a method ShortestPath,
which was created during patching (no index key exists).
The tool analyzes that ShortestPath solely references short-
estPath (generated in Shortest) and thus the tool uses Short-
est as target for ShortestPath. Next, the target Shortest
is validated whether all RFMs that executed after Short-
est can be inverted with ShortestPath.6 The propagation
tool cannot invert RFM ShortestSmall (Rename Method:
WeightedGraphImpl.ShortestPath(VertexImpl) 7→ shortestPath)
because this would make SPL transformations, which exe-
cute before ShortestSmall, generate two methods Weight-
edGraphImpl.ShortestPath(VertexImpl) in products – this is
an error in most product languages. Following our fall-
back strategy, the propagation tool adds a superimposition
notInvertibleFor ShortestSmall as a follower of ShortestSmall
(cf. Fig. 4d), a superimposition which then adds the patch
ShortestPath to future programs. Note in Figure 4d, as
ShortestSmall is not inverted, the tool advises to refine class
WeightedGraphImpl (exists after ShortestSmall) instead of
Graph.
In a final analyzed case, we added references towards

qnames in a patch. In Figure 5, we underline the patches
applied to class VertexImpl.7 The field displayed and the
method wasDisplayed got added, and methods display and as-
signName got patched to access the added field and method.
Our propagation tool detects those accesses and for that ad-
vises to use superimposition Shortest (refines display lastly)
as target for displayed. As wasDisplayed got added and solely
accesses displayed, the propagation tool advises to propa-
gate wasDisplayed to Shortest (target of displayed), too. If
we would patch display and assignName in Directed (creates
display and assignName), the reference to a Shortest method

6Superimpositions are invertible in Jak naturally due to the
Jak composer implementation. In other languages local vari-
ables might need to be transformed into fields.
7Line 5 of Fig. 5 shows a possible translation for Su-
per.display(); inlining this call would remove the statement.

or field would break bounded quantification. For that, the
patches to methods assignName and display are advised to
be propagated to Shortest, too. In Shortest they replace the
methods created in Directed. Summarizing, our tool advised
well where and how to propagate patches which we made to
an SPL program.

6. RELATED WORK
There is much work on how to relate generated and trans-

formation code, e.g., for stepping through code [12, 27, 30,
32,34,35,37]. In addition to this work, we propagate patches
from generated SPL programs to the code base of an SPL.
There is further work on how to propagate patches from
generated programs to the code of a superimposition-based
SPL [3]. In addition to this work, we support SPLs which
are implemented by superimpositions and refactorings.

Compilers execute refactoring-like transformations (opti-
mizations) on code which keep functionality. Patching these
(one-of-a-kind) programs poses similar problems as we faced
for SPLs [1, 7, 14, 15, 36, 38]. In contrast to according work,
the transformations we considered (superimpositions and
refactorings) cannot only change code structure but also add
functionality. As a result, executed code exists in the gen-
erated program but has no origin in the (possibly empty)
initial input program.

MolhadoRef inverts refactorings to reduce human inter-
action when integrating a patched program with a former
revision of this program [10,11]. Lynagh provides ideas sim-
ilar to MolhadoRef for edits [24]. While both approaches
propagate patches of a program toward a single program (an
earlier revision), we propagate patches of a program toward
the code base of a transformation-based SPL.

Bidirectional transformations (a.k.a. lenses) synchronize
multiple related representations of elements where patches
can be propagated in any representation [9,16]. In the patch
propagation problem we focused on, edits to the generated
program may prevent the execution of inverse RFMs (we,
thus, discussed a fallback strategy) – such situation may
not occur for bidirectional transformations.

Design maintenance systems execute transformations in
order to generate a program [5]. In design maintenance
systems, maintenance deltas are transformations which are
added to a transformation history during maintenance of
the generated program [5]. Baxter indicates patch propaga-
tion toward an old abstraction (specification) [5], but this
old abstraction is no code base of an SPL (instrumenting
superimpositions and refactorings). Baxter did not explore
backward integration mechanisms though.

7. CONCLUSIONS
In this paper we discussed a number of problems which

occur when stepping through and patching a program gen-
erated from a transformation-based software product line
(SPL). Specifically, we discussed problems of complex map-
pings of code between the transformations and the gener-
ated program, problems of scattered SPL program code, and
problems of patches that increase complexity. We found that
for SPLs implemented with transformations of superimpo-
sitions and refactorings, the generated code is a beneficial
option for stepping and patching. We automated the prop-
agation of patches from the generated program to the SPL
transformations and demonstrated its feasibility.

39

For our approach, we combined index techniques and trans-
formation histories (both known from other contexts) to aid
patching in transformation-based SPLs. Our propagation
tool links detected patches to fully-qualified names of the
generated program. It calculates the best SPL transforma-
tion to host a patch. The tool finally advises how to inte-
grate the patch with the SPL transformations.

8. REFERENCES
[1] A.-R. Adl-Tabatabai. Source-level debugging of

globally optimized code. PhD thesis, Carnegie Mellon
University Pittsburgh, 1996.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type safety for feature-oriented product lines.
Automated Software Engineering – An International
Journal, 17(3):251–300, 2010.

[3] D. Batory. A tutorial on feature oriented
programming and the AHEAD tool suite. In GTTSE,
pages 3–35, 2006.

[4] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. TSE, 30(6):355–371, 2004.

[5] I.D. Baxter. Transformational maintenance by reuse of
design histories. PhD thesis, University of California
at Irvine, 1990.

[6] P. Clements and L. Northrop. Software product lines :
Practices and patterns. Addison-Wesley, 2006.

[7] D.L. Curreri, A.K. Iyengar, R.A. Biesele, and M.A.
Ruscetta. Debugging optimized code using data
change points, 2000. US patent #6,091,896.

[8] K. Czarnecki and U. Eisenecker. Generative
programming: Methods, tools, and applications.
Addison-Wesley, 2000.

[9] K. Czarnecki, J.N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J.F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. In
ICMT, pages 260–283, 2009.

[10] D. Dig. Automated upgrading of component-based
applications. PhD thesis, University of Illinois at
Urbana-Champaign, 2007.

[11] D. Dig, K. Manzoor, R.E. Johnson, and T.N. Nguyen.
Effective software merging in the presence of
object-oriented refactorings. TSE, 34(3):321–335, 2008.

[12] R.E. Faith. Debugging programs after
structure-changing transformation. PhD thesis,
University of North Carolina at Chapel Hill, 1998.

[13] M. Fowler. Refactoring: Improving the design of
existing code. Addison-Wesley Longman Publishing
Co., Inc., 1999.

[14] J. Hennessy. Symbolic debugging of optimized code.
TOPLAS, 4(3):323–344, 1982.

[15] U. Hölzle, C. Chambers, and D. Ungar. Debugging
optimized code with dynamic deoptimization. ACM
SIGPLAN Notices, 27(7):32–43, 1992.

[16] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable
editor for developing structured documents based on
bidirectional transformations. In PEPM, pages
178–189, 2004.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University
Pittsburgh, 1990.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP, pages 327–353, 2001.

[19] M. Kuhlemann, D. Batory, and S. Apel. Refactoring
feature modules. In ICSR, pages 106–115, 2009.

[20] M. Kuhlemann, D. Batory, and C. Kästner. Safe
composition of non-monotonic features. In GPCE,
pages 177–186, 2009.

[21] M. Kuhlemann and M.Sturm. Debugging product line
programs. Technical Report 6, Faculty of Computer
Science, University of Magdeburg, 2010.

[22] R.E. Lopez-Herrejon and D. Batory. A standard
problem for evaluating product-line methodologies. In
GCSE, pages 10–24, 2001.

[23] R.E. Lopez-Herrejon and D. Batory. Improving
incremental development in AspectJ by bounding
quantification. In SPLAT, 2005.

[24] I. Lynagh. An algebra of patches, 2006. http://-
urchin.earth.li/∼ian/conflictors/paper-2006-10-30.pdf.

[25] M. Odersky. The Scala language specification (version
2.7), 2005.

[26] D.L. Parnas. Designing software for ease of extension
and contraction. In ICSE, pages 264–277, 1978.

[27] Z. Porkoláb, J. Mihalicza, and Á. Sipos. Debugging
C++ template metaprograms. In GPCE, pages
255–264, 2006.

[28] D.B. Roberts. Practical analysis for refactoring. PhD
thesis, University of Illinois at Urbana-Champaign,
1999.

[29] Software Systems Generator Research Group. The
jampack composition tool. AHEAD tool suite
v2008.07.22, manual.

[30] B. Stroustrup. The C++ programming language.
Addison-Wesley Longman Publishing Co., Inc., 2
edition, 1991.

[31] M. Sturm. Debugging Generierter Software nach
Anwendung von Refactorings. Master thesis,
University of Magdeburg, Germany, 2010.
http://wwwiti.cs.uni-magdeburg.de/iti db/publi-
kationen/ps/auto/thesisSturm.pdf.

[32] Sun Microsystems, Inc. JSR-000045 Debugging
support for other languages 1.0 FR, 2003.

[33] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In GPCE, pages 95–104,
2007.

[34] A. van Deursen and T.B. Dinesh. Origin tracking for
higher-order term rewriting systems. In HOA, pages
76–95, 1994.

[35] A. van Deursen, P. Klint, and F. Tip. Origin tracking.
Journal of Symbolic Computation, 15(5-6):523–545,
1993.

[36] H. Venturini, F. Riss, J.-C. Fernandez, and
M. Santana. A fully-non-transparent approach to the
code location problem. In SCOPES, pages 61–68, 2008.

[37] H. Wu, J. Gray, and M. Mernik. Grammar-driven
generation of domain-specific language debuggers.
SP&E, 38(10):1073–1103, 2008.

[38] P.T. Zellweger. An interactive high-level debugger for
control-flow optimized programs (summary). In
Software Engineering Symposium on High-Level
Debugging, pages 159–171, 1983.

40

Implementing Feature Variability for Models and Code
with Projectional Language Workbenches

 Markus Voelter
Independent/itemis

Oetztaler Strasse 38,

70327 Stuttgart, Germany
voelter@acm.org

Abstract

Product line engineering deals with managing and implementing
the variability among a set of related products. We distinguish
between two kinds of variability: configuration and customiza-
tion. Customization variability can be described using program-
ming language code or creative construction DSLs, whereas
configuration variability is described using configuration based
approaches, such as feature models. Many product lines have both
kinds of variability, and they need to be integrated efficiently.
This paper describes an approach for product line engineering
using projectional language workbenches. These represent code
and models with the same fundamental technology, enabling the
mixing of models and code. They make the tight integration be-
tween several domain-specific languages possible and simple.
Since they can store arbitrary information in models, it is possible
to overlay configuration variability over customization variability
(i.e. apply feature model-based configuration to code and models).
Because of the projectional approach to editing, programs can be
shown with or without the dependencies on feature models, they
can even be rendered (and edited) for a specific variant. This ap-
proach leads to highly integrated and productive tools for product
line development. The paper explains the approach, outlines the
implementation of a prototype tool based on Jetbrains MPS and
illustrates the benefits using a small product line for embedded
systems.

Keywords Product Line Engineering, Feature Modeling, Do-
main-Specific Languages, Language Composition
Classification: D.1.2 Automatic Programming, D.2.11 Software
Architectures, D.2.3 Coding Tools and Techniques (Program
editors), D.2.6 Programming Environments (Programmer work-
bench)

1. Introduction
The technical implementation of product line engineering focuses
on two main issues: a mapping from the problem space to the
solution space as well as the management and implementation of
variability. In both contexts, domain specific languages (DSLs),
i.e. languages that are custom-built to express specific, limited
aspects of a (software) system, can help.

When configuring a product, all variation points defined in the
product line have to be bound to a variant. Variation points can be
bound at different times (for example, when writing the code,
during system initialization, or at runtime). A variation point can
also vary in the degree to which it can be configured. Two funda-
mental kinds of variability can be distinguished: customization
and configuration.

When binding a configuration variation point, one among sev-
eral alternatives is chosen. Feature models [11] are a way to de-
scribe the configuration options for a set of variation points as
well as the constraints between them (such as "feature A cannot be
selected together with feature B"). The number of alternative con-
figurations may be large, but it is bounded, because only a limited
number of valid feature combinations exists.

Customization variability is unbounded. A customization vari-
ation point is bound by writing a (potentially very small) program
in a (perhaps very specific) language. For example, in a frame-
work, a variation point may require the implementation of a class
that implements an interface supplied by the framework, or in a
data management application, a variation point may expect a regu-
lar expression that validates some data. The regular expression
example suggests that it may be a good idea to define a domain-
specific language (DSL) to be used to bind the variation point.
DSLs usually allow the specification of an unlimited number of
programs ("you can always add one more box "), but the nature of
the programs is defined by the DSL.

In this paper I show how projectional language workbenches
(explained in the next section) can be used for product line devel-
opment, representing configuration and customization variability
in the same environmnet. I argue the benefits of using DSLs to
bind customization variability and will briefly show how to define
DSLs and how configuration variability can be overlaid over arbi-
trary languages, general-purpose and domain-specific. I also show

FOSD'10, October 10, 2010 Eindhoven, The Netherlands
Copyright © 2010 ACM 978-1-4503-0208-1/10/10... $10.00

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee.

41

how we can layer several languages on top of each other to enable
an effective problem space to solution space mapping. An embed-
ded systems product line will be used as the example, and the
tooling will be based on JetBrains MPS [21], an Open Source
projectional language workbench.

Section 2 describes the basics of projectional language work-
benches in general, and MPS specifically work. Section 3 ex-
plains a feature called language annotation that is very useful for
configuration variability. Section 4 shows our proof-of-concept,
section 5 takes a look at future work. Section 6 puts our contribu-
tion in relationship to others', and section 7 contains a brief con-
clusion.

2. Projectional Language Workbenches and MPS
The term Language Workbench has been coined by Martin Fow-
ler in 2005 [1]. In this article he characterizes it as a tool with the
following properties:
� Users can freely define languages which are fully integrated

with each other.
� The primary source of information is a persistent abstract

representation.
� A DSL is defined in three main parts: schema, editor(s), and

generator(s).
� Language users manipulate a DSL through a projectional

editor.
� A language workbench can persist incomplete or contradicto-

ry information.
Projectional editing implies that all text, symbols, and graphics

are projected, well-known from graphical modeling tools (UML,
ER, State Charts): the model is stored independent of its concrete
syntax, only the model structure is persisted, often using XML or
a database. For editing purposes this abstract syntax is projected
using graphical shapes. Users perform mouse and keyboard ac-
tions tailored to graphical editing to modify the abstract model
structure directly. While the concrete syntax of the model does not
have to be stored because it is specified as part of language defini-
tion and hence known by the projection engine, graphical model-
ing tools usually also store information about the visual layout.

Projectional editing can also be used for a syntax that is textual
or semi-graphical (mathematical notations, for example). Howev-
er, since the projection looks like text, users expect interaction
patterns and gestures known from "real text" to work (such as
cursor movements, inserting/deleting characters, rearranging text,
selection). A projectional editor has to "simulate" these interaction
patterns to be usable.

The following list shows the benefits of the approach:
� In projectional editing, no grammar or parser is used. Editing

directly changes the program structure (AST). Thus, projec-
tional editors can handle unparseable code. Language com-
position is easily possible, because composed languages
cannot result in ambiguous grammars, a significant issue in
classical parser-based systems.

� Notations are more flexible than ASCII/ANSI/Unicode.
Graphical, semi-graphical and textual notations can be mixed
and combined. For example, a graphical tool for editing state
machines can embed a textual expression language for edit-
ing the guard conditions on transitions.

� Projectional languages by definition need an IDE for editing
(it has to do the projection!), so language definition and ex-
tension always implies IDE definition and extension. The
IDE will provide code completion, error checking and syntax
highlighting for all languages, even when they are combined.

� Because the model is stored independent of its concrete nota-
tion, it is possible to represent the same model in different

ways simply by providing several projections. Different
viewpoints [23] of the overall program can be stored in one
model; editing can be viewpoint or aspect specific. It is also
possible to store out-of-band data, i.e. annotations on the
core model/program. Examples of this include documenta-
tion, pointers to requirements (traceability) [5] or feature de-
pendencies [6] - as we will describe below.

As a side effect, language workbenches deliver on the promise
of removing the distinction between what is traditionally called
programming and what is traditionally called modeling. This dis-
tinction is arbitrary: developers want to express different concerns
of software systems with abstractions and notations suitable to
that particular concern, formally enough for automatic processing
or translation, and with good IDE support. Projectional language
workbenches deliver on this goal in an integrated, consistent and
productive way. They do this by applying the technology known
from modeling tools (projection) to editing any notation.

The Jetbrains Meta Programming System

JetBrains’ Meta Programming System is an open source projec-
tional language workbench [21]. Defining a language starts by
defining the abstract syntax, the editor for the language concepts
is specified in a second step. Lastly the generator is defined. It
outputs text (for a low-level language) or it transforms higher-
level code into code expressed in lower level languages. The
higher-level to lower-level generators are not text generators, they
transform abstract syntax trees.

Editing the tree as opposed to “real text” needs some accusto-
mization. Without specific adaptations, every program element
has to be selected from a drop-down list and "instantiated". How-
ever, MPS provides editor customizations to enable editing that
resembles modern IDEs that use automatically expanding code
templates. In some cases though, the tree shines through: Consid-
er changing a statement like int i = j+k; to int i = (j+k)*2; you
cannot simply move the cursor to the left of j and insert a left
parenthesis. Rather, you have to select the + operator (the root
node of the expression on the right) and use a Surround with Pa-
rens refactoring. Using (as the hotkey for this refactoring creates
an editing experience very similar to "real" text).

Language Definition with MPS

I have described language creation, extension and composition in
MPS in a separate paper [22]. This section shows an example as a
short summary. MPS, like other language workbenches, comes
with a set of DSLs for language definition, a separate DSL for
each language aspect. Language aspects include structure, editor,
type system, generator as well as support for features such as
quick fixes or refactorings.

Defining a new language starts by defining the language struc-
ture (aka meta model). This is very much like object oriented
programming as language elements are represented as concepts
that have properties, children and references to other concepts.
The second step is the editor for the language concepts. An editor
defines how the syntax for the concepts should look like - it con-
stitutes the projection rules. Figure 1 is an example.

Figure 1. Defining an editor for a local variable declara-
tion statement (as in int i = 2*2;)

42

Next is the definition of the type system. For example, the type
property of a LocalVariableDeclaration must be compatible with
the type of its init expression.

At this point, the definition of the language and the basic edi-
tor, as well as the type system are finished. However, to use the
new LocalVariableDeclaration statement, the user has to bring up
the code completion menu in the editor, select the concept Local-
VariableDeclaration and use tab or the mouse to fill in the vari-
ous properties (type, name, init). A couple of editor
customizations are necessary to make sure users can "just type"
the declaration. I refer to [22] for details on how this works.

Language Modularization and Extension

I referred above to the ability to modularize and compose lan-
guages as a way of breaking down monolithic languages into ma-
nageable modules that can be combined as needed. I also already
alluded to the relationship between object oriented programming
and language definition in MPS. This analogy also holds for lan-
guage extension and specialization. Concepts can extend other
concepts, and subconcepts can be used polymorphically. Lan-
guages can extend other languages, too, and the sublanguage can
contain subconcepts of concepts in the base language or can over-
ride the translation rules (generators) of concepts defined in the
base language. Concept interfaces are also available. Using the
Adapter pattern [29], unrelated concepts can be made to fit to-
gether. To use a B in places where an A (or subtypes) is expected,
an adapter BAdapter that extends A and contains or references a B
is necessary. As shown in [22], this approach supports embedding
of completely unrelated languages.

Languages also define translation rules to lower-level languag-
es or to text. MPS includes an incremental translation engine that
reduces program code as long as translation rules are available for
the program elements. At the end, text generators output regular
program text that can be fed into a compiler.

The language modularization and composition features are ex-
tremely useful for handling customization variability, because
DSLs that describe a specific aspect of the overall system can be
easily integrated with the languages used to implement the rest of
the system.

3. Language Annotations
With MPS it is possible to add additional data to program ele-
ments that has not been "planned for" when designing the original
language. It is possible for language X to contribute properties to
elements of language Y without invasively changing language Y.
This is a little bit like introductions in aspect oriented program-
ming [2]. It is an extremely interesting feature for adding feature
dependencies, i.e. as a way of implement configuration variability.
Section 4 shows how this feature is used in the context of embed-
ded systems development.

Defining an annotation for feature dependencies

As figure 2 shows, an annotation declares which elements it tar-
gets (A in the example). As a consequence, this element (and all
its subtypes) appears to possess the additional child r declared by
the annotation. The child can be used like any other child of A.
The annotation can reside in a different language than the target
elements, supporting external, a-posteriori non-invasive extension
of languages.

concept A

child x: X
child y: Y

annotation Q

wrap r: R
+

targets A
=

concept A

child x: X
child y: Y
child r: R

concept R

...

Figure 2. Annotations can add properties to concepts
without invasive modification

It is, however, not enough to add the additional property to the
program elements. It also has to be rendered in the editor, so the
editor needs to be adapted as well. For example, if a program
element has a feature dependency annotation, the actual feature
expression must be shown near the element. Figure 3 shows an
example of three variables that are annotated with a dependency
to the sonar feature.

Figure 3. Feature dependencies annotated to variable dec-
larations

This is a placeholder cell which, at runtime, is replaced with the
editor of the node to which the annotation has been added. So, in
essence, it means that the editor of the annotation element R
wraps around and embeds the editor to which the annotation has
been added.

concept A

child x: X
child y: Y

annotation Q

wrap r: R
+

targets A
=

concept A

child x: X
child y: Y
child r: R

A’s editor concept R

...

R’s editor
[- … annotatedNode … -]

A’s editor

R’s editor

[- … … -]

Figure 4. The editor of the annotation "wraps around" the
editor of the annotated element

Figure 4 shows how editor annotation works in principle. In
the definition of the editor for the element that is "added" to the
target, you can use a special editor cell type (annotatedNode).

Returning to the example for feature dependencies, figure 5 is
the definition of the annotation. It contributes a child named fea-
tureDependencyAnnotation of type FeatureClause to BaseCon-
cept and its subtypes (all language element extend BaseConcept,
at least indirectly. It is like java.lang.Object).

43

Figure 5. Definition of an Annotation that adds
FeatureClause instances to instances of any subtype of
BaseConcept

In terms of the editor, this means that the editor of Feature-
Clause has to "wrap around" the editor of whichever other ele-
ment it is contributed to. Figure 6 shows the definition of the edi-
tor for FeatureClause: it first includes the feature expression
(such as car && !pedestrian) and then delegates to the node to
which it has been annotated using the attributedNode element.

Figure 6. Definition of the annotation's editor. Note the
delegation to the editor of the annotated node

Evaluating the feature expression during projection

With the facilities described above it is possible to annotate arbi-
trary program elements with feature clauses. These contain a boo-
lean expression over a set of features. Because the language that is
used to define the feature expression is formally defined, it is
possible to evaluate the expression in the IDE and show the pro-
gram in a variant-specific way. This is done by not projecting
those elements whose feature clause evaluates to false considering
the current feature selection. The projection rules in the editor
definition contain the respective if statements. Conditional projec-
tion is supported by the cells with a leading question mark (see
figure 6). These are conditional cells, i.e. they are only shown in
the editor at runtime if their associated condition is true. For the
feature-aware code editor, the feature annotations themselves (i.e.
the {car && !pedestrian}) are only shown if a global configura-
tion flag Show Feature Annotations is true. So the condition in
the conditional cell directly before the {expression} in the editor
definition in figure 6 contains the following expression shown in
figure 7:

Figure 7. Expression that makes sure the feature clause is
only shown if the configuration allows it

Figure 8. Expression that makes sure the whole annotated
element is only shown if the configuration allows it

Also, in the projection mode that shows a program variant, we
want to make sure that the program element (e.g. a procedure, or
an if statement) to which a feature expression is annotated is not
shown, if the feature expression is false. This is achieved by the
outer conditional cell in figure 6 that surrounds the expression
and the attributed node. The condition is shown in figure 8.

4. The Proof of Concept
Together with Bernhard Merkle, the author is currently working
on a modular language for embedded development based on C
(MEL - Modular Embedded Language). It is described in detail in
another paper [3]. Among other things it contains support for
product line variability as described in the previous section. This
section is a brief overview of the language.

Embedded Software Development Language

Embedded systems are becoming more and more software inten-
sive. Consequently, software development plays an increasingly
important part in embedded system development, and the software
becomes bigger and more complex. Traditional embedded system
development approaches use a variety of tools for various aspects
of the system, making tool integration a major headache. Some of
the specific problems of embedded software development include
the limited capability for meaningful abstraction in C, some of C's
"dangerous" features (leading to various coding conventions such
as Misra-C [4]), the proprietary and closed nature of modeling
tools, the integration of models and code, traceability to require-
ments [5], long build times as well as the consistent implementa-
tion of product line variability [6].

To address these issues, we propose a modular modeling and
programming language and IDE that supports higher-level ab-
stractions and system-specific extensions based on a projectional
language workbench and to use code generation to C as a way of
integrating with existing compilers and platforms. The proposed
language uses C as its core and adds several useful extensions,
including a module system with visibility rules, physical quanti-
ties (as opposed to just ints and floats), first-class state machines,
dataflow ports, mathematical notations, memory mapping and bit
fields, as well as first-class support for various inter-process
communication approaches (shared memory, message passing,
bus communication).

As a proof of concept, we are currently building a first cut of
this modular embedded language (MEL) based on JetBrains MPS.
We use Lego Mindstorms [7] as the target platform together with
the OSEK [30, 8] operating system. C and OSEK are widely used
in automotive systems, so the technologies used in the prototype
are relevant in real systems. The current baseline showcase is a
simple line follower robot. It uses a single light sensor to follow a
thick black line. It keeps track of the curving line by changing the
speed of motors that drive the two wheels. The current state of the
prototype contains language modules for components, tasks, state
machines, bit-level data structures, physical quantities, documen-
tation annotations, basically all of C as well as support for product
line variability and requirements traces.

Configuration Variability - Feature Annotations

Lego is a good way of showing product line variability because it
is easy to clip on variant specific hardware. The following two
optional hardware elements are available:
� a bumper at the front of the robot that stops it if the bumper

is pressed. Essentially, this is a collision sensor.
� a sonar sensor, that temporarily stops the robot if something

steps into its way. This is a collision prevention system.

44

In Figure 9, configuration A shows the robot in its basic setup
(bumper = false and sonar = false), B shows the configuration
with the bumper and C shows bumper and sonar.

Figure 9. Three different variants of the robot

Feature dependencies are a way to implement configuration
variability in programs. Handling configuration variability re-
quires two ingredients. First, a set of variation points (aka features
in the feature modeling approach [11]) and the constraints among
them have to be defined. Second, program elements have to be
annotated with expressions over these features. These expressions
determine whether a piece of program is in a variant or not.

In a real-life system, feature management happens in an exter-
nal tool (such as pure::variants [12]). In the proof-of-concept, just
like with the requirements, features are managed in a simple list.
Features can be selected (see figure 9) to determine whether they
are in the system or not (which will become relevant later).

The second ingredient are feature annotations, i.e. annotations
on program elements that contain an expression that determines
which features it depends on, and how. As described above, pro-
grams can be projected in a way that shows the feature annota-
tions directly on the element it is attached to (Figure 10).
Although the figure contains only dependencies on single fea-
tures, we can use boolean expressions in the feature annotation
such as {bumper && sonar && !debugOutput}. This is actually a
small sublanguage for boolean expressions (again with code com-
pletion into the feature model, error checking etc.).

Figure 9. The dummy feature model for the line follower
robot (also contains true/false switches to define a variant)

As can be seen from Figure 10, feature dependency expres-
sions can be annotated to any program element. Annotated ele-
ments have a grey background and the feature annotation
expression is given on the left of the element. Alternatively it
would also be possible to assign a specific color to each feature
and then use the respective color as the background for the ele-
ments annotated with this feature (as done by CIDE [19]).

By flipping a switch in the overall projection settings it is
possible to show the program in a variant-specific way. For exam-
ple, if we switch off the debugOutput and the bumper feature, the
code in Figure 11 will result.

Figure 10. A piece of the overall linefollower program
projected with feature annotations

Note that these projections still contain the grey highlight for
parts that are feature dependent. This can be turned off, too. Also,
the feature dependency expressions can be shown in this view if
requested. It is important to point out that this is not a read-only
projection! Rather, the program can still be edited while shown in
the variant-specific way.

As mentioned above, for compilation the program is generated
into plain C and then compiled with the existing legacy compiler
infrastructure. When generating C, the current feature configura-
tion is taken into account. A simple transformation script is run as
part of the incremental reduction process that removes all program
elements whose feature clause evaluates to false, making sure they
are not part of the resulting C text.

Static Validation of Feature Dependencies

Making parts of models or code optional runs the risk of produc-
ing structurally or semantically broken programs after "cutting
away" all the stuff that is not configured to be in a certain variant.
Detecting semantic errors in turing-complete programs is imposs-
ible in general, of course. But static correctness can be verified.

45

Figure 11. A part of the program with debugOutput and
bumper switched off (pls compare with Figure 10)

Consider that in MPS (and in projectional editors in general)
every element is a node with a unique identity. Relationships be-
tween elements are expressed with actual references to these
unique identities. A structurally broken program is one where a
referencing element is in the code for a given variant, but the ref-
erence target is not. Static validation of feature dependencies re-
quires showing that for any (valid) feature combination, no such
"dangling pointer" will result. The following is a simple approach
to verify this:
� Calculate all combinations of all features (i.e. all variants)
� For each referencing element R, collect all feature combina-

tions CR for which this element will be in the variant code
� For each reference target element T of R, collect all combina-

tions CT for which this element will be in the variant code
� If CR is not a subset of CT, an error has been detected

This algorithm has been implemented in the prototype and it
works well in principle. The fact that all references can be fol-
lowed easily, and the fact that feature dependencies are expressed
as expressions based on a formal expression language makes im-
plementing this algorithm simple - and it does work for small sets
of configuration features. But of course the set of possible feature
combinations grows exponentially over the number of features, so
for real-world sized systems it will not work. The following steps
could be taken to address this:
� In real systems, the set of features is not unrestricted, they

have constraints among each other. This limits the size of the
set of valid feature combinations (i.e. variants)

� Feature macros can be introduced, i.e. features that encapsu-
late a set of other features and their constraints (e.g. fast :=
!small && !dynamic). If feature dependencies refer to the ma-
cro features, they can be seen as one combination and the
combinatorics behind them can be ignored.

� If only a part of a program needs to be validated, only the fea-
ture combinations involving the features referenced from the
respective part of the program need to be calculated.

� Finally, using a solver instead of the try-all-combinations
brute force approach may yield even more scalable results.

We will explore these alternatives as part of our in the future work
(see below).

Figure 12. A simple robot routing script

Customization Variability - a DSL on top

Consider now a robot vendor who sells Lego robots with two
wheels that can follow a predefined route. Of course, each cus-
tomer wants a different predefined route. The vendor has to de-
velop a different route-driving program for each customer. Of
course this can be achieved with tasks, state machines, variables
and procedures, or in other words, the general-purpose MEL. But
it would be better if a domain specific language for defining
routes was available. In PLE terminology, the DSL would be used
to express the problem domain and a transformation would map
this to a solution domain implementation.

The program in figure 12 is an example expressed with such as
route definition DSL, it uses native route-definition constructs.
Since the robot routing language extends the core language, it can
be embedded in a module - like the general purpose MEL con-
structs. The robot script can even call procedures. The robot
routing language is executed by transformation into the following
MEL constructs:
� a state machine that keeps track of the current command/step
� module variables that remember the current speeds for the

two motors
� module variables that store the current deltas for the speeds

of both motors to be able to "ramp up" the speeds in accele-
rate and decelerate commands

� a cyclic tasks that updates motor speeds based on the current-
ly selected deltas.

Figure 13 shows a robot script together with the lower-level
program that results from the transformation.

Combining the DSL and Feature Annotations

It useful to combine customization and confguration variability.
In the example this would mean that we can attach feature expres-
sions to robot script programs. This is of course also possible. The
feature annotations are completely generic and make no assump-
tion about the language to which they are attached. Consequently,
they can be used with the robot DSL in the same way as with the
lower level programs.

46

Figure 13. A simple robot script (top right, grey) and the
lower level MEL program it is transformed into

5. Future Work
Future work will progress in three main directions: additional
language concepts, real world-validation and integration of exist-
ing feature modeling tools.

Feature Modeling Tools

Currently we use a flat list of features (each basically boolean
switches) as our feature model. We chose this approach because it
is trivial to implement, and the point we wanted to make with our
work was not to implement a new feature modeling tool.

However, to make our approach more useful in practice, inte-
gration with tools such as pure-variants [12]. We will simply im-
port the list of features as well as the constraints among them.
This will allow us to refer to these features from within feature
expressions, and it will allow us to exploit the constraints between
the features when we calculate whether a program is structurally
valid.

Additional Language Concepts

An alternative to overlaying configuration over program or model
code is to make the feature model the main configuration tool and
add DSL code to it. In most feature management tools (for exam-
ple, pure::variants [12]) features can have parameters. For exam-
ple, when selecting a buffered feature for a communication
protocol product line, a buffer size parameter can be specified.
Generalizing this approach leads to the following:
� each feature may define any number of parameters. These

cannot just be simple types (int, string, boolean) but can in-
clude DSLs.

� When a feature is selected, a value for the parameter that
complies to the parameter's type has to be supplied. For
DSL-typed parameters, this means that a model that con-
forms to the DSL must be supplied.

Because projectional language workbenches can integrate
models using any combination of DSLs, this approach is feasible.
Figure 14 shows a very early prototype of this; a retry algorithm is
used as the value for the retry parameter of the polling feature.

Optionally taking away program elements if they are not in-
cluded in the variant is only one way of implementing variability.

The approach is often called negative variability. The other alter-
native is to conditionally add to a minimal core - positive variabil-
ity. The advantage is that the minimal core remains small, quite in
contrast to negative variability where the overall program that
includes all variants can grow quite large. Like in AOP [2], posi-
tive variability requires pointcuts to define where to add the addi-
tional program elements to the core. Future work will focus on
positive variability MEL as a means of implementing variability.

Figure 14. A DSL snippet in a feature model

As mentioned above, the current approach to feature validation
is brute force and does not at all scale. One aspect of our future
work will address this issue. We've already started collaborating
with a university who has experience in this regard.

Real-World validation

The other main avenue of future work is real world validation. We
are currently in the process of starting up a project to do a real
prototype - something more realistic than the Lego Mindstorms
example we are currently building. The connection to real re-
quirements management systems and to variant management tools
will be a part of this prototype.

6. Related Work
The idea of using DSLs to describe variability in product lines is
not new. Various authors have published about this [13,14,15]
and the approach is used in practice. The approach described in
this paper is different since the various DSLs can be mixed and
integrated. Language composition for textual languages is not
easily possible with non-projectional editors, although progress is
being made, as exemplified by [18, 28].

Overlaying configuration variability over customization varia-
bility has been done before, too. The C preprocessor can be used
to this effect using #ifdefs. The approach can also be used on
models. For example, Krzysztof Czarnecki and his group have
overlaid feature-based variability over UML diagrams [16].The
approach described in this paper is different in that configurative
variability can be overlaid over models and code in the same way
- there is no difference between the two in the first place. Since
the feature expressions are also a formal language, the expressions
can be formally checked and interpreted. The ability to show the
program/model code with feature clauses enabled or not, and to
show the (and edit!) the model in a variant-specific way is also
radically different from these tools. CIDE, a specific solution for
C code is described in [19]. However, the approach described in
this paper is different since it works for any language within MPS.
Also, the approach described in this paper supports the combina-
tion of the annotation-based approach with language composition
and DSLs. VML [17] is another tool (based on Eclipse EMF) that

47

can map configurative variability to arbitrary models. However,
since source code (C, Java) is not represented with EMF in Ec-
lipse, a special solution had to be created to "adapt" VML to
source code.

Showing statically that every valid variant of the feature model
will result in a structurally valid program has been done before by
[27] for the case of UML models and OCL constraints. Also the
tool developed by Czarnecki et al. [16] has static validation to
make sure that every variant of the UML model is structurally
correct. Another approach for the same problem is described as
part of the AHEAD methodology in [20]. Verifying that only
"correct" programs are synthesized by program synthesis is a pop-
ular resarch topic [25, 26, 27,31]. We will use the approaches
described in these papers in our future work, since the focus of
our work is not primarily on this kind of verification.

Krzysztof Czarnecki and his group are currently working on a
very interesing language: Clafer [24], a combination of structural
class modeling and feature modeling. Krzysztof and his group are
planning to integrate Clafer into the MPS prototype. One area
where the approach described in this paper is more flexible is that
we can use arbitrary DSLs and syntax to describe structural varia-
bility, whereas Clafer is essentially limited to class (or meta-)
modeling.

7. Evaluation & Conclusion
As we continue to build Mindstorms applications with our lan-
guage, it turned out that it is useful to extend plain C with embed-
ded-specific concepts. Programs can be read and analyzed more
easily: the more the language constructs resemble the intent of the
programmer, the more meaningful analyses can be.

It is feasible to package the various aspects into separate lan-
guage modules and make incremental extension possible. It is also
surprisingly little effort to build language extensions: developing
the basic C implementation has taken us about 3 weeks. Adding
the statemachine facilities has been done in one afternoon. Creat-
ing the robot routing DSL on top was a matter of 4 hours, includ-
ing the mapping down to tasks and state machines. Consequently,
the concept of building DSLs to express some aspect of a product
line is absolutely feasible.

Adding variability annotations to program elements is not fun-
damentally new. #ifdefs in C programs can be used for a similar
approach. However, the ability to reliably evaluate the expres-
sions, show and edit the programs in variant-specific ways as well
as the static validation of feature dependencies has proven useful
even in our simple examples.

Acknowledgments
My thanks go to Konstantin Solomatov of JetBrains who tirelessly
supported my efforts of learning MPS, as well as to Christoph
Elsner for his feedback on this paper.

References
[1] Fowler, M., Language Workbenches: The Killer-App for
 Domain Specific Languages?,
 http://martinfowler.com/articles/languageWorkbench.html
[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
 C., Loingtier, J., Irwin, J. Aspect-Oriented Programming. Proceed
 ings of ECOOP 1997, vol.1241. pp. 220–242.
[3] Markus Voelter, Embedded Software Development with
 Projectional Language Workbenches, Proc. of MODELS 2010,
[4] MISRA Group, Misra-C, http://www.misra-c2.com/

[5] Gotel, O., Finkelstein, A., An Analysis of the Requirements
 Traceability Problem, Proc. of First International Conference on
 Requirements Engineering, 1994, pages 94-101
[6] Software Engineering Institute, Software Product Lines,
 http://www.sei.cmu.edu/productlines/
[7] Lego SA, Mindstorms, http://mindstorms.lego.com
[8] Sourceforge.net, nxtOSEK, http://lejos-OSEK.sourceforge.net/ Osek
[9] IBM Corp, Requisite Pro - a Requirements Management Tool,
 http://www-01.ibm.com/software/awdtools/reqpro/
[10] IBM Corp, Rational DOORS, http://www-01.ibm.com/
 software/awdtools/doors/productline/
[11] Kang, K.C. and Cohen, S.G. and Hess, J.A. and Novak, W.E. and
 Peterson, A.S., Feature-oriented domain analysis (FODA) feasibili
 ty study, Technical Report CMU/SEI-90-TR-021, SEI, Carnegie
 Mellon University, November 1990
[12] Pure Systems GmbH, pure::variants,
 http://www.pure-systems.com/pure_variants.49.0.html
[13] Batory, D., Johnson, C., MacDonald, B., von Heeder, D., Achieving
 Extensibility through Product-Lines and Domain-Specific Lan
 guages: A Case Study, LNCS, Volume 1844/2000
[14] Mernik, M., Heering, J., Sloane, A., When and how to develop
 domain-specific languages, ACM Computing Surveys (CSUR),
 Volume 37 , Issue 4
[15] Tolvanen, J., Kelly, S., Defining Domain-Specific Modeling Lan-
 guages to Automate Product Derivation: Collected Experiences,
 Lecture Notes in Computer Science, Volume 3714/2005
[16] Czarnecki, K., Antkiewicz, M.. Mapping Features to Models: A
 Template Approach Based on Superimposed Variants. In Proceed
 ings of GPCE'05, 2005
[17] Loughran, N., Sanchez, P., Garcia, A., Fuentes, L., Language
 Support for Managing Variability in Architectural Models,
 Lecture Notes in Computer Science, Volume 4954/2008
[18] Bravenboer, M., Visser, E., Designing Syntax Embeddings and
 Assimilations for Language Libraries, ATEM'07 and
 http://swerl.tudelft.nl/bin/view/EelcoVisser
[19] Kästner, C., CIDE: Virtual Separation of Concerns,
 http://wwwiti.cs.uni-magdeburg.de/~ckaestne/
[20] Thaker, S., Batory, D., Kitchin D., Cook, W., Safe Composition of
 Product Lines, GPCE 2007, http://userweb.cs.utexas.edu/~wcook/
 papers/gpce07/ThakerGPCE07.pdf
[21] JetBrains Inc, Meta Programming System (MPS),
 http://jetbrains.com/mps
[22] Voelter, M., Solomatov, K., Language Modularization and Compo-
 sition with Projectional Language Workbenches illustrated with
 MPS, submitted to SLE 2010
[23] Wikipedia, View Model, http://en.wikipedia.org/wiki/View_model
[24] Krzyzsztof Czarnecki, Feature and Class Models in Clafer:
 Mixed, Specialized, and Coupled, personal communication, now
 probably available at http://gsd.uwaterloo.ca/~kczarnec/
[25] Huang S., Zook D., Smaragdakis, Y., Statically Safe
 Program Generation with SafeGen, GPCE 2005
[26] Krishnamurthi S., Fisler K.,, Greenberg M.. Verifying
 Aspect Advice Modularly, ACM SIGSOFT 2004
[27] Czarnecki, K., Pietroszek, K.. Verification of Feature-
 Based Model Templates Against Well-Formedness OCL
 Constraints. GPCE 2006
[28] Bravenboer, M., Visser, E., Parse Table Composition, Separate
 Compilation and Binary Extensibility of Grammars, SLE'08 and
 http://swerl.tudelft.nl/bin/view/EelcoVisser
[29] Gamma, E., Helm, R., Johnson R., Vlissides, J., Design Patterns,
 Addison-Wesley, 1994
[30] Continental Automotive, http://osek-vdx.org/
[31] Kästner, C., Apel, S., Trujillo, S., Kuhlemann M., Batory, D.,
 Guaranteeing Syntactic Correctness for all Product Line Variants:
 A Language-Independent Approach, TOOLS Europe 2009

48

Pure Delta-oriented Programming ∗

Ina Schaefer1 † Ferruccio Damiani2
1Chalmers University of Technology, 421 96 Gothenburg, Sweden

2Dipartimento di Informatica, Università di Torino, C.so Svizzera, 185 - 10149 Torino, Italy

Abstract
Delta-oriented programming (DOP) is a modular approach for im-
plementing software product lines. Delta modules generalize fea-
ture modules by allowing removal of functionality. However, DOP
requires to select one particular product as core product from which
all products are generated. In this paper, we propose pure delta-
oriented programming (Pure DOP) that is a conceptual simplifica-
tion of traditional DOP. In Pure DOP, the requirement of one desig-
nated core product is dropped. Instead, program generation only re-
lies on delta modules comprising program modifications such that
Pure DOP is more flexible than traditional DOP. Furthermore, we
show that Pure DOP is a true generalization of FOP and supports
proactive, reactive and extractive product line engineering.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages, Theory

Keywords Software Product Line, Feature-oriented Program-
ming, Delta-oriented Programming, Program Generation

1. Introduction
A software product line (SPL) is a set of software systems with
well-defined commonalities and variabilities [12, 27]. The ap-
proaches to implementing SPL in the object-oriented paradigm can
be classified into two main directions [19]. First, annotative ap-
proaches (e.g., [4, 17]) mark the source code of all products with
respect to product features and remove marked code for particu-
lar feature configurations. Second, compositional approaches [23],
associate code fragments to product features that are assembled to
implement a given feature configuration.

Feature-oriented programming (FOP) [7] is a prominent ap-
proach for implementing SPLs by composition of feature modules.
A feature module directly corresponds to a product feature. In the
context of object-oriented programming, feature modules can intro-

∗Work partially supported by the German-Italian University Centre (Vigoni
program) and by MIUR (PRIN 2009 DISCO).
† This author has been supported by the Deutsche Forschungsgemeinschaft
(DFG) and by the EU project FP7-ICT-2007-3 HATS.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright c© 2010 ACM 978-1-4503-0208-1/10/10. . . $10.00

duce new classes or refine existing ones by adding fields and meth-
ods or by overriding existing methods. In delta-oriented program-
ming (DOP) [29], feature modules are generalized to delta modules
that additionally allow the removal of classes, fields and methods
and that can refer to any combination of features. DOP requires se-
lecting one particular product as designated core product. The core
product is implemented in the core module. From this core module,
all other products are generated by delta module application. How-
ever, the requirement of the core product makes it difficult to deal
with product line evolution, for instance, if the product line evolves
such that the original core product is no longer a valid product.
Furthermore, the uniquely determined core product prevents a true
generalization of FOP by DOP, since feature module composition
in FOP may start from several different base feature modules that
may not correspond to valid products.

In this paper, we propose pure delta-oriented programming
(Pure DOP) as a conceptual simplification of traditional DOP [29],
which we will call Core DOP in the following. In Pure DOP, the
requirement to chose one product as core product is dropped. In-
stead, only delta modules are used for product generation. Thus,
we call the approach Pure DOP. A delta module can specify ad-
ditions, removals classes or modifications of classes. In order to
define a product line over a set of delta modules, each delta module
is attached an application condition determining for which feature
configurations the modifications of the delta module have to be ap-
plied. This creates the connection between the modifications of the
delta modules and the product features [16]. Additionally, the delta
modules can be partially ordered to ensure that for every feature
configuration a uniquely defined product is generated.

The contribution of this work is twofold. First, Pure DOP re-
laxes the requirement of a single valid core product. This makes
Pure DOP more flexible than Core DOP [29]. Pure DOP is a true
generalization of FOP since every FOP product line can be under-
stood as a Pure DOP product line which is not obvious for Core
DOP. Further, Pure DOP supports proactive, reactive and extrac-
tive product line development [22] by allowing program generation
from any set of existing legacy product implementations which is
not directly possible with Core DOP. Second, in the presentation of
(Pure) DOP given in this paper, the application conditions for delta
modules, as well as the delta module ordering, are only defined
when a product line is specified. In contrast, in the traditional pre-
sentation of (Core) DOP [29], application conditions and ordering
are fixed for each delta module. The separation of application con-
ditions and application ordering from the specification of the mod-
ifications in a delta module increases the reusability of delta mod-
ules and allows developing different product lines over the same set
of delta modules.

The paper is organized as follows: In Section 2, we present
Pure DOP of JAVA programs and show its formalization LP∆J
using LJ (LIGHTWEIGHT JAVA) [32] as base language for the
generated products in Section 3. We show that Pure DOP is a

49

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Figure 1. Feature model for Expression Product Line

true generalization of FOP by providing an embedding of LFJ
(LIGHTWEIGHT FEATURE JAVA) [13] into LP∆J in Section 4.
We demonstrate that Pure DOP supports proactive, extractive and
reactive SPLE in Section 5. We show that Pure DOP is a conceptual
simplification of Core DOP in Section 6.

2. Pure Delta-oriented Programming
In order to illustrate the main concepts of Pure DOP, we use the
expression product line (EPL) as described in [23]. The EPL is
based on the expression problem [35], an extensibility problem, that
has been proposed as a benchmark for data abstractions capable to
support new data representations and operations. We consider the
following grammar:

Exp ::= Lit | Add | Neg
Lit ::= <non−negative integers>
Add ::= Exp "+" Exp
Neg ::= "-" Exp

Two different operations can be performed on the expressions de-
scribed by this grammar: printing, which returns the expression as a
string, and evaluation, which computes the value of the expression.
The products in the EPL can be described by two feature sets, the
ones concerned with data Lit, Add, Neg and the ones concerned
with operations Print and Eval. Lit and Print are mandatory fea-
tures. The features Add, Neg and Eval are optional. Figure 1 shows
the feature model [16] of the EPL.

Pure Delta Modules The main concept of pure DOP are delta
modules which are containers of modifications to an object-
oriented program. The modifications inside a delta module act on
the class level by adding, removing and modifying classes. A class
can be modified by changing the super class, by adding and remov-
ing fields and methods and by modifying methods. The modifica-
tion of a method can either replace the method body by another im-
plementation, or wrap the existing method using the original con-
struct. The original construct expresses a call to the method with
the same name before the modifications and is bound at the time the
product is generated. Before or after the original construct, other
statements can be introduced wrapping the existing method imple-
mentation. The original construct (similar to the Super() call in
AHEAD [7]) avoids a combinatorial explosion of the number of
delta modules in case the original method has to be wrapped dif-
ferently for a set of optional features. Listing 1 contains the delta
module for introducing the Lit feature. Listing 2 contains the delta
modules for incorporating the Print and Eval features by modifica-
tion of the class Lit.

Pure Delta-oriented Product Lines The delta-oriented specifica-
tion of a product line comprises the set of product features, the set
of valid feature configurations and the set of delta modules neces-
sary to implement all valid products. Furthermore, the specification
of a product line in Pure DOP associates each delta module with
the set of features configurations in which the delta modules has to
be applied by attaching an application condition in a when clause.
The application condition is a propositional constraint over the set

delta DLit{
adds interface Exp {
}
adds class Lit implements Exp {

int value;
Lit(int n) { value = n; }
}
}

Listing 1: Delta module for Lit feature

delta DLitPrint{
modifies interface Exp {

void print();
}
modifies class Lit implements Exp {
adds void print() { System.out.println(value); }
}
}

delta DLitEval{
modifies interface Exp {

adds eval();
}
modifies class Lit {

adds int eval() { return value; }
}
}

Listing 2: Delta modules for Print and Eval features

delta DAdd {
adds class Add implements Exp {

Exp expr1;
Exp expr2;
Add(Exp a, Exp b) { expr1 = a; expr2 = b; }
}
}

delta DAddPrint {
modifies class Add {

adds void print() { expr1.print(); System.out.print(" + "); expr2.print(); }
}
}

delta DAddEval {
modifies class Add {

adds int eval() { return expr1.eval() + expr2.eval(); }
}
}

Listing 3: Delta modules for Add, Print and Eval features

delta DNeg {
adds class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr1 = a; }
}
}

delta DNegPrint {
modifies class Neg {

adds void print() { System.out.print("-("); expr.print(); System.out.print(")");}
}
}

delta DNegEval{
modifies class Neg {

adds int eval() { return (−1) ∗ expr.eval(); }
}
}

Listing 4: Delta modules for Neg, Print and Eval features
50

features Lit, Add, Neg, Print, Eval
configurations Lit & Print
deltas

[DLit,
DAdd when Add,
DNeg when Neg]

[DPrint,
DEval when Eval,
DAddPrint when Add,
DAddEval when (Add & Eval),
DNegPrint when Neg,
DNegEval when (Neg & Eval)]

Listing 5: Pure DOP specification of the EPL

of features. Since only feature configurations which are valid ac-
cording to the feature model are used for program generation, the
application conditions attached to delta modules have to be under-
stood as a conjunction with the formula describing the set of valid
feature configurations.1 The application condition creates the link
from the features in the feature model to the delta modules. In this
way, we can specify delta modules for combinations of features to
solve the optional feature problem [20].

In order to obtain a product for a particular feature configura-
tion, the modifications specified in the delta modules with valid
application conditions are applied incrementally to the previously
generated product. The first delta module is applied to the empty
product. All other delta modules are applied to the respective inter-
mediate product. The modifications of a delta model are applicable
to a (possibly empty) product if each class to be removed or modi-
fied exists and, for every modified class, if each method or field to
be removed exists, if each method to be modified exists and has the
same header as the modified method, and if each class, method or
field to be added does not exist. During product generation, every
delta module must be applicable. Otherwise, the resulting product
is undefined. In particular, the first delta module that is applied can
only contain additions.

In order to ensure that each delta module is applicable during
product generation, the delta modules are ordered in the specifica-
tion of a pure delta-oriented product line. The order of delta mod-
ule application is defined by a total order on a partition of the set
of delta modules. Deltas in the same partition can be applied in
any order to the previous product, but the order of the partitions
is fixed. The ordering captures semantic requires relations that are
necessary for the applicability of the delta modules.

Listing 5 shows a delta-oriented specification of the EPL. In
this specification, application conditions are attached to the delta
modules that are required to implement the different products of the
EPL. The used delta modules are depicted in Listings 1, 2, 3 and 4.
The order of delta module application is defined by an ordered list
of the delta module sets which are enclosed by [..].

Product Generation The generation of a product for a given fea-
ture configuration consists of two steps, performed automatically:

1. Find all delta modules with a valid application condition; and

2. Apply the selected delta modules to the empty product in any
linear ordering that is consistent with the total order on the
partitioning of the delta modules.

If two delta modules add, remove or modify the same class, the
ordering in which the delta modules are applied can influence the
resulting product. However, for a product line implementation, it is

1 In the examples the valid feature configurations are represented by a
propositional formula over the set of features. Other representations are
possible (see, e.g., [5] for a discussion of possible representations).

DMD ::= delta δ {DC} delta module
DC ::= adds cd | delta clause

modifies C [extending C] { DS } |
removes C

DS ::= adds fd | delta subclause
adds md |
modifies md |
modifies wmd |
removes a

wmd ::= ms {s; original(); s; return y;} method wrapper

Figure 2. LP∆J: syntax of delta modules

essential to guarantee that for every valid feature configuration ex-
actly one product is generated. This property is called unambiguity
of the product line. For unambiguity, the delta modules in each par-
tition must be compatible. This means that if one delta module in a
partition adds or removes a class, no other delta module in the same
partition may add, remove or modify the same class, and the mod-
ifications of the same class in different delta modules in the same
partition have to be disjoint. Defining the order of delta module ap-
plication by a total ordering on a delta module partition provides an
efficient way to ensure unambiguity, since only the compatibility of
each partition has to be checked.

3. A Kernel Calculus for Pure Delta Modules
In this section, we introduce the syntax and the semantics of LP∆J
(LIGHTWEIGHT PURE DELTA JAVA), a kernel calculus for Pure
DOP of product lines of JAVA programs. LP∆J is based on LJ
(LIGHTWEIGHT JAVA) [32]. Thus, it is particularly suitable for
comparison with the formalization of FOP in LFJ (LIGHTWEIGHT
FEATURE JAVA) [13].

LP∆J Syntax The syntax of LP∆J, as an extensions to LJ, is
given in Figure 2. Following [15], we use the overline notation
for possibly empty sequences. For instance, we write “s;” as short
for a possibly empty sequence of statements “s1; . . .sn;” and “DC”
as short for a possibly empty sequence of delta clause definitions
“DC1 . . .DCn”. Sequences of named elements (like delta clause or
delta subclause definitions) are assumed to contain no duplicate
names (that is, the names of the elements of the sequence must
be distinct). The constructs for class definitions cd, field definitions
fd, method definitions md, method signatures ms and statement s
are those of LJ [32] (and of LFJ [13]). The metavariable δ ranges
over delta module names.

A delta module definition DMD for a delta module with the
name δ can be understood as a mapping from class names to delta
clause definitions. A delta clause definition DC can specify the
addition, removal or modification of a class. The adds-domain,
the removes-domain and the modifies-domain of a delta module
definition DMD are defined as follows:

addsDom(DMD) = {C | DMD(C) = adds class C · · ·}
removesDom(DMD) = {C | DMD(C) = removes C}
modifiesDom(DMD) = {C | DMD(C) = modifies C · · ·}

The modification of a class is defined by possibly changing the su-
per class and by listing a sequence of delta subclauses DS defin-
ing modifications of methods and additions/removals of fields and
methods. A delta modifies clause DC can be understood as a map-
ping from the keyword extending to an either empty or singleton
set of class names and from field/method names to delta subclauses.
The adds-, removes- and modifies-domain of a delta modifies-
clause DC are defined as follows:

51

addsDom(DC) = {a | DMT(a) = adds · · · a · · ·}
removesDom(DC) = {a | DMT(a) = removes a}
modifiesDom(DC) = {m | DMT(m) = modifies · · · m · · ·}

The modification of a method, defined by a delta modifies sub-
clause, can either replace the method body by another implementa-
tion, or wrap the existing method using the original() call. In both
cases, the modified method must have the same header as the un-
modified method. The original() call may only occur in the body of
the method provided by a delta modifies subclause modifies wmd.
The occurrence of original() represents a call to the unmodified
method where the formal parameters of the modified method are
passed implicitly as arguments. In LFJ [13], the Super() construct
of AHEAD [7] is modeled in the same way.

After we have defined the notion of delta modules over LJ,
we can formalize LP∆J product lines. We use the metavariables
ϕ and ψ to range over feature names. We write ψ as short for
the set {ψ}, i.e., the feature configuration containing the features
ψ . A delta module table DMT is a mapping from delta module
names to delta module definitions. A LP∆J SPL is a 5-tuple L =
(ϕ,Φ,DMT,Γ,<DMT) consisting of:

1. the features ϕ of the SPL,

2. the set of the valid feature configurations Φ⊆P(ϕ),2

3. a delta module table DMT containing the delta modules,

4. a mapping Γ : dom(DMT)→ Φ determining for which feature
configurations a delta module must be applied (which is de-
noted by the when clause in the concrete examples),

5. a total order <DMT on a partition of dom(DMT), called the
application partial order, determining the order of delta module
application.

To simplify notation, in the following we always assume a fixed
SPL L = (ϕ,Φ,DMT,Γ,<DMT). We further assume that the SPL
L satisfies the following sanity conditions.

(i) For every class name C (except Object) appearing in DMT,
we have C ∈ (∪δ∈dom(DMT)addsDom(DMT(δ))), meaning that
every class is added at least once.

(ii) The mapping ∆ : Φ→P(dom(DMT)), such that ∆(ψ), the set
of names of delta modules whose application condition is sat-
isfied by the feature configuration ψ , is injective and such that
(∪ψ∈Φ∆(ψ)) = dom(DMT), i.e., for every feature configura-
tion a different set of delta modules is applied and every delta
module is applied for at least one feature configuration.

In the following, we write dom(δ) as short for dom(DMT(δ)), and
we write δ (C) as short for DMT(δ)(C).

LP∆J Product Generation A LJ program can be represented by
a class table. A class table CT is a mapping from class names
to class definitions. A delta module is applicable to a class table
CT if each class to be removed or modified exists and, for every
delta modifies clause, if each method or field to be removed exists,
if each method to be modified exists and has the same header
specified in method modifies subclause, and if each class, method
or field to be added does not exist.

Given a delta module δ and a class table CT such that δ is appli-
cable to CT, the application of δ to CT, denoted by APPLY(δ ,CT),
is the class table CT′ defined as follows:

2 The calculus abstracts from the concrete representation of the feature
model.

FMD ::= feature ϕ {cd rcd} feature module
rcd ::= refines class C extending C { fd; md rmd } class refinement
rmd ::= refines ms {s; Super(); s; return y;} method refinement

Figure 3. LFJ: syntax of feature modules

CT′(C) =

CT(C) if C 6∈ dom(DMT(δ))
CD if δ (C) = adds CD
APPLY(δ (C),CT(C)) if C ∈ modifiesDom(δ)

where APPLY(δ (C),CT(C)), the application of the delta clause
δ (C) = DC = modifies C · · · {· · ·} to the class definition CT(C) =
CD, is the class definition CD′ defined as follows:

CD′(extends) =
{

CD(extends) if DC(extending) = /0
C′ if DC(extending) = {C′}

CD′(a) =

CD(a) if a 6∈ dom(DC)
AD if DC(a) = adds AD
MD[s/original()] if DC(a) = modifies MD

and CD(a) = · · ·a(· · ·){s; return y;}

The semantics of the original() call is captured by replacing the oc-
currence of original() in the method body specified by the modifies
subclause with the body of the unmodified method.

For any given total order of delta module application, a LP∆J
SPL defines a product generation mapping. That is, a partial map-
ping from each feature configuration ψ in Φ to the class table of the
product that is obtained by applying the delta modules ∆(ψ) to the
empty class table according to the given order. The product gener-
ation mapping can be partial since a non-applicable delta module
may be encountered during product generation such that the result-
ing product is undefined.

Unambiguous and Type-Safe LP∆J Product Lines A LP∆J
SPL is unambiguous if all total orders of delta modules that are
compatible with the application partial order define the same prod-
uct generation mapping. In an unambiguous SPL, for every feature
configuration at most one product implementation is generated.

In order to find a criterion for unambiguity, we define the notion
of compatibility of a set of delta modules. A set of delta modules is
called compatible if no class added or removed in one delta module
is added, removed or modified in another delta module contained
in the same set, and for every class modified in more than one
delta module, its direct superclass is changed at most by one delta
clause and the fields and methods added, modified or removed are
distinct. For a set of compatible delta modules, any order of delta
module application yields the same class table since the alterations
in compatible delta modules do not interfere with each other.

A SPL is locally unambiguous if every set S of delta modules
in the partition of dom(DMT) provided by the application partial
order <DMT is compatible. If the SPL L is locally unambiguous,
then it is unambiguous. Local unambiguity can be checked by
inspecting the delta modules in each partition only once.

A LP∆J SPL is type-safe if the following conditions hold: (i) its
product generation mapping is total, (ii) it is locally unambiguous,
and (iii) all generated products are well-typed LJ programs.

4. Generalization of FOP
In this section, we show that Pure DOP is generalization of FOP [7]
by providing a mapping from LFJ [13] into LP∆J.

4.1 Recalling LFJ
The syntax of the LFJ extensions to LJ is given in Figure 3. It is
taken from [13]. A feature module definition FMD contains the

52

Jfeature ϕ {cd rcd}K =
delta ϕ { adds cd JrcdK }

Jrefines class C extending C { fd; md rmd }K =
modifies C extending C { adds fd adds md JrmdK }

Jrefines ms {s; Super(); s; return y;}K =
modifies ms {s; original(); s; return y;}

Figure 4. Translation of a feature module to a delta module

feature ϕ and a set of class definitions cd and class refinement
definitions rcd. Class definitions are given according to the syntax
of LJ. A class refinement definition can change the superclass, add
fields fd, provide new method definitions md and refine existing
method definitions rmd. A method refinement can wrap the existing
method body using the Super() construct.

A feature module table FMT is a mapping from feature names
to feature module definitions. A LFJ product line can be described
by a 3-tuple L = (FMT,Φ,<FMT) consisting of:

1. a feature module table FMT with a feature module for each
feature of the SPL,

2. the set of the valid feature configurations Φ⊆P(dom(FMT)),

3. a total order <FMT on the set of features dom(FMT).

The product associated to a feature configuration ψ is gener-
ated by composing (see Section 3.1 of [13]) the feature modules
associated to the features in ψ according to the total order <FMT.
During feature module composition, newly defined classes, fields
and methods are added and class and method refinements are car-
ried out. According to [13], a LFJ product line is type-safe if all
generated products are well-typed LJ programs.

4.2 Mapping LFJ into LP∆J
A product line in FOP can be represented as a product line in Pure
DOP. The set of features and the set of valid feature configurations
in both product lines is the same. Every feature module in a LFJ
product line is mapped to a delta module where additions are
translated to adds clauses and refinements to modifies clauses. The
application condition of the delta module denotes all configurations
in which the respective feature is contained. The ordering of delta
module application is the total ordering of the feature modules.

Formally, the mapping from LFJ product lines to LP∆J prod-
uct lines is defined as follows: for a LFJ product line L =
(FMT,Φ,<FMT), JLK denotes the corresponding LP∆J product
line (ϕ,Φ,DMT,Γ,<DMT) where

• ϕ = dom(FMT) = dom(DMT),
• The delta module table DMT is obtained by translating each

feature module in FMT to a delta module with the same name,
according to the clauses in Figure 4,

• Γ : dom(DMT)→Φ, where Γ(ϕ) = {ψ | ψ ∈Φ and ϕ ∈ ψ},
• <DMT is the total order on {{ϕ} | ϕ ∈ ϕ} defined by:
{ϕ1}<DMT {ϕ2} if and only if ϕ1 <FMT ϕ2.

The following theorem states that the LP∆J product lines gen-
erates the same products as the LFJ product line. Hence, Pure DOP
is a true generalization of FOP.

THEOREM 4.1. If L is a type safe LFJ product line, then JLK is
a type safe LP∆J product line such that, for every valid feature
configuration ψ , the product for ψ generated by L is the same as
the product for ψ generated by JLK.

Although it is possible in principle to encode FOP in Core DOP,
a straightforward embedding as for Pure DOP is not possible. This

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Sub

Figure 5. Feature model for evolved Expression Product Line

is because a feature-oriented SPL may have several base feature
modules, while Core DOP requires exactly one core module as
starting point for product generation.

5. Pure DOP for Product Line Development
Pure DOP supports proactive, extractive and reactive product line
development [22]. In the proactive approach, the scope of the prod-
uct line, i.e., the set of products to be developed, is analyzed before-
hand. All reusable artifacts are planned and developed in advance.
The example for Pure DOP presented in Section 2 can be seen as
proactive product line development, since we start from the feature
model defining the scope of the product line and develop delta mod-
ules and a Pure DOP SPL for these products. However, proactive
development requires a high upfront investment to define the scope
of the product line and to develop reusable artifacts.

Hence, in order to reduce the adoption barrier for product line
engineering, Krueger [22] proposes the usage of reactive and ex-
tractive approaches. In reactive product line engineering, only a ba-
sic set of products is developed. When new customer requirements
arise, the existing product line is evolved. The extractive approach
allows turning a set of existing legacy application into a product
line. Development starts with the existing products from which the
other products of the product line are derived.

FOP [7, 13] supports proactive product line development well.
However, since feature modules are restricted to add or refine
existing classes, FOP does not support extractive development and
only partially supports reactive development. It is not possible to
start from an existing legacy application comprising a larger set
of features and to remove features. Moreover, in order to deal with
new requirements following the reactive approach, feature modules
might have to be refactored to remove functionalities. Also, in Core
DOP, extractive product line development is not straight forward,
since one product has to be chosen as designated core product. In
contrast, Pure DOP is flexible and expressive enough to cover all
three product line engineering approaches directly.

5.1 Reactive Product Line Engineering
In reactive product line engineering, development starts with an
initial product line that is evolved in order to deal with changing
customer requirements. Consider as initial product line the example
depicted in Listing 5. Assume now that a new feature Sub should
be introduced for representing subtraction expressions. In the new
EPL, the Sub feature should be an alternative to the Neg feature.
Additionally, the Print feature should become optional and the Eval
feature mandatory. The feature diagram for the evolved product line
is given in Figure 5.

In order to realize the new Sub feature, we have to add delta
modules that introduce the corresponding data structure for sub-
traction and the associated print and the evaluation functionalities.
The respective delta modules are shown in Listing 6. The specifi-
cation for the evolved SPL is shown in Listing 7, where the op-
erator choose1(P1, . . . ,Pn) means at most one of the propositions
P1, . . . ,Pn is true (see [5]).

53

delta DSub {
adds class Sub implements Exp {
Exp expr1;
Exp expr 2:
Sub(Exp a, Exp b) { expr1 = a; expr2= b; }
}
}

delta DSubPrint {
modifies Sub {

adds void print() { expr1.print(); System.out.print("-"); expr2.print();}
}
}

delta DSubEval{
modifies class Sub {

adds int eval() { return expr1.eval() − expr2.eval(); }
}
}

Listing 6: Delta modules for Sub feature

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choose1(Neg,Sub)
deltas

[DLit,
DAdd when Add,
DNeg when Neg,
DSub when Sub]

[DLitPrint when Print,
DLitEval,
DAddPrint when (Add & Print),
DAddEval when Add,
DNegPrint when (Neg & Print),
DNegEval when Neg,
DSubPrint when (Sub & Print),
DSubEval when Sub]

Listing 7: Pure DOP specification of the evolved EPL

As we can see in this example, Pure DOP supports reactive
product line development, first, by adding new delta modules to
implement new product features or to deal with new feature com-
binations, and, second, by reconfiguring the application conditions
and the delta module order in the product line configuration to cap-
ture changes in the feature model.

5.2 Extractive Product Line Engineering
Extractive product line engineering starts with a set of existing
legacy applications from which the other products of the product
line are generated. Assume that we have already developed a prod-
uct containing the Lit, Neg and Print features and a product con-
taining the Lit, Add and Print features. Now, we want to transform
these existing legacy applications into a product line according to
the feature model in Figure 1.

First, the existing applications have to be transformed into delta
modules that are applied initially. Listing 8 shows two delta mod-
ules adding the implementation of the two existing products, re-
spectively. Second, in order to provide product implementations
with less features, delta modules have to be specified that remove
functionality from the existing products. Listing 9 shows the delta
module that removes the feature Add.

Listing 10 shows the extractive implementation of the product
line described by the feature model in Figure 1 starting from a prod-
uct with features Lit, Neg and Print and a product with features Lit,
Add, and Print introduced by the delta modules DLitNegPrint
and DLitAddPrint in the first and second partitions, respectively.
Their application conditions are exclusive such that for any feature
configuration product generation starts with one of them. If the Add

delta DLitNegPrint{
adds interface Exp {

void print();
}
adds class Lit implements Exp {

int value;
Lit(int n) { value = n; }
void print() { System.out.println(value); }
}
adds class Neg implements Exp {
Exp expr;
Neg(Exp a) { expr1 = a; }
void print() { System.out.print("-("); expr.print(); System.out.print(")");}
}
}

delta DLitAddPrint{
adds interface Exp {

void print();
}
adds class Lit implements Exp {

int value;
Lit(int n) { value = n; }
void print() { System.out.println(value); }
}
adds class Add implements Exp {

Exp expr1;
Exp expr2;
Add(Exp a, Exp b) { expr1 = a; expr2 = b; }
void print() { expr1.print(); System.out.print(" + "); expr2.print(); }
}
}

Listing 8: Delta modules introducing the two legacy products

delta DremAdd {
remove Add
}

Listing 9: Delta module removing the Add feature

features Lit, Add, Neg, Print, Eval
configurations Lit & Print
deltas

[DLitNegPrint when (!Add & Neg)]

[DLitAddPrint when (Add | !Neg)]

[DNeg when (Add & Neg),
DremAdd when (!Add & !Neg)]

[DNegPrint when (Add & Neg),
DLitEval when Eval,
DAddEval when (Add & Eval),
DNegEval when (Neg & Eval)]

Listing 10: Pure DOP specification of the extractive EPL

feature is not selected and the Neg feature is selected, we start with
the existing product in delta module DLitNegPrint. Otherwise,
we start with the existing product in delta module DLitAddPrint.
If both features Add and Neg are selected, we add the Neg feature
by the delta modules DNeg and DNegPrint of Listing 4. If both the
Add feature and the Neg feature are not selected, we remove the
Add feature by the delta module DremAdd of Listing 9. Finally, we
add the evaluation functionality if the feature Eval is selected.

This example shows that Pure DOP supports extractive product
line engineering by introducing the existing products in initial delta
modules, by delta modules removing functionality, and by speci-
fying the product line to generate the products from the existing
products by suitable delta module application.

54

delta DremPrintLit {
modifies interface Exp { removes print }
modifies class Lit { removes print }
}

delta DremPrintAdd {
modifies class Add { removes print }
}

delta DremPrintNeg {
modifies class Neg { removes print }
}

Listing 11: Delta modules removing the Print feature

features Lit, Add, Neg, Sub, Print, Eval
configurations Lit & Eval & choose1(Neg,Sub)
deltas

[DLitNegPrint when (!Add & Neg),
DSub when Sub]

[DLitAddPrint when (Add | !Neg)]

[DNeg when (Add & Neg),
DremAdd when (!Add & !Neg)]

[DNegPrint when (Add & Neg & Print),
DLitEval,
DAddEval when Add,
DNegEval when Neg,
DremPrintLit when !Print,
DremPrintAdd when (!Print & Add),
DremPrintNeg when (!Print & Neg),
DSubPrint when (Sub & Print),
DSubEval when Sub]

Listing 12: Pure DOP specification of the evolved extractive EPL

5.3 Combining Extractive and Reactive PL Engineering
Extractive and reactive product line engineering can be combined.
An initial product line is developed from a set of existing legacy
applications and evolved when new requirements arise. Consider,
the product line developed using the extractive approach in List-
ing 10. Assume, that now the Sub feature should be added and the
product line should be changed to implement the feature diagram
in Figure 5. Since in this product line, the feature Print is optional,
we have to provide delta modules that remove the printing func-
tionality from the Lit, Add and Neg classes. These delta modules
are depicted in Listing 11.

Listing 12 shows the specification of the evolved product line
depicted in Listing 10. The generation starts again from the two
delta modules DLitNegPrint and DLitAddPrint introducing the
existing products. Additionally, the product line contains delta
modules for adding the Sub feature (cf. Listing 6) and delta mod-
ules for removing the Print feature (cf. Listing 11).

6. Comparison with Core DOP
In the traditional presentation of DOP [29], which we refer to as
Core DOP, program generation always starts from a core module
containing the implementation of a selected valid product of the
product line. Then, delta modules specify the changes to the core
module in order to implement the other products. Moreover, in the
presentation of Core DOP given in [29]:

• the feature configuration corresponding to the product imple-
mented by the core module is specified in the code of the core
module,

• the application condition of a delta module is specified in the
code of the delta module by a clause of the form “when γ”,

where γ is a propositional constraint specifying the feature
configurations in which the delta module has to be applied, and

• the application partial order for the delta modules is specified
in the code of the delta modules using a clause of the form
“after δ”, which specifies that the delta module must be applied
after all applicable delta modules in δ have been applied.

Pure DOP and Core DOP are indeed equivalent:

• A Pure DOP product line can be expressed as a Core DOP
product line by adding an empty product to the product line and
choosing it as the product implemented by the core module.

• A Core DOP product line can be expressed as a Pure DOP prod-
uct line by transforming the core module into a delta module
that has to be applied before any other delta module for all the
valid feature configurations.

Pure DOP is a conceptual simplification of Core DOP dropping
the notion of the core module and separating the specification of
the application conditions and of the application ordering from the
delta modules. This presents the following advantages:

• Pure DOP allows reusing delta modules for implementing dif-
ferent product lines (cf. Sections 2 and 5).

• Every delta module in Pure DOP containing only adds clauses
can play the role of the core module. Thus, product lines with
multiple base modules, that may not correspond to valid prod-
ucts, are possible. As a consequence, Pure DOP is a true gener-
alization of FOP (cf. Section 4).

• Pure DOP supports the evolution of product lines. If a product
line evolves such that the core product of a Core DOP product
line is no longer a valid product, the core module and potentially
all delta modules have to be refactored. In contrast, in pure
DOP, existing delta modules can be reused for the specification
of the evolved product line (cf. Section 5).

7. Related Work
The notion of program deltas is introduced in [23] to describe the
modifications of object-oriented programs. In [30], delta-oriented
modeling is used to develop product line artifacts suitable for au-
tomated product derivation and implemented with frame technol-
ogy [36]. This approach is extended in [28] to a seamless delta-
oriented model-based development approach for SPLs. In [11],
an algebraic representation of delta-oriented product lines is pre-
sented. The main focus in [11] is to reason about conflicting modi-
fications and to devise a general criterion to guarantee the unambi-
guity of product lines using conflict-resolving deltas. The unambi-
guity property presented in this work is an instance of the criterion
presented in [11], but it is more restrictive since it requires to or-
der all potential conflicts. Delta modules are one possibility to im-
plement arrows in the category-theoretical framework for program
generation proposed by Batory in [6].

Feature-oriented programming (FOP) [2, 7, 13, 34], Core
DOP [29] and Pure DOP are compositional approaches [19] for
implementing SPLs. For a detailed comparison between FOP and
Core DOP, the reader is referred to [29]. Other compositional ap-
proaches used to implement product lines rely on aspects [18],
framed aspects [24], combinations of feature modules and as-
pects [3, 25], mixins [31], hyperslices [33] or traits [8, 14]. In
[23], several of these modern program modularization techniques
are compared with respect to their ability to represent feature-
based variability. Furthermore, the modularity concepts of recent
languages, such as SCALA [26] or NEWSPEAK [10], can be used
to represent product features.

55

In [1], an approach is presented that combines reactive and ex-
tractive product line engineering [22] based on aspect-oriented pro-
gram refactorings. The modification operations that can be spec-
ified in delta modules are sufficient to express before, after and
around advice considered in aspect-oriented programming [21].
Delta modules do not comprise a specification formalism for mod-
ifications to be carried out at several places of a program (such as
pointcuts), such that all program modifications have to be explicitly
specified. Adding a pointcut-specification technique to delta mod-
ules would allow encoding AOP by DOP, which is a subject of fu-
ture work. However, delta modules are more flexible than aspects
by their ability to remove functionality, such that a program refac-
toring is not required to evolve a product line when functionality
has to be removed.

8. Conclusions and Future Work
In this paper, we have proposed pure delta-oriented programming
(Pure DOP) as a conceptual simplification of Core DOP [29]. An
implementation of the Pure DOP programming language presented
in this paper and a core calculus with a constraint-based type
system are currently being developed. Following the conceptual
comparison of FOP, Core DOP and Pure DOP in this paper, we
are evaluating Pure DOP empirically at larger case examples and
investigating the extraction of delta modules from version histories.

The concept of Pure DOP is not bound to a particular program-
ming language. In this work, we have instantiated it for LFJ. For
future work, we are aiming to use other languages for the under-
lying product implementations. A starting point is the trait-based
calculus FEATHERWEIGHT RECORD-TRAIT JAVA (FRTJ) [8, 9].
In FRTJ, classes are assembled from interfaces, records (providing
fields) and traits [14] (providing methods) that can be directly ma-
nipulated by designated composition operations. These operations
make FRTJ a good candidate for implementing delta modules in
an expressive way.

References
[1] V. Alves, P. Matos, L. Cole, A. Vasconcelos, P. Borba, and G. Ra-

malho. Extracting and evolving code in product lines with aspect-
oriented programming. In Transactions on aspect-oriented software
development IV, pages 117–142. Springer-Verlag, 2007.

[2] S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java:
A Calculus for Feature-Oriented Programming and Stepwise Refine-
ment. In GPCE, pages 101–112. ACM, 2008.

[3] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. IEEE
Trans. Software Eng., 34(2):162–180, 2008.

[4] P. G. Bassett. Framing software reuse: lessons from the real world.
Prentice-Hall, Inc., 1997.

[5] D. Batory. Feature Models, Grammars, and Propositional Formulas.
In SPLC, volume 3714 of LNCS, pages 7–20. Springer, 2005.

[6] D. Batory. Using modern mathematics as an FOSD modeling lan-
guage. In GPCE, pages 35–44. ACM, 2008.

[7] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refine-
ment. IEEE Trans. Software Eng., 30(6):355–371, 2004.

[8] L. Bettini, F. Damiani, and I. Schaefer. Implementing Software Prod-
uct Lines using Traits. In SAC, OOPS Track, pages 2096–2102. ACM,
2010.

[9] L. Bettini, F. Damiani, I. Schaefer, and F. Strocco. A Prototypical
Java-like Language with Records and Traits. In PPPJ. ACM, 2010.

[10] G. Bracha. Executable Grammars in Newspeak. ENTCS, 193:3–18,
2007.

[11] D. Clarke, M. Helvensteijn, and I. Schaefer. Abstract delta modeling.
In Proc. of GPCE, 2010. (to appear).

[12] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison Wesley Longman, 2001.

[13] B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of
Safe Composition. In FOAL, pages 31–35. ACM, 2009.

[14] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM TOPLAS, 28(2):331–388,
2006.

[15] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical report, Carnegie Mellon Software Engineering Institute, 1990.

[17] C. Kästner and S. Apel. Type-Checking Software Product Lines - A
Formal Approach. In ASE, pages 258–267. IEEE, 2008.

[18] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing
Features Using AspectJ. In SPLC, pages 223–232. IEEE, 2007.

[19] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. In ICSE, pages 311–320. ACM, 2008.

[20] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. Batory, and
G. Saake. On the Impact of the Optional Feature Problem: Analysis
and Case Studies. In SPLC. IEEE, 2009.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An Overview of AspectJ. In ECOOP, volume 2072 of
LNCS, pages 327–353. Springer, 2001.

[22] C. Krueger. Eliminating the Adoption Barrier. IEEE Software,
19(4):29–31, 2002.

[23] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support
for Features in Advanced Modularization Technologies. In ECOOP,
volume 3586 of LNCS, pages 169–194. Springer, 2005.

[24] N. Loughran and A. Rashid. Framed aspects: Supporting variability
and configurability for aop. In ICSR, volume 3107 of LNCS, pages
127–140. Springer, 2004.

[25] M. Mezini and K. Ostermann. Variability management with feature-
oriented programming and aspects. In SIGSOFT FSE, pages 127–136.
ACM, 2004.

[26] M. Odersky. The Scala Language Specification, version 2.4. Technical
report, Programming Methods Laboratory, EPFL, 2007.

[27] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer,
2005.

[28] I. Schaefer. Variability Modelling for Model-Driven Development of
Software Product Lines. In Intl. Workshop on Variability Modelling of
Software-intensive Systems, 2010.

[29] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-
oriented Programming of Software Product Lines. In SPLC, volume
6287 of LNCS. Springer, 2010.

[30] I. Schaefer, A. Worret, and A. Poetzsch-Heffter. A Model-Based
Framework for Automated Product Derivation. In Proc. of MAPLE,
2009.

[31] Y. Smaragdakis and D. Batory. Mixin layers: an object-oriented imple-
mentation technique for refinements and collaboration-based designs.
ACM Trans. Softw. Eng. Methodol., 11(2):215–255, 2002.

[32] R. Strniša, P. Sewell, and M. Parkinson. The Java module system: core
design and semantic definition. In OOPSLA, pages 499–514. ACM,
2007.

[33] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N degrees of
separation: multi-dimensional separation of concerns. In ICSE, pages
107–119, 1999.

[34] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In GPCE, pages 95–104. ACM, 2007.

[35] M. Torgersen. The Expression Problem Revisited. In ECOOP, volume
3086 of LNCS, pages 123–146. Springer, 2004.

[36] H. Zhang and S. Jarzabek. An XVCL-based Approach to Software
Product Line Development. In Software Engineering and Knowledge
Engineering, pages 267–275, 2003.

56

Improving Reuse of Component Families
by Generating Component Hierarchies

Marko Rosenmüller
School of Computer Science,

University of Magdeburg,
Germany

rosenmue@ovgu.de

Norbert Siegmund
School of Computer Science,

University of Magdeburg,
Germany

nsiegmun@ovgu.de

Martin Kuhlemann
School of Computer Science,

University of Magdeburg,
Germany

mkuhlema@ovgu.de

ABSTRACT
Feature-oriented software development (FOSD) enables de-
velopers to generate families of similar components. How-
ever, current FOSD approaches degrade component reuse
because they do not allow a developer to combine multiple
components of the same family in a larger program. This is
because individual family members cannot be distinguished
from each other. We present an approach to model and
generate component hierarchies that allow a programmer to
combine multiple component variants. A component hierar-
chy structures the components of a family according to their
functionality. Due to subtyping between the components of
a hierarchy, client developers can write generic code that
works with different component variants.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Soft-
ware—Domain engineering, Reusable libraries

General Terms
Design, Languages

1. INTRODUCTION
Scalable software reuse can be achieved by develop-

ing components, libraries, and frameworks (in the follow-
ing referred to as components) as software product lines
(SPLs) [4]. From a component SPL, programmers can de-
rive a family of similar components that can be distinguished
in terms of features [6]. Features represent characteristics of
a component that are of interest to some stakeholder. A de-
veloper can build more complex SPLs by combining multi-
ple component SPLs. This results in a set of interdependent
SPLs which we call a multi product line (MPL) [21].

In previous work, we presented an approach to model
MPLs and to automate their configuration [21]. In this
paper, we extend the modeling approach and address the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

implementation of MPLs with feature-oriented programming
(FOP) [19, 3]. FOP and other approaches for SPL develop-
ment do not allow a programmer to use different variants of
a component in the same program. The reason is that we
cannot distinguish two variants of a component from each
other since they are derived from the same code base and
use the same names (e.g., for classes). For example, in the
customizable DBMS BerkeleyDB1, programmers use the C
preprocessor to implement variability. Since a function has
the same name in all Berkeley DB variants, we cannot use
different variants of the DBMS in the same program (e.g.,
one for stream processing and one for persistent storage).
As another example consider an SPL for container data

structures. We can implement it with FOP to derive differ-
ent kinds of data structures (e.g., a sorted list and a synchro-
nized list). A client developer should be able to use different
variants of the SPL in the same program. Ideally, the data
structures should span a type hierarchy to simplify develop-
ment of generic client code. For example, a sorted list and
a synchronized list should be subtypes of a basic list to use
them polymorphically. OOP concepts, such as inheritance
(e.g., creating a subclass for each kind of list), cannot solve
the problem because a programmer has to create subclasses
for every class of each component variant [4]. Finally, most
FOP approaches completely replicate the code when gener-
ating different variants of a component. We summarize the
observed problems as follows:

Naming Conflicts. When deriving different variants of a
component from an SPL, the names of classes in differ-
ent variants are the same. Hence, a programmer (and
a compiler) cannot distinguish the different variants
(e.g., to create objects).

Missing Subtyping. Even though different SPL in-
stances provide a similar interface there is no subtyp-
ing relationship between them. This hampers develop-
ment of generic code in client applications.

Code Replication. Different variants of the same SPL
share functionality but there is no code reuse: features
that are used in two variants are completely replicated.

We observe these problems when components are embed-
ded in a program (e.g., as statically linked libraries) and
used via an API. Hence, we focus on components that are
represented in the programming language (e.g., as a set of
classes). We define three requirements to enable reuse of
different variants of a component within the same program:

1http://www.oracle.com/database/berkeley-db/

57

OR

XOR

optional

mandatory

STATISTICS

LISTPL QUICKSORT

MERGESORT
BUBBLESORTSORT

SYNC

Figure 1: Feature diagram of an SPL for list data
structures.

1. Instance identification: programmers must be able to
distinguish two instances of the same SPL.

2. Subtyping: SPL instances should span a type hierar-
chy to be used polymorphically.

3. Code Reuse: code should be reused between instances
of the same SPL.

Requirement (1) is mandatory for using different compo-
nent variants in the same program. Requirements (2) and
(3) are optional: Requirement (2) simplifies client develop-
ment because it allows a programmer to write generic code;
Requirement (3) is an optimization.

To address the problems already at a conceptual,
implementation-independent level, we extend our approach
for modeling MPLs. We use SPL specialization [7] to define
component hierarchies and define a subtype relationship be-
tween component variants. We then demonstrate how com-
ponent hierarchies can be generated from FOP code.

2. COMPONENT SPLS
A component SPL allows a programmer to derive a com-

ponent tailored to her needs. As a running example, con-
sider an SPL for list data structures (ListPL). We can use
it to derive different kinds of linked lists such as sorted and
synchronized lists. In Figure 1, we show the ListPL feature
diagram [11, 6], a hierarchical representation of the features.
A feature diagram includes relations between features (such
as an XOR relation between alternative features) to avoid
invalid feature combinations in a concrete SPL instance. For
example, feature Sort in Figure 1 represents the function-
ality for sorting list elements. It has three alternative sub-
features that implement different sort algorithms.

A programmer can use the ListPL to implement a mail
client SPL (MailPL). The mail client may also use other
SPLs such as a DBMS for mail storage. We call the whole
set of interdependent SPLs a multi product line (MPL) [21].
The product of an MPL is a set of interacting products of
the underlying SPLs. With an MPL composition model we
describe which SPL instances are used within an MPL. An
example for the mail client is shown in Figure 2: MailPL
uses an instance of DbmsPL and two different instances of
ListPL, which we describe with a composition relationship.
SPL instance names (e.g., sortList) are used to identify
different instances of the same SPL on the model level.

2.1 SPL Specialization Hierarchies
In order to specify which functionality an SPL instance

(e.g., sortList in Fig. 2) must provide, we use SPL special-
izations. A specialization of an SPL is a configuration step
that eliminates configuration choices [7]. Usually, a special-
ization does not specify an SPL instance completely; it is

-mailStorage -syncList-sortList

MailPL
«SPL»

DbmsPL
«SPL»

ListPL
«SPL»

Figure 2: Modeling product lines with UML: A mail
client SPL (MailPL) using a DBMS and List SPL.

SortListPL
-SORTED

QuickSortListPL
-QUICKSORT

MergeSortListPL
-MERGESORT

-sortList
-syncList

«SPL» «SPL»

«SPL»

-SYNC
-STATISTICS

SyncListPL
«SPL»

ListPL
«SPL»

MailPL
«SPL»

QSSyncListPL
«SPL»

Figure 3: Specialization hierarchy of SPL ListPL.
MailPL uses two specializations of ListPL.

only a partial configuration that still provides some vari-
ability. In Figure 3, we show an extended ListPL model.
We use inheritance to denote specializations of ListPL,
which results in an specialization hierarchy. For example,
SortListPL and SyncListPL are specializations of ListPL,
each representing a subset of the variants. Feature Sort is
included in all instances of SortListPL. Hence, we can only
derive sorted lists from it. QuickSortListPL and Merge-

SortListPL are specializations of SortListPL that imple-
ment different sorting algorithms. A specialization step does
not necessarily add features to an SPL. For example, it may
explicitly exclude a feature. In general, arbitrary con-
straints can be used to create a specialized SPL by reducing
the number of valid configurations.
A fully specialized SPL represents only a single configura-

tion [7]. We can use it to directly derive the corresponding
SPL instance. In contrast, when creating an instance from
an incompletely specialized SPL, we have to bind remaining
variability first. For example, we can create an instance from
SortListPL by selecting feature QuickSort and excluding
feature Sync.

2.2 Subtyping and SPL Interfaces
The specialization hierarchy defines a subtype relation-

ship between SPLs: A specialized SPL D is a subtype of
a less specialized SPL B. If an SPL is a specialization of
another SPL, and thus a subtype, can be checked with a
SAT solver [23]. Subtyping between SPLs allows us to use
them polymorphically. For example, MailPL in Figure 3 uses
SortListPL, but also accepts every subtype thereof such as
an instance of QuickSortListPL. Hence, an SPL instance
can be used at places where its super type is required.
To describe the interaction between SPLs, we introduce

the notion of an SPL interface. We distinguish an SPL’s se-
mantic interface from its programming interface (which we
introduce in Section 3.3). We define the semantic interface
of a (specialized) SPL as the set of features that are present

58

in all valid instances of the SPL (i.e., the minimally required
features). These are mandatory features, features selected
via specialization, and features required due to constraints.
By adding features in specialization steps we extend the in-
terface of an SPL. However, not every specialization step
extends the interface. For example, the interface does usu-
ally not change when we add a constraint that excludes a
feature. Hence, when the semantic interface of an SPL D
(i.e., the set of features) is a superset of the the interface of
an SPL B then D is a subytpe of B. On the other hand, when
D is a subtype of B then the interface of D is a superset of
the interface of B, but not necessarily a proper superset.

The expected and required semantic interfaces (i.e., the
set of expected and required features) can be used to check
whether one component provides the functionality required
by another component. For example, we can check whether
an instance of ListPL provides all features an instance of
MailPL expects. This is a kind of semantic compatibility
which is in contrast to the syntactic compatibility that is
checked with programming interfaces.

2.3 Summary
Composition models and specialization hierarchies pro-

vide means to model MPLs and to distinguish different vari-
ants of an SPL at a conceptual level. The requirement to
distinguish different instances of an SPL (Req. 1 in Sec. 1)
is satisfied by using named SPL instances. The subtype
relationship between SPL specializations allows us to use
different instances polymorhically (Req. 2). Requirement
3 (Code Reuse) does not apply to the model level. Nev-
ertheless, we can reuse SPL instances (i.e., an SPL’s con-
figuration) at different places in an MPL model and thus
avoid redefinitions. In the next Section, we show how these
concepts can be mapped to the implementation of an SPL.

3. GENERATING COMPONENTS
We demonstrate how the concepts can be applied to SPL

implementation for the programming languages Jak2 and
FeatureC++3, which are FOP extensions for Java and C++.

3.1 Feature-oriented Programming
FOP allows a programmer to implement the features of an

SPL as separate feature modules. [19, 3]. Feature modules
decompose a class into a base class and class refinements. In
Figure 4, we depict the FeatureC++ code of the base imple-
mentation of a class List (Lines 1–6) of the ListPL, and two
refinements of the class (Lines 7–16). Elements are added to
the list via method add. The refinements in features Sort
and Sync extend the base implementation. They override
method add to implement sorted insertion (Line 8) and syn-
chronization (Line 12). Feature Sync also adds a new field
sync to synchronize access to the list. Overridden methods
are called with super as shown for feature Sync (Line 14).

A user defines an SPL instance by selecting a set of fea-
tures that satisfy her requirements. A generator composes
the corresponding feature modules to yield a concrete list
instance. Using the feature modules of Figure 4, we can gen-
erate a simple list using the base implementation only, but
we can also use different combinations of the features (e.g.,
to derive a sorted synchronized list). Jak and FeatureC++

2http://userweb.cs.utexas.edu/users/schwartz/
3http://fosd.de/fcc/

Feature Base

1 //Basic implementation of c lass List
2 template <class T>
3 class List {
4 Node <T>* head;
5 void add(T elem) { ... /∗ append at end ∗/ }
6 };

Feature Sort

7 refines class List {
8 void add(T elem) { ... /∗ sorted insert ∗/ }
9 };

Feature Sync

10 refines class List {
11 SyncObject sync;
12 void add(T elem) {
13 LockObject lock(sync); //syncronize access
14 super::Add(m); //add element
15 }
16 };

Figure 4: FeatureC++ code of class List decom-
posed along the features Sort and Sync.

support static composition of classes. This means that ac-
cording to the feature selection, the code of all refinements
is composed into a single class at compile time.

3.2 Component Hierarchies
We map the modeling concepts (i.e., named SPL in-

stances, SPL specialization, and subtyping) to the imple-
mentation of SPLs by generating component hierarchies.
Before we present implementation techniques, we review the
requirements defined in Section 1 with respect to FOP.

Instance Identification. Indentifying different instances of
the same SPL means to distinguish different variants of an
implementation class4 of these instances. For example, gen-
erating a sorted and a synchronized instance of ListPL re-
sults in different variants of class List (e.g., a sorted list in
one instance and a synchronized list in the other instance;
cf. Fig. 4). When using static composition mechanisms such
as Jak, FeatureC++, or the C/C++ preprocessor, all vari-
ants of class List have the same name. This makes it im-
possible to identify the different variants of a class (e.g., for
creating objects). Hence, the component generation process
must create unique names for implementation classes of dif-
ferent SPL instances.

Subtyping. Mapping the specialization hierarchy to the im-
plementation of an SPL means that generated components
(i.e., the SPL instances) have to follow this hierarchy too.
Hence, when an SPL Base is a super type of an SPL De-

rived then the whole set of implementation classes in Base

should be a super type of the corresponding classes in De-

rived. This is also known as Family Polymorphism [8]. The
resulting subtype relationship is needed to simplify client
development and must be available in the client language.
For example, FeatureC++ generates plain C++ code and
we should be able to use a generated component in C++
clients. This requires a subtype relationship between im-
plementation classes of different component variants in the
generated C++ code. Since we can have different SPL spe-

4We refer to the classes that are used to implement an SPL
as implementation classes.

59

cializations for different application scenarios, the special-
ization hierarchy and thus the subtype relationship may be
different for different client programs.

Code Reuse. Generating different variants of an SPL usu-
ally means code replication because the code of shared fea-
tures is repeated for each instance. As a result, we get a sim-
ilar increase in binary size as observed for C++ templates
(a.k.a. code bloat). Since whole features are replicated be-
tween generated variants, the classes, methods, and refine-
ments of a feature should be automatically reused across a
family of SPL instances [14].

3.3 SPL Programming Interfaces
In Section 2.2, we defined the semantic interface of a (spe-

cialized) SPL. Based on this definition we define an SPL’s
programming interface as the union of the programming in-
terfaces of the implementation classes defined in the features
of the semantic interface. For example, the programming in-
terface of SortListPL (cf. Fig. 3) consists of the interfaces
of all classes defined in the base implementation of ListPL
and feature Sort (cf. Fig. 1). It does not include classes or
methods introduced by features QuickSort, MergeSort,
or BubbleSort because only one of the features will be
present in an instance. In specialization steps, we extend an
SPL’s programming interface up to a complete interface for
a concrete component.

The subtype relationship between specialized SPLs also
applies to the implementation classes. Hence, when SPL
Derived is a specialization (and a subtype) of SPL Base

then an implementation class C defined in Derived is also
a subtype of class C defined in SPL Base. This means that
a feature can only add members to the interface of a class
but cannot modify members because it would conflict with
the subtype relationship. For example, a feature cannot ex-
tend the signature of a method as it is sometimes done in
preprocessor-based implementations of an SPL [12, 20]. We
argue that such extensions must be avoided because they
complicate SPL development and hamper use of SPL in-
stances [20].

4. IMPLEMENTATION MECHANISMS
We present different mechanisms for generating compo-

nent families that enable a programmer to use multiple in-
stances of an SPL at the same time. We analyze each mech-
anism with respect to the presented requirements.

4.1 Namespaces / Packages
A simple way to distinguish sets of classes that have the

same name is to group them into namespaces (C++) or
packages (Java). The FeatureC++ compiler supports the
generation of a package for each SPL instance. For exam-
ple, we can use a namespace SortList to group all classes
of a sorted list SPL instance. For Jak, this is possible with
refactoring feature modules which move generated classes
into a package [13]. Refactoring feature modules are a gen-
eral mechanism that can be applied to other languages as
well. In the following, we analyze the approach with respect
to our requirements.

Instance Identification. We distinguish classes of different
component variants via their package name. The package
thus provides a unique type for each class. For example, we

can define a client method that creates sorted lists:

class MailClient {

sortList.List createList() {

return new sortList.List();

}

}

The name of package sortList corresponds to the name of
the SPL instance defined in the MPL model (cf. Fig. 3). The
instance name can thus be used for the code generation pro-
cess. For example, the FeatureC++ compiler can generate
required instances with their namespaces as defined in the
composition model.

Subtyping. The namespace solution does not support sub-
typing between different variants of a class. The reason
is that every generated SPL instance uses its own names-
pace and classes of one namespace are independent of the
classes of a different namespace. For example, a class
quickSortList.List is not a subtype of sortList.List

even though both provide a similar interface. Furthermore,
there is no representation of specialized SPLs in the names-
pace approach.

Code Reuse. There is no code reuse between classes of
two SPL variants. For example, quickSortList.List and
mergeSortList.List completely replicate the code of fea-
ture Sort and the base implementation. However, classes
of different namespaces might be extracted and merged into
a common class library [14]. This cannot avoid code replica-
tion completely but may be sufficient for many application
scenarios. In contrast to the approach described in [14],
static fields have to be handled differently to avoid shared
state between different variants.

4.2 Virtual Classes
A namespace approach does not allow us to use implemen-

tation classes polymorhically. We can provide the required
subtype relationship with virtual classes [15] as supported
by CaesarJ5 [1]. A virtual class is a nested class whose type
depends on the type of an object of its enclosing class. In
our case, the enclosing class represents a specialized SPL.
With mixin-based inheritance [5], an enclosing CaesarJ class
composes multiple classes. Mixin composition is similar to
multiple inheritance but avoids some of its problems by lin-
earizing the base classes. When implementing SPL features
as enclosing classes, mixin composition can be used to com-
pose features. The composition results in a specialized SPL
that includes the features of all base classes. For example,
in CaesarJ we define SortListPL (cf. Fig. 3) as follows6:

cclass SortListPL extends Sort & ListPL { }

SortListPL represents a specialized SPL that is defined via
mixin composition of feature Sort with SPL ListPL.

Instance Identification. With virtual classes, a specialized
SPL as well as an SPL instance is represented by a class.
To use an SPL instance, we create an object of an SPL
class (e.g., an instance of class SortListPL). The type of
an implementation class, which is an inner virtual class, is
defined by an object of an SPL class. For example, we can
use an object of SortListPL to create sorted lists:
5http://caesarj.org
6CaesarJ classes are defined with keyword cclass.

60

cclass MailClient {

SortListPL sortList = new QuickSortListPL();

SortListPL.List createList() {

return sortList.new List();

}

}

In this example, sortList is an object of SPL instance
QuickSortListPL. This specialized SPL has to correspond
to a valid configuration. For example, we cannot create an
instance of SortListPL because it does not provide a sorting
implementation (cf. Fig. 3). The SPL instance object pro-
vides the new operator for creating objects of that instance.
This is similar to the namespace approach. As in the names-
pace approach, we use the instance name sortList as de-
fined in the MPL model.

Subtyping. The implementation classes of an SPL can be
used polymorphically. For example, method

void display(SortListPL.List l)

accepts all kinds of sorted lists, which are defined in an SPL
instance that is a subtype of SortListPL. Furthermore, due
to the virtual class mechanism, a type can also be specified
via an object. Hence, methods such as

void display(SortListPL plInst, plInst.List l)

can be used to ensure that an object (plInst.List l) cor-
responds to a particular SPL instance (plInst). In this ex-
ample, the actual type of plInst could be QuickSortListPL
(i.e., a subtype of SortListPL). List l then has to be an ob-
ject of QuickSortListPL.List. This is used to distinguish
objects of classes (e.g., List) of different SPL instances.
With static type checking we can ensure that an object of
one SPL instance is not passed to a different instance [9].

Code Reuse. The actual code reuse in a family of com-
ponents depends on the concrete implementation of virtual
classes. In CaesarJ, all implementation classes of a set of
generated components form an inheritance hierarchy [1].
The hierarchy of a class corresponds to the refinement chain
(i.e., the mixin list in CaesarJ) and is independent of the
specialization hierarchy. This reduces code replication but
does not completely avoid it: In a complex inheritance hier-
archy, we have to replicate the code of refinements that are
used multiple times at different positions in the hierarchy.
However, this could be avoided with a different implemen-
tation.

Mixin Composition and Complexity Issues. The pre-
sented approach causes problems with respect to compo-
sition and complexity. The first issue is related to mixin
composition. When creating a specialized SPL via mixin-
based inheritance, we have to inherit from the SPLs as de-
fined in our specialization hierarchy to achieve subtyping.
At the same time, mixin composition is used to define the
feature composition order: Features of the base classes are
merged in the same order as they are listed in the base class
definition. This entangles the subtype relationship and the
feature composition order. Since feature composition is not
commutative, it is impossible to achieve a valid feature or-
der for all component hierarchies. A workaround in CaesarJ
is to explicitly define the feature order as well as the par-
ent SPLs required for subtyping. For example, we define

a class SyncSortListPL (i.e., a synchronized sorted list),
which should be a subtype of SyncListPL (cf. Fig 3) and
SortListPL as:

cclass SyncSortListPL

extends SyncListPL & SortListPL

& Sync & Sort & ListBase { }

Here, Sync, Sort, and ListBase define the correct feature
order; SyncListPL and SortListPL are used to define the
required subtyping. However, mixin composition still in-
creases the complexity of the SPL configuration process,
which hinders its use for SPL development:

• Repeating the feature order for every SPL instance
means additional configuration effort and is error-
prone.

• An SPL instance is created by a user of an SPL (e.g.,
a developer of a client application) that does not know
SPL implementation details such as the feature com-
position order.

• Changing the configuration of an inner component of
the hierarchy (e.g., adding a feature to SortListPL; cf.
Fig 3) is not possible without modifying every instance
to explicitly define the feature order.

• The approach imposes an additional complexity on
client developers due to the use of virtual classes.
Hence, a client developer that uses only a single SPL
instance is faced with an unneeded complexity.

Some of these issues can be solved by extending CaesarJ,
e.g., by separating composition order from subclassing. We
propose to address these complexity issues with a genera-
tive approach: based on an SPL implementation in an FOP
language such as Jak, we generate virtual classes (e.g., Cae-
sarJ code) including the specialization hierarchy with mixin-
based inheritance. This generative approach avoids manual
configuration via mixin composition. Furthermore, when
only a single SPL instance is required, we generate plain
Java code and avoid the complexity of virtual classes.

4.3 Generating SPL Interfaces
Both, the namespace approach and the virtual class ap-

proach, have drawbacks that limit their applicability. For a
more general solution, we generate a hierarchy of SPL in-
terfaces (i.e., the SPL’s programming interface) to represent
specialized SPLs. We use nested interfaces to represent the
interfaces of SPL implementation classes. In Figure 5, we
show an example for the generated interfaces of a subset
of the ListPL hierarchy (Lines 1–15). A concrete SPL in-
stance is defined as a class that implements the interface
of the corresponding specialized SPL (Lines 16–20). This
code transformation is similar to the implementation used
in CaesarJ [1].
In contrast to the namespace approach, implementation

classes of an instance are defined as nested classes within
their instance (Lines 18–19). In contrast to virtual classes,
the SPL specialization hierarchy is represented as a hierar-
chy of interfaces in the client language. We thus separate
an SPL instance (i.e., a concrete implementation) from its
interface. This corresponds to the fact that we can have an
SPL specialization that does not correspond to a concrete
instance. The interface can be used to define which function-
ality an SPL provides without a concrete implementation.
The generated interface hierarchy provides an emulation

of virtual classes for plain Java and C++. As implemen-

61

SPL ListPL

1 interface ListPL {
2 abstract List newList ();
3 interface List {...}
4 interface Node {...}
5 }

SPL specialization SortListPL

6 interface SortListPL extends ListPL {
7 abstract List newList ();
8 interface List extends ListPL.List {...}
9 interface Node extends ListPL.Node {...}

10 }

SPL specialization QuickSortListPL

11 interface QuickSortListPL extends SortListPL {
12 abstract List newList ();
13 interface List extends ListPL.List {...}
14 interface Node extends ListPL.Node {...}
15 }

SPL instance QuickSortList

16 class QuickSortList implements QuickSortListPL {
17 List newList () {...}
18 class List implements QuickSortListPL.List {...}
19 class Node implements QuickSortListPL.Node {...}
20 }

Figure 5: Generated interface hierarchy repre-
senting SPL specialization (Lines 1–15) and a gen-
erated class representing an SPL instance (Lines
16–20).

tation mechanism, it is possible to use refactoring feature
modules to extract the required interface of a specialized
SPL. In the following, we analyze this solution with respect
to the requirements defined in Section 1.

Instance Identification. We refer to an implementation
class via its enclosing SPL class (which represents a con-
crete instance) or indirectly by using a generated factory
method (e.g., method newList() in Fig. 5), which is part of
the generated interface:

class MailClient {

SortListPL sortList = new QuickSortList();

SortListPL.List createList() {

return sortList.newList();

}

}

In this example, createList() invokes the virtual factory
method newList() (cf. Fig. 5), which is implemented by an
SPL instance that is a subtype of SortListPL. This is sim-
ilar to the use of the new operator in virtual classes which
simplifies to write generic client code.

In contrast to virtual classes, an SPL instance is repre-
sented by a class that implements the interface of a spe-
cialized SPL. This means that we can have different imple-
mentations of the same (fully) specialized SPL (i.e., that
implement the same interface). For example, we can have
two sorted lists, one providing a speed optimized implemen-
tation and one providing a memory optimized implementa-
tion and both can be used polymorphically. It is also possi-
ble to implement the same interface in two different SPLs,
which allows us to use instances of the SPLs interchange-
ably. Hence, we extend the interface concept of components
to component SPLs. This is different from the virtual class

solution (cf. Section 4.2) where we cannot distinguish spe-
cialized SPLs from SPL instances.

Subtyping. Subtyping of SPL implementation classes is re-
alized as subtyping between the nested interfaces. As with
virtual classes, the interface of a class can thus be used poly-
morphically. We can use it to reference all variants of a class
that are defined in a subytpe of the specialized SPL. For ex-
ample, a client method

void display(SortListPL.List l) { ... }

accepts all kinds of sorted lists. Similar to the CaesarJ ap-
proach, this solution achieves static subtyping also in case
of multiple inheritance between SPL specializations. It is
implemented as multiple inheritance between the SPL in-
terfaces and the nested interfaces of implementation classes.
For example, a sorted and synchronized list can be a sub-
type of SortListPL and SyncListPL. This does not cause
problems known from multiple inheritance of implementa-
tion classes. Finally, the approach allows us to add new
SPL specializations without modifying a client implementa-
tion as long as the new variant is not a super type of an
existing one (i.e., it does not modify the existing inheritance
hierarchy).
The main drawback of this solution is that it does not

allow us to statically check whether two objects of imple-
mentation classes are compatible with each other (i.e., if
they are part of the same SPL instance). For example, us-
ing the abstract list interface, we could pass a node of a
single linked list to a double linked list causing a runtime
type error. With virtual classes, such errors can already be
detected by the compiler [9].

Code Reuse. In the presented solution we do not address
the problem of code replication. Even though we are using
nested interfaces to represent a specialized SPL we cannot
use nested classes to represent fragments of SPL implemen-
tation classes. It would result in the same problems as ob-
served for mixin composition (entangled feature order and
subtyping). Furthermore, it would result in multiple inher-
itance of implementation classes when multiple inheritance
of their interfaces is needed. For example, a sorted and syn-
chronized list would inherit the basic list implementation
twice. However, a similar implementation as used in Cae-
sarJ could be used to avoid code replication.

5. DISCUSSION
We presented different approaches to generate component

families that allow us to use multiple variants of a component
in the same program. In the following, we discuss open
issues and suggest how FOP approaches should be changed
to provide a viable solution for generating components from
an SPL.

5.1 Code Reuse
In CaesarJ, code replication is reduced. It can be com-

pletely avoided with an implementation that avoids replica-
tion of refinements, e.g., using delegation. This is also possi-
ble for generated OO hierarchies and even for the namespace
approach. However, it means a more complex code trans-
formation than simply adding a namespace. Furthermore,
it may result in an overhead in terms of execution time for
introduced indirections, which has to be evaluated.

62

5.2 When to Use Which Mechanism?
Since all presented solutions have benefits and drawbacks,

no mechanism can be generally preferred. We discuss when
the different mechanisms should be used.

Plain Static Composition. When using a component, most
of the time this means to use a single instance of the com-
ponent only. This can be accomplished with current ap-
proaches for SPL development that use static composition
of features. Furthermore, the code transformations used for
Jak and FeatureC++ allow us to use generated components
in plain Java and C++ clients.

Namespaces. The namespace approach often suffices when
a client uses multiple variants of a component. However, it
does not support subtyping of generated components. This
causes a high effort to write generic code for different com-
ponent variants. Compared to the advanced solutions that
support subtyping, the namespace approach achieves better
performance due to the possibility of method inlining. How-
ever, a detailed performance evaluation is needed to analyze
the actual effect. Due to its simplicity, it can also be used
on deeply embedded devices when there is no support for
OOP or for some OOP concepts such as virtual methods.

Virtual Classes. Implementing an SPL with virtual classes
(e.g., with CaesarJ) allows us to to achieve subtyping of a
component hierarchy. By generating virtual classes from
an FOP implementation, we avoid the complexity of mixin
composition. However, once we have decided for such an
SPL implementation, a client developer is faced with the
complexity of virtual classes even when not needed. A re-
maining problem is that we cannot use this solution when
the client is developed with a mainstream OO language due
to missing support for virtual classes.

Generating SPL Interfaces. To achieve subtyping between
SPL specializations in languages that do not support virtual
classes, we propose to generate plain OO interfaces to repre-
sent specialized SPLs. This allows us to access different vari-
ants of a class with the same interface. The approach also
allows us to separate SPL instances (implemented as classes)
from SPL specializations (implemented as interfaces) and to
have different implementations of the same SPL specializa-
tion. The main drawback compared to virtual classes is that
we loose parts of static type safety on the client side.

5.3 Flexible Feature Composition
To allow programmers to choose the best solution accord-

ing to the application scenario, we propose to use a flexible
approach for feature composition that generates the actu-
ally required code. We already support this for plain static
composition and generating namespaces / packages. When
a component hierarchy and subtyping is needed, we pro-
pose to use more advanced approaches: generating virtual
classes if supported by the client language or generating a
plain OO interface hierarchy otherwise. It is also possible
to extend CaesarJ to avoid the problems mentioned above.
From CaesarJ code we could then generate code without
virtual classes when they are not needed or not supported.

A flexible approach allows us to switch from one imple-
mentation mechanism to another by regenerating the com-
ponents (i.e., when the requirements change). However, this
also means that the client, which uses the SPL, has to be
changed accordingly. With refactoring feature modules we
can automatically refactor the client program as well; but
this has to be further analyzed in future work.

6. RELATED WORK
There are also other languages that support virtual

classes, which we could have used for our analysis. How-
ever, we think that the problems are very similar to those
described for CaesarJ.
Nested Intersection. The language J& supports composi-

tion of multiple components using nested intersection [17].
It is based on composition of classes and packages with their
inner classes similar to virtual classes. J& might be better
suited for implementing specialization hierarchies than vir-
tual classes because it defines static virtual types, which are
attributes of packages or classes and not of objects. How-
ever, the composition mechanism does not linearize class ex-
tensions, which complicates development of independently
composable features. We intend to evaluate the approach
for implementing specialization hierarchies in further work.
Mixin Layers. Generics, such as C++ templates, can be

used to implement layered designs [22]. Similar to virtual
classes, nested classes of a mixin layer extend classes of their
super layers. As a precursor of FOP, the language P++ (an
extension of C++) provides composition of mixin layers and
explicitly defines layer interfaces [2]. Static mixin composi-
tion is similar to mixin composition of virtual classes but
different instances of a component are generated by tem-
plate instantiation at compile time. However, as in virtual
classes, the feature composition order and subtyping are not
independent. Moreover, generating hierarchies with multi-
ple inheritance would result in multiple inheritance of inner
classes. Jiazzi solves some of the problems of static mixin
composition with concepts similar to virtual classes [16].
Dynamic Feature Composition. Dynamic composition of

features means to derive an SPL instance by composing fea-
tures at runtime (e.g., supported by Delegation Layers [18],
Object Teams [10], and FeatureC++). Delegation layers
and Object Teams furthermore combine delegation-based
composition with virtual classes. Dynamic composition pro-
vides more flexibility than static composition of features be-
cause the feature selection of an SPL instance is determined
in a running program. When this flexibility is needed we
do not want to statically define a specialization hierarchy as
proposed in this paper.

7. CONCLUSION
Feature-oriented software development lacks support for

reusing multiple products of an SPL in the same program.
For example, programmers cannot model or implement large
software systems that use multiple component variants gen-
erated from an SPL. We propose to model and generate com-
ponent hierarchies from a feature-oriented SPL. A compo-
nent hierarchy allows a programmer to distinguish different
variants of a component and provides a subtype relation-
ship between components. This enables client developers to
write generic code to be used with different variants of a
component.
Based on modeling support for component hierarchies, we

apply the concept to feature-based software composition.
Since a component hierarchy is only needed when using dif-
ferent variants of the same component, we propose to use a
flexible approach to feature composition:

• we use plain static composition if only a single instance
of an SPL is used at a time,

• we generate namespaces when using multiple compo-

63

nent variants at the same time,
• we propose to generate component hierarchies when

subtyping is needed: (1) by generating virtual classes
or (2) by generating a hierarchy of OO interfaces when
the client language does not support virtual classes.

Due to a flexible composition mechanism a developer of a
component SPL does not have to consider the special needs
of different clients. Based on a feature-oriented implementa-
tion of an SPL, a client developer defines the required com-
ponent hierarchy (or uses a predefined one) and generates
the components that correspond to the application scenario
and the client language.

In future work, we plan to implement and evaluate the
proposed solutions for generating component hierarchies.
This means to connect modeling of component hierarchies
and feature composition and to extend the FOP code gen-
eration process accordingly (e.g., for FeatureC++).

Acknowledgments
We thank Don Batory for discussions about the presented
work. Marko Rosenmüller is funded by German Research
Foundation (DFG), project number SA 465/34-1.7 Norbert
Siegmund is funded by German Ministry of Education and
Research (BMBF), project number 01IM08003C.8

8. REFERENCES
[1] I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann.

An Overview of CaesarJ. In Transactions on
Aspect-Oriented Software Development I, volume 3880
of LNCS, pages 135–173. Springer, 2006.

[2] D. Batory, S. Dasari, B. Geraci, V. Singhal, M. Sirkin,
and J. Thomas. Achieving reuse with software system
generators. IEEE Software, pages 89–94, 1995.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng.
(TSE), 30(6):355–371, 2004.

[4] D. Batory, V. Singhal, M. Sirkin, and J. Thomas.
Scalable software libraries. SIGSOFT Softw. Eng.
Notes, 18(5):191–199, 1993.

[5] G. Bracha and W. R. Cook. Mixin-Based Inheritance.
In Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA) and
the Europ. Conf. Object-Oriented Programming
(ECOOP), pages 303–311. ACM Press, 1990.

[6] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
Configuration Using Feature Models. In Proc. Int’l.
Software Product Line Conf. (SPLC), volume 3154 of
LNCS, pages 266–283. Springer, 2004.

[8] E. Ernst. Family Polymorphism. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP),
volume 2072 of LNCS, pages 303–326. Springer, 2001.

[9] E. Ernst, K. Ostermann, and W. R. Cook. A Virtual
Class Calculus. In Proc. Int’l. Symposium on
Principles of Programming Languages (POPL), pages
270–282. ACM Press, 2006.

7http://fosd.de/multiple
8http://vierfores.de

[10] S. Herrmann. Object Teams: Improving Modularity
for Crosscutting Collaborations. In Proc. Int’l.
Net.ObjectDays Conf., volume 2591 of LNCS, pages
248–264. Springer, 2002.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[12] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. Int’l. Conf.
Software Engineering (ICSE), pages 311–320. ACM
Press, 2008.

[13] M. Kuhlemann, D. Batory, and S. Apel. Refactoring
Feature Modules. In Proc. Int’l. Conf. Software Reuse
(ICSR), pages 106–115. Springer, 2009.

[14] J. Liu and D. Batory. Automatic Remodularization
and Optimized Synthesis of Product-Families. In Proc.
Int’l. Conf. Generative Programming and Component
Eng. (GPCE), pages 379–395. Springer, 2004.

[15] O. L. Madsen and B. Moller-Pedersen. Virtual
Classes: A Powerful Mechanism in Object-Oriented
Programming. In Proc. Int’l. Conf. Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 397–406. ACM Press, 1989.

[16] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi:
New-Age Components for Old-Fashioned Java. In
Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 211–222. ACM Press, 2001.

[17] N. Nystrom, X. Qi, and A. C. Myers. J&: Nested
Intersection for Scalable Software Composition. In
Proc. Int’l. Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
pages 21–35. ACM Press, 2006.

[18] K. Ostermann. Dynamically Composable
Collaborations with Delegation Layers. In Proc.
Europ. Conf. Object-Oriented Programming
(ECOOP), volume 2374 of LNCS, pages 89–110.
Springer, 2002.

[19] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), volume 1241
of LNCS, pages 419–443. Springer, 1997.

[20] M. Rosenmüller, M. Kuhlemann, N. Siegmund, and
H. Schirmeier. Avoiding Variability of Method
Signatures in Software Product Lines: A Case Study.
In Workshop on Aspect-Oriented Product Line
Engineering, pages 20–25, 2007.

[21] M. Rosenmüller and N. Siegmund. Automating the
Configuration of Multi Software Product Lines. In
Proc. Int’l. Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 123–130,
2010.

[22] Y. Smaragdakis and D. Batory. Implementing Layered
Designs with Mixin Layers. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), volume 1445
of LNCS, pages 550–570, 1998.

[23] T. Thüm, D. Batory, and C. Kästner. Reasoning
about Edits to Feature Models. In Proc. 31th Int’l.
Conf. Software Engineering (ICSE), pages 254–264.
IEEE CS, 2009.

64

Language-Independent Reference Checking
in Software Product Lines

Sven Apel, Wolfgang Scholz, and Christian Lengauer
University of Passau, Germany

{apel, scholz, lengauer}@fim.uni-passau.de
Christian Kästner

Philipps University Marburg, Germany
kaestner@informatik.uni-marburg.de

ABSTRACT
Feature-Oriented Software Development (FOSD) is a para-
digm for the development of software product lines. A chal-
lenge in FOSD is to guarantee that all software systems of
a software product line are correct. Recent work on type
checking product lines can provide a guarantee of type cor-
rectness without generating all possible systems. We gen-
eralize previous results by abstracting from the specifics of
particular programming languages. In a first attempt, we
present a reference-checking algorithm that performs key
tasks of product-line type checking independently of the tar-
get programming language. Experiments with two sample
product lines written in Java and C are encouraging and
give us confidence that this approach is promising.

Categories and Subject Descriptors: D.3.3 [Software]:
Programming Languages—Formal Definitions and Theory ;
D.3.3 [Software]: Programming Languages—Language Con-
structs and Features

General Terms: Languages, Reliability, Design

Keywords: Feature-Oriented Software Development,
Software Product Lines, Type Systems, FeatureHouse,
FeatureTweezer

1. INTRODUCTION
Feature-Oriented Software Development (FOSD) is a para-

digm for the development of software product lines [3,11,13,
26]. The key idea is to modularize software systems in terms
of features. A feature is a unit of functionality of a software
system that satisfies a requirement, represents a design deci-
sion, or provides a configuration option [3]. Typically, with a
set of features, a developer describes the commonalities and
variabilities of a family of software systems of a particular
domain (i.e., a software product line).

There are various ways of making the features of a soft-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

ware product line explicit in its document and code base [22].
Compositional approaches such as AHEAD [11] encapsulate
the code that belongs to a feature in a cohesive and compos-
able unit. Once we have made features explicit in terms of
cohesive and composable units, a customized software sys-
tem can be generated automatically, simply by selecting a
valid subset of features. Commonly, a feature model defines
which feature selections are valid [13], and tools are available
that check selections for validity [12,23].

A challenge addressed in recent work is to guarantee that
every valid feature selection produces a type-correct pro-
gram [5, 14, 15, 20, 28]. The problem is that, during the life
time of a software product line, the feature model and the
features’ implementations tend to diverge. That is, pro-
grams may be well-typed that are not valid in terms of the
feature model and programs may be ill-typed that are valid
in terms of the feature model. The latter case is problem-
atic because such errors are usually detected only when the
program in question is generated based on a feature selec-
tion. Due to the possibly very large number of different valid
feature selections, this may happen late in the development
process, leading to high costs and ripple effects. Generating
and compiling all programs is feasible only for small product
lines. Product-line type checking addresses this problem by
checking the entire code base of a product line once against
the product line’s feature model to ensure that no valid fea-
ture selection produces an erroneous program.

Contemporary product-line–checking approaches are tai-
lored to specific programming languages, development tools,
or formalisms, which limits principally their general appli-
cability (see Sec. 5). We would like to explore how far we
can implement product-line checking independently of the
particular language or formalism used. This approach is in-
spired by previous work on language-independent feature
composition tools [6, 7] and type systems [1]. Naturally,
there is a trade-off between generality and expressiveness.
That is, in our quest to increase generality, we may lose ex-
pressiveness, but we argue that this path is worth exploring
and that our initial results are encouraging.

We concentrate on a subclass of possible type errors: dan-
gling references. In a product line, code of one feature
may refer to code of another feature (e.g., in the form of
a method invocation or field access); if the former feature is
selected and the latter is not, the former has a dangling refer-
ence, reported by the type system. We propose a language-
independent model of programs with references, define (two

65

variants of) an algorithm for detecting potential dangling
references, and apply our prototypical implementation to
two sample product lines written in Java and C.

2. PRELIMINARIES
Our language-independent model of feature-oriented prod-

uct lines is based on previous work on feature algebra [8] and
feature composition tools [6]. For illustration, we use the
small example of a variable graph data structure, which is
motivated by one of our case studies in Section 4. The graph
example consists of the three features Graph, Weights,
and Dijkstra whose meanings will become clear later. It
has been implemented in FeatureHouse, a tool that supports
the composition of code written in a number of languages,
among them Java [6].

2.1 Feature Structure Trees
We describe the structure of a feature, independently of

the programming language, by a feature structure tree (FST).
An FST organizes the feature’s structural elements (e.g.,
files, classes, fields, or methods) hierarchically. Figure 1
depicts an excerpt of the Java implementation of feature
Graph and its representation in the form of an FST. One
can think of an FST as a stripped-down abstract syntax tree
that contains only essential information. The nature of this
information depends on the degree of granularity at which
software artifacts are to be used, analyzed, or composed, as
we discuss below.

1 package graph;
2 class Graph {
3 List<Node> nodes;
4 List<Edge> edges;
5 void add(Node n) {
6 ...
7 }
8 ...
9 }

10 class Node {
11 int id; ...
12 }
13 class Edge {
14 Node src, dest; ...
15 }

Graph

addnodes

edges Node

id

Edge

src dest

graph

Figure 1: Implementation and FST of feature Graph
(excerpt).

For example, the FSTs we use to represent Java code con-
tain nodes that represent packages, classes, fields, methods,
etc. They do not contain information on the internal struc-
ture of methods and so on. A different level of granularity
would represent only packages and classes but not methods
or fields as FST nodes (coarser granularity). Yet another
level of granularity would represent additionally statements
or expressions as nodes (finer granularity) [21].

Each node of an FST is labeled with a name and a type
(types are not shown in Figure 1, for brevity). We call two
nodes compatible if they have the same name and type and
compatible parents. A node’s name1 corresponds to the
name of the structural element it represents and a node’s
type corresponds to the syntactic category to which the

1Depending on the language and purpose, a name could
be a simple identifier, a signature, etc.

element belongs. For example, class Graph is represented
by node Graph of type class (type omitted in Figure 1, for
brevity). We must consider both the name and the type to
prevent ambiguities.

Note that, at the granularity we chose for Java, the order
of nodes could be arbitrary, but this may be different at a
finer granularity (e.g., the order of statements matters) and
it may also differ for other languages (e.g., the order of C
functions and of overlapping Haskell patterns matters) [6].
The FST model has been used to formalize and implement
feature composition based on FST superimposition, of which
we report elsewhere [6, 8].

It has been shown that the FST model is very general.
It can be used with different languages including object-
oriented (e.g., Java and C#), imperative (e.g., C), func-
tional (e.g., Haskell), modeling (e.g., UML), and relational
languages (e.g., Alloy) [2, 4, 6, 9]. Next, we extend the FST
model with references.

2.2 Adding References
First, we introduce the concept of a reference into the FST

model. Then, we discuss key design decisions.

References. A product line consists of multiple features,
each of which is represented by an FST. Commonly, there
are dependences between the individual features. One fea-
ture may extend or use another (e.g., in that it invokes a
method belonging to the other feature). This kind of refer-
ence is common in many languages. Examples of references
are field accesses in Java, references between grammar prod-
uct rules in JavaCC, associations in UML, and so on. Hence,
we extend the FST model by references. A reference is a pair
of a name of source FST element and a name of a destina-
tion FST element. The two elements need not to point to
the same FST.

Let us illustrate references by means of our graph example.
In Figure 2, we show the implementation and FST of feature
Weights. It refines class Edge of feature Graph by adding
a new field weight.2

1 package graph;
2 class Edge {
3 int weight;
4 ...
5 }

Edge

graph

weight

Figure 2: Implementation and FST of feature
Weights (excerpt).

In Figure 3, we show the implementation and FST of fea-
ture Dijkstra, which implements Dijkstra’s algorithm for
solving the shortest-path problem. It introduces class Dijk-
stra that, at some point, accesses field weight of class Edge.

The three features refer to one another: Weights refers
to Graph and Dijkstra refers to Graph and Weights. A
reference has a source (left-hand side) and a target (right-
hand side). The source consists of the feature’s name and the
element’s fully-qualified name. The target consists only of
the element’s fully-qualified name. In the graph example, we

2When composing feature Graph and feature Weights,
the two declarations of class Edge are merged; this is a form
of mixin composition [11].

66

1 package graph;
2 class Dijkstra {
3 Node[] shortestPath(Node n) {
4 ... int w = edge.weight; ...
5 }
6 }

graph

Dijkstra

shortestPath

Figure 3: Implementation and FST of feature Dijk-
stra (excerpt).

have the following references, excluding the inner references
of a feature to itself:

(Weights, Edge) → (Edge)
(Dijkstra, Dijkstra.shortestPath) → (Node)
(Dijkstra, Dijkstra.shortestPath) → (Edge)
(Dijkstra, Dijkstra.shortestPath) → (Edge.weight)
...

It is important to note that the target element can be part
of different features, so it is not fixed to which element an-
other element points—references are resolved after the de-
sired features have been selected by a user to generate a final
program. For example, there may be multiple features that
introduce different kinds of weights. It is the task of the
reference checker to ensure that there is a proper target for
each reference in every valid feature selection.

Discussion. Programs and documents written in various
languages can be represented by FSTs [6] and references
are a language-independent concept. In fact, the extended
FST model represents (a subset of) the context-sensitive ab-
stract grammar of a language, whereas the plain FST model
without references represents (a subset of) the context-free
abstract grammar. Essentially, the first design decision was
to detach the reference model from the underlying language
and to base it entirely on FSTs. This way, we attain lan-
guage independence but may reduce expressiveness in that
we cannot represent the full type structure of a language,
which may interfere with reference checking. Language in-
dependence also implies that references (and FSTs) have
to be represented in a general format. For a product line
to be checked, FSTs and references have to be extracted
by (language-specific) code analysis tools. Then, reference
checking is generic and uniform.

A second design decision we made is that we model refer-
ences as pairs of FST elements. This is the simplest model
possible and we use it until we encounter the need for a
more complex model. In some languages, we may need ref-
erences with multiple possible targets. Furthermore, some
languages may need a more dynamic view of references, for
instance, to take dynamic binding into account.

The third design decision we made is that a reference con-
tains, beside the source and target elements, also the source
feature; in contrast, the target feature is not contained in
the reference and undefined until the user selects a set of
features. The rationale is that, if a piece of code contains a
reference, we know to which feature the piece belongs, but
we do not know which feature provides a proper target for
the reference—in fact, there may be multiple features. How-
ever, in some languages, there may be situations in which
the type of the target element is relevant (e.g., a field with
type String instead of int). Since we currently do not sup-

port full typing, we cannot address this issue without losing
language independence.

FSTs and their references provide insight into the struc-
tural interactions between features. The knowledge about
the features of a product line, their references, and their
valid selections (i.e., the feature model) allows us to formu-
late a language-independent reference-checking algorithm.

2.3 Feature Models
Before we describe the reference-checking algorithm, we

repeat briefly the basics of feature models. A feature model
describes the valid feature selections of a software product
line [19]. There are different approaches and notations for
describing feature models [12]. We use the approach of Ba-
tory in which a feature model is represented by a proposi-
tional formula [10]. The formula contains, for each feature,
a boolean variable and expresses the constraints between
features. Most other notations can be translated to propo-
sitional formulas.

A propositional formula describing the variability of our
graph example could look as follows:

(Weights ∨Dijkstra) ⇒ Graph (1)

The formula states that, whenever Weights or Dijkstra
are selected, then also Graph has to be selected. A con-
sequence is that the features Weights and Dijkstra are
optional and independent (which can lead to a dangling ref-
erence, as we will explain shortly).

Solver technology can be employed to answer a number
of questions on feature models including whether a feature
selection is valid or whether a feature is always, sometimes,
or never present when another feature is present [12], which
is interesting information for reference checking. For exam-
ple, feature Graph is always present when one of the other
two features is present and feature Weights is sometimes
present when feature Dijkstra is present.

Typically, a feature model describes the variability of a
product line without considering a particular implementa-
tion. Hence, the variability of a domain does not necessarily
need to be consistent with the variability of the correspond-
ing implementation. There may be valid feature selections
that lead to programs with type errors. For example, assum-
ing the feature model of Equation 1, there is a valid feature
selection that leads to an incorrect program in our graph
example. By selecting Graph and Dijkstra only, we get
a type error because Dijkstra refers to field weight, which
belongs to the non-selected feature Weights.

The graph example illustrates that implementation vari-
ability may differ from domain variability. Both kinds of
variability can be described by feature models. The feature
model that describes the implementation variability of our
graph example, henceforth called the implementation model,
is:

(Weights ∨Dijkstra) ⇒ Graph ∧
(Dijkstra ⇒ Weights)

(2)

Compared to the feature model of Equation 1, henceforth
called the domain model, it contains an additional constraint
that states that, whenever Dijkstra is selected, Weights
has to be selected, too. A key task of reference checking
is to derive information on implementation variability and
to check it against domain variability to discover potential
dangling references.

67

Algorithm 1 Global reference-checking algorithm.

Require: F := set of feature names
Require: FT := FST table
Require: RT := reference table
Require: DM := domain feature model
1: // derive formula of implementation feature model
2: IM :=

∧
((f,src),tgt)∈RT (f ⇒ ∨

fi∈F,tgt∈FT(fi)
fi)

3: // check whether the two models are consistent
4: sln := solve(DM ⇒ IM)
5: if sln 6= true then
6: // determine counterexample
7: cex := counter(DM ⇒ IM)
8: print(cex)
9: // identify dangling references

10: dref :=
{

(ref =((f, src), tgt)) |
11: ref ∈RT , f ∈cex , (@f ∈cex : tgt ∈FT (f))

}

12: for all
(
ref = ((f,src), tgt)

)
∈ dref do

13: // identify features with potential targets
14: ptgt :=

{
f | f ∈ (F\cex), tgt ∈ FT (f)

}

15: print(ref)
16: print(ptgt)
17: end for
18: end if

3. REFERENCE-CHECKING ALGORITHM
There are two variants of our reference-checking algorithm,

each of which has been inspired by a different branch of pre-
vious work (see Sec. 5): the global reference-checking algo-
rithm creates a single propositional formula (i.e., the imple-
mentation feature model) that covers all references [14, 15,
28]; the local reference-checking algorithm creates a propo-
sitional formula for each reference that covers exactly the
constraints implied by this reference [5, 20].

Global Reference-Checking Algorithm. In Algorithm 1,
we list the global variant of the reference-checking algorithm
including comments. It takes as input the following ingredi-
ents of a product line: the domain feature model, the FSTs
of all features, and the references between FST elements.
Based on this information, the global variant of the algo-
rithm proceeds in three steps:

1. The input FSTs and references are analyzed to obtain
the implementation feature model. To this end, for
each reference, all proper target elements are searched.
At least one target (i.e., its feature) must be present
when the source feature is present. This requirement
is added as a disjunctive clause to the propositional
formula of the implementation model (Line 2).

2. A SAT solver checks whether the implementation model
is consistent with the domain model (Line 4).

3. If the two models are not consistent, a counterexam-
ple is generated, which is a set of features that contains
dangling references (Line 7). Based on the counterex-
ample, for each dangling reference, all features with
proper targets are identified (Lines 12–17).

Local Reference-Checking Algorithm. In Algorithm 2,
we list the local variant of the reference-checking algorithm,
including comments. Like in the global variant, it takes as
input the domain feature model, the FSTs of all features,
and the references between FST elements. The algorithm

Algorithm 2 Local reference-checking algorithm.

Require: F := set of feature names
Require: FT := FST table
Require: RT := reference table
Require: DM := domain feature model
1: for all

(
ref =((f,src), tgt)

)
∈ RT do

2: // derive formula of reference
3: RM := (f ⇒ ∨

fi∈F,tgt∈FT(fi)
fi)

4: // check for consistency
5: sln := solve(DM ⇒ RM)
6: if sln 6= true then
7: // determine counterexample
8: cex := counter(DM ⇒ RM)
9: print(cex)

10: // identify features with potential targets
11: ptgt :=

{
f | f ∈ (F\cex), tgt ∈ FT (f)

}

12: print(ref)
13: print(ptgt)
14: end if
15: end for

proceeds in three steps:
1. Rather than creating a single propositional formula

for the entire implementation model, one propositional
formula per reference is generated, which describes the
constraints implied by the reference, called the refer-
ence model. Again, at least one target of the reference
(i.e., its feature) must be present when the source fea-
ture is present (Line 3).

2. A SAT solver checks whether the constraints imposed
by each single reference are consistent with the domain
model (Line 5).

3. If the constraints of some reference are not satisfied,
a counterexample is generated (Line 8). Based on the
counterexample, for the dangling reference in question,
all features with proper targets are identified (Line 11).

1 erroneous feature selection:
2 [Graph,Dijkstra]
3 dangling reference:
4 (Dijkstra.shortestPath, Edge.weight)
5 in feature ’Dijkstra’
6 features that provide proper targets:
7 [Weights]

Figure 4: Output of FeatureTweezer when checking
the graph example.

Discussion. Both variants of the reference-checking algo-
rithm have a similar input-output behavior. They expect
domain and structural information and provide information
on dangling references and potential target features. For
our graph example, both variants of the algorithm would
produce an output like the one shown in Figure 4.

So what is the difference between the two variants and
why have researchers invented them in the first place? A key
difference is the size and number of propositional formulas
to be checked for consistency with the domain model. In
the global variant, we have a single, possibly large formula;
in the local variant, we have many smaller formulas. This
difference may be crucial for performance, an issue that has

68

gained too little attention in the past. Admittedly, there is
initial evidence that extracting a complete implementation
model is possible in linear time [27] and that solving large
formulas that represent feature models is possible in prac-
tice in polynomial time [25]. But there is also evidence that
solving many small formulas is efficient because intermedi-
ate results can be cached and reused [5]. In the future, we
intend to address this issue systematically. A contribution
of our language-independent model (and tool) is that we
can represent both variants at an abstract level, reveal their
principal differences, and provide a basis for experiments.

Another difference between the local and global variant
of the reference-checking algorithm is error reporting. The
local variant is finer-grained in that it identifies potential
dangling references directly and points to the corresponding
locations in the code. The global variant searches first for an
erroneous feature selection and identifies then potential dan-
gling references, but only for this selection. The local variant
identifies all potential dangling references. This makes the
debugging process less iterative and more efficient.

4. PROTOTYPE AND CASE STUDIES
As a proof of concept, we have been developing a proto-

type of a product-line reference checker in Haskell, called
FeatureTweezer.3 Checking for dangling references in a
product line, FeatureTweezer expects the product line’s
FSTs, the references, and the feature model. Currently, an
FST is encoded as a set of prefix-closed identifiers (the pre-
fix encodes the path in the FST), each of which denotes an
FST element. A reference is encoded as a pair of FST ele-
ment identifiers. A feature model is encoded in the GUIDSL
format [10], but, as illustrated in Figure 5, alternative for-
mats are possible. We depict the input data for our graph
example to FeatureTweezer in Figure 6, simplified and
adapted for presentation purposes.

Feature

Structure

Trees

ReferencesFeature

Model

...
...

...

GUIDSL

FeatureIDE

pure::variants

AHEAD

FeatureHouse

Fuji

FeatureC++

CIDE

Doxygen

Fuji

FeatureC++

CIDE

Example
Counter

FeatureTweezer

Figure 5: Input and output of FeatureTweezer.

FeatureTweezer processes all input information, trans-
forms it into a suitable internal format, and feeds it into the
reference-checking algorithm (see Sec. 3). To check reference
constraints and implementation models against the domain
model, we use funsat4, an open-source native Haskell SAT
solver. It provides a counterexample if the models are not
consistent. This information is used to find sources of dan-
gling references and potential features that provide proper
targets.

To gather experience with FeatureTweezer, we applied
it to two sample product lines: the graph product line (GPL)

3FeatureTweezer, including the examples and case
studies, is available on the Web: http://www.fosd.de/FT/

4http://github.com/dbueno/funsat/

domain feature model

1 GraphExample : Graph [Weights] [Dijkstra] ;

feature structure trees (type feature element)

1 ClassDecl Graph Graph
2 FieldDecl Graph Graph.nodes
3 FieldDecl Graph Graph.edges
4 ...
5 ClassDecl Weights Edge
6 FieldDecl Weights Edge.weight
7 ...
8 ClassDecl Dijkstra Dijkstra
9 MethodDecl Dijkstra shortestPath

references (type (feature element) element)

1 ClassRef (Weight Edge) Edge
2 ClassRef (Dijkstra Dijkstra.shortestPath) Node
3 ClassRef (Dijkstra Dijkstra.shortestPath) Edge
4 MethodRef (Dijkstra Dijkstra.shortestPath) Edge.weight
5 ...

Figure 6: Input data of the graph example for
FeatureTweezer (simplified).

of Lopez-Herrejon and Batory [24] and the feature-oriented
email client of Hall [18]. The former product line is im-
plemented in Java and the latter is implemented in C. A
key challenge is to extract the necessary information for
FeatureTweezer (FSTs, references, and feature model).
For the purpose of our initial experiments, we chose a prag-
matic approach. We extracted the FSTs with FeatureHouse5

and the references with Doxygen6 and CCVisu7. We ex-
tended FeatureHouse to export the FSTs of a product line
to the expected format and we configured Doxygen and
CCVisu such that the element identifiers in the references
correspond to the element identifiers in the FSTs; the fea-
ture models were available as part of the sample product
lines.

The fact that we were able to check two product lines
written in two different languages illustrates the potential
of our approach. We did not find bugs in the two sam-
ple product lines. This is not surprising because they are
rather small and well-tested. However, the product lines
were useful for testing our tool by introducing errors artifi-
cially. The size of the sample product lines do not allow us
to draw any conclusions on the differences in performance
and resource consumption between the local and the global
reference-checking algorithm. In further work, we intend
to check more and larger product lines, written in different
languages, to discover real bugs and to measure performance
and resource consumption.

5. RELATED WORK
Our work on reference checking feature-oriented product

lines has been motivated by previous work on type systems
for product lines [5, 14, 15, 20, 28]. Reference checking is an
important subset of type checking, so we believe we have
taken an important step toward a general tool suite for
product-line engineering.

Thaker et al. developed a type system for feature-oriented
product lines, based on Java, that does not check all in-

5http://www.fosd.de/fh/
6http://www.doxygen.org
7http://www.sosy-lab.org/~dbeyer/CCVisu/

69

dividual programs but the individual feature implementa-
tions [28]. In a number of case studies, they found numerous
hidden errors using their type rules. Our global variant of
the reference-checking algorithm is inspired by their type-
checking algorithm, which generates a single, large proposi-
tional formula representing implementation variability. Fur-
thermore, Delaware et al. developed a formal model of the
type system of Thaker et al. and proved its soundness [15].

Even previously to the work of Thaker et al., Czarnecki
and Pietroszek presented an automatic verification proce-
dure for ensuring that no ill-formed UML model template
instances will be generated from a valid feature selection [14],
which also uses a global reference-checking algorithm. That
is, they type check product lines that consist not of Java
programs but of annotated UML models (they use OCL con-
straints to express and implement a kind of type system for
UML; annotations denote features).

Our local reference-checking algorithm is inspired by our
own work on formal type systems for product lines [5, 20].
Kästner and Apel have developed the formal calculus CFJ
based on a subset of Java and a set of type rules for checking
annotation-based product lines [20]. Like in the approach of
Czarnecki and Pietroszek, and in contrast to AHEAD, vari-
ability is implemented with #ifdef-like directives or similar
annotations on the source code [21]. Kästner and Apel use
a local type-checking algorithm to guarantee type correct-
ness. Similarly, Apel et al. [5] define a formal model of a
feature-oriented language and a corresponding product-line
type system based on an compositional approach and a sub-
set of Java.

All of the approaches we discussed so far are tailored to
specific languages and core languages. An interesting aspect
is that our model is able to express reference checking in
both composition-based and annotation-based product lines.
Both can be reduced to FSTs and references.

Tartler et al. demonstrate that implementation models of
C code including preprocessor directives can be extracted
in linear time [27]. As in the global reference-checking al-
gorithm, they extract the implementation model once in
the form of a single propositional formula. Mendonca et
al. demonstrate that consistency checking in the global ap-
proach is possible in practice in polynomial time [25]. Apel
et al. illustrate how caching can be used to scale the lo-
cal variant of reference checking by reusing intermediate re-
sults [5]. These pieces of work illustrate that there is a po-
tential for tuning the performance of type checking product
lines. Our approach and tool can provide a basis for further
experiments in this direction.

6. CONCLUSION
We presented a language-independent reference checking

algorithm for feature-oriented product lines. To this end, we
extended the existing model of feature structure trees with
references. Our algorithm checks an entire product line and
reports whether any valid feature selection results in a pro-
gram that contains a dangling reference. The algorithm is
based on FSTs, extended with references, and the feature
model of a product line. We developed a prototypical tool
called FeatureTweezer, which we used to check two sam-
ple product lines written in Java and C for dangling refer-
ences. We believe that our work is a first step toward a
more general understanding of and more general tools for
feature-oriented product lines implemented using both com-

positional units and annotations.
In further work, we plan to extend our approach based

on language-independent, cross-language, or extensible type
systems [1,16,17] with other well-formedness criteria such as
mutual exclusion, typing, and subtyping. Furthermore, we
plan to extend existing feature algebraic models with refer-
ences and to reason about the effects of references on alge-
braic properties. Finally, we intend to conduct further case
studies of different domains, written in different languages
and provide evidence on the generality of our approach, to
discover real bugs, and to measure performance and resource
consumption of local and global reference checking.

Acknowledgments
Wolfgang Scholz is supported by the German Research Foun-
dation (DFG—AP 206/2-1). Kästner’s work is supported by
the European Research Council (ERC #203099).

7. REFERENCES
[1] S. Apel and D. Hutchins. A Calculus for Uniform

Feature Composition. ACM Transactions on
Programming Languages and Systems (TOPLAS),
32(5):Article 19, 2010.

[2] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model
Superimposition in Software Product Lines. In
Proceedings of the International Conference on Model
Transformation (ICMT), volume 5563 of LNCS, pages
4–19. Springer-Verlag, 2009.

[3] S. Apel and C. Kästner. An Overview of
Feature-Oriented Software Development. Journal of
Object Technology (JOT), 8(5):49–84, 2009.

[4] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Feature (De)composition in Functional Programming.
In Proceedings of the International Conference on
Software Composition (SoftComp), volume 5634 of
LNCS, pages 9–26. Springer-Verlag, 2009.

[5] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type Safety for Feature-Oriented Product Lines.
Automated Software Engineering – An International
Journal (2010), 17(3):251–300, 2010.

[6] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software
Composition. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
221–231. IEEE CS, 2009.

[7] S. Apel and C. Lengauer. Superimposition: A
Language-Independent Approach to Software
Composition. In Proceedings of the International
Symposium on Software Composition (SoftComp),
volume 4954 of LNCS, pages 20–35. Springer-Verlag,
2008.

[8] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An
Algebraic Foundation for Automatic Feature-Based
Program Synthesis. Science of Computer
Programming (SCP), 75(11):1022–1047, 2010.

[9] S. Apel, W. Scholz, C. Lengauer, and C. Kästner.
Detecting Dependences and Interactions in
Feature-Oriented Design. In Proceedings of the
International Symposium on Software Reliability
Engineering (ISSRE). IEEE CS, 2010.

[10] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proceedings of the

70

International Software Product Line Conference
(SPLC), volume 3714 of LNCS, pages 7–20.
Springer-Verlag, 2005.

[11] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[12] D. Benavides, S. Segura, and A. Ruiz-Cortes.
Automated Analysis of Feature Models 20 years Later:
A Literature Review. Information Systems,
35(6):615–636, 2010.

[13] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[14] K. Czarnecki and K. Pietroszek. Verifying
Feature-Based Model Templates Against
Well-Formedness OCL Constraints. In Proceedings of
the International Conference on Generative
Programming and Component Engineering (GPCE),
pages 211–220. ACM Press, 2006.

[15] B. Delaware, W. Cook, and D. Batory. Fitting the
Pieces Together: A Machine-Checked Model of Safe
Composition. In Proceedings of the International
Symposium on Foundations of Software Engineering
(FSE), pages 243–252. ACM Press, 2009.

[16] M. Grechanik, D. Batory, and D. Dewayne. Design of
Large-Scale Polylingual Systems. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 357–366. IEEE CS, 2004.

[17] N. Haldiman, M. Denker, and O. Nierstrasz. Practical,
Pluggable Types for a Dynamic Language. Computer
Languages, Systems and Structures, 35(1):48–62, 2009.

[18] R. Hall. Fundamental Nonmodularity in Electronic
Mail. Automated Software Engineering, 12(1):41–79,
2005.

[19] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, SEI, CMU, 1990.

[20] C. Kästner and S. Apel. Type-Checking Software
Product Lines – A Formal Approach. In Proceedings of
the International Conference on Automated Software
Engineering (ASE), pages 258–267. IEEE CS, 2008.

[21] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 311–320. ACM Press, 2008.

[22] C. Kästner, S. Apel, and M. Kuhlemann. A Model of
Refactoring Physically and Virtually Separated
Features. In Proceedings of the International
Conference on Generative Programming and
Component Engineering (GPCE), pages 157–166.
ACM Press, 2009.

[23] C. Kästner, T. Thüm, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: Tool
Framework for Feature-Oriented Software
Development. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
611–614. IEEE CS, 2009.

[24] R. Lopez-Herrejon and D. Batory. A Standard
Problem for Evaluating Product-Line Methodologies.
In Proceedings of the International Conference on
Generative and Component-Based Software

Engineering (GCSE), volume 2186 of LNCS, pages
10–24. Springer-Verlag, 2001.

[25] M. Mendonca, A. Wasowski, and K. Czarnecki.
SAT-based Analysis of Feature Models is Easy. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 231–240. SEI, CMU, 2009.

[26] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of LNCS, pages 419–443.
Springer-Verlag, 1997.

[27] R. Tartler, J. Sincero, D. Lohmann, and
W. Schröder-Preikschat. Efficient Extraction and
Analysis of Preprocessor-Based Variability. In
Proceedings of the International Conference on
Generative Programming and Component Engineering
(GPCE). ACM Press, 2010.

[28] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proceedings of the
International Conference on Generative Programming
and Component Engineering (GPCE), pages 95–104.
ACM Press, 2007.

71

Raising family is a good practice
Vinay Kulkarni

Tata Consultancy Services
54B, Industrial Estate, Hadapsar

Pune, 411013 INDIA
+91 20 66086301

vinay.vkulkarni@tcs.com

ABSTRACT
The need for adaptiveness of business applications is on the rise
with continued increase in business dynamics. Code-centric
techniques show unacceptable responsiveness in this dynamic
context as business applications are subjected to changes along
multiple dimensions that continue to evolve simultaneously.
Recent literature suggests the use of product line architectures to
increase adaptiveness by capturing commonality and variability to
suitably configure the application. Use of model driven techniques
for developing business applications is argued as a preferable
option because platform independent specification can be
retargeted to technology platform of choice through a code
generation process. Business applications can be visualized to
vary along five dimensions, namely, Functionality (F), Business
process (P), Design decisions (D), Architecture (A) and
Technology platform (T). Use of models is largely limited to F
and P dimensions in commonly used model-driven development
techniques thus limiting the benefits of product line concept to
these two dimensions. We argue this is not sufficient to achieve
the desired adaptiveness, and it is critical to extend the product
line concept to D, A and T dimensions also. To address adaptation
needs of business applications, this paper presents a model-driven
generative approach that further builds on the ideas of separation
of concerns, variability management and feature modeling. Early
experience and lessons learnt are discussed, and future work
outlined.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous – reusable
software.

General Terms
Management, Economics, Human Factors, Standardization,
Languages

Keywords

Commonality, Variability, Adaptiveness, Model-driven
development, Business applications, Product lines, Product
families

1. INTRODUCTION
Rapid evolutions of technology platforms and business demands
have contributed to significant increase in business dynamics in
recent years. The increased dynamics put new requirement on
businesses while opening up new opportunities that need to be
addressed in an ever-shrinking time window. Stability and
robustness seem to be giving way to agility and adaptiveness. This
calls for a whole new perspective for designing (and
implementing) software-intensive systems so as to impart these
critical properties. Traditional business applications typically end
up hard-coding the operating context in their implementation. As
a result, adaptation to a change in its operating environment leads
to opening up of application implementation resulting in
unacceptable responsiveness.
Typical database-intensive enterprise applications are realized
conforming to distributed architecture paradigm that requires
diverse set of technology platforms to implement. Such
applications can be visualized along five dimensions, namely,
Functionality (F), Business process (P), Design decisions (D),
Architecture (A) and Technology platform (T). A purpose-specific
implementation makes a set of choices along these dimensions,
and encodes these choices within application implementation in a
scattered and tangled manner. This is an expensive and error
prone process demanding large teams with broad-ranging
expertise in business domain, architecture and technology
platforms. Large size of an enterprise application further
exacerbates this problem. Model-driven development alleviates
this problem to an extent by automatically deriving an
implementation from its high-level specification using set of code
generators [20]. However, the scattering and tangling is the
principal obstacle in agile adaptation of existing implementation
for the desired change. Product line architectures aim to increase
adaptiveness by capturing commonality and variability to enable
application configurability. As the use of models is limited to F
and P dimensions in commonly seen model-driven development
techniques, the benefits of product line concept are also limited to
these two dimensions. Therefore, it is critical to extend the
product line concept to D, A and T dimensions also.
We present a model-driven approach that addresses adaptations
needs along all the five dimensions using a specification-driven
generative approach [8]. F and P dimension meta models are
extended to support modeling of variability that is specified using
feature model techniques. A meta model connecting these models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOSD'10, October 10, 2010 Eindhoven, The Netherlands Copyright ©
2010 ACM 978-1-4503-0208-1/10/10... $10.00"

72

to the features in the feature model is presented. Building block
abstraction as a means to implement a D or A or T feature is
presented. A MDD code generator can be modeled as a
hierarchical composition of building blocks, and maps easily to a
consistent well-formed configuration of a feature model along D,
A and T dimensions.
Section 2 describes model-based techniques we developed to
automate development of business applications, and discusses our
experience in using this approach to develop several large
business applications on a variety of technology platforms and
architectures. Section 3 presents an abstraction for organizing
model-based code generators as a hierarchical composition of
reusable building blocks, and discusses our experience and
lessons learnt. Section 4 describes extensions to application
specifications so as to model an application family. Section 5
discusses some of the related work. Section 6 concludes with a
brief summary of early use of the proposed approach, and outlines
future work.

2. GENERATING BUSINESS
APPLICATIONS FROM MODELS
A typical database-intensive business application can be seen as a
set of services with each service delivering specific business
intent. These applications are best implemented using a layered
architecture paradigm wherein each layer encapsulates a specific
kind of data manipulations e.g. database access layer implements
functionality such as primary-key based create/modify/get/delete
and complex data accesses like joins, user interface layer
implements how the data should be displayed on a screen and how
the user will interact, etc. Thus, a set of code patterns recur in the
implementation of an architectural layer. An architectural layer
interfaces with its adjoining layer through a priori well-defined
protocol. Thus, execution of a business application can be seen as
an assembly-line of architectural layer specific processors that
manipulate the work item, i.e. data corresponding to input and
output parameters of a service, in a pre-defined manner before
passing it over to the next processor in the assembly-line. As the
processing is data-centric and a priori known, it can be easily
generated for a given data definition.

 Model-driven development approach starts with definition of an
abstract specification that is to be transformed into a concrete
implementation on a given target architecture [18]. The target
architecture is usually layered with each layer representing one
view of the system e.g. Graphical User Interface (GUI) layer,
application logic layer and database layer. The modeling approach
constructs the application specification using different abstract
views- each defining a set of properties corresponding to the layer
it models. We decompose an application specification into three
such models- GUI layer model, Application layer model and Db
layer model as shown in Fig. 1. We consider three meta models,
namely GUI layer meta model, Application layer meta model and
Db layer meta model, for the three view specifications. Each
models views of a single Unified meta model as depicted in Fig.
1. Having a single meta model allows to specify integrity
constraints to be satisfied by the instances of related model
elements within and across different layers. This enables
independent transformation of GUI layer model, Application layer
model, and DB layer model into their corresponding
implementations namely GUI layer code, Application layer code
and Db layer code with assurance of integration of these code
fragments into a consistent whole. These transformations are
performed using code generators. The transformations are
specified at meta model level and hence are applicable for all its
model instances. If each individual transformation implements the
corresponding specification and its relationships with other
specifications correctly then the resulting implementations will
glue together giving a consistent implementation of the
specification.

2.1 Experience and lessons learnt
UML [16] modeling helped in early detection of errors in
application development cycle. We associated with every model a
set of rules and constraints that defined validity of its instances.
These rules and constraints included rules for type checking and
for consistency between specifications of different layers. We kept
the models independent of implementation technology so as to be
able to retarget them to multiple technology platforms i.e. gui
platform, middleware, programming language, rdbms and
operating system. We defined a higher level domain-specific
language to specify business logic [10]. Non-primary key based

Q++
code

Design strategies

Extended UML
models

Query
code

Model to PB translator

Q++ to C++ translator

Model to C++
translator

Query to ProC
translator

Model to JSP
translator

Q++ to Java translator

Model to Java
translator

Query to JDBC
translator

GUI layer in PB

App logic layer in
C++

DM layer in ProC

GUI layer in JSP

App logic layer in
Java

DM layer in
JDBC

Fig. 2 Scattering and tangling in code generation
Fig. 1 Unified meta model for business application

0 1

Class

Metho

Association

has

source

DataTy

ofType

destinat

Attribu

has

Task

Proces

has

li

precedes

1 * 1 *

1 *

*

1 * 1 *

*

*

1 *

* *

**

* *

Entity

Colum Key

has has
1 * 1..*

* *

UIAttri
*

Windo

UIClas Button

has has

has

opens

1..*

*

*

*

*

1..*

* mapsTo * *

maps

0 10 1

compose

1 * *

*c

0 1

Attribu

mapsTo
0..1

0..1

implement
0

0

GUI layer meta
model

App layer meta
model Db layer meta

model

73

complex data accesses were specified using a SQL-variant.
Application specified in terms of models, Q++ and SQL-variant
language was transformed into the target technology platforms
encoding the chosen design strategies and architectural choices
through a set of code generators. We preserved the divide and
conquer strategy by having a code generator each for architectural
layers.
Automated code generation resulted in significantly higher
productivity in terms of lines of code [22]. Moreover, encoding of
design strategies, guidelines and best practices into the code
generators resulted in uniformly high code quality. Generation of
interface code between the various architectural layers ensured
smooth integration of independently generated code artifacts. We
discovered that design strategies and architectural choices for no
two applications were exactly alike necessitating development of
application-specific code generators. Moreover, many
architectural and design strategies cut across the layers. This
required each tool to be aware of these cross cutting aspects. As a
result, customizing for such cross cutting aspects required
consistent modifications to several tools leading to maintenance
problems. Increased acceptance of the approach led to the ironical
situation wherein productivity toolset team became bottleneck for
application delivery [21].

3. ORGANIZING MULTIPLE TOOLSETS
INTO A FAMILY
As can be seen from figure 2, different code generators are needed
to deliver the same business functionality on different technology
platforms. This is despite these platform-specific code generators
sharing a great deal of common functionality and mostly differing
only in the use of primitives offered by the target technology
platform e.g. syntax differences of programming languages, data
type differences of databases, etc. Even while delivering identical
business functionality on identical technology platforms, need to
deliver onto different architectures e.g. synchronous, queue-based
messaging etc demands different code generators. Similarly, use
of different design strategies demands different code generators.
Thus, domain of model-based code generators can be described as
a feature diagram [9] where intermediate nodes denote the
variation points along D, A and T dimensions; the leaf nodes
denote choices available for each variation point i.e. variations;
and dependency between variation points expressed in terms of
conditional expressions over their respective variations. The

desired model-based code generator is a valid configuration over
the feature diagram. However, feature diagram is just a declarative
specification in terms of labels, and needs support for tracing a
feature (i.e. the label) to its implementation. Recommended way
for implementing the desired feature configuration is an ordered
composition of the implementations of the set of constituent
features. But, strict order is not always possible for inter-
dependent features.
The tangling of model-based code generators, as shown in figure
2, is due to lack of separation of the various concerns, namely,
technology platform, architecture and design strategies, and the
cross-cutting nature of design strategies. An improved architecture
for model-based code generation is where the models are
successively refined through application of the various design
strategies to a stage from where a platform specific
implementation can be realized through a simple task of model-to-
text transformation. As the platform specific code generators are
independent of design strategy related issues, the same model-to-
text transformation specifications can be reused with different
design strategies and vice versa. This separation of concerns
enables a tool variant to be viewed as a composition of design
strategy and technology platform aspects of choice.

3.1 Building block
Building block is an abstraction that provides a traceable path to
implementation for a feature as per the generic model-driven code
generation architecture as shown in fig. 3. A building block is
localized specification of a concern in terms of concern-specific
meta model, model to model transformation, and model to text
transformation. Building blocks are composable, enabling a
model-driven code generator to be organized as a composition of
a set of reusable building blocks, each encapsulating a specific
concern. Figure 4 shows the building block meta model. A
building block is essentially a means for expressing how a
concern specification is transformed into models and code.
A model-driven code generator is specified as a hierarchical
composition of building blocks of interest. Building blocks are of
two kinds: leaf building block and composite building block. The
instantiation specification of a leaf building block specifies how to
stamp out the model elements of the unified model from the
concern-specific model and the transformation specification
captures how the model is transformed to code. We use QVT
language [13] to specify the former and Mof2Text language [12]
to specify the latter. A composite building block specifies how to
compose its child building blocks. Weaving specification of a
composite building block specifies how the code generated by its
member building blocks is woven together. The process of model-
driven code generation is realized through a post-order traversal

Fig. 3. Model-driven code generation architecture

Model-to-model transformation

view of

Meta Meta Model

Instance of

Meta Model1 Meta Model2 Unified Meta Model

Instance of

Model1 Model2 Unified Model

Text1 Text2

Model-to-text transformation

Desired Text

Text composition

Fig. 4. Building block meta model

Building block
parameter

1

2..*

member
*

*

Composite building block Leaf building block

consistency
1

*

Instantiation
specification

Transformation
specification

Weaving
specification

transformationSpec
1 weavingSpec 1 1 1

0..1

1

0..1 0..1 0..1 0..1

instantiationSpec

Model element Constraint Metamodel

1
1 metamodel

74

of the building block hierarchy in three sequential steps, namely,
Instantiation, Transformation and Weaving. The instantiation step
stamps out models and merges them. The transformation step
transforms models into code snippets and generates weaving
specifications for composing them. The weaving step composes
the generated code snippets by processing the weaving
specifications.
We translate a model (Mu) that is an instance of a unified meta
model (MMu) to various software artifacts like Java code, JDBC
code, JSP code and a variety of configuration specifications in
XML. Limiting aspect weaving only to code level artifacts would
necessitate specialized weavers for Java, JDBC, JSP, XML etc.
each having separate join point models. Also, this approach would
necessitate some commonality over these join point models so as
to have an integrated Java application. With increased number of
software artifacts to be produced the approach becomes
increasingly complex as essentially it amounts to building aspect
infrastructure for each such artifact. We address this problem by
specifying aspect weaving at the unified meta model level and
performing it at the model level whenever possible. Unified meta
model enables specification of relationships between the various
(sub) modeling languages. A reflexive meta modeling framework
provides the necessary infrastructure to define and integrate the
various modeling languages of interest and a meta model aware
model transformation framework provides the necessary
technology to address model weaving requirements [10].
Performing aspect weaving at the model level also, whenever
possible, results in reuse of model based code generators such as
model-to-Java, model-to-JDBC, model-to-JSP and model-to-
XML as these code generators are specified at the unified meta
model level.
Multiple variants of a code generator realized as different
compositions of building blocks can be easily organized into a
family as follows,
- Commonality across variants can be specified using a set of

common building blocks
- Functionality specific to each variant can be specified using

a set of variant building blocks

- Composable nature of building blocks enables realization of
the desired family member as a composition of suitable
common and variant building blocks

Thus, building block abstraction provides a traceable path for a
feature towards its implementation.

3.2 Experience and lessons learnt
Use of building block abstraction has enabled our toolset to be
organized as a family or a product line wherein a tool variant can
be easily composed from design strategy and technology platform
aspects of choice. Containment of change impact due to
localization and increased reuse due to composability have led to
quick turnaround time for delivering a tool variant [17]. Use of a
higher-level model-aware transformation language has made
maintenance and evolution of the product line easy [14]. Also,
building block abstraction has enabled us to organize the
development team along two independent streams, namely,
technology platform experts and design experts.

4. MODELING APPLICATION FAMILIES
Our organization discovered that solutions being delivered to
different players in the same business domain were not exactly
alike even for identical business intent. With toolset providing no
means to capture commonality and variability, application
development teams had to resort to copy-paste. As a result, what
should have been a variant of an application ended up being a
separate application thus leading to maintenance and evolution
problems. These problems compounded with every new solution
being delivered.
The approach described in section 2 generated a layered
application implementation from a similarly layered specification.
Each layer of application specification is an instance of its specific
meta model. Now we describe how each of these meta models is
enhanced to support the family concept [3]. Figure 5 depicts a
meta model for capturing variability in a generic way. An
application is viewed as a set of a priori defined variation points
that could possibly be inter-dependent. Possible variants for each
variation point are identified. Inter-dependence of variation
points translates to similar relationship between their variants.
Since our interest is database-intensive business applications that
are typically implemented using a layered architecture, we identify
variation points for each architectural layer. For instance, DLvp
denotes variation points in database access layer, ALvp denotes
variation points in application layer, and ULvp denotes variation
points in user interface layer. Similarly, DLv, ALv and ULv denote
variants in database access, application, and graphical user
interface layers respectively. A set of DLv that honour dependency
constraints between DLvp, a set of ALv that honour dependency
constraints between ALvp, and a set of ULv that honour
dependency constraints between ULvp constitute a complete,
well-formed and consistent application variant Appv.

4.1 Approach
4.1.1 Application layer
Application layer specifies the business logic in terms of Class,
Attribute and Operations. Being an encapsulation of both
structural and behavioral aspects, Class is the natural choice for
supporting the family concept in the application layer. Figure 6

Fig. 5. A generic variability meta model

Variant

DLv ALv ULv

VariationPoint

DLvp ALvp ULvp

depends

depends

App

Appv

0..*

0..*

0..*
0..*

0..*

1

1

1
1 1

1

1

variationOf
variationOf

75

depicts extensions to the application layer meta model highlighted
in Fig 2 as follows:
- Svp denotes a structural variation point wherein multiple

variations can be plugged.
- Sv denotes a structural variation for a structural variation

point.
- A structural variation is in fact an Attribute.
- Csv denotes a structural variant for a Class. It is a complete

and consistent configuration of structural variations of the
class i.e. no structural variation point is left unplugged and
selected structural variations honour structural variation
point dependencies. Structural variants for a class differ in
terms of the number of Attributes or their Types or both.

- Bvp denotes a behavioural variation point for an Operation
wherein multiple variations can be plugged.

- Bv denotes a behavioural variation for a behavioural
variation point.

- A behavioural variation is in fact an Operation.
- Ov denotes an Operation variant. It is a complete and

consistent configuration of behavioural variants i.e. no
behavioural variation point is left unplugged, and selected
behavioural variants honour behaviour variation point
dependencies if any.

- Cbv denotes a behavioural variant for a Class. It is a
consistent configuration of Operation variants i.e., the
selected operation variants serve meaningful intent.

- Cv denotes a variant for a Class. It is a type-compatible
configuration of structural and behavioural variants of the
class.

Thus, the above extensions enable modeling of a family of classes
wherein each member (of the class family) serves the same intent
in a specific situation. By making the above information available
as metadata, implementation can switch from one consistent
configuration of variants to another at application run-time. Not
all such situational adaptations can be handled at application-
runtime though, for instance, addition of a new behavior
extension (Bv or Ov) would need recompilation (followed by
redeployment). Similarly, definition of a new class altogether, as
an extension to existing functionality, cannot be handled at
application run-time. But, the meta model enables a new situation

to be addressed such that it adds to the existing set of
configuration alternatives.

4.1.2 Database layer
Database layer provides persistency to the desired application
objects. We use object-relational database layer that provides an
object façade to relational database tables implementing
persistence. As an application object can vary structurally, the
database table onto which it maps also needs to cater to this
variance. And the same holds for structural extension as well.
Configurability in database layer means quick switching from one
known situation (i.e. db schema) to another, and extensibility
means easy handling of as yet unseen situation. Figure 7 shows
extension of database layer metamodel highlighted in fig. 2 as
follows:
- Lvp denotes a structural variation point wherein multiple

variations can be plugged.
- Lv denotes a structural variation for a structural variation

point.
- A structural variation is in fact a Column.
- Ev denotes a structural variant for an Entity. It is a complete

and consistent configuration of structural variations of the
Entity i.e. no structural variation point is left unplugged and
selected structural variations honour structural variation
point dependencies. Structural variants for an Entity differ in
terms of the number of Columns or their Types or both.

Thus, the above meta model enables modeling of a family of
entities wherein each member (of the entity family) serves the
same intent in a specific situation. In essence, the above
information constitutes a generic db schema that can be
specialized for a variety of situations. Database access methods
such as primary-key based Create, Update, Get and Delete,
complex data accesses like joins can encode interpretation of this
information in their implementation. By making the above
information available at application runtime, as metadata,
implementation can switch from one known configuration to
another at application run-time. Addition of a new row in the
metadata tables corresponds to the ability of handling as yet
unseen situation. Not all situational adaptations can be handled at
application-runtime though, for instance, deletion of a column
would need redefinition of the db schema leading to
recompilation of database access layer code followed by
redeployment. But, the meta model enables a new situation to be
addressed such that it adds to the existing set of configuration
alternatives.

4.1.3 User Interface layer
A GUI screen family represents a set of GUI screens that have a
lot in common but differ from each other in a well-defined

76

manner. Therefore, understanding of commonality and variability
is critical in order to support modeling of a GUI screen family. A
GUI screen is one of the channels for users to interact with an
application. In essence, a GUI screen enables user to provide
input data for carrying out a logical unit of work and display the
response. While serving the same business intent, a GUI screen
can vary in terms of what (i.e. data to enter and/or view) and how
(i.e. layout information and GUI controls to use) leading to
multiple situations. Configurability means quick switching from
one known situation to another, and extensibility means easy
handling of as yet unseen situation. Figure 8 shows an extension
of user interface meta model highlighted in fig. 2 as follows:
- Fvp denotes a structural variation point wherein multiple

variations can be plugged.
- Fv denotes a structural variation for a structural variation

point.
- A structural variation is in fact a Field.
- Gsv denotes a structural variant for a Screen. It is a complete

and consistent configuration of structural variations of the
screen i.e. no structural variation point is left unplugged, and
selected structural variations honour structural variation
point dependencies. Structural variants for a screen differ in
terms of the number of Fields or their lay-out or both.

- Bvp denotes a behavioural variation point for an event
handler wherein multiple variations can be plugged.

- Bv denotes a behavioural variation for a behavioural
variation point.

- A behavioural variation is in fact an Event handler.
- eHv denotes an event handler variant. It is a complete and

consistent configuration of behavioural variants i.e. no
behavioural variation point is left unplugged, and selected
behavioural variants honour behaviour variation point
dependencies if any.

- Gbv denotes a behavioural variant for a Screen. It is a
consistent configuration of event handler variants i.e. the
selected event handler variants serve meaningful intent.

- Gv denotes a variant for a Screen. It is a type-compatible
configuration of structural and behavioural variants of the
screen.

Thus, the above meta model enables modeling of a family of
screens wherein each member (of the screen family) serves the
same intent in a specific situation. By making the above
information available as metadata a GUI implementation can
switch from one known situation to another at application run-
time. Addition of a new row in the metadata tables corresponds to
the ability of handling as yet unseen situation. Not all situational
adaptations can be handled at application-runtime though, for
instance, change in event handler code would need recompilation
(followed by redeployment). Similarly, definition of a new screen
altogether, as an extension to existing functionality, cannot be
handled at application run-time. But, the meta model enables a
new situation to be addressed such that it adds to the existing set
of configuration alternatives.

4.1.4 Putting the layers together
Meta models described so far, in essence, help model a family at
each architectural layer such that all members of a family share a
common part and are distinguishable in terms of member-specific
part. As described in section 2, the unified meta model enables
specification of well-formedness constraints spanning across the
architectural layers. Once a set of desired members, one from each
architectural layer, is identified, it is possible to compose them
into a well-formed specification that can be automatically
transformed into a consistent and complete solution. We use
feature modeling technique to enable selection of a family
member pertaining to the desired criterion. Figure 9 shows the
variability resolution meta model that captures traceability of a
feature to its implementation artefacts. Augmented with
constraints, this meta model enables selection of a configuration
as a set of variants that is complete, consistent and well-formed. A
configuration is:

� complete if there is no variation point remaining unplugged

� well-formed if structural constraints between variation point
and variants being plugged therein such as Xor, And, n-of-m
are satisfied

� consistent if variants honour dependency constraints between
their variation points

In our experience this simplistic variability resolution meta model
has sufficed so far. We are aware it will need to be richer going
forward.

77

4.2 Experience and lessons learnt
We are in the early roll-out stage of this solution. In the interest of
time-to-market, product owners decided to use the latest product
release as baseline for introducing the family concept as opposed
to refactoring the set of solutions delivered so far into a
productline. Since new meta models are essentially an extension
of old meta models, it was possible to migrate the older
application models fully automatically. Given the simple nature of
meta model extensions, full power of QVT [13] was not called for
and a simpler imperative model transformation alternative [14]
sufficed. In early experience, modeling of commonality and
variability rooted at meta objects being used for code generation,
namely, Class, Entity, Operation and Screen seem to suffice.
Proposed meta models specify pre-defined variation points,
possible variations, and constraints over variation points.
Configuration is a process of selecting appropriate variations so
that all variation points are consistently plugged-in for an
application. We supported this configuration process at three
different stages of application development: design time,
installation time and run time. Design time configuration is
supported through model transformation and model merge
techniques. The installation time and run time configuration is
supported by generating appropriate metadata for all possible
variations. Having separated business process concern from
application functionality, we had to support the family concept for
business process models as well [19]. We think the true test of the
proposed meta models as regards configurability and extensibility
will come in supporting inherently dynamic domain of financial
instruments, insurance products etc.

5. RELATED WORK
The idea of addressing a set of related situations in an integrated
manner is not new. Parnas was the first to argue for the need to
design software for ease of extension and contraction thus leading
for software families [3]. Usual practice is to parameterize the
solution so as to address known situations. Several approaches for
supporting parameterization through variability management have
been proposed. Extending UML for modeling variability using
standardized extension mechanisms of UML is presented in [11].
A variation point model that allows extension of components at
pre-specified variation points is proposed in [6]. A conceptual
model for capturing variability in a software product line is
presented in [4]. All the three only support the notion of variation
point and that too only at modeling level whereas we provide
support for structural and behavioural levels. Aspect-orientation
[5] is a technique for addressing separation of concerns with
greater modularization and locality. However, implicit
communication link between aspects and classes complicates the
readability and comprehension of an aspect-based realization of
variability architecture [1]. We circumvent this problem by
generating pure OO implementation with aspects suitably woven
in. Feature modeling is a popular mechanism to specify product
lines [9]. Although a feature model can represent commonality
and variability in a concise taxonomic form, features in a feature
model are merely symbols. Mapping features to other models,
such as behavioral or data specifications, provides a path towards
implementation. A general template-based approach for mapping
feature models to concise representations of variability in different
kinds of other models is presented in [7]. We build upon this idea
to connect a feature to its implementation artefacts i.e. structural

and behavioural specification through a meta model. Despite
years of progress, contemporary tools often provide limited
support for feature constraints and offer little or no support for
debugging feature models. An integration of prior results to
connect feature models, grammars, and propositional formulas so
as to allow arbitrary propositional constraints to be defined among
features and enable off-the-shelf satisfiability solvers to debug
feature models is presented in [2]. We build upon these ideas to
ensure consistency of the selected feature configuration. The meta
model connecting features with their implementation artefacts
guarantees consistency, correctness and completeness of the
implementation.

6. SUMMARY
We presented a model-driven generative approach to address
adaptation needs of business applications. The approach builds
further on the ideas of separation of concerns, variability
management, feature modeling and generative development. We
visualize business applications to vary along five dimensions,
namely, Functionality (F), Business process (P), Design decisions
(D), Architecture (A) and Technology platform (T). We address
adaptation needs along all the five dimensions using a
specification-driven generative approach. We extend meta models
to support specification of variability along F and P dimensions.
We presented a meta model that connects these specifications to
features in a feature model. This bridge meta model enables
traceability of a consistent well-formed feature configuration to its
specification artefacts thus realizing a family of application
specifications corresponding to the feature model. We presented
building block abstraction as a mean to implement a D or A or T
feature. MDD code generator is a hierarchical composition of
building blocks, and maps easily to a consistent well-formed
configuration of a feature model along D, A and T dimensions.
We discussed our experience in using model-driven techniques to
build large business applications on a variety of architectures and
technology platforms. Separating business functionality from
technological concerns, and model-based code generation resulted
in significant productivity and quality gains. Encouraged by these
benefits, many large development projects also readily adopted
the model-driven approach despite initial investment in learning
how to model. This enthusiastic, and somewhat unexpected,
acceptance of the approach led to an ironical situation of the
productivity toolset team becoming a bottleneck. We overcame
this problem through use of product line techniques in order to
model the code generators as a family, and deriving a purpose-
specific implementation therefrom. Thus, we could achieve scale
through addressing customizability at family level instead of
individual member level.
We discovered the same issue with business functionality i.e.
solutions delivered to different players in the same business
domain were not exactly alike even while addressing the same
business intent. We shared early stage experience of modeling
commonality and variability along F and P dimensions which
seems encouraging.
Though the idea of bringing together separation of concerns,
variability management, and feature modeling seems promising,
there are several open issues:

� The meta model providing traceability from F and P features
to their implementation specifications is rather simplistic.

78

� There should be support, preferably tool-aided, for unit
testing a feature - it should be possible to specify test cases
for a feature independently and compose the test cases to
arrive at the system level test cases for the desired feature
configuration.

� There should be tool support for intelligent debugging at
feature level. A bug detected at code level should be
traceable back to the feature specification.

� Hierarchical organization of features enforces an ordered
traversal. Complex interdependence of features may impede
strict order.

� It is not clear which facets of a system deserve to be modeled
as building blocks. There is a need to investigate how the
engineering aspects can be modeled and what the right kind
of abstractions for modeling them are to satisfy the various
‘ities’ like maintainability, reusability etc. For instance, how
does one model a design for better maintainability?

� Building blocks may overlap each other thus introducing an
order of weaving. How does one ensure that properties of all
building blocks hold after their weaving?

� Supporting separation of concerns using building blocks
raises several tooling issues. The modeling tool should be
extensible to support new modeling languages so as to define
new aspect models and relate them to existing models. The
model transformation tool should have adequate support for
pattern matching and composition. The tool should support
incremental reconciliation of models and scale up to cater to
the demands of enterprise class applications.

In comparison to the existing literature, the proposed approach
centered around meta models capturing commonality and
variability in all dimensions of a typical database intensive
business application seems more pragmatic for industry use. We
are working on development of a component abstraction and
algebra to support configuration and extension operators for these
dimensions. Also, going forward we hope to ride piggy-back the
technology advance in OSGi [15].

7. REFERENCES
[1] Alexander Nyßen, Shmuel Tyszberowicz, Thomas Weiler.

Are Aspects useful for Managing Variability in Software
Product Lines? A Case Study. Early aspects workshop at
SPLC 2005.

[2] Don Batory. Feature Models, Grammars, and Propositional
Formulas. Software Productlines, Volume 3714 of LNCS,
pages 7-20, Springer, 2005.

[3] D L Parnas. Designing Software for Ease of Extension and
Contraction. Proceedings of the 3rd ICSE, pages 264 –
277,1978.

[4] Felix Bachmann, Michael Goedicke, Julio Leite, Robert
Nord, Klaus Pohl, Balasubramaniam Ramesh and Alexander
Vilbig. A Meta-model for Representing Variability in
Product Family Development. Software Product Family
Engineering, volume 3014 of LNCS, pages 66-80, Springer,
2004.

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Longtier and John

Irwin. Aspect oriented programming. ECOOP’97 LNCS
1241, pp 220-242. Springer-Verlag. June 1997.

[6] Hasan Gomaa, Diana L Webber. Modeling Adaptive and
Evolvable Software Product Lines Using the Variation Point
Model. Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS'04) - Track 9 -
Volume 9.Page: 90268.3

[7] K. Czarnecki and M. Antkiewicz. Mapping features to
models: A template approach based on superimposed
variants. Generative Programming and Component
Engineering, Volume 3676 of LNCS, pages 422–437.
Springer, 2005.

[8] K Czarnecki and U Eisenecker, Generative programming
methods, tools and applications, Addison-Wesley, 2000.

[9] K Kang, S Kohen, J Hess, W Novak and A Peterson,
Feature-orientation domain analysis feasibility study,
Technical Report, CMU/SEI-90TR-21, November 1990.

[10] MasterCraft – Component-based Development Environment.
Technical Documents. Tata Research Development and
Design Centre. http://www.tata-mastercraft.com

[11] M Clauß, I Jena. Modeling variability with UML. GCSE
2001Young Researchers Workshop, 2001.

[12] MOF Models to Text Transformation Language
http://www.omg.org/spec/MOFM2T/1.0/

[13] MOF Query / Views / Transformations
http://www.omg.org/spec/QVT/1.0

[14] OMGen Reference manual, version 1.5, Technical
Document, Tata Consultancy Services, May, 2008

[15] OSGi - The Dynamic Module System for Java,
http://www.osgi.org/

[16] UML Infrastructure 2.0 Draft Adopted Specification, 2003,
http://www.omg.org/spec/UML/2.0/

[17] Souvik Barat and Vinay Kulkarni: Developing configurable
extensible code generators for model-driven approach. 22nd
International Conference on Software Engineering and
Knowledge Engineering, July, 2010.

[18] Vinay Kulkarni, R. Venkatesh and Sreedhar Reddy.
Generating enterprise applications from models. OOIS’02,
LNCS 2426, pp 270-279. 2002.

[19] Vinay Kulkarni and Souvik Barat: Business Process Families
using Model-driven Techniques. 1st International workshop
on Reuse in Business Process Management, Sep, 2010.
http://each.uspnet.usp.br/rbpm2010/program.htm

[20] Vinay Kulkarni, Sreedhar Reddy, An abstraction for reusable
MDD components: model-based generation of model-based
code generators. GPCE 2008: 181-1843.

[21] Vinay Kulkarni, Sreedhar Reddy: Introducing MDA in a
large IT consultancy organization. APSEC 2006: 419-426.

[22] Vinay Kulkarni, Sreedhar Reddy: Model-Driven
Development of Enterprise Applications. UML Satellite
Activities 2004: 118-128

79

Dynamically Adaptable Software Product Lines
Using Ruby Metaprogramming

Sebastian Günther and Sagar Sunkle
School of Computer Science

University of Magdeburg, Germany
sebastian.guenther@ovgu.de

sagar.sunkle@ovgu.de

ABSTRACT
Software product lines (SPL) is a paradigm to structure soft-
ware development assets in a common and reusable form.
Out of this common asset base – which includes the ap-
plication’s source code, documentation, and configuration
– concrete product variants can be created. The variants
are differing in terms of the features, which are basically
an increment in functionality important for a stakeholder.
Feature-oriented programming (FOP) provides the capabil-
ity to compose those different variants. In earlier work we
presented rbFeatures, a FOP implementation in Ruby. With
rbFeatures, features become are first-class entities of the lan-
guage that facilitate runtime changes of the program. This
paper presents an extension to rbFeatures that implements
product lines and their variants as first-class entities too.
The entities allow powerful runtime-adaptation and configu-
ration, like to add new features or constraints to the product
line and the instantiation of several variants with different
feature configurations. The particular contributions are to
show how Ruby’s metaprogramming capabilities are used to
design first-class entities and an explanation of the usage of
our approach with a common case study.

Categories and Subject Descriptors: D.2.2 [Software]:
Software Engineering - Design Tools and Techniques; D.3.3
[Software]: Programming Languages - Language Constructs
and Features

General Terms: Languages

Keywords
Feature-Oriented Programming, Software Product Lines, Me-
taprogramming, Domain-Specific Languages, Runtime Adap-
tation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’10 October 10, 2010, Eindhoven, The Netherlands
Copyright 2010 ACM 978-1-4503-0208-1/10/10 ...$10.00.

1. INTRODUCTION
In software engineering, features provide additional mod-

ularization to applications. Features are special character-
istics of software which distinguish members of a program
family [2]. Program families evolved to today’s understand-
ing of software product lines that share a“common, managed
set of features” [26]. In order to provide a more structured
approach to software design and implementation, features
and other valuable production assets are grouped together
to form software product lines [3]. Recently, software prod-
uct lines with dynamic adaptation facilities are gaining a
widespread interest [27, 21, 18]. The adaptability need in-
cludes the reconfiguration of variants at runtime and the in-
stantiation of new variants. On motivation for such runtime
adaptation is the seamless migration of a 24/7 application
when the codebase was updated with new feature code [21].

We see features from a conceptual and an implementation
viewpoint. Conceptually, model features help to structure
the production assets in the form of a product line. At the
implementation level, a concrete feature is the sum of all
code inside a program that belongs to a particular model
feature. An important consideration in our research is the
idea to provide first-class entities. When features become
entities of the program itself, they help to bridge the gap
between the conceptual and the implementation level.

In earlier work [8], we presented a FOP implementation
in Ruby called rbFeatures. With rbFeatures, developers add
feature containments around selected blocks of code. The
feature containment condition specify under which feature
configuration these parts are active. Only if the condition is
satisfied, the contained code will be contained in the appli-
cation. The functionality provided by rbFeatures includes
runtime re-configuration of the application by activating or
deactivating features and runtime extension of the program
and its features.

Since then we extended rbFeatures. The current version
extends rbFeatures with a language for product line model-
ing. The language’s intent is to represent the known tree-
like feature models that express an application’s model fea-
tures and their relationships [3], as well as their constraints
like mandatory and optional features. By combining rbFea-
tures with this language, we implemented abstractions for
features, product lines, and variants as first-class entities.
This particular solution provides rich runtime adaptation
and configuration of software product lines, including the
provision of multiple variants and variant modification.

This paper provides a complete coverage of feature model-
ing, feature implementation, and dynamic runtime composi-

80

tion and modification of a software product line and its vari-
ants. The particular contributions are to show how Ruby’s
metaprogramming capabilities are used to design first-class
entities and an explanation of the usage of our approach
with a common case study. By describing how we utilized
the host language Ruby to build the extension, we wish to
show other FOP researchers how to build first-class entities
and how this approach supports the goal of features and
runtime adaptation.

In Section 2, further background about regarding feature-
oriented programming, software product lines, and dynami-
cally adaptable SPL’s is explained. Section 3 elaborates the
basics of the extended version of rbFeatures, and in Section
4 we explain how first-class variants are implemented as ob-
jects and how they can be used for runtime adaptation and
customization. Section 5 gives related work and Section 6
summarizes this paper. We apply following formatting: key-
words, features, and source code.

2. BACKGROUND

2.1 Feature-Oriented Programming
Features can be seen from two perspectives. The fist per-

spective regards features as all parts of a software that reflect
the concerns of a stakeholder [3]. Features are “common as-
pects [...] as well as differences between related systems”[10].
Features are important in domain engineering to scope the
software and they also provide the stakeholder-important re-
quirement of an application. These features are called model
features.

The second perspective expresses features at the code base
– we call them concrete features. In this perspective, FOP is
a paradigm that was introduced as a “new conceptual model
for object and object composition” [20]. It allows grouping
and composing sets of classes to obtain different variants of
a program. How to implement features or compose variants
out of features is an open research field. Since its inception,
many FOP implementations have been proposed: Mixin-
layers [23], AHEAD-refinements [2], and aspectual feature
modules [1] to name a few. In general, the approaches can
be divided into two different forms [12]. In the compositional
approach, features are added as refinements to a base pro-
gram. The explicit representation of all code belonging to a
feature is an expression of the separation of concerns princi-
ple [4]. In the annotative approach, features are represented
as annotations inside the source code. The representation
can be implicit on top of the source code like in CIDE [11],
which uses a representation on top of the programs abstract-
syntax tree, or it can be explicit by using language constructs
as in our rbFeatures approach [8].

While both perspectives are certainly providing benefits,
the still existing gap between the two representations is to
be questioned. We argue that a complete representation
of model and concrete features provides the benefits of both
worlds: A clean structuring of stakeholder concerns and tool-
ing to prioritize development decisions, as well as the tech-
nical capability to build and deliver custom variants with
respect to the available configurations as expressed with the
software product line model. Section 3 explains how to im-
plement this vision.

2.2 Software Product Lines
When developing software, one fundamental decision is to

design either one-off systems or a program family. One-off
systems are scoped, configured, and executed for one ex-
act purpose. After its development, the system goes into a
stable usage and maintaining period, and eventually is re-
placed by an successor. On the contrary, program families
[4] are applications that are used in different configurations
for similar, but not the same purposes. Members of a pro-
gram family have several commonalities with their members
while the variable part exhibits the different configurations.

Software product lines is the modern name for software
families with a special focus on the providing automatic
means to derive individual variants from a common code-
base. The need for product lines stems from today’s strong
individualization requirements that drive customization and
software flexibility to its height. As [26] explains, “managers
must invest strategically in software assets to gain compet-
itive advantage in the battlefield or the marketplace”. Fol-
lowing this need, SPL identify, structure, and provide a set
of production assets that are systematically reused [3]. The
connection between software product lines and features is
a compositional one: “product line is a group of products
sharing a common, managed set of features” [26]. A feature-
diagram can be used to represent the relationships and con-
straints between the features in a tree-like structure. A par-
ticular configuration of features is a valid variant if all the
constraints specified in the feature model are satisfied.

Feature-oriented programming is one option to provide
the product-line feature structure for the assets, especially
for assets related to implementation. Dependent on the par-
ticular FOP implementation, this allows different represen-
tations of the product line, constraints, features, variants
and composition approaches.

2.3 Dynamically Adaptable Software Product
Lines

Software product lines with dynamic adaptation facilities
are gaining a widespread interest in recent publications [27,
21, 18]. The primary motivation for having runtime adap-
tation is to provide different variants that support specific
application needs. In one case study, complex Enterprise Re-
source Planning Systems are configured on-site in customer
sales acquisition [27]. In the sales dialog, customers express
their requirements. The presenter customizes the applica-
tion accordingly, and the customers can test the application
and refine their requirements until they are satisfied. An-
other use case of dynamic adaptation is to support 24/7
applications [21]. In order to continually evolve the applica-
tion without providing any downtimes, one approach is to
enable the live-update of the running application. Once a
new feature has been implemented, the running application
is carefully migrated to the new version. In this process,
the product line model helps to maintain the structural re-
lationships between the assets and can be used for testing
prior to deployment.

3. rbFeatures
rbFeatures [8, 7] enables Feature-Oriented Programming

with the Ruby programming language. Features become
first-class entities of a program. They are constants that
can be used in any expression and are thus open to runtime

81

Mandatory

feature

Optional

feature

More

relation

OR

relation

AND

relation

Weight

Weighted Unweighted

Type

Directed Undirected BFS DFS None

Connected

Components
Strongly Connected

Components
Cycle

MST

Prime

MST

Kruskal

Shortest

Path

Algorithms

Number

GPL

Search

Figure 1: Feature model of the GPL.

modification too.
This section details the basic implementation and appli-

cation of rbFeatures. Thereby, we use the Graph Product
Line (GPL) as the ongoing example. The GPL is a product
line that provides different variants for graphs and graph al-
gorithms [15]. We see the tree-like structure of the GPL in
�Figure 1. As can be seen, the product line differentiates
the type and weight of a graph, provides search algorithms,
and implements numerous other algorithms like determining
whether the graph is a connected graph.

3.1 Central Entities
The initial version of rbFeatures consisted of two cen-

tral entities. The Feature module contains all methods that
form the public API of features and internal functional-
ity. This module is mixed into normal classes that repre-
sent an application’s features. The second central entity is
the FeatureResolver. It defines the required background func-
tionality so that the code associated with a feature or a
combination of features is active with regard to the feature
configuration.

The extension of a domain-specific language [16] for prod-
uct line modeling that we developed in an earlier paper [5]
adds additional entities. A FeatureModel is a configuration
unit that represents model features. It contains a name, a
list of subfeatures, the position it has in the feature tree,
and constraints. The ProductLine entity is defined by adding
all configured model features. Finally, the ProductVariant en-
tities represent a concrete feature-configuration and can be
instantiated at runtime.

The relationships between all entities is shown in �Figure
2. Using the extended version of rbFeatures encompasses
the following steps:

1. Product Line Modeling – Define the model features,
their relationships, and their constraints. Add all
model feature to a ProductLine object.

2. Application Implementation – Implement or feature-
refactor an application.

• Create Feature objects that represent the identified
the model feature.

• Form feature containments by enclosing all code
parts in a block and provide a containment condi-

ProductLine

ProductVariant

FeatureModel Feature

Application

Code

consists off >>

b
a

s
e

d
 o

n
 >

>

<< implements

c
o

n
s
is

ts
 o

ff
 >

>

ApplicationInstanceinstantiates >> based on >>

<< implements

Figure 2: Entity structure of rbFeatures.

tion expressing under which feature configuration
the containment is executed.

3. Program Initialization – Initially execute the program
to obtain the first-class representations for the product
line, model features, and the concrete features.

4. Variant Creation and Instantiation – Create Product-
Variant objects by configuring a set of activated fea-
tures that are valid to the feature model, and then
instantiate the variant in a defined scope.

The next subsections explain each step in detail.

3.2 Product Line Modeling
The first step is to provide the model features and the

productline. Each model feature needs to be declared with
the following properties: name, position in the tree (root, node,
leaf), the subfeatures, and a set of constraints (using the key-
words is, one, more, all, any). For example, the declaration of
the root node GPL takes the following form in �Figure 3.

This declaration is easy to read for itself. Beginning in
Line 2, the name of the feature is defined, its relative posi-
tion in the feature tree declared, its subfeatures listed, and
finally a constraint defined. The constraint expresses that
the selection of the GPL feature requires selecting one ore
more of it’s subfeatures (Type, Weight, Search, and Algorithms).

After all features are declared in this way, we can de-
clare the product line object. It uses the syntax shown in
�Figure 4. After a short description in Line 2, the next

�
1 gpl_feature = FeatureModel.configure do
2 name :GPL
3 root
4 subfeatures :Type , :Weight , :Search , :Algorithms
5 requires :GPL => "more :Type , :Weight , :Search ,

:Algorithms"
6 end� �

Figure 3: Configuring the root feature of the GPL.�
1 GPL = ProductLine.configure do
2 description "The complete GPL"
3 add_feature gpl_feature
4 add_feature type_feature
5 add_feature weight_feature
6 #...
7 end� �

Figure 4: Creating a product line by adding all fea-
tures.

82

�
1 class Weighted
2 is Feature
3 end
4
5 class Unweighted
6 is Feature
7 end
8
9 class Undirected

10 is Feature
11 end� �

Figure 5: Implementing basic features.

lines just add the model features to this product line. Once
the product line declaration is complete, the valid? method
checks whether all named subfeatures and features contained
in the conditions are included – this helps to detect incorrect
product line objects.

After these first steps we have a complete set of model
features and the product line available. The next step is
to provide the implementation of the product line, and later
combine the model and the implementation for creating vari-
ants.

3.3 Application Implementation
The next step is to declare the concrete features. Either

a complete application including features is developed from
scratch, or an existing application is feature-refactored. In
both cases, the task is to first define the features entities and
then to form feature containments.

As we explained before, concrete features are normal clas-
ses. If they do not contain functionality on their own, their
declaration is as simple as shown in �Figure 5. If they con-
tain functionality on their own, then the class declaration
body includes additional fields and methods as it is com-
monly defined in Ruby.

Once the features are defined, we use them to form fea-
ture containments. Containments consist of two parts. The
first part is called containment condition. It is an expres-
sion that specifies which activation status one or several fea-
tures require. Conditions like “If feature A, B and C, but
not D are activated”, translate to the natural syntax (A +

B + C - D). The second part of the feature containment is
the containment body. It contains code that belongs to the
particular feature or the intersection of features specified in
the condition. rbFeatures supports three granularity levels
of feature code: (i) complete class or module declarations,
(ii) method declarations, and (iii) individual lines or even
individual characters in lines. The granularity of the con-
tainment condition and the containment body enacts high
flexibility of declaring code for a single feature or interacting
features.

The GPL requires to put both lines containments and
complete method bodies in feature containments. As shown
in �Figure 6, the Weight feature interacts with Edge by defin-
ing the local weight variable and an accessor for it (Line 2
and 4). The features Directed and Undirected interact with
Graph by defining the directed? method with a custom body
(Line 11–16 and 17–21).

Once the application is completed with all features and
feature containments are created, we can initialize the pro-
gram.

�
1 class Edge
2 Weighted.code { attr accessor :weight }
3 def initialize(params)
4 Weighted.code { @weight = params.delete :weight }
5 params.delete :weight if params.include? :weight
6 #...
7 end
8 end
9

10 class Graph
11 def initialize(gtype)
12 Directed.code do
13 def directed
14 return gtype == 1
15 end
16 end
17 Undirected.code do
18 def directed
19 return false
20 end
21 end
22 #...
23 end� �

Figure 6: Implementing the GPL application with
feature containments.

3.4 Program Initialization
For providing runtime changes to the application, rbFea-

tures requires a complete representation of the application.
Because of the mechanisms used to instantiate a variant
in a specific namespace, we use string representation. A
ProcductLine object stores this string representation and can
invoke it several times to define new variants.

Once the code’s representation has been provided, the
next step is to initially execute it and to define the appli-
cations modules, classes, objects, and the features. In this
process, we use several hooks and metaprogramming mech-
anisms that help to change specific parts of Ruby’s normal
behavior. The most important ones are listed here:

• Initial execution of feature containments – Initially all
features are deactivated, so that the normal initializa-
tion of the program would not execute feature contain-
ments. However, whole modules and classes would not
be available, and several methods not defined. This
could lead to an in-executable program. Because of
this, all containment bodies are executed nevertheless,
and thus the program is initialized with all entities
and methods defined. However, the methods are actu-
ally not executable: The method-added hook modifies
them.

• Method-added hook – Ruby provides several hooks that
are called at specific runtime conditions (a complete
list is explained in [25]). rbFeatures uses a hook that
is triggered whenever a new method is added to an
object. The hook checks if there was a feature viola-
tion stemming from the last containment condition. If
yes, it replaces the method’s body with a custom error
message specifying the conflicting feature (for example
“FeatureNotActivatedError: Feature DFS is not acti-
vated”).

• Instantiation prohibition – Deactivated features are
not allowed to create instances. In the initialization
phase, we overwrite the initialize method to throw an
error too, using the explained method-added hook.

83

3.5 Feature Activation and Deactivation
After initialization, the program consisting of all classes,

modules, and methods exist. Yet the provided function-
ality is limited because all features are deactivated by de-
fault. Activating or deactivating features changes the pro-
gram1. Each time a feature changes its activation status,
the FeatureResolver is triggered to re-evaluate2 the string rep-
resentation of the application code. This means to execute
all module, class, and method declarations again. Eventu-
ally, the containment conditions are now valid, and methods
previously not available can now be executed normally.

This modification uses two important metaprogramming
capabilities of Ruby: open classes and code evaluation.

• Open classes – Ruby allows modifying all existing en-
tities, even the built-in ones. For example if a method
declaration is executed in the same scope and with the
same name as an existing method, then the old method
is overwritten.

• Code evaluation – At runtime, code in the form of
String or Proc objects can be evaluated. Strings are an
external format and are slower to evaluate, but using
Ruby’s string processing capabilities they can also be
changed arbitrarily. Procs instead are transformed to
an internal representation. Like strings, they can con-
tain any expressions, but are not modifiable after their
creation3 The difference is that procs are similar to
closures stemming from functional-oriented program-
ming. Their declaration encloses the state of surround-
ing variables even if the original context is no longer
available.

Both concepts explain the dynamic adaptation capabili-
ties of rbFeatures. At first, the whole application is stored
inside a string object, giving full manipulation capabilities of
the code with built-in string processing capabilities. Second,
containment bodies are actually proc objects, defined with
the do ... end notation shown in previous examples. And
third, every time a feature changes its activation status, the
complete application is re-evaluated again. Parts of the ap-
plication that were not available before may get active, and
this changes the internal program representation.

3.6 Variant Creation and Instantiation
We consider the case to create a ProductVariant object that

provides the features Directed, Weighted, DFS, and
Strongly Connected. The expression to create this ob-
ject are shown in �Figure 7. The variant receives a name, a
parameter pointing to the ProductLine model, and in its body
various features are activated. When the variant is created,
it is automatically added to the product line and can be
retrieved from there.

1In the current version of rbFeatures, manual configuration
using the first-class feature objects is still possible. But this
should be used with care because no product line model
is available and therefore the feature configuration is not
checked. This could lead to buggy programs. Therefore,
the use of ProductVariant objects as explained in the next
subsection 3.6 is recommend.
2The method eval is used to execute String or Proc represen-
tations of Code, hence we speak of evaluation.
3At least with the standard library. In [7] we showed how an
external library can be used to obtain a string representation
of a a proc, to modify it, and to writ it back to the proc.

�
1 ProductVariant.configure
2 :name => "SimpleVariant",
3 :pl => GPL do
4 activate_features :Directed ,
5 :Weighted ,
6 :DFS ,
7 :Strongly_Connected
8 end
9 end� �

Figure 7: Configuration of a product variant.

Once the variant is available, a call to it’s instantiate!

method actually creates an instance of this variant. This
triggers the following steps:

1. Check whether the configured features are valid to the
product line model by checking that all specified con-
straints are satisfied.

2. Compose a string template consisting of a module and
the product line code. The module uses the configured
name of the variant and serves as a namespace.

3. Add the string template to the core entity
FeatureResolver (see Section 3.1).

4. Initialize the application by evaluating the template
once.

From this moment on, the code contained in the vari-
ant is available at its separate scope, and all feature acti-
vation changes are governed by the FeatureResolver and the
ProductLine model. Whenever a feature’s activation status
is changed and possibly a variant’s instance modified, the
new configuration is checked with the product line model.
Only valid feature configurations are allowed. When vari-
ants are used, rbFeatures synchronizes the various methods
that change a feature’s activation status with each other.
For example, changing the feature status in the variant or
adding a new feature is immediately reflected in the instance.
Also, changes of features directly in the variant instance also
synchronize with the variant object.

Now we will see the application of these changes in an
example.

4. RUNTIME ADAPTATION EXAMPLE
In this section we give an example on how to use the

facilities of rbFeatures for providing multiple variants and
runtime adaptation.

We assume the GPL example is completely implemented
in terms of the product line model, the application code,
and concrete features. Then two variants are created us-
ing the ProductVariant entity in �Figure 8, Line 1–15. The
ShortestPathVariant includes the features Weighted, Directed,
and Shortest Path, and the DFSVariant Includes the fea-
tures Weighted, Directed, and DFS.

The next step is to instantiate the variants and to create
graphs inside them. To create the instance and a graph ob-
ject for the ShortestPathVariant, the expressions in �Figure 8
(Line 17–29) are used. First, the variant needs to be instan-
tiated with the instantiate! method. Second, we select the
variant by using the variant method of the product line ob-
ject. Third, a code block is executed in Line 10–28 to create
the graph. The DFSVariant is created similarly in �Figure 8
(Line 33–42), but it receives a simpler graph. The resulting

84

�
1 ProductVariant.configure
2 :name => "ShortestPathVariant",
3 :pl => GPL do
4 activate_features :Weighted ,
5 :Directed ,
6 :ShortestPath
7 end
8 end
9

10 ProductVariant.configure
11 :name => "DFSVariant",
12 :pl => GPL do
13 activate_features :Weighted ,
14 :Directed ,
15 :DFS
16 end
17
18 GPL.variant (" ShortestPathVariant ").instantiate!
19
20 ShortestPathVariant.class_eval do
21 graph = Graph.new
22 1.upto (6) { |n| graph + node(n) }
23 graph + edge(1 => 2, :weight => 1)
24 graph + edge(1 => 3, :weight => 2)
25 graph + edge(2 => 5, :weight => 4)
26 graph + edge(2 => 4, :weight => 2)
27 graph + edge(4 => 6, :weight => 12)
28 graph + edge(3 => 6, :weight => 22)
29 SPgraph = graph
30 end
31
32 GPL.variant (" DFSVariant ").instantiate!
33
34 DFSVariant.class_eval do
35 graph=Graph.new
36 1.upto (6) { |n| graph + node(n) }
37 graph + edge(1 => 2, :weight => 1)
38 graph + edge(2 => 3, :weight => 2)
39 graph + edge(2 => 4, :weight => 3)
40 graph + edge(3 => 5, :weight => 4)
41 graph + edge(4 => 5, :weight => 4)
42 DFSgraph = graph
43 end� �

Figure 8: Creating two distinct variant objects and
instantiating them.

graphs are shown �Figure 9 – ShotestPathVariants to the left,
and DFSVariant to the right.

Now that both variants are created and instantiated, we
can use and modify them at will. In �Figure 10, following
modifications are applied.

• Test whether each variant has an independent graph
object (Line 1 and 2).

• In the ShortestPathVariant, calculate the shortest path
between the node 1 and 6 and show the result (Line
5).

• Also, try to calculate the shortest path between node
1 and 5 in the DFSVariant (Line 9). But this raises an er-
ror, demanding that the ShortestPath feature needs
to be activated in this variant first.

• Activate the ShortestPath feature (Line 12).
• Now the shortest path can be calculated and the result

shown (Line 15).

There is no limit to the number of product lines, variants,
and variant instances that can be created (except physical
borders like available memory). Also, the first-class objects
can be changed at will, including runtime updates of the
product line model, which are reflected back down to the
instances. Here are some more examples how to use the

1

2

3 4

1

2 3

5

4 4

1

2 3

4 5

6

1

2

2

4

12

14

Figure 9: Resulting graph structures.�
1 ShortestPathVariant.eval { SPgraph.length } # => 6
2 DFSVariant.eval { DFSgraph.length } # => 5
3
4 ShortestPathVariant.class_eval do
5 shortest_path(SPgraph , 6) # => [1,2,4,6]
6 end
7
8 DFSVariant.class_eval do
9 shortest_path(DFSgraph , 5) # =>

FeatureNotActivated Error: Feature
ShortestPath is not activated

10 end
11
12 GPL.variant (" DFSVariant ").activate_features

:ShortestPath
13
14 DFSVariant.class_eval do
15 shortest_path(DFSgraph , 5) # => [1,2,3,5]
16 end� �

Figure 10: Runtime adaptation of ProductVariant ob-
jects.

flexibility given by the first-class entities:

• Define new model features and add them to a product
line.

• Inside a variant, add a new block of code that contains
a new concrete feature.

• Offer different variants to the user and record which
feature combinations are heavily used. Use this in-
formation to prioritize development of additional fea-
tures.

• Analyze how a particular variant is used, change its
implementation at runtime by activating a new feature
and changing the instance.

5. RELATED WORK
In the research field of dynamic runtime adaptation, sev-

eral examples and approaches have been presented. The fol-
lowing subsections explain general frameworks, implemen-
tation mechanism, and applications.

General Frameworks
One general framework for runtime adaptation expresses
three important concerns: (1) explicit architectural model,
(2) provision of structural and behavior constraints, and (3)
the availability of software connectors for runtime changes

85

[18]. In rbFeatures, concerns 2 and 3 are expressed with
the help of the software product line constraints and the
explained concepts of open classes and runtime code evalu-
ation. Furthermore, concern 1 is of no importance in rbFea-
tures because the feature containments are applicable to any
source code independent of its place in the software archi-
tecture.

Another work suggests an application-independent and
generic meta-model for runtime adaptation [17]. The model
considers systems operations, services, and ports of an ap-
plication as possible entry points for changes, and explains
that a concrete binding and implementation for each one
can support the adaptation. This generic model can explain
how several concrete adaptation approaches work. Recently,
rbFeatures was applied to web applications where different
feature configuration determine the available functions and
web-pages [6]. Altering the behavior of HTTP request han-
dlers and the offered ports is similar to providing a service,
and thus rbFeatures can be seen as lightweight instance of
this approach too.

Finally one model actively suggests to use features as
the dominant entities that drive runtime adaptation [14].
The paper introduces a feature model, binding units, and
a feature binding graph which is used to backup the step-
wise change of the current features configuration. This is
supported by rbFeatures too, albeit the changes in terms
of checking the feature configuration with the product line
model are comparatively simple.

Implementation Mechanisms
Looking at concrete implementation mechanisms, [22] ex-
plains an approach how to enable features for static and
dynamic binding. Static binding is a a-priori deployment
decision that confines some parts of the application to one
specific configuration. Dynamic binding flexibilizes the de-
velopment of features on the one hand, but it introduces
additional overhead like memory consumption or runtime
performance degradation. The paper shows how to use the
delegator pattern and refinements using binding units can
combine both approaches. This is an interesting idea to
provide other mechanisms in Ruby as well. Although there
is not compile time in Ruby, C extensions to the interpreter
could be written that allow the pre-configuration of an ap-
plication.

Another approach uses Java in order to adapt a software
product line and its variants at runtime [21]. Two mecha-
nisms to add new code based on a changed feature model.
At first, existing classes are replaced with a similar, slightly
evolved class but with another name through the classloader.
Second, Java HotSwap is applied to change all method calls
that have a callee which is the modified class. How this spe-
cific technique can be used for Feature-Oriented Program-
ming in Java is shown in [24]. Ruby supports such runtime
modification and metaprogramming mechanisms out of the
box, so rbFeatures just needs to use the existing mechanisms.

Applications
Finally considering concrete applications, we see that [27]
explains a plug-in based adaptation mechanism on top of
the .NET platform. In this paper, some scenarios where
runtime adaptation is required or beneficial are explained.
One example is a live sales presentation of an enterprise re-
source planning system. At the presentation, the system is

dynamically configured according to obtain the best feature
combination which satisfied most or all requirements of the
customer. Another example explains a product line which
is customized in accordance with the physical and execution
environment [19]. The paper presents a case study in which
an application displays information about movies. The ap-
plication features a cache which is activated once the band-
width of an internet-connection reaches a certain threshold.
From thereon, the application serves the data out of the
cache instead of live from the server.

6. SUMMARY
This paper explained how feature-oriented programming

and runtime adaptation of variants can be achieved by us-
ing first-class entities. The approach uses Ruby as the im-
plementation language. By using existing objects (classes
and modules), metaprogramming capabilities (open classes,
runtime code evaluation, hooks) and functional program-
ming (support of closures as anonymous code blocks), power-
ful first-class representations of product lines, features, and
variants can be created. This approach is generalizable to
bring runtime adaptation support for product line variants
to other applications as well. Provided the chosen host lan-
guages supports similar mechanisms, first-class entities can
be created in other languages as well.

A future research direction is to climb the ladder of avail-
able abstractions even higher. Once features, product lines,
and variants become first-class entities of a host language,
they build a reflexive layer about applications. The applica-
tions are becoming an abstraction which enables fine-grained
modifications and runtime adaptation. By extending the re-
flexive layer with additional concerns and paradigms, such as
aspect-oriented programming [13] or context-oriented pro-
gramming [9], whole systems comprising several applications
can be expressed with powerful meta-expressions. This idea
can be easily visualized as building a product line that con-
sists of other product lines. A system as a whole is adaptable
by modifying its components which are variants of individ-
ual product lines. This architecture can be used to react to
complex environmental changes.

Acknowledgments
We thank the anonymous reviewers for helpful comments on
an earlier draft of this paper.

7. REFERENCES
[1] S. Apel. The Role of Features and Aspects in Software

Development. Dissertation,
Otto-von-Guericke-Universität Magdeburg, 2007.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. In Proceedings of the 25th
International Conference on Software Engineering
(ICSE), pages 187–197. IEEE Computer Society, 2003.

[3] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, Boston, San Franciso et al., 2000.

[4] E. W. Dijkstra. Notes on Structured Programming.
Academic Press Ltd., London, 1972.

[5] S. Günther. Engineering Domain-Specific Languages
with Ruby. In H.-K. Arndt and H. Krcmar, editors, 3.
Workshop des Centers for Very Large Business

86

Applications (CVLBA), pages 11–21, Aachen, 2009.
Shaker.

[6] S. Günther. Multi-DSL Applications with Ruby. IEEE
Software, 27:25–30, 2010.

[7] S. Günther and S. Sunkle. Enabling Feature-Oriented
Programming in Ruby. Technical report (Internet)
FIN-016-2009, Otto-von-Guericke-Universität
Magdeburg, 2009.

[8] S. Günther and S. Sunkle. Feature-Oriented
Programming with Ruby. In Proceedings of the First
International Workshop on Feature-Oriented Software
Development (FOSD), pages 11–18, New York, 2009.
ACM.

[9] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-Oriented Programming. Journal of Object
Technology, 7(3):125–151, 2008.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and
A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
Carnegie Mellon University, 1990.

[11] C. Kästner and S. Apel. Virtual Separation of
Concerns – A Second Chance for Preprocessors.
Journal of Object Technology (JOT), 8(6):59–78, Sept.
2009.

[12] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the 30th
International Conference on Software Engineering
(ICSE), pages 311–320, New York, 2008. ACM.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), volume 1241 of Lecture
Notes in Computer Science, pages 220–242. Berlin,
Heidelberg, New York, 1997.

[14] J. Lee and D. Muthig. Feature-Oriented Analysis and
Specification of Dynamic Product Reconfiguration. In
Proceedings of the 10th Internationale Conference on
Software Reuse (ICSR), pages 154–165, Berlin,
Heidelberg, 2008. Springer Verlag.

[15] R. E. Lopez-Herrejon and D. Batory. A Standard
Problem for Evaluating Productline Methodologies. In
Proceedings of the Third International Conference on
Generative and Component-Based Software
Engineering (GPCE), volume 2186 of Lecture Notes in
Computer Science, pages 10–24, Berlin, Heidelberg,
Germany, 2001. Springer Verlag.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and
How to Develop Domain-Specific Languages. ACM
Computing Survey, 37(4):316–344, 2005.

[17] B. Morin, O. Barais, and J. Jézéquel. K@rt: An
Aspect-Oriented and Model-Oriented Framework for
Dynamic Software Product Lines. In Proceedings of
the 3rd International Workshop on Models@run.time,
pages 127–136, 2008.

[18] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime
Software Adaptation: Framework, Approaches, and
Styles. In Companion of the 30th International
Conference on Software Engineering (ICSE2010),
pages 899–910. ACM, 2008.

[19] C. A. Parra, X. Blanc, and L. Duchien. Context

Awareness for Dynamic Service-Oriented Product
Lines. In D. Muthig and J. D. McGregor, editors,
Proceedings of the 13th International Conference on
Software Product Lines (SPLC), volume 446 of ACM
International Conference Proceeding Series, pages
131–140. ACM, 2009.

[20] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the 11th European
Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer
Science, pages 419–443, Berlin, Heidelberg, Germany,
1997. Springer Verlag.

[21] M. Pukall, N. Siegmund, and W. Cazzola.
Feature-Oriented Runtime Adaptation. In SINTER
’09: Proceedings of the 2009 ESEC/FSE workshop on
Software integration and evolution @ runtime, pages
33–36, New York, NY, USA, 2009. ACM.

[22] M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel.
Combining Static and Dynamic Feature Binding in
Software Product Lines. Technical Report
FIN-013-2009, Otto-von-Guericke-Universität
Magdeburg, 2009.

[23] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and
Methodology, 11:215–255, 2002.

[24] S. Sunkle and M. Pukall. Using Reified Contextual
Information for Safe Run-time Adaptation of Software
Product Lines. 2010.

[25] D. Thomas, C. Fowler, and A. Hunt. Programming
Ruby 1.9 - The Pragmatic Programmers’ Guide. The
Pragmatic Bookshelf, Raleigh, USA, 2009.

[26] J. Withey. Investment Analysis of Software Assets for
Product Lines. Technical Report CMU/SEI96-TR-010,
Software Engineering Institute, Carnegie Mellon
University, 1996.

[27] R. Wolfinger, S. Reiter, D. Dhungana, P. Grünbacher,
and H. Prähofer. Supporting Runtime System
Adaptation through Product Line Engineering and
Plug-in Techniques. In Proceedings of the Seventh
International Conference on Composition-Based
Software Systems (ICCBSS), pages 21–30. IEEE
Computer Society, 2008.

87

