
1

Don Batory
Department of Computer Science
University of Texas at Austin
January 2011

FOSD – A Science of Software Design
A Personal Perspective on the Historical

Development of FOSD

• Organizers asked me:

• Invitation list suggested few “outsiders”

• Place FOSD in context within a broad, historical framework
to explain its origin, goals, future expectations

• if I discuss a topic, consider it well-studied

• if I don’t discuss a topic, likely an open research area

Introduction

2

to give a tutorial that provides a broad perspective of FOSD including
future, present, and past, especially for people from the outside.

• Science is knowledge that has been reduced to a system. (Robert van de Geijn)

• Theoretical Physics: Find fundamental laws that explain families of
known phenomena; the smaller the number of laws, the better.
Laws predicts existence of other phenomena (ex: Higgs Boson)

Origins of FOSD: Science

3

12
10

8

7
6

5

4
3

2

4

∞ ∞

domain

theory meta-model

models

Origins of FOSD: Science & Physics

FOSD Principles

• Although we are interested
in theories (meta-models)
of particular domains…

• FOSD is also about
meta-meta model
whose domain-
independent principles
are common across all
FOSD “theories” or
“meta-models”

4

models

meta
models

meta
meta
model

meta
theory

theories

• Core demonstration of systemization of knowledge
• not interested in “taxonomies”

• Future paradigms of software development will embrace:

– Generative Programming (GP)
– want software development to be automated

– Domain-Specific Languages (DSLs)
– not Java & C#, but high-level notations

– Automatic Programming (AP)
– declarative specs → efficient programs

• Need simultaneous advance in all three fronts to make a
significant change

Origins of FOSD: Automation

Intro- 5

• Example of this futuristic paradigm realized 30+ years ago
• when many AI researchers gave up on automatic programming

• The most significant result in automated program design
and development, period

• Not mentioned in typical SE texts …

Not Wishful Thinking...

Intro- 6

• Declarative query is mapped to an relational algebra expression
• Each expression represents a unique program
• Expression is optimized using algebraic identities
• Efficient program generated from expression

Relational Query Optimization (RQO)

SQL
select

statement

parser

inefficient
relational
algebra

expression

efficient
relational
algebra

expression
optimizer

declarative
domain-specific

language

automatic
programming

code
generator

efficient
programgenerative

programming

Intro- 7

• Is experimentally-driven approach aimed at reproducing an
RQO-like results in other domains

• Domains of artifacts (software) can be understood and
constructed algebraically

• systematizing knowledge of a domain

• to automate construction, improve quality, reduce maintenance costs

• to teach engineers, undergraduates, graduates
about a science of design

Feature Oriented Software Development (FOSD)

8

FOSD is a Technically Rich Area

9

10

A Long Time Ago,
in a University Far, Far Away…

• Largest snowfall in decades

• Given a desk in Sanford Fleming (known for proposing worldwide

standard time zones) building, constructed in 1907

• Miracle of February 1977

Toronto, January 1977

11

zoo

• Moved to 121 St. Joseph, St. Michaels College (Theology)

Fire of February 1977

12

• Over time, shared an office with others

Fire of February 1977

13

zoo

• Here we are again

30+ Years Later…

14

People And Relationships Evolve

15

1980
circa 1981-2010

today 2011

People And Relationships Evolve

16

1980
circa 1981-2010

today 2011

• “Objects” are entities that we want to relate

• “Arrows” are relationships
• arrow is a map (AB) says A maps to B

• Rules are simple:
• arrows compose

• composition is associative

• always identity arrows (often not drawn)

Notation

17

A B

C

• Are categories where all paths from one object to another
yield the same result

• Are theorems of category theory

Commuting Diagrams

18

F

F’

G’ G F • G = G’ • F’

Start

End

• Map them: A is mapped onto/into B
• embedding of A into B

• each object (arrow) in A maps to an object (arrow) in B

• such that all inferred arrows in A can be inferred in B

What to Do With Categories?

19

category A category B

• Isomorphic categories are very common
• categories with exactly the same shape

Functors

20

1980
circa 1981-2010

today 2011

• Category (at least what we need)

• is a directed graph whose edges can be inferred

• commuting diagrams define equivalent paths

• a functor embeds one category into another

• With this as a backdrop,
review progression of generations of FOSD technology

• Can’t cover everything – my apologies to those who I don’t
acknowledge

Recap

21

GenVoca

1992 – 1997

1st Generation FOSD

22

• Family of related programs

• Features are “increments in functionality”, drawn as arrows

• Programs related by features

• Product line is a category
• says nothing about how arrows (features) are implemented;

only represents feature-based relationships among programs

• Questions: how are PL categories encoded? &
how are arrows implemented?

Product Line

23

∅ p1

p6

p2

p3 p4

p5

p7

A B

C

D

CD

E

F

or compositions of features

F•E•B•A

D•B

and the lone base (or empty) program ∅

• Kyo Kang 1990
• tree that encodes containment, exclusion, and aggregation

relationships among features

• cross-tree constraints express additional restraints

• now a standard modeling concept

(Unordered) Feature Models

24

tree

cross-tree
constraints

• Viewing features as “arrows” is natural for incremental development
(Wirth & Dijkstra), a fundamental way to control complexity

• FMs are inherently unordered
• program specification is a set of features

• to relate to categories, a specification must be a sequence of features

• Ordering information added by encoding FM as a grammar
• encode a feature tree as a context-free grammar

where each token is a feature

• cross-tree constraints are context-sensitive part

• sentences of grammar is a language

Ordered Feature Models (OFMs) 1992

25

E-Shop : Catalogue Payment+ Security [Search];

Payment : BankTransfer | CreditCard ;

Security : High | Standard ;

language = product line
sentence = product

• Given an OFM (context-sensitive grammar) of:

• Produces:

OFMs and Categories

26

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

∅ C CC

Hi

Hi

Hi

Se

Se

Se

Se

• Feature = layer of software = “lego”

• Features exported and imported Object-Oriented Virtual Machines

How to Implement Arrows (Features)?

27

Class10 Class11

OOVM2

OOVM0

• A layer maps between an exported OOVM and an
imported OOVM

Feature or Layer

Layers-28

OOVM2

OOVM0

layer

exported

imported

• A composition of 2+ layers = another (composite) layer

• Closure, arrow composition:
• “lego composition”, “layered abstractions”,

Layer Composition

29

OOVM2

OOVM0

layer2•layer1

exported

imported

layer1

layer2

• Principles of Parameterized Programming
J.A. Goguen, IEEE TSE 1984

• On the Design and Development of Program Families
D.L. Parnas, IEEE TSE 1976

• Program Development using Stepwise Refinement
N. Wirth, CACM 1971

• Structured Programming
E.W. Dijkstra, Software Engineering Techniques, 1970

• Mass Produced Software Components
D. McIlroy, ICSE 1968

Other Foundational Contributions

30

1. Layers with fixed interfaces were too rigid

2. How to generalize beyond source code?

3. Are OFMs essential? Could multiple orderings exist? Which is best?

4. If there are features, where are feature interactions?

Key Limitations

31

Mixin Layers

Smaragdakis

1998-2001

2nd Generation FOSD

32

• Ossher and Harrison observed that there is no such thing as a
standardized interface

• in effect, an interface presents our current understanding of an abstraction

• in time, our understanding evolves

• MS COM – query interface

• Thought experiment: what are attributes of a book?
• author, title, publisher

• printer: how much paper, ink?

• warehouse: how much volume?

• In short, attributes of an object are subjective w.r.t. application it is
being used

Subjectivity 1992

33

• This is precisely the reason for features and product lines
• product line of object (class) definitions

• Or an OFM representation (projection) of it
• only one way to derive a particular artifact

But Wait!

34

∅

L
BL

BP

BW

BLP

BPW

BWL

BLPWP

P

W
P

L

L

W

W

W

L

P

• This is precisely the reason for features and product lines
• product line of object (class) definitions

• Or an OFM representation (projection) of it
• only one way to derive a particular artifact

But Wait!

35

∅

L
BL

BP

BW

BLP

BPW

BWL

BLPWP

P

W
P

L
W W

• How to implement features so that (Java) interfaces and classes could
evolve incrementally and in a modular way?

• incrementally add new classes, interfaces, methods, members,
extend existing methods?

• Object-Oriented languages provide an obvious answer:

The Real Challenge Is

36

A Twists

• Need something more flexible
than subclassing

• Mixins – classes whose
superclasses are specified by
parameter
(Bracha & Cook 1990)

• But not quite – mixins are
microscopic; need to scale them

37

• Scale to mixins to encode entire packages

• Smaradakis solution: nested class refactoring

• Allows us to create inheritance hierarchies of packages

• Nested classes + mixins = Mixin-Layers

• Produce huge programs by composing small number of huge features

Another Twist

38

-globals

PackageP

Class-1 Class-2 Class-N

...

Class-1 Class-2

...
Class-N

PackageP

Wmixin

Wmixin

Pmixin

Wmixin

Wmixin

Lmixin

Pmixin

Connection to Categories is Simple

• Rotate category by 90° • Arrows (classes) are mixin-layers

• Objects (programs) are computed

39

∅

L
BL

BP

BW

BLP

BPW

BWL

BLPWP

P

W

W
W

W

P
W

• Classes and Mixins
M. Flatt, S. Krishnamurthi, M. Felleisen. POPL 1998.

• Using Role Components to Implement Collaboration-Based
Designs

M. Van Hilst and D. Notkin. OOPSLA 1996.

• Mixin-Based Inheritance
G. Bracha and W. Cook. OOPSLA 1990.

• Virtual classes: A powerful mechanism in Object Oriented
Programming

O. L. Madsen and B. Møller-Pedersen, OOPSLA 1989.

Other Foundational Contributions

40

1. Layers with fixed interfaces were too rigid

2. How to generalize beyond source code?

3. Are OFMs essential? Could multiple orderings exist? Which is best?

4. If there are features, where are feature interactions?

Key Limitations

41

42

AHEAD

2001-2006

3rd Generation FOSD

• All programs have multiple representations
• source code

• documentation

• makefiles

• formal models

• What happens when you add a new feature to a program?

• Ans: update all representations simultaneously for consistency

• Significance: generalize modularity to encompass (virtually) arbitrary
representations in programs and features

• Ideas of feature-based synthesis apply uniformly

Multiple Representations

43

• A parser has multiple representations
• grammar, source code, documentation

• represented as a tuple of artifacts

• example parser P0 = [g0, s0, d0]

• Every feature modifies each representation lock-step

• Suppose feature M adds state machine to P’s language
• makes changes Δgm to grammar

• makes changes Δsm to source

• makes changes Δdm to documentation

• feature is a tuple of changes: M = [Δgm, Δsm, Δdm]

Typical Example

44

• Recursive – each representation has its own (sub-)
representations, recursively

Element-Wise Composition

P = M • P0 -- feature expression

S21 … S2mΔS21 … ΔS2mΔS21•S21 … ΔS2m•S2m

P0

R1 R2 Rn…

M

ΔR1 ΔR2 ΔRn…

M•P0

ΔR1•R1 ΔR2•R2 ΔRn•Rn…

45

= [Δgm, Δsm, Δdm] • [g0, s0, d0] -- substitution
= [Δgm•g0, Δsm•s0, Δdm•d0] -- compose element-wise

• Principle of Uniformity – treat all representations similarly
• worst thing you could do is to have different compositional models for

different representations

• key to representation scalability

• Principle of Abstraction – treat all levels of abstraction
similarly

• worst thing you can do you is to have multiple compositional models at
the same or different levels of abstraction

• key to abstraction scalability

• Simplicity without sacrificing power

• Standard engineering practice

Principles

46

• Took an astonishingly long time to realize this, but you can
build a single generic tool that defines the grammar of
artifact types and how tree nodes compose

• as opposed to building a specialized composition tool for each
language

• See Apel’s Feature Structure Trees in FeatureHouse

Eating Your Own Dog Food

47

1. Layers with fixed interfaces were too rigid

2. How to generalize beyond source code?

3. Are OFMs essential? Could multiple orderings exist? Which is best?

4. If there are features, where are feature interactions?

Key Limitations

48

Feature-Oriented Model Driven Design (FOMDD)
Trujillo, Diaz

2006-2008

4rd Generation

49

• Different representations can be related
• parser’s grammar g related to its source s by javacc

• source s related to bytecode b by javac

• A commuting diagram expresses these relationships

Other Functional Relationships

p1 p2 p3
j k

g1

s1

b1

g2

s2

b2

g3

s3

b3

50

generation #1
generation #2
generation #3

• Different representations can be related
• parser’s grammar g related to its source s by javacc

• source s related to bytecode b by javac

• A commuting diagram expresses these relationships

• Utility: Verification. If there are multiple ways to produce an artifact,
yielding different results, then your implementation is wrong

Other Functional Relationships

51

s1 s2 s3
Δsj Δsk

b1 b2 b3
Δbj Δbk

javacc javacc javacc

javac javac javac

generation #3
generation #4

g1 g2 g3
Δgj Δgk

• And if there are multiple orders in which features are
composed, how do you choose the “best”?

• An answer exposes fundamental assumptions or
properties about features and their implementations

• Features F and G commute
if the following diagram
commutes

Significance of Ordering

52

F

F

G G

F • G = G • F

• Apel and Kästner noted the following:

• What they discovered was the key to changing the
composition order of features

• order need not be fixed

• order may change the contents of a feature (module)

Interesting Observation

53

“pseudo-commutativity”

F

F’

G’ G F • G = G’ • F’

Said Something Important

• Any path from ∅ to P is
equivalent

• if you assign “weights” to each
arrow, you want the shortest
path geodesic

• Typically geodesic reflects
bottom-up construction

• Goguen observed order doesn’t
matter

• Choose order that you want

• Automatic translation?

54

∅

F1

G1
H1

P

H2
G2

F2

F

H

G

F

G

H

1. Layers with fixed interfaces were too rigid

2. How to generalize beyond source code?

3. Are OFMs essential? Could multiple orderings exist? Which is best?

4. If there are features, where are feature interactions?

Key Limitations

55

Feature Interactions

and Virtual Modularity
(today – but started long ago)

5rd Generation

56

Where’s Waldo?

57

• Keep the following image in your mind

Commuting Diagrams

58

• Flood control – Fire control problem (Kang 2003)

• isomorphic to other classical feature interaction problems in telephony

Feature Interactions

59

Fire

Flood

Flood

Fire

Fire#Flood

Fire#Flood•Fire

Fire#Flood•Flood

• Flood control – Fire control problem (Kang 2003)

• isomorphic to other classical feature interaction problems in telephony

Feature Interactions

60

Fire

Flood

Flood

Fire Fire#Flood•Fire

Fire#Flood•Flood

Kästner’s CIDE

• Ressurrects use of preprocessors
• standard technique for building

product lines

• #ifdef <code> #endif

• Color structures according to the
feature that implements or
introduces that structure

• Idea applies to directories of files
(artifact hierarchies) as well

• Nesting of colors indicates feature
interactions

61

Y

B

G

G
Y#G

Y

G
B#G

B#G#Y

Y

• Projectional approach to product-lines
• build artifacts with everything inside them

• project (remove) parts that you don’t need

• virtual modularization

• Addresses a basic limitation in mixin-layer like approaches
• mixin-layers work well with large-scale, medium-scale changes,

but not with small-scale (code fragment) changes

• Alternate way to implement features (arrows)
• isomorphic to compositional approaches

• can’t yet rule out compositional approaches

• Still want to think in terms of arrows to relate to

Model Driven Engineering and Refactoring

Significance: Projectional FOSD

62

• Feature Oriented Programming: A Fresh Look at Objects
C. Prehofer, ECOOP 1997

• Mapping Features to Models: A Template Approach Based on
Superimposed Variants

K. Czarnecki and M. Antkiewicz, GPCE 2005

Other Foundational Contributions

63

64

I’m out of time and there’s lots more…

Oops…

• Software design is in the dark ages
• practiced as an art, not as a science

• ruled by fads, personalities, dogma; rather than technical prowess

• celebrates complexity and eschews simplicity

• reassures our greatest weaknesses

“We are geniuses at making the simplest things look complicated”

“We are governed by the inability to abstract,
to distinguish essential from artificial complexity

and thus we pay the consequences”

• The hard part is revealing the simplicity behind what we do

Closing Thoughts

65

• Features are a fundamental form of modularity

• see them everywhere, from automotives, PC, and software

• integrates ideas from the entire history of software design elegantly

• program design and synthesis has a simple algebraic underpinning

design is all about structure definition and manipulation

which is what mathematics is about

• Features will be an integral part of a future of software
design and a Science of Design

Closing Thoughts

66

• FOSD is a generalization of the Relational Model

• Relational Model was based on set theory
• this was the key to understanding a modern view of databases

• set theory used was shallow

• fortunate for programmers and database users

• set select, union, join, intersect

• disappointment for mathematicians

• Categories lie at the heart of FOSD
• as a language to express our results

• places research results in context

• new insight in design, verification, optimization

Closing Thoughts

67

• Feature Models
• Czarnecki & Wasowski (SPLC 2007)

• Perry (ICSE 1989)

• Features, Verification, and State Machines
• Classen & Heymans & Schobbens &; Legay & Raskin (ICSE 2009)

• Li, Krishnamurthi, & Fisler (FSE 2002, ASE 2002)

• Stärk & Schmid & Börger (Jbook 2001)

• Dynamic compositions of features
• Zave (IEEE TSE 1998)

• + Others…

More Foundational Work

68

