
Preliminary version presented at the International Con-
ference on Software Reuse, Vienna, Austria, July 2000.
Updated for ACM TOSEM September 2001.
Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study1

Don Batoryα, Clay Johnsonβ, Bob MacDonaldβ, and Dale von Heederβ

αDepartment of Computer Sciences, University of Texas at Austin
Austin, Texas 78712

batory@cs.utexas.edu
βApplied Research Labs, University of Texas at Austin

Austin, Texas 78713
{clay, bob, drv}@arlut.utexas.edu

Abstract. This is a case study in the use of product-line architectures
(PLAs) and domain-specific languages (DSLs) to design an extensible
command-and-control simulator for Army fire support. The reusable
components of our PLA are layers or “aspects” whose addition or
removal simultaneously impacts the source code of multiple objects in
multiple, distributed programs. The complexity of our component speci-
fications is substantially reduced by using a DSL for defining and refin-
ing state machines, abstractions that are fundamental to simulators. We
present preliminary results that show how our PLA and DSL synergisti-
cally produce a more flexible way of implementing state-machine-based
simulators than is possible with a pure Java implementation.

1 Introduction

Software evolution is a costly yet unavoidable consequence of a successful application.
Evolution occurs when new features are added and existing capabilities are enhanced.
Unfortunately, many applications suffer design fatigue — when further evolution is
difficult and costly because of issues not addressed in the initial design [21]. Software
that is easily evolvable is a central problem today in software engineering.

Three of several proposed complementary technologies address software evolution:
object-oriented design patterns, domain-specific languages, and product-line architec-
tures. Design patterns are techniques for restructuring and generalizing object-oriented
software [18]. Evolution occurs by applying design patterns to an existing design; the
effects of these changes are borne by programmers to manually transform an existing
code base to match the updated design. Recent advances indicate that tool support for

1. This work was supported in part by the University of Texas Applied Research Labs and the
U.S. Department of Defense Advanced Research Projects Agency in cooperation with the
U.S. Wright Laboratory Avionics Directorate under contract F33615-91C-1788.
1

automating the applications of patterns is possible [40]. Domain-specific languages
(DSLs) raise the level of programming to allow customized applications to be specified
compactly in terms of domain concepts; compilers translate DSL specifications into
source code. Evolution is achieved by modifying DSL specifications [15]. Product-line
architectures (PLAs) are designs for families of related applications; application con-
struction is accomplished by composing reusable components. Evolution occurs by
plugging and unplugging components that encapsulate new and enhanced features [6]
[11][14][34][42]. Among PLA models, the GenVoca model is distinguished by an inte-
gration of ideas from aspect-oriented programming [27], parameterized programming
[19], and program-construction by refinement [9].

This paper presents a case study in the use of GenVoca PLAs and DSLs to create an
extensible command-and-control simulator for Army fire support. (Design patterns
were also used, but they played a minor role.) We discovered that components of dis-
tributed simulations are not conventional DCOM and CORBA components, but rather
are layers or “aspects” whose addition or removal simultaneously impacts the source
code of multiple, distributed programs. Further, we found that writing our components
in a general-purpose programming language (Java) resulted in complex code that
obscured a relatively simple, state-machine-based design. By extending Java with
domain-specific abstractions (in our case, state-machines), our component specifica-
tions were more readily understood by domain experts, knowledge engineers, and
application programmers. Thus, this case study is interesting not only because of the
novelties introduced by PLAs and DSLs, but also their integration: using only one
technology would be inadequate.

We begin by explaining the ideas and terminology of fire support. We review an exist-
ing simulator, called FSATS, and motivate its redesign. We present a GenVoca PLA for
creating extensible fire-support simulators and introduce an extension to the Java lan-
guage for defining and refining state-machines. Finally, based on simple measures of
program complexity, we show how PLAs and DSLs individually simplify simulators,
but only their combination provides practical extensibility.

2 Background

2.1 The Domain of Fire Support

Fire support is a command-and-control application that includes the detection of tar-
gets, assignment of weapons to attack the target, and coordination of the actual attack.
The entities engaged in this process, called operational facilities (OPFACs), are sol-
dier-operated (not machine-automated) command posts that exchange tactical (theater-
of-war) messages.

Forward observers (FO) are OPFACs that are stationed at intervals across the front-
line of a battlefield (Figure 1). They are one of several kinds of sensors responsible for
detecting potential targets. A hierarchy of fire support elements (FSE) is responsible
2

for directing requests from FOs to the most appropriate weapon system to handle the
attack. FOs report to their fire support team (FIST); a FIST reports to a battalion FSE, a
battalion FSE reports to a brigade FSE, and so on. Each FSE typically has one or more
supporting command posts (CPs) with different weapon systems. For example, a bat-
talion FSE might be supported by a field artillery command post (FACP); a FIST might
be supported a mortar command post, and so on. In general, higher echelon FSEs are
supported by higher echelon CPs with more powerful and/or longer range weapon sys-
tems.

FOs, FISTs, and other FSEs are responsible for evaluating a target. An evaluation may
result in (a) assigning the target to be attacked by a supporting weapon, (b) elevating
the target to the next higher echelon FSE for evaluation, or (c) denial — choosing not
to attack the target. CPs are responsible for assigning targets to the best weapon or
combination of weapons under their command. Once weapon(s) are assigned, mes-
sages are exchanged with the mission originator (usually an FO) to coordinate the
completion of the mission. The particular message sequence depends on the target and
weapon. It is still generally the case that all messages are relayed along the chain of
CPs and FSEs that were involved in initiating the mission, although newer systems
permit messages to be exchanged directly between the weapon and observer. The mes-
sage sequence for a particular mission is referred to as the mission thread. In general,
an OPFAC can participate in any number of mission threads at a time.

A mission thread is an instance of a mission type. There are well over twenty mission
types, including:

• when-ready-fire-for-effect-mortars (WRFFE-mortars) — a mortar CP is assigned
to shoot at a target as soon as possible,

• when-ready-fire-for-effect-artillery (WRFFE-artillery) — one or more artillery
CPs are assigned to shoot at a target as soon as possible,

Forward
Observer (FO)

Fire Support
Team (FIST)

Battalion Fire
Support Element (FSE)

Artillery

Front Line

enemy
tank

OPFAC command

Figure 1: OPFAC Command Hierarchy

hierarchy

(FACP)

hills

hills
3

• time-on-target-artillery (TOT-artillery) — field artillery are requested to fire at a
target so that all rounds land at the specified location at the specified time, and

• when-ready-adjust-mortars (WRAdjust-mortars) — a forward observer knows
only approximately the location of the enemy and requests single rounds to be
fired with the observer sending corrections between rounds until the target is hit,
at which point it becomes a WRFFE-mortar mission.

Each OPFAC (FO, FIST, FSE, etc.) performs different actions for each mission type.
For example, the actions taken by an FO for a TOT-mortar mission are different than
those for a WRFFE-artillery mission.

Clearly, the above description of fire support is highly simplified, e.g., the actions
taken by specific OPFACs in a mission thread and the translation of messages into for-
mats for tactical transmission were omitted. These details, however, are unnecessary to
understand the contributions of this paper.

2.1.1 FSATS

Simulation plays a key role in U.S. Army testing and training. It avoids costs of mobi-
lizing live forces, provides repeatability in testing, and allows force-on-force combat
training without the liability. Simulation has been used to model virtual environments,
weapons effects, outcome adjudication, and as computational resources increase, the
fidelity has been refined to entity-level simulators.

Fire support is one of a number of domains that has been modernized by digital Com-
mand, Control, Communications, Computer, and Intelligence (C4I) systems that auto-
mate battlefield mission processing. AFATDS (Advanced Field Artillery Tactical Data
System) is arguably the most sophisticated C4I system in existence, and provides the
software backbone (message transmission, processing, etc.) for fire support for the
Army [29]. FSATS (Fire Support Automated Test System) is a system for testing
AFATDS and other fire-support C4I systems. FSATS collects digital message traffic
from command and control communication networks, interprets these messages, and
stores them in a database for later analysis. FSATS can simulate any or all OPFACs
used in AFATDS [1]. The subject of a test can be overall system performance, individ-
ual OPFAC performance, or system operator performance. Thus, FSATS is used both
in training Army personnel in fire support and debugging/testing AFATDS.

2.1.2 The Current FSATS Implementation

FSATS has been under development for almost ten years. It is typical of the systems
mentioned in our introductory paragraph: it began with a clean design but as its capa-
bilities were extended, limitations of that design became increasingly troublesome.

The implementation is a combination of decision rules encoded in database tables, a
set of “common actions” written as Ada procedures, and a decision rule interpreter,
4

also in Ada. One set of rules is associated with each pair of an OPFAC type and a mes-
sage type. When a tactical message is received by an OPFAC, the appropriate rule set
is selected by the interpreter and each rule in the set is sequentially evaluated until one
succeeds, at which point the action for that rule is executed and processing of that mes-
sage terminates. There are from 200 to 1000 rules associated with each OPFAC type,
divided among the various input message types. Each rule consists of a predicate,
which is a conjunction of guards, and an action which is an index to a sequence of state
and message common actions. Predicates typically contain five to ten guards (terms).
The processing of rule sets is optimized, so that predicates can assume the failure of all
previous predicates. Common actions range from simple (copy the target number field
from the input to the output message) to complex (determining whether there exists a
supporting OPFAC of type mortar which is capable of shooting the target indicated by
the current message).

There are now obvious drawbacks to this design/implementation. While rule sets are
used to express OPFAC behavior, OPFAC behavior is routinely understood and ana-
lyzed in terms of mission threads. Figure 2 illustrates a mission thread, the horizontal
execution path, that associates various rules spanning multiple OPFAC programs. This
complicates the knowledge acquisition and engineering process to derive from an anal-
ysis of multiple mission threads the rules as they apply at each OPFAC. Conversely, it
obfuscates analyzing and debugging system behavior where rules for multiple mission
threads are merged into monolithic sets within each OPFAC program.

The contrast of the vertical nature of rule sets versus the horizontal or “cross-cutting”
nature of mission threads in Figure 2 illustrates an encapsulation dichotomy that is not
unique to FSATS [2][27][32]. In general, conventional OO approaches explore use
cases (threads) for specification and analysis of system behavior. However, the concept
of a use case is transient in a design process that identifies behavior (rules) with the
actors (OPFACs) rather than the actions (missions). This trade-off is seemingly
unavoidable given the need to produce objects that combine behaviors to react to a
variety of situations. In FSATS, the transformation of mission threads into rule sets
yields autonomous OPFACs at an increased cost to analysis and maintenance.

As FSATS evolved, rule sets quickly became large and unwieldy. Moreover, different
missions might use the same message type at an OPFAC for slightly different pur-
poses. Simpler rules that once sufficed often had to be factored to disambiguate their
applicability to newer, more specialized missions. In worse cases, large subsets of rules

OPFAC 1 OPFAC 2 OPFAC 3

rule 1
rule 2

...

rule 3

rule 1
rule 2

...

rule 3

rule 1
rule 2

...

rule 3

Figure 2: Rule Sets vs. Mission Threads
5

had to be duplicated, resulting in a dramatic increase in rules and interactions. More-
over, the relationship between rules of different OPFACs, and the missions to which
they applied, was lost. Modifying OPFAC rules became perilous without laborious
analysis to rediscover and reassess those dependencies. The combinatorial effect of
rule set interactions made analysis increasingly difficult and time-consuming.

FSATS management realized that the current implementation was not sustainable in
the long term, and a new approach was sought. FSATS would continue to evolve
through the addition of new mission types and by varying the behavior of an OPFAC
or mission to accommodate doctrinal differences over time or between different
branches of the military. Thus, the need for extensible simulators was clearly envi-
sioned. The primary goals of a redesign were to:

• disentangle the logic implementing different mission types to make implementa-
tion and testing of a mission independent of existing missions,

• reduce the “conceptual distance” from logic specification to its implementation so
that implementations are easily traced back to requirements and verified, and

• allow convenient switching of mission implementations to accommodate require-
ments from different users and to experiment with new approaches.

2.2 GenVoca

The technology chosen to address problems identified in the first-generation FSATS
simulator was a GenVoca PLA implemented using the Jakarta Tool Suite (JTS) [4]. In
this section, we motivate and explain basic ideas of GenVoca and one of its implemen-
tation techniques. It is beyond the scope of this paper to review design methodologies
(i.e., how to apply GenVoca concepts) or to explain domains simpler than FSATS to
elaborate the approach that we have taken. Interested readers should consult [37], [3],
and [28].

2.2.1 Motivation

Today’s models of software are too low-level, exposing classes, methods, and objects
as the focal point of discourse in software design and implementation. This makes it
difficult, if not impossible, to reason about software architectures (a.k.a. component-
based designs); to have simple, elegant, and easy to understand specifications of appli-
cations; and to be able to create and critique software designs automatically given a set
of high-level requirements.

Simple specifications that are amenable to automated reasoning, code generation, and
analysis are indeed possible provided that the focus of discourse can be shifted to com-
ponents that encapsulate the implementation of individual and largely orthogonal fea-
tures that can be shared by multiple applications2. The intuitive rationale for this shift
is evident in discussions about software products: architects don’t speak about their
products in terms of code modules, but instead explain their products in terms of fea-
6

tures offered to clients. That is, the focus of discourse is on features and not on source
code. GenVoca aims to raise the level of abstraction of understanding software from
code modules (or code-encapsulation technologies) to features (or feature-encapsula-
tion technologies).

2.2.2 Features and Refinements

At its core, GenVoca is a design methodology for creating product-lines and building
architecturally-extensible software — i.e., software that is extensible via component
additions and removals. GenVoca is a scalable outgrowth of an old and practitioner-
ignored methodology called step-wise refinement, which advocates that efficient pro-
grams can be created by revealing implementation details in a progressive manner.
Traditional work on step-wise refinement focussed on microscopic program refine-
ments (e.g., x+0 ⇒ x), for which one had to apply hundreds or thousands of refine-
ments to yield admittedly small programs. While the approach is fundamental and
industrial infrastructures are on the horizon [9][35], GenVoca extends step-wise refine-
ment by scaling refinements to a component or layer (i.e., multi-class-modularization)
granularity, so that each refinement adds a feature to a program, and composing a few
refinements yields an entire application.3

The critical shift to understand software in this manner is to recognize that programs
are values and that refinements are functions that add features to programs. Consider
the following constants (parameterless functions) that represent programs with differ-
ent features:

f() // program with feature f
g() // program with feature g

A refinement is a function that takes a program as input and produces a refined (or fea-
ture-augmented) program as output:

i(x) // adds feature i to program x

2. Griss [22] defines a feature as a product characteristic that users and customers view as
important in describing and distinguishing members of a product-line.

3. The definition of “refinement” that seems closest to our intended meaning is “the act of mak-
ing improvement by introducing subtleties or distinctions” (Merriam-Webster’s Dictionary).
Formal approaches to programming use the term “refinement” to denote the elaboration of a
program by adding more implementation detail until a fully concrete implementation is
reached. The set of behaviors (i.e., the legal variable assignments) of a “refined” program is
a subset of the behaviors of the original “unrefined” program. This appears to be different
from our use of the term. Our “refinements” follow the dictionary definition by adding “sub-
tleties or distinctions” at the design level. At the implementation level, however, a refine-
ment can yield dramatic changes: both the exported functionality (semantics of operations)
and the exported interface (signatures of operations) may change. Thus, unlike the use of
“refinement” in formal approaches to programming, the set of allowed behaviors of our
“refined” program might not be a subset of the behaviors of the “unrefined” program.
7

j(x) // adds feature j to program x

It follows that a multi-featured application is specified by an equation that is a named
composition of functions, and that different equations define a family of applications,
such as:

app1 = i(f()); // app1 has features i and f
app2 = j(g()); // app2 has features j and g
app3 = i(j(f())); // app3 has features i, j, and f

Thus, by casually inspecting an equation, one can readily determine features of an
application.

Note that there is a subtle but important confluence of ideas in this model: a function
represents both a feature and its implementation. Thus, there can be different functions
that offer different implementations of the same feature:

k1(x) // adds feature k (with implementation1) to x
k2(x) // adds feature k (with implementation2) to x

So when an application requires the use of feature k, it becomes a problem of equation
optimization to determine which implementation of k would be the best (e.g., provide
the best performance)4. It is possible to automatically design software (i.e., produce an
equation that optimizes some qualitative criteria) given a set of declarative constraints
for a target application. An example of this kind of automated reasoning is presented in
[8].

As a practical matter, refinements typically cannot transform arbitrary programs.
Rather, the input to refinements (functions) must satisfy a type — a set of constraints
that are both syntactic and semantic in nature. A typical syntactic constraint is that a
program must implement a set of well-defined Java interfaces; a typical semantic con-
straint is that the implementation of these interfaces satisfy certain behavioral proper-
ties. Thus, it is common that not all combinations of features (or their
implementations) are correct [25]. A model for expressing program types and algo-
rithms that can automatically and efficiently validate equations have been developed
and are part of the Jakarta Tool Suite [5].

2.2.3 Mixin-Layer Implementation

There are many ways in which to implement refinements, ranging from dynamically
composing objects to statically-composed meta-programs (i.e., programs that generate

4. Technically, different equations represent different programs. Equation optimization is over
the space of semantically equivalent programs. This is identical to relational query optimiza-
tion: a query is initially represented by a relational algebra expression, and this expression is
optimized. Each expression represents a different, but semantically equivalent, query-evalua-
tion program as the original expression.
8

other programs)[4] and rule-sets of program transformation systems [31]. One of the
simplest is to use templates called mixin-layers. In the following, we use the term com-
ponent to denote a mixin-layer implementation of a refinement.

A GenVoca component typically encapsulates multiple classes. Figure 3a depicts com-
ponent X with four classes A-D. Any number of relationships can exist among these
classes; Figure 3a shows only inheritance relationships. That is, B and C are subclasses
of A, while D has no inheritance relationship with A-C.

The concept of refinement is an integral part of object-orientation. In particular, a sub-
class is a refinement of its superclass: it adds new data members, methods, and/or over-
rides existing methods. A GenVoca refinement scales inheritance to simultaneously
refine multiple classes.5 Figure 3b depicts a component Y that encapsulates three refin-
ing classes (A, B, and D) and an additional class (E). Note that the refining classes (A, B,
D) do not have their superclasses specified; this enables them to be “plugged” under-
neath their yet-to-be-determined superclasses.6

In our model where refinements are functions, we would write the composition of Y
with X as Y(X). When dealing with template implementations, however, the conven-
tion is to use a slightly different syntax Y<X>. Thus, there is a trivial correspondence
between model equations and their implementing mixin-layer template expressions.

Given this correspondence, Figure 3c shows the result of Y<X>. (The classes of Y are
outlined in darker ovals to distinguish them from classes of X). Note that the obvious

5. There are other kinds of refinements beyond those discussed in this paper. An example is an
optimizing refinement, which maps an inefficient program to an efficient program [31].

6. More accurately, a refinement of class A is a subclass of A with name A. Normally, subclasses
must have distinct names from their superclass, but not so here. The idea is to graft on as
many refinements to a class as necessary — forming a linear “refinement” chain — to synthe-
size the actual version of A that is to be used. Subclasses with names distinct from their super-
class define entirely new classes (such as B and C above), which can subsequently be refined.

Figure 3: GenVoca Components and their Composition

A

C D

B D

AA

B C D

component X

A B D

component Y

composition Y<X> (a)

(b)

(c)

B

E

E

9

thing happens to classes A, B, and D of component X — they are refined by classes in Y
as expected. That is, a linear inheritance refinement chain is created, with the original
definition (from X) at the top of the chain, and the most recent refinement (from Y) at
the bottom. As more components are composed, the inheritance hierarchies that are
produced get progressively broader (as new classes are added) and deeper (as existing
classes are refined). As a rule, only the bottom-most class of a refinement chain is
instantiated and subclassed to form other distinct chains. (These are indicated by the
shaded classes of Figure 3c). The reason is that these classes contain all of the “fea-
tures” or “aspects” that were added by higher classes in the chain. These higher classes
simply represent intermediate derivations of the bottom class [4][17][36]. A conse-
quence of instantiating the “bottom-most” class of a chain is that refinement relation-
ships take precedence over typical subclassing relationships. That is, if class A in
component X is refined, it is the most refined version of A that is the superclass of B.
This precedence relationship can be seen in Figure 3c.

Representation. A GenVoca component/refinement is encoded in JTS as a class with
nested classes. A representation of component X of Figure 3a is shown below, where
$TEqn.A denotes the most refined version of class A (e.g,. classes X.B and X.C in
Figure 3a have $TEqn.A as their superclass). We use the Java technique of defining
properties via empty interfaces; interface F is used to indicate the type of component X:

interface F { } // empty

class X implements F {

class A { ... }

class B extends $TEqn.A { ... }

class C extends $TEqn.A { ... }

class D { ... }

}

Components like Y that encapsulate refinements are expressed as mixins — classes
whose superclass is specified via a parameter. A representation of Y is a mixin-layer
[17][36][37], where Y’s parameter s can be instantiated by any component that is of
type F:

class Y <F s> extends s implements F {
 class A extends s.A { ... }
class B extends s.B { ... }
 class D extends s.D { ... }
class E { ... }

}

In the parlance of the model of Section 2.2.2, X is a value of type F and Y is a function
with a parameter s of type F that returns a refined program of type F. The composition
of Y with X, depicted in Figure 3c, is expressed by:

class MyExample extends Y<X>;
10

where $TEqn is replaced by MyExample in the instantiated bodies of X and Y. Readers
familiar with earlier descriptions of the GenVoca model will recognize that F corre-
sponds to a realm interface7, X and Y are components of realm F, and MyExample is a
type equation [2]. Extensibility is achieved by adding and removing mixin-layers from
applications; product-line applications are defined by different compositions of mixin
layers.

2.2.4 Perspective

Stepwise refinement originated in the late-1960 writings of Wirth and Dijkstra. The
key to its modernization lies in scaling the effects of individual refinements, to which
there are many contributors. Neighbors first described the architectural organization of
mapping from abstract languages to concrete languages in DRACO, where the map-
pings between a higher (more abstract) language representation of a program to a
lower (more implementation-oriented) representation can be seen as large-scale refine-
ments [30]. Parameterized programming, which provides the conceptual infrastructure
for early models on parametric components, was advanced by Goguen [19]. The earli-
est use of plug-compatible layers (i.e., large-scale refinements) for creating product
families and extensible applications originated in the mid-to-late 1980s in the work of
Batory and O’Malley [2]. Feature descriptions of applications and product-lines origi-
nated in the early 1990s with Kang’s FODA (Feature Oriented Domain Analysis)[25]
and Gomaa’s EDLC (Evolutionary Domain Life Cycle)[20] models. Collaborations, as
object-oriented representations of refinements, were discussed by Reenskaug in 1992
[32]. Kiczales’s notion of aspects with “cross-cutting” effects clarified the general need
for feature encapsulations [27]. Recent work on multi-dimensional separation of con-
cerns examines a more flexible way of identifying and composing features in existing
software [38].

It is also worth noting the trade-off between the large-scale refinements of GenVoca
and generic small-scale (or microscopic) refinements (x+0⇒x) that are more com-
monly found in the literature (e.g., [33]).

The traditional argument for small scale is that a relatively small number of generic
small-scale refinements can generate a larger number of large-scale refinements. Addi-
tionally, large-scale refinements tend to be less often applicable, because they tend to
make more assumptions about the application context. (That is, the refinement Y of the
Figure 3 is less often applicable than a “sub-refinement” that only specializes A,
because Y requires the presence of B and C.) Where the case for traditional small-scale

7. Technically, a realm interface would not be empty but would specify class interfaces and their
methods. That is, a realm interface would include nested interfaces of the classes that a com-
ponent of that realm should implement. Thus, nested class A of Y would extend s.A as
above, but also might implement F.IA, a particular nested interface of F. Java (and current
JTS extensions of Java) do not enforce that class interfaces be implemented when interface
declarations are nested [36]. On going research aims to correct this situation [12].
11

refinements breaks down is precisely when doing domain-specific development: the
generation argument fails because hardly any of the generic transforms are of interest
in a restricted domain, and the contextual assumptions argument breaks down because
the domain provides the required context.

Domain-specific small-scale refinements can indeed be used to address the above-cited
deficiencies. But as we mentioned earlier, enormous numbers of domain-specific
small-scale refinements must be applied to produce admittedly small programs. Scal-
ing refinements, as we are doing, provides a more practical way to develop complex,
domain-specific software artifacts. The tools are simpler and the concepts are closer to
main-stream programming methodologies (e.g., OO collaborations, as we will see in
the next section).

3 The Implementation

The GenVoca-FSATS design was implemented using the Jakarta Tool Suite (JTS) [4],
a set of Java-based tools for creating product-line architectures and compilers for
extensible Java languages. The following sections outline the essential concepts of our
JTS implementation.

3.1 A Design for an Extensible Fire-Support Simulator

The Design. The key idea behind the GenVoca-FSATS design is the encapsulation of
individual mission types as components. That is, the central variabilities in FSATS
throughout its history (and projected future) lie in the addition, enhancement, and
removal of mission types. By encapsulating mission types as components, evolution of
FSATS is greatly simplified.

We noted earlier that every mission type has a “cross-cutting effect”, because the addi-
tion or removal of a mission type impacts multiple OPFAC programs. A mission type
is an example of a common kind of refinement called a collaboration — a set of
objects that work collectively to achieve a certain goal [32][36][41]. Collaborations
have the desirable property that they can be defined largely in isolation from other col-
laborations, thereby simplifying application design. In the case of FSATS, a mission is
a collaboration of objects (OPFACs) that work cooperatively to prosecute a particular
mission. The actions taken by each OPFAC are defined by a protocol (state machine)
that it follows to do its part in processing a mission thread. Different OPFACs follow
different protocols for different mission types.

An extensible, component-based design for FSATS follows directly from these obser-
vations. One component (Vanilla) defines an initial OPFAC class hierarchy and rou-
tines for sending and receiving messages, routing messages to appropriate missions,
reading simulation scripts, etc. Figure 4 depicts the Vanilla component encapsulating
multiple classes, one per OPFAC type. The OPFACs that are defined in Vanilla do
12

not know how to react to external stimuli. Such reactions are encapsulated in mission
components.

Each mission component encapsulates protocols (expressed as state machines) that are
added to each OPFAC that could participate in a thread of this mission type. Compos-
ing a mission component with Vanilla extends each OPFAC with knowledge of how
to react to particular external stimuli and how to coordinate its response with other
OPFACs. For example, when the WRFFE-artillery component is added, a forward
observer now has a protocol that tells it how to react when it sees an enemy tank — it
creates a WRFFE-artillery message which it relays to its FIST. The FIST com-
mander, in turn, follows his WRFFE-artillery protocol to forward this message to
his battalion FSE, and so on. Figure 4 depicts the WRFFE-artillery component
encapsulating multiple classes, again one per OPFAC type. Each enclosed class encap-
sulates a protocol which is added to its appropriate OPFAC class. Component compo-
sition is accomplished via inheritance, and is shown by dark vertical lines between
class ovals in Figure 4. The same holds for other mission components (e.g., TOT-
artillery). Note that the classes that are instantiated are the bottom-most classes of
these linear inheritance chains, because they embody all the protocols/features that
have been grafted onto each OPFAC. Readers will recognize this is an example of the
GenVoca paradigm of Section 2.2, where components are mixin-layers.

The GenVoca-FSATS design has distinct advantages:

• it is mission-type extensible (i.e., it is comparatively easy to add new mission
types to an existing GenVoca-FSATS simulator),8

• each mission type is defined largely independently of others, thereby reducing the
difficulties of specification, coding, and debugging, and

8. Although a product-line of different FSATS simulators is possible; presently the emphasis of
FSATS is on mission type extensibility. It is worth noting, however, that exponentially-large
product-lines of FSATS simulators could be synthesized — i.e., if there are m mission com-
ponents, there can be up to 2m distinct compositions/simulators.

Figure 4: OPFAC Inheritance Refinement Hierarchy

FO
Brigade Artillery

FSE
......

......

Vanilla

WRFFE-artillery

......

TOT-artillery
...

component
encapsulating

multiple classes
......

class implementing
a state machine

inheritance
relationship

Legend

superclass

subclass
13

• understandability is improved: OPFAC behavior is routinely understood and ana-
lyzed as mission threads. Mission-type components directly capture this simplic-
ity, avoiding the complications of knowledge acquisition and engineering of rule
sets.

Implementation. There are over twenty different mixin-layer components in Gen-
Voca-FSATS, all of which are composed now to form a “fully-loaded” simulator.
There are individual components for each mission type, just like Figure 4. However,
there is no monolithic Vanilla component. We discovered that Vanilla could be
decomposed into ten largely independent layers (totalling 97 classes) that deal with
different aspects of the FSATS infrastructure. For example, there are distinct compo-
nents for:

• OPFACs reading from simulation scripts,

• OPFAC communication with local and remote processes,

• OPFAC proxies (objects that are used to evaluate whether OPFAC commanders
are supported by desired weapons platforms),

• different weapon OPFACs (e.g., distinct components for mortar, artillery, etc.),
and

• GUI displays for graphical depiction of ongoing simulations.

Packaging these capabilities as distinct components both simplifies specifications
(because no extraneous details need to be included) and debugging (as components can
largely be debugged in isolation). An important feature of our design is that all
OPFACs are coded as threads executing within a single Java process. An “RMI adap-
tor” component transforms this design into a distributed program where each OPFAC
thread executes in its own process at a different site [7]. The advantage here is that it is
substantially easier to debug layers and mission threads within a single process than
debugging remote executions. Furthermore, only when distributed simulations are
needed is the adaptor included in an FSATS design.

Perspective. It is worth comparing our notion of components with those that are com-
mon in today’s software industry. Event-based distributed architectures, where DCOM
and CORBA components communicate via message exchanges, is likely to be a domi-
nant architectural paradigm of the future [39]. The original design of FSATS is a clas-
sic example: OPFAC programs are distributed DCOM/CORBA “components” that
exchange messages. Yet the “components” common to distributed architectures are
orthogonal to the components in the GenVoca-FSATS design. (This is depicted below
in Figure 5 where each vertical inheritance chain corresponds to an OPFAC that is a
CORBA or DCOM class, whereas an FSATS mission type is depicted by a horizontal
slice through all OPFACs). That is, our components (layers) encapsulate fragments of
14

many OPFACs, instead of encapsulating an individual OPFAC. (This is typical of
approaches based on collaboration-based or “aspect-based” designs).

Event-based architectures are clearly extensible by their ability to add and remove
component instances (e.g., adding and removing OPFACs from a simulation). This is
(OPFAC) object population extensibility, which FSATS definitely requires. But FSATS
also needs feature extensibility — OPFAC programs must be mission-type extensible.
While these distinctions seem obvious in hind-sight, they were not so prior to our
work. FSATS clearly differentiates them.

3.2 A Domain-Specific Language for State Machines

We discovered that OPFAC rule sets were largely representations of state machines.
We found that expressing OPFAC actions as state machines was a substantial improve-
ment over rules; they are much easier to explain and understand, and require very little
background to comprehend. A major goal of the redesign was to minimize the “con-
ceptual distance” between architectural abstractions and their implementation. The
problem we faced is that encodings of state machines are obscure, and given the situa-
tion that our specifications often refined previously created machines, expressing state
machines in pure Java code was unattractive. To eliminate these problems, we used
JTS to extend Java with a domain-specific language for declaring and refining state
machines, so that our informal state machines (nodes, edges, etc.) had a direct expres-
sion as a formal, compilable document. This extended version of Java is called Jav-
aSM, and took us a bit more than a week to code into JTS.

Initial Declarations. A central idea of JavaSM is that a state machine specification
translates into the definition of a single class. There is a generated variable
(current_state) whose value indicates the current state of the protocol (i.e., state-
machine-class instance). When a message is received by an OPFAC, a designated
method is invoked with this message as an argument; depending on the state of the pro-
tocol, different transitions occur. Figure 6a shows a simple state machine with three
states and three transitions. When a message arrives in the start state, if method
booltest() is true, the state advances to stop; otherwise the next state is one.

Our model of FSATS required boolean conditions that triggered a transition to be arbi-
trary Java expressions with no side-effects, and the actions performed by a transition

FO
Brigade

ArtilleryFSE

......

......

......

...

Figure 5: CORBA and DCOM vs. Layers (Refinements)

CORBA
or

DCOM
component

layer or refinement

legend
15

be arbitrary Java statements. Figure 6b shows a JavaSM specification of Figure 6a.
(1) defines the name and formal parameters of the void method that delivers a mes-
sage to the state machine. In the case that actions have corrupted the current state, (2)
defines the code that is to be executed upon error discovery. When a message is
received and no transition is activated, (3) defines the code that is to be executed (in
this case, ignore the message). The three states in Figure 6a are declared in (4). Edges
are declared in (5): each edge has a name, start state, end state, transition condition,
and transition action. Java data member declarations and methods are introduced after
edge declarations (6). When the specification of Figure 6b is translated, the class
exampleJavaSM is generated. Additional capabilities of JavaSM are discussed in [4].

start one

stop

t1:¬booltest()

t2: booltest()

t3: true

state_machine exampleJavaSM {

event_delivery receive_message(M m); (1)
on_error { error(-1,m); } (2)
otherwise_default { ignore_message(m); } (3)

states start, one, stop; (4)

edge t1 : start -> one (5)
conditions !booltest()
do { /* t1 action */ }

 edge t2 : start -> stop
conditions booltest()
do { /* t2 action */ }

edge t3 : one -> stop
conditions true
do { /* t3 action */ }

// methods and data members from here on... (6)

boolean booltest() { ... }
exampleJavaSM() { current_state = start; }
...

}

Figure 6: JavaSM State machine Specification

(a)

(b)
16

Refinement Declarations. State machines can be progressively refined in a layered
manner. A refinement is the addition of states, edges, data members and methods to an
existing machine. A common situation in FSATS is illustrated in Figure 7. Protocols
for missions of the same general type (e.g., WRFFE) share the same protocol fragment
for initialization (Figure 7a). A particular mission type (e.g, WRFFE-artillery) grafts
on states and edges that are specific to it (Figure 7b). Additional missions contribute
their own states and edges (Figure 7c), thus allowing complex state machines to be
built in a step-wise manner.

The original state machine and each refinement are expressed as separate JavaSM
specifications that are encapsulated in distinct layers. When these layers are composed,
their JavaSM specifications are translated into a Java class hierarchy. Figure 7d shows
this hierarchy: the root class was generated from the JavaSM specification of
Figure 7a; its immediate subclass was generated from the JavaSM refinement specifi-
cation of Figure 7b; and the terminal subclass was generated from the JavaSM refine-
ment specification of Figure 7c. Figure 8 sketches a JavaSM specification of this
refinement chain.

Inheritance (i.e., class refinement) plays a central role in this implementation. All the
states and edges in Figure 7a are inherited by the machine refinements of Figure 7b,
and these states, edges, etc. are inherited by the machine refinements of Figure 7c. The
machine that is executed is created by instantiating the bottom-most class of the refine-
ment chain of Figure 7d. Readers will again recognize this an example of the GenVoca
paradigm of Section 2.2.

Perspective. Domain-specific languages for state machines are common (e.g.,
[10][16][23][24][31]). Our way of expressing state machines — namely as states with
enter and exit methods, edges with conditions and actions — is an elementary subset of
Harel’s Statecharts [23][24] and SDL extended finite state machines [16]. The notion
of refinement in Statecharts is the ability to explode individual nodes into complex
state machines. This is very different than the notion of refinement explored in this
paper. Our work is closer to the refinement of extended finite state machines in SDL
where a process class (which encodes a state machine) can be refined via subclassing
(i.e., new states and edges are added to extend the parent machine’s capabilities).
While the idea of state machine refinements is not new, it is new in the context of a
DSL-addition to a general-purpose programming language (Java) and it is fundamental
in the context of component-based development of FSATS simulators.

(a) original (b) first (c) second (d) inheritance

Figure 7: Refining State machines

machine refinement refinement hierarchy

original

first

second
17

4 Preliminary Results

Our preliminary findings are encouraging: the objectives of the redesign are met by the
GenVoca-FSATs design:

• it is now possible to specify, add, verify, and test a mission type independent of
other mission types (because a version of FSATS can be created with a single mis-
sion),

• it is now possible to remove and replace mission types to accommodate varying
user requirements, and

• JavaSM allows a direct implementation of a specification, thereby reducing the
“conceptual distance” between specification and implementation.

As is common in re-engineering projects, detailed statistics on the effort involved in
the original implementation are not available. However, we can make some rough
comparisons. From our experience with the original FSATS simulator, we estimate the
time to add a mission to be about 1 month. A similar addition to GenVoca-FSATS was
accomplished in about 3 days, including one iteration to identify and correct an initial
misunderstanding of the protocols for that mission.

To evaluate the redesign in a less anecdotal fashion, we collected statistics on program
complexity. We used simple measures of class complexity: the number of methods

state_machine original {
states one, two, three;

edge a : one -> two ...
edge b : one -> three ...

}

state_machine first refines original {
states four;

edge c : one -> four ...
edge d : four -> three...
edge e : two -> three ...
edge f : two -> two ...

}

state_machine second refines first {
states five;

edge g : two-> five ...
edge h : five -> three ...

}

Figure 8: A JavaSM Refinement Hierarchy
18

(nmeth), the number of lines of code (nloc), and the number of tokens/symbols
(nsymb) per class. (We originally used other metrics [13], but found they provided no
further insights). Because of our use of JTS, we have access to both component-speci-
fication code (i.e., layered JavaSM code written by FSATS engineers) and generated
non-layered pure-Java code (which approximates code that would have been written
by hand). By using metrics to compare pure-Java code vs. JavaSM code and layered
vs. non-layered code, we can quantitatively evaluate the impact of layering and Jav-
aSM on reducing program complexity, a key goal of our redesign.

Complexity of Non-Layered Java Code. Consider a non-layered design of FSATS.
Suppose all of our class refinement chains were “squashed” into single classes — these
would be the classes that would be written by hand if a non-layered design were used.
Consider the FSATS class hierarchy that is rooted by class MissionImpl; this class
encapsulates methods and an encoding of a state machine that is shared by all
OPFACS. (In our prototype, we implemented different variants of WRFFE missions).
Class FoMission, a subclass of MissionImpl, encapsulates the additional methods
and the Java-equivalent of state machine edges/states that define the actions that are
specific to a Forward Observer. Other subclasses of MissionImpl encapsulate addi-
tions to that are specific to other OPFACs. The “Pure Java” columns of Table 1 present
complexity statistics of the FoMission and MissionImpl classes. Note that our sta-
tistics for subclasses, by definition, must be no less than those of their superclasses
(because the complexity of superclasses is inherited).

One observation is immediately apparent: the number of methods (117) in Mission-
Impl is huge. Different encoding techniques for state machines might reduce the num-
ber, but the complexity would be shifted elsewhere (e.g., methods would become more
complicated). Because our prototype only deals with WRFFE missions, we must
expect that the number of methods in MissionImpl will increase as more mission
types are added. Consider the following: there are 30 methods in class MissionImpl
alone that are used in WRFFE missions. When we add a WRFFE mission that is spe-
cialized for a particular weapon system (e.g., mortar), another 10 methods are added.
Since WRFFE is representative of mission complexity, as more mission types are
added with their weapon specializations, it is not inconceivable that MissionImpl
will have several hundred methods. Clearly, such a class would be both incomprehen-
sible and unmaintainable.9

Now consider the effects of using JavaSM. The “JavaSM” columns of Table 1 show
corresponding statistics, where state exit and enter declarations and edge declarations

Pure Java JavaSM

Class Name nmeth nloc nsymb nmeth nloc nsymb

MissionImpl 117 461 3452 54 133 1445

FoMission 119 490 3737 56 143 1615

Table 1. Statistics for Non-Layered Implementation of Class FoMission
19

are treated as (equivalent in complexity to) method declarations. We call such declara-
tions method-equivalents. Comparing the corresponding columns in Table 1, we see
that coding in JavaSM reduces software complexity by a factor of 2. That is, the num-
ber of method-equivalents is reduced by a factor of 2 (from 119 to 56), the number of
lines of code is reduced by a factor of 3 (from 490 to 143), and the number of symbols
is reduced by a factor of 2 (from 3737 to 1615). However, the problem that we noted in
the pure-Java implementation remains. Namely, the generic WRFFE mission contrib-
utes over 10 method-equivalents to MissionImpl alone; when WRFFE is specialized
for a particular weapon system (e.g., mortar), another 3 method-equivalents are added.
While this is substantially better than its non-layered pure-Java equivalent, it is not
inconceivable that MissionImpl will have over a hundred method-equivalents in the
future. While the JavaSM DSL indeed simplifies specifications, it only delays the onset
of design fatigue. Non-layered designs of FSATS may be difficult to scale and ulti-
mately hard to maintain even if the JavaSM DSL is used.

Complexity of Layered Java Code. Now consider a layered design implemented in
pure Java. The “Inherited Complexity” columns of Table 2 show the inheritance-cumu-
lative statistics for each class of the MissionImpl and FoMission refinement chains.
The rows where MissionImpl and FoMission data are listed in bold represent
classes that are the terminals of their respective refinement chains. These rows corre-
spond to the rows in Table 1. The “Isolated Complexity” columns of Table 2 show
complexity statistics for individual classes of Table 2 (i.e., we are measuring class
complexity and not including the complexity of superclasses). Note that most classes
are rather simple. The MissionAnyL.MissionImpl class, for example, is the most
complex, with 43 methods. (This class encapsulates “infrastructure” methods used by
all missions). Table 2 indicates that layering disentangles the logic of different features
of the FoMission and MissionImpl classes into units that are small enough to be
comprehensible and manageable by programmers. For example, instead of having to
understand a class with 117 methods, the largest layered subclass has 43 methods;
instead of 461 lines of code there are 149 lines, etc.

To gauge the impact of a layered design in JavaSM, consider the “Inherited Complex-
ity” columns of Table 3 that show statistics for MissionImpl and FoMission refine-
ment chains written in JavaSM. The “Isolated Complexity” columns of Table 3 show
corresponding statistics for individual classes. They show that layered JavaSM specifi-
cations are indeed compact: instead of a class with 43 methods there are 24 method-
equivalents, instead of 149 lines of code there are 65 lines, etc. Thus, a combination of
domain-specific languages and layered designs greatly reduces program complexity.

9. It would be expected that programmers would introduce some other modularity, thereby
decomposing a class with hundreds of methods into multiple classes with smaller numbers of
methods. While this would indeed work, it would complicate the “white-board”-to-imple-
mentation mapping (which is what we want to avoid) and there would be no guarantee that
the resulting design would be mission-type extensible.
20

Inherited Complexity Isolated Complexity

Class Name nmeth nloc nsymb nmeth nloc nsymb

MissionL.MissionImpl 9 25 209 9 25 209

ProxyL.MissionImpl 11 30 261 2 5 52

MissionAnyL.MissionImpl 51 179 1431 43 149 1170

MissionWrffeL.MissionImpl 83 314 2342 35 135 911

MissionWrffeMortarL.
MissionImpl

93 358 2677 13 44 335

MissionWrffeArtyL.
MissionImpl

109 425 3187 19 67 510

MissionWrffeMlrsL.
MissionImpl

117 461 3452 11 36 265

BasicL.FoMission 117 461 3468 0 0 16

MissionWrffeMortarL.
FoMission

117 468 3547 4 7 79

MissionWrffeArtyL.
FoMission

119 484 3687 7 16 140

MissionWrffeMlrs.
FoMission

119 490 3737 3 6 50

Table 2. Statistics for a Layered Java Implementation of Class FoMission
.

Inherited Complexity Isolated Complexity

Class Name nmeth nloc nsymb nmeth nloc nsymb

MissionL.MissionImpl 8 20 169 8 20 169

ProxyL.MissionImpl 10 25 221 2 5 52

MissionAnyL.
MissionImpl

34 90 877 24 65 656

MissionWrffeL.
MissionImpl

45 115 1132 11 25 255

MissionWrffeMortarL.
MissionImpl

48 121 1231 3 6 99

MissionWrffeArtyL.
MissionImpl

52 129 1383 4 8 152

MissionWrffeMlrsL.
MissionImpl

54 133 1445 2 4 62

BasicL.FoMission 54 133 1461 0 0 16

MissionWrffeMortarL.
FoMission

54 136 1518 2 3 57

MissionWrffeArtyL.
FoMission

55 140 1586 3 4 68

MissionWrffeMlrs.
FoMission

56 143 1615 2 3 29

Table 3. Statistics on a Layered JavaSM Implementation of Class FoMission
21

Our use of the “Isolated Complexity” metric as the indicator of class complexity
requires some discussion. It is indeed the case that the “true” complexity of a class is
somehow related to the total complexity of its superclasses plus the additional com-
plexity of the class itself. So it could be argued that the “Inherited Complexity” metric
might be a better measure of the actual difficulty understanding a given layer. This is
not the case for FSATS. Typically FSATS layers simply invoke methods of their super-
class, much like COM and CORBA components invoke methods of server interfaces.
Implementation details are hidden behind such interfaces, thereby making it easy for
programmers to invoke server methods without having to know how servers are imple-
mented. The same holds for layers in FSATS. The only difference here is that a few
methods of each FSATS class override (i.e., extend) previously defined methods,
thereby requiring programmers to know more of the “guts” of superclass implementa-
tion. But for FSATs (and other generators that we have built), this additional imple-
mentation knowledge is minimal. Further, there may be layers in superclass
implementations that provide infrastructure that programmers of mission-layers need
not be aware of at all; they are simply methods that are private to that layer. For these
reasons, we believe that “Isolated Complexity” is closer to the true complexity of a
class than “Inherited Complexity”.

The reduction in program complexity is a key goal of our project; these tables support
the observations of FSATS engineers: the mapping between a “white-board” design of
FSATS protocols and an implementation is both direct and invertible with layered Jav-
aSM specifications. That is, writing components in JavaSM matches the informal
designs that domain experts use; it requires fewer mental transformations from design
to implementation which simplifies maintenance and extensibility, and makes for a
much less error-prone product. In contrast, mapping from the original FSATS imple-
mentation back to the design was not possible due to the lack of an association of any
particular rule or set of rules with a specific mission.

5 Conclusions

Extensibility is the property that simple changes to the design of a software artifact
requires a proportionally simple effort to modify its source code. Extensibility is a
result of premeditated engineering, whereby anticipated variabilities in a domain are
made simple by design. Two complementary technologies are emerging that make
extensibility possible: product-line architectures (PLAs) and domain-specific lan-
guages (DSLs). Product-lines rely on components to encapsulate the implementation of
basic features or “aspects” that are common to applications in a domain; applications
are extensible through the addition and removal of components. Domain-specific lan-
guages enable applications to be programmed in domain abstractions, thereby allowing
compact, clear, and machine-processable specifications to replace detailed and
abstruse code. Extensibility is achieved through the evolution of specifications.

FSATS is a simulator for Army fire support and is representative of a complex domain
of distributed command-and-control applications. The original implementation of
22

FSATS had reached a state of design fatigue, where anticipated changes/enhancements
to its capabilities would be expensive to realize. We undertook the task of redesigning
FSATS so that its inherent and projected variabilities — that of adding new mission
types — would be easy to introduce. Another important goal was to minimize the
“conceptual distance” from “white-board” designs of domain experts to actual pro-
gram specifications; because of the complexity fire-support, these specifications had to
closely match these designs to make the next-generation FSATS source understandable
and maintainable.

We achieved the goals of extensibility and understandability through an integration of
PLA and DSL technologies. We used a GenVoca PLA to express the building blocks of
fire support simulators as layers or refinements, whose addition or removal simulta-
neously impacts the source code of multiple, distributed programs. But a layered
design was insufficient, because our components could not be written easily in pure
Java. The reason is that the code expressing state machine abstractions was so low-
level that it would be difficult to read and maintain. We addressed this problem by
extending the Java language with a domain-specific language to express state
machines and their refinements, and wrote our components in this extended language.
Preliminary findings confirm that our component specifications are substantially sim-
plified; “white-board” designs of domain experts have a direct and invertible expres-
sions in our specifications. Thus, we believe that the combination of PLAs and DSLs is
essential in creating extensible fire support simulators.

While fire support is admittedly a domain with specific and unusual requirements,
there is nothing domain-specific about the need for PLAs, DSLs, and their benefits. In
this regard, FSATS is not unusual; it is a classical example of many domains where
both technologies naturally complement each other to produce a result that is better
than either technology could deliver in isolation. Research on PLA and DSL technolo-
gies should focus on infrastructures (such as IP[35] and JTS[4]) that support their inte-
gration; research on PLA and DSL methodologies must be more cognizant that
synergy is not only possible, but desirable.

Acknowledgments. We thank Dewayne Perry (UTexas) for his insightful comments
on an earlier draft and bringing SDL to our attention, and Frank Weil (Motorola) for
clarifying discussions on SDL state machines. We also thank the referees for their
helpful suggestions that improved the final draft of this paper.

6 References

1. “System Segment Specification (SSS) for the Fire Support Automated Test System
(FSATS)”, Applied Research Laboratories, The University of Texas, 1999. See URL
http://www.arlut.utexas.edu/~fsatswww/fsats.shtml.

2. D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software
Systems with Reusable Components”, ACM TOSEM, October 1992.
23

3. D. Batory, L. Coglianese, M. Goodwill, and S. Shafer, “Creating Reference Architectures:
An Example from Avionics”, Symposium on Software Reusability, Seattle, Washington,
April 1995.

4. D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing Domain-Specific
Languages”, 5th International Conference on Software Reuse, Victoria, Canada, June 1998.
URL http://www.cs.utexas.edu/users/schwartz/JTS30Beta2.htm.

5. D. Batory and B.J. Geraci, “Composition Validation and Subjectivity in GenVoca
Generators”, IEEE Transactions on Software Engineering, February 1997, 67-82.

6. D. Batory, “Product-Line Architectures”, Smalltalk and Java Conference, Erfurt, Germany,
October 1998.

7. D. Batory, Y. Smaragdakis, and L. Coglianese, “Architectural Styles as Adaptors” Software
Architecture, Kluwer Academic Publishers, Patrick Donohoe, ed., 1999.

8. D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Programming
Environments for GenVoca Generators”, IEEE Transactions on Software Engineering, May
2000, 441-452.

9. I. Baxter, “Design Maintenance Systems”, CACM, April 1992.

10. G. Berry and G Gonthier, “The Esterel Synchronous Programming language: Design,
Semantics, and Implementation”, Science of Computer Programming, 1992, 87-152.

11. J. Bosch, “Product-Line Architectures in Industry: A Case Study”, ICSE 1999, Los Angeles.

12. R. Cardone and C. Lin, “Comparing Frameworks and Layered Refinement”, ICSE 2001,
Toronto.

13. S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object Oriented Design”,
OOPSLA 1991.

14. K. Czarnecki and U.W. Eisenecker, “Components and Generative Programming”, ACM
SIGSOFT, 1999.

15. A. van Deursen and P. Klint, “Little Languages: Little Maintenance?”, SIGPLAN Workshop
on Domain-Specific Languages, 1997.

16. J. Ellsberger, D. Hogrefe, A. Sarma, Formal Object-Oriented Language for Communicating
Systems, Prentice-Hall, 1997.

17. R.B. Findler and M. Flatt, “Modular Object-Oriented Programming with Units and
Mixins”, ICFP 98.

18. E. Gamma et.al. Design Patterns Elements of Reusable Object-Oriented Software. Addison-
Wesley, Reading, Massachusetts, 1995.

19. J.A. Goguen, “Reusing and Interconnecting Software Components”, IEEE Computer,
February 1986.

20. H. Gomaa, L. Kerschberg, V. Sugamaran, “A Knowledge-Based Approach to Generating
Target System Specifications from a Domain Model”, IFIP Congress, Vol. 1 1992: 252-258

21. T. Graves, “Code Decay Project”, URL http://www.bell-labs.com/org/
11359/projects/decay/.

22. M. Griss, “Implementing Product-Line Features by Composing Component Aspects”, First
International Software Product-Line Conference, Denver, CO., Aug 2000.

23. D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer
Programming, 1987, 231-274.

24. D. Harel and E. Gery, “Executable Object Modeling with Statecharts”, ICSE 1996.
24

25. K.C. Kang, et al., Feature-Oriented Domain Analysis Feasibility Study, SEI 1990.

26. Technical Report CMU/SEI-90-TR-21, November.

27. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin,
“Aspect-Oriented Programming”, ECOOP 97, 220-242.

28. R.E. Lopez-Herrejon and D. Batory, “A Standard Problem for Evaluating Product-Line
Methodologies”, Third International Conference on Generative and Component-Based
Software Engineering (GCSE 2001), September 9-13, 2001 Messe Erfurt, Erfurt, Germany.

29. “System Segment Specification (SSS) for the Advanced Field Artillery Tactical Data
System (AFATDS)”, Magnavox, 1999.

30. J. Neighbors, “Draco: A Method for Engineering Reusable Software Components”, in T.J.
Biggerstaff and A. Perlis, eds., Software Reusability, Addison-Wesley/ACM Press, 1989.

31. J. Neighbors, “DataXfer Protocol”, BayFront Technologies, 1997, URL http://
bayfronttechnologies.com.

32. T. Reenskaug, et al., “OORASS: Seamless Support for the Creation and Maintenance of
Object-Oriented Systems”, Journal of Object-Oriented Programming, 5(6): October 1992,
27-41.

33. C. Rich and R.C. Waters, The Programmer’s Apprentice, ACM Press 1990.

34. Software Engineering Institute, “The Product Line Practice (PLP) Initiative”, URL
http://www.sei.cmu.edu/plp/plp_init.html.

35. C. Simonyi, “The Death of Computer Languages, the Birth of Intentional Programming”,
NATO Science Committee Conference, 1995.

36. Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”,
ECOOP 1998.

37. Y. Smaragdakis and D. Batory, “????”, to appear ACM Transactions on Software
Engineering.

38. P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”, ICSE 1999.

39. R. Taylor, Panel on Software Reuse, Motorola Software Engineering Symposium, Ft.
Lauderdale, 1999.

40. L. Tokuda and D. Batory, “Evolving Object-Oriented Architectures with Refactorings”,
Conf. on Automated Software Engineering, Orlando, Florida 1999.

41. M. Van Hilst and D. Notkin, “Using Role Components to Implement Collaboration-Based
Designs”, OOPSLA 1996, 359-369.

42. D.M. Weiss and C.T.R Lai, Software Product-Line Engineering, Addison-Wesley, 1999.
25

	Achieving Extensibility Through Product-Lines and Domain-Specific Languages: A Case Study
	Don Batorya, Clay Johnsonb, Bob MacDonaldb, and Dale von Heederb
	aDepartment of Computer Sciences, University of Texas at Austin Austin, Texas 78712 batory@cs.ute...
	bApplied Research Labs, University of Texas at Austin
	Austin, Texas 78713 {clay, bob, drv}@arlut.utexas.edu
	1 Introduction
	2 Background
	2.1 The Domain of Fire Support
	Figure 1: OPFAC Command Hierarchy
	2.1.1 FSATS
	2.1.2 The Current FSATS Implementation
	Figure 2: Rule Sets vs. Mission Threads

	2.2 GenVoca
	2.2.1 Motivation
	2.2.2 Features and Refinements
	2.2.3 Mixin-Layer Implementation
	Figure 3: GenVoca Components and their Composition

	2.2.4 Perspective

	3 The Implementation
	3.1 A Design for an Extensible Fire-Support Simulator
	Figure 4: OPFAC Inheritance Refinement Hierarchy
	Figure 5: CORBA and DCOM vs. Layers (Refinements)

	3.2 A Domain-Specific Language for State Machines
	Figure 6: JavaSM State machine Specification
	Figure 7: Refining State machines
	Figure 8: A JavaSM Refinement Hierarchy

	4 Preliminary Results
	Table 1. Statistics for Non-Layered Implementation of Class FoMission
	Table 2. Statistics for a Layered Java Implementation of Class FoMission
	Table 3. Statistics on a Layered JavaSM Implementation of Class FoMission

	5 Conclusions
	6 References
	1. “System Segment Specification (SSS) for the Fire Support Automated Test System (FSATS)”, Appli...
	2. D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems wit...
	3. D. Batory, L. Coglianese, M. Goodwill, and S. Shafer, “Creating Reference Architectures: An Ex...
	4. D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing Domain-Specific Languag...
	5. D. Batory and B.J. Geraci, “Composition Validation and Subjectivity in GenVoca Generators”, IE...
	6. D. Batory, “Product-Line Architectures”, Smalltalk and Java Conference, Erfurt, Germany, Octob...
	7. D. Batory, Y. Smaragdakis, and L. Coglianese, “Architectural Styles as Adaptors” Software Arch...
	8. D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Programming Environm...
	9. I. Baxter, “Design Maintenance Systems”, CACM, April 1992.
	10. G. Berry and G Gonthier, “The Esterel Synchronous Programming language: Design, Semantics, an...
	11. J. Bosch, “Product-Line Architectures in Industry: A Case Study”, ICSE 1999, Los Angeles.
	12. R. Cardone and C. Lin, “Comparing Frameworks and Layered Refinement”, ICSE 2001, Toronto.
	13. S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object Oriented Design”, OOPSLA...
	14. K. Czarnecki and U.W. Eisenecker, “Components and Generative Programming”, ACM SIGSOFT, 1999.
	15. A. van Deursen and P. Klint, “Little Languages: Little Maintenance?”, SIGPLAN Workshop on Dom...
	16. J. Ellsberger, D. Hogrefe, A. Sarma, Formal Object-Oriented Language for Communicating System...
	17. R.B. Findler and M. Flatt, “Modular Object-Oriented Programming with Units and Mixins”, ICFP 98.
	18. E. Gamma et.al. Design Patterns Elements of Reusable Object-Oriented Software. Addison- Wesle...
	19. J.A. Goguen, “Reusing and Interconnecting Software Components”, IEEE Computer, February 1986.
	20. H. Gomaa, L. Kerschberg, V. Sugamaran, “A Knowledge-Based Approach to Generating Target Syste...
	21. T. Graves, “Code Decay Project”, URL http://www.bell-labs.com/org/ 11359/projects/decay/.
	22. M. Griss, “Implementing Product-Line Features by Composing Component Aspects”, First Internat...
	23. D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer Programm...
	24. D. Harel and E. Gery, “Executable Object Modeling with Statecharts”, ICSE 1996.
	25. K.C. Kang, et al., Feature-Oriented Domain Analysis Feasibility Study, SEI 1990.
	26. Technical Report CMU/SEI-90-TR-21, November.
	27. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin, “Aspec...
	28. R.E. Lopez-Herrejon and D. Batory, “A Standard Problem for Evaluating Product-Line Methodolog...
	29. “System Segment Specification (SSS) for the Advanced Field Artillery Tactical Data System (AF...
	30. J. Neighbors, “Draco: A Method for Engineering Reusable Software Components”, in T.J. Biggers...
	31. J. Neighbors, “DataXfer Protocol”, BayFront Technologies, 1997, URL http:// bayfronttechnolog...
	32. T. Reenskaug, et al., “OORASS: Seamless Support for the Creation and Maintenance of Object-Or...
	33. C. Rich and R.C. Waters, The Programmer’s Apprentice, ACM Press 1990.
	34. Software Engineering Institute, “The Product Line Practice (PLP) Initiative”, URL http://www....
	35. C. Simonyi, “The Death of Computer Languages, the Birth of Intentional Programming”, NATO Sci...
	36. Y. Smaragdakis and D. Batory,�“Implementing Layered Designs with Mixin Layers”, ECOOP 1998.
	37. Y. Smaragdakis and D. Batory, “????”, to appear ACM Transactions on Software Engineering.
	38. P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N Degrees of Separation: Multi- Dimen...
	39. R. Taylor, Panel on Software Reuse, Motorola Software Engineering Symposium, Ft. Lauderdale, ...
	40. L. Tokuda and D. Batory, “Evolving Object-Oriented Architectures with Refactorings”, Conf. on...
	41. M. Van Hilst and D. Notkin, “Using Role Components to Implement Collaboration-Based Designs”,...
	42. D.M. Weiss and C.T.R Lai, Software Product-Line Engineering, Addison-Wesley, 1999.

