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ABSTRACT
Many programs can be configured through dynamic and/or
static selection of configuration variables. A software prod-
uct line (SPL), for example, specifies a family of programs
where each program is defined by a unique combination of
features. Systematically testing SPL programs is expensive
as it can require running each test against a combinatorial
number of configurations. Fortunately, a test is often in-
dependent of many configuration variables and need not be
run against every combination. Configurations that are not
required for a test can be pruned from execution.

This paper presents SPLat, a new way to dynamically
prune irrelevant configurations: the configurations to run
for a test can be determined during test execution by mon-
itoring accesses to configuration variables. SPLat achieves
an optimal reduction in the number of configurations and is
lightweight compared to prior work that used static analysis
and heavyweight dynamic execution. Experimental results
on 10 SPLs written in Java show that SPLat substantially
reduces the total test execution time in many cases. More-
over, we demonstrate the scalability of SPLat by applying
it to a large industrial code base written in Ruby on Rails.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Languages, Verification

Keywords
Software Product Lines, Configurable Systems, Software Test-
ing, Efficiency

1. INTRODUCTION
Many programs can be configured through selection of

configuration variables. A software product line (SPL), for
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example, specifies a family of programs where each program
is defined by a unique combination of features (increments in
program functionality). Many codebases that power modern
websites are also highly configurable. For instance, the code
behind the groupon.com website has over 170 boolean con-
figuration variables and can, in theory, be deployed in over
2170 different configurations.

Systematically testing configurable systems and SPLs is
challenging because running each test can, in principle, re-
quire many actual executions—one execution for each pos-
sible configuration or feature combination.1 Thus, one test
does not simply encode one execution of a program; the
cost of running a test suite is proportional to the number
of tests times the number of configurations. Current tech-
niques for handling this combinatorial problem can be di-
vided into sampling and exhaustive exploration. Sampling
uses a random or sophisticated selection of configurations,
eg pair-wise coverage [9]. However, such selections can run
a test on several configurations for which the test executions
are provably equivalent (thus only increasing the test time
without increasing the chance to find bugs), or it can fail to
examine configurations that can expose bugs [2]. Exhaus-
tive exploration techniques consider all configurations, but
use optimization techniques to prune redundant configura-
tions that need not be explored. [2, 10, 19, 20, 22, 33]. Such
works use either static analysis [20] or heavyweight dynamic
analysis based on model checking [2, 10, 19, 22, 33].

This paper presents SPLat, a new lightweight technique
to reduce the cost of systematic testing of SPLs and highly
configurable systems. Because a test typically exercises a
subset of the code base, it is likely that some of the features
will never even be encountered during the test execution, no
matter how the test is executed. Combinations of such un-
reachable features yields many runs of a test that have the
same trace or sequence of bytecode instructions executed by
the test. SPLat determines for each test the set of unique
traces and hence the smallest set of configurations to run.
Specifically, let p1 . . . pk (for k ≥ 1) be the configuration
variables for a program. Each pi takes a value from a fi-
nite domain Di—in the case of SPLs, each variable takes a
boolean value that represents whether the feature is selected
or not. Let c and c′ be two different configurations to run
on a test t, and let τ and τ ′ be their traces. In both runs, t

1For ease of exposition, we use the terms “configuration”,
“feature combination” and “program” interchangeably.
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Figure 1: Feature Model

fixes the input values for non-configuration variables. Con-
figuration c′ is unnecessary to execute if c has been executed
and τ ′ = τ . The set of all configurations with unique traces
forms a revealing subdomain for t [39].

Our insight is that the configurations to run against a
test can be determined during test execution, rather than
using an up-front static analysis. SPLat achieves an optimal
reduction in the number of configurations, ie for any test,
SPLat runs only configurations that have a unique trace.
Experimental results show that SPLat yields a reduction
in testing time that is proportional to the reduction in the
number of configurations. Our insight into pruning config-
urations was inspired by the Korat algorithm for test-input
generation [4], which introduced the idea of execution-driven
pruning for solving data-structure invariants written as im-
perative code.
SPLat supports constraints among configuration vari-

ables, which defines the valid configurations. For a SPL,
these constraints are expressed through a feature model [18]
that (1) provides a hierarchical arrangement of features and
(2) defines allowed configurations. SPLat uses SAT to prune
invalid configurations and in tandem uses execution-driven
pruning to further remove the valid configurations that are
unnecessary for execution of each test.
SPLat is effective because it monitors the accesses of con-

figuration variables during test execution. Monitoring is
lightweight—both in terms of its execution overhead and
in terms of its implementation effort. We developed two im-
plementations, one for Java and one for Ruby on Rails. The
Java implementation of SPLat leveraged the publicly avail-
able Korat code [25]. The Ruby on Rails implementation of
SPLat was developed from scratch and took only two days
to implement while being robust enough to run against a
large, industrial codebase at Groupon, Inc.

This paper makes the following contributions:

• Lightweight analysis of configurable programs:
We introduce the idea of lightweight monitoring for
highly configurable systems to speed up test execu-
tion. SPLat instantiates this idea and can be easily
implemented in different run-time environments.

• Implementation: We describe two implementations
of SPLat, one for Java and one for Ruby on Rails.

• Evaluation: We evaluate SPLat on 10 Java SPLs.
Experimental results show that SPLat effectively iden-
tifies relevant configurations with a low overhead. We
also apply SPLat on a large configurable system (with
over 171KLOC in Ruby on Rails). The system uses
over 170 configuration variables and contains over 19K
tests (with over 231KLOC in Ruby on Rails). To our
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class Notepad extends JFrame {  

Notepad() {

getContentPane().add(newJTextArea());

}

void createToolBar() {

if(TOOLBAR) {

JToolBar toolBar = new JToolBar();

getContentPane().add

("North", toolBar);    

if(WORDCOUNT) {

JButton button = new  

JButton("wordcount.gif"); 

toolBar.add(button);

}

}

}

void createMenuBar() {

if(MENUBAR) {

JMenuBar menuBar = new JMenuBar();     

setJMenuBar(menuBar);

if(WORDCOUNT) {

JMenu menu = new                     

JMenu("Word Count“);

menuBar.add(menu);

}

}

}

}

(a) Code

public void test() {

Notepad n = new Notepad();

n.createToolBar();

// Automated GUI testing

FrameFixture f = newFixture(n);

f.show();

String text = “Hello”;

f.textBox().enterText(text);

f.textBox().requireText(text);

f.cleanUp();

}

1

2

3

4

5

6

7

8

9

10

11

12

(b) Test

Figure 2: Notepad SPL and Example Test

knowledge, this is the largest and most complex indus-
trial codebase used in research on testing SPLs [2, 10,
19, 20, 22, 33], and SPLat scales to this size without
much engineering effort.

2. MOTIVATING EXAMPLE
To illustrate the testing process, we use a simple Notepad

product line and introduce SPL concepts as needed. Fig-
ure 1 shows the feature model of Notepad. This model
has two mandatory features—the root NOTEPAD and BASE
(non-root mandatory features are indicated by filled-in
dots)—and three optional features—MENUBAR, TOOLBAR,
and WORDCOUNT (indicated by unfilled dots). A mandatory
feature is always true; it is present in every configuration.
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An optional feature may be set to true or false. A config-
uration is an assignment of values to all feature variables. A
configuration is valid iff it satisfies all constraints the fea-
ture model expresses. A feature model can also include
additional propositional logic constraints. In this exam-
ple, every Notepad configuration must have a MENUBAR or
TOOLBAR. For example, assigning false to both TOOLBAR
and MENUBAR would violate the disjunction constraint and
therefore be invalid. In contrast, assigning false to one of
these two features and true to the other feature is valid.

For the SPLs we consider in this paper, a feature is a
boolean variable within the code. Figure 2(a) shows the
code for Notepad. BASE (clear color) represents the core
functionality, which, in this case, corresponds to construct-
ing a Notepad with a JTextArea that the user types into.
TOOLBAR (green color) adds a JToolBar to the frame.
MENUBAR (red color) sets a JMenuBar against the frame.
WORDCOUNT (blue color) adds its toolbar icon if the toolbar
is present or its menubar item if the menubar is present.

Figure 2(b) shows an example test that instantiates the
Notepad class and creates a toolbar for it. Note that test
does not call the createMenuBar() method. To be able to
execute a test, each variable in the test, except the feature
variables, must be given a value.

We use the automated GUI testing framework FEST [12]
to run the test. The helper method newFixture() is not
shown for simplicity. The test execution launches the frame,
simulates a user entering some text into the JTextArea of
the frame, checks that the text area contains exactly what
was entered, and closes the frame.

Without analyzing the feature model or the code, this
test would need to be run on all 8 combinations of the
3 optional features, to check all potential test outcomes.
However, some configurations need not be run. Analyzing
the feature model, we note that two configurations are in-
valid : MTW = 000 and MTW = 001, where M , T , and W
stand for MENUBAR, TOOLBAR, and WORDCOUNT respectively.
Hence, no more than 6 configurations need to be run.
SPLat further reduces that number by dynamically an-

alyzing the code that the test executes. For example, exe-
cuting the test against the configuration c := MTW = 100
executes the same trace as configuration c′ := MTW = 101.
The reason is that the test only calls createToolBar(),
which is empty in both configurations c and c′ since
TOOLBAR is false in both configurations. Although the code
in createMenuBar() is different in c and c′, the test never
executes it. Therefore, having executed c, execution of c′ is
unnecessary. We will show in Section 3.3 that SPLat runs
this test for only three configurations (eg MTW = 010,
MTW = 011, MTW = 100).

3. TECHNIQUE
Given a test for a configurable system, SPLat determines

all relevant configurations on which the test should be run.
Each configuration run executes a unique trace of the test.
SPLat executes the test on one configuration, observes the
values of configuration variables, and uses these values to de-
termine which configurations can be safely pruned. SPLat
repeats this process until it explores all relevant configura-
tions or until it reaches a specified bound on the number of
configurations. We first describe the feature model interface
and then the core algorithm.

class FeatureVar {...}
class VarAssign { ...
Map<FeatureVar, boolean> map; ...}
interface FeatureModel {
Set<Assign> getValid(Assign a);
boolean isSatisfiable(Assign a);
boolean isMandatory(FeatureVar v);
boolean getMandatoryValue(FeatureVar v);
}

Figure 3: Feature Model Interface

3.1 Feature Model Interface
Figure 3 shows the code snippet that defines the

FeatureModel interface. The type FeatureVar denotes
a feature variable. A VarAssign object encodes an assign-
ment of boolean values to feature variables. An assignment
can be complete, assigning values to all the features, or par-
tial , assigning values to a subset of the features. A complete
assignment is valid if it satisfies the constraints of the fea-
ture model. A partial assignment is satisfiable if it can be
extended to a valid complete assignment.

The FeatureModel interface provides queries for de-
termining the validity of feature assignments, obtaining
valid configurations, and checking if particular informed
features are mandatory. Given an assignment α, the
method getValid() returns the set of all complete as-
signments that (1) agree with α on the values of fea-
ture variables in α and (2) assign the values of the re-
maining feature variables to make the complete assign-
ment valid. If the set is not empty for α, we say that
α is satisfiable; the method isSatisfiable() checks
this. The method isMandatory() checks if a feature is
mandatory according to the feature model and the method
getMandatoryValue() returns the mandatory value for
the informed feature. We build on a SAT solver (SAT4J [34])
to implement these feature model operations.

3.2 Main Algorithm
Figure 4 lists the SPLat algorithm. It takes as input a

test t for a configurable system and a feature model fm. To
enable exploration, the algorithm maintains a state that
stores the values of feature variables (line 2) and a stack
of feature variables that are read during the latest test ex-
ecution (line 1). SPLat performs a mostly stateless explo-
ration of paths: it does not store, restore, or compare pro-
gram states as done in stateful model checking [2, 10, 19, 22,
33]; instead, SPLat stores only the feature decisions made
along one path and re-executes the code to explore different
program paths, which corresponds to valid and dynamically
reachable configurations. To that end, SPLat needs to be
able to set the values of feature variables, to observe the
accesses to feature variables during a test run, and to re-
execute the test from the beginning.

The algorithm first initializes the values of feature vari-
ables (lines 8–13) using the feature model interface. Manda-
tory features are set to the only value they can have, and
optional features are initially set to false. Note that initial
assignment may be invalid for the given feature model. For
example, initially setting feature variables to false would
violate the constraint in our Notepad example. We describe
later how SPLat enforces satisfiability during execution (in
line 50). It adjusts the assignment of values to feature vari-
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ables before test execution gets to exercise code based on
an invalid configuration. Such scenario could potentially
lead to a “false alarm” test failure as opposed to revealing
an actual bug in the code under test. Note that the calls
to state.put() both in the initialization block and else-
where not only map a feature variable to a boolean value in
the state maintained by SPLat but also set the value of the
feature variable referred to by the code under test.
SPLat then instruments (line 16) the code under test to

observe feature variable reads. Conceptually, for each read
of an optional feature variable (eg reading variable TOOLBAR
in the code if(TOOLBAR) from Figure 2), SPLat replaces
the read with a call to the notifyFeatureRead() method
shown in Figure 4. The reads are statically instrumented so
that they can be intercepted just before they happen during
test execution. Mandatory feature variable reads need not
be instrumented because the accessed values remain con-
stant for all configurations.
SPLat next runs the test (line 22). The test execution

calls the method notifyFeatureRead() whenever it is
about to read a feature variable. When that happens, SPLat
pushes the feature variable being read on the stack if it is
not already there, effectively recording the order of the first
reads of variables. This stack enables backtracking over the
values of read feature variables. An important step occurs
during the call to notifyFeatureRead() (line 50). The
initial value assigned to the reached feature variable may
make the configuration unsatisfiable. More precisely, at the
beginning of the exploration, SPLat sets an optional feature
value to false. When the code is about to read the optional
feature, SPLat checks whether the false value is consistent
with the feature model, ie whether the partial assignment
of values to feature variables on the stack is satisfiable for
the given feature model. If it is, SPLat leaves the feature
as is. If not, SPLat changes the feature to true.

Note that updating a feature variable to true guarantees
that the new partial assignment is satisfiable. The update
occurs before execution could have observed the old value
which would make the assignment unsatisfiable. The reason
why this change of value keeps the assignment satisfiable fol-
lows from the overall correctness of the SPLat algorithm: it
explores only satisfiable partial assignments (line 36), and it
checks if the assignment is satisfiable in every variable read
(line 50); thus, if a partial assignment was satisfiable consid-
ering all features on the stack, then it must be possible to
extend that assignment with at least one value for the new
feature that was not on the stack but is being added. If the
variable associated with the new feature stores false at the
moment execution accesses that variable, and if the partial
assignment including that feature variable is not satisfiable,
then we can change the value to true (line 51). Recall that
optional feature variables are initialized to false.

After finishing one test execution for one specific configu-
ration, SPLat effectively covers a set of configurations. This
set can be determined by enumerating every complete as-
signment that (1) has the same values as the partial assign-
ment specified by variables state and stack (lines 23–24)
and (2) is valid according to the feature model (line 26).
SPLat then determines the next configuration to execute

by backtracking on the stack (lines 28–39). If the last read
feature has value true, then SPLat has explored both val-
ues of that feature, and it is popped off the stack (lines 30–
33). If the last read feature has value false, then SPLat

1 Stack<FeatureVar> stack;
2 Map<FeatureVar, Boolean> state;
3

4 // input, shared with instrumented code
5 FeatureModel fm;
6

7 void SPLat(Test t) {
8 // Initialize features
9 state = new Map();

10 for (FeatureVar f: fm.getFeatureVariables())
11 state.put(f, fm.isMandatory(f) ?
12 fm.getMandatoryValue(f) :
13 false);
14

15 // Instrument the code under test
16 instrumentOptionalFeatureAccesses();
17

18 do {
19

20 // Repeatedly run the test
21 stack = new Stack();
22 t.runInstrumentedTest();
23 VarAssign pa =
24 getPartialAssignment(state, stack);
25 print("configs covered: ");
26 print(fm.getValid(pa));
27

28 while (!stack.isEmpty()) {
29 FeatureVar f = stack.top();
30 if (state.get(f)) {
31 state.put(f, false); // Restore
32 stack.pop();
33 } else {
34 state.put(f, true);
35 pa = getPartialAssignment(state, stack);
36 if (fm.isSatisfiable(pa))
37 break;
38 }
39 }
40

41 } while (!stack.isEmpty());
42 }
43

44 // called-back from test execution
45 void notifyFeatureRead(FeatureVar f) {
46 if (!stack.contains(f)) {
47 stack.push(f);
48 VarAssign pa =
49 getPartialAssignment(state, stack);
50 if (!fm.isSatisfiable(pa))
51 state.put(f, true);
52 }
53 }

Figure 4: SPLat Algorithm

has explored only the false value, and the feature should
be set to true (lines 33–38). Another important step oc-
curs now (line 36). While the backtracking over the stack
found a partial assignment to explore, it can be the case that
this assignment is not satisfiable for the feature model. In
that case, SPLat keeps searching for the next satisfiable as-
signment to run. If no such assignment is found, the stack
becomes empty, and SPLat terminates.

3.3 Example Run
We demonstrate SPLat on the example from Figure 2.

According to the feature model (Figure 1), NOTEPAD and
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BASE are the only mandatory features and are set to true.
The other three feature variables are optional and therefore
SPLat instruments their reads (Figure 2(a), lines 7, 11, 20,
and 23). Conceptually, the exploration starts from the con-
figuration MTW = 000.

When the test begins execution, notifyFeatureRead()
is first called when TOOLBAR is read. TOOLBAR is pushed on
the stack, and because its assignment to false is satisfi-
able for the feature model, its value remains unchanged (ie
stays false as initialized). Had the feature model required
TOOLBAR to be true, the feature’s value would have been
set to true at this point.

With TOOLBAR set to false, no other feature variables
are read before the test execution finishes. (In particular,
WORDCOUNT on line 11 is not read because that line is not
executed when TOOLBAR is false.) Therefore, this one exe-
cution covers configurations MTW = −0− where − denotes
a “don’t care” value. However, configurations MTW = 00−
are invalid for the given feature model, so this one execu-
tion covers two valid configurations where TOOLBAR is false
and MENUBAR is true (MTW=10-). Note that even though
the value of WORDCOUNT does not matter here, it is given
a value nonetheless for an execution because in an execu-
tion, each variable must have a concrete value. So let us say
MTW=100 here.
SPLat next re-executes the test with TOOLBAR set to

true, as it is satisfiable for the feature model. WORDCOUNT
is encountered this time, but it can remain false, and
the execution completes, covering MTW=-10 (again, for an
execution, all variables need to be set, so let us say that
MTW=010 is what actually executes). SPLat then sets
WORDCOUNT to true, and the execution completes, cov-
ering MTW=-11 (let us say MTW=011 was used). SPLat
finally pops off WORDCOUNT from the stack because both
its values have been explored, and pops off TOOLBAR for
the same reason, so the exploration finishes because the
stack is empty. In summary, the test’s first execution covers
MTW=10- (MTW=100 is executed), second execution covers
MTW=-10 (MTW=010 is executed) and third execution covers
MTW=-11 (MTW=011 is executed). Therefore, the technique
covers all 6 valid configurations by executing just three con-
figurations.

3.4 Reset Function
While a stateless exploration technique such as SPLat

does not need to store and restore program state in the mid-
dle of execution like a stateful exploration technique does,
the stateless exploration does need to be able to restart a
new execution from the initial program state unaffected by
the previous execution. Restarting an execution with a new
runtime (eg spawning a new Java Virtual Machine (JVM)
in Java) is the simplest solution, but it can be both inef-
ficient and unsound. It is inefficient because even without
restarting the runtime, the different executions may be able
to share a runtime and still have identical initial program
states, eg if the test does not update any static variables in
the JVM state. It can be unsound because a new runtime
may not reset the program state changes made by the previ-
ous executions (eg previous executions having sent messages
to other computers or having performed I/O operations such
as database updates). We address these issues by sharing
the runtime between executions and requiring the user to

provide a reset function that can be called at the beginning
of the test.

Our sharing of the runtime between executions means that
settings that would normally be reset automatically by cre-
ating a new runtime must now be manually reset. For exam-
ple, Java static initializers must now be called from the reset
function because classes are loaded only once. However, we
believe that the benefit of saving time by reusing the runtime
outweighs the cost of this effort, which could be alleviated
by a program analysis tool. Moreover, for the Groupon code
used in our evaluation, the testing infrastructure was already
using the reset function (developed independently and years
before this research); between any test execution, the state
(of both memory and database) is reset (by rolling back the
database transaction from the previous test and overwriting
the state changes in the tearDown and/or setUp blocks
after/before each test).

3.5 Potential Optimization
The algorithm in Figure 4 is not optimized in how it inter-

faces with the feature model. The feature model is treated
as a blackbox, read-only artifact that is oblivious to the
exploration state consisting of the state and stack. Con-
sequently, the isSatisfiable() and getValid() meth-
ods are executed as if the exploration state was completely
new every time, even if it just incrementally differs from
the previous exploration state. For example, when running
the test from Figure 2, SPLat asks the feature model if
MTW = −1− is satisfiable (line 36 of the SPLat algo-
rithm) after the assignment MTW = −0−. The feature
model replies true as it can find a configuration with the
feature TOOLBAR set to true. Then when WORDCOUNT is
encountered while TOOLBAR=true, SPLat asks the feature
model if the assignment MTW = −10 (TOOLBAR=true and
WORDCOUNT=false) is satisfiable (line 50 of the SPLat al-
gorithm). Note that the feature model is not aware of the
similarity between the consecutive calls for MTW = −1−
and MTW = −10. But if it were, it would only have to
check the satisfiability of WORDCOUNT=false.

The change to the algorithm to enable this synchroniza-
tion between the exploration state and the feature model
is simple: every time a feature variable is pushed on the
stack, constrain the feature model with the feature’s value,
and every time a feature variable is popped off the stack,
remove the corresponding feature assignment from the fea-
ture model. A feature model that can be updated implies
that it should support incremental solving, ie a feature
model should not have to always be solved in its entirety.
Our current SPLat tool for Java does not exploit incremen-
tal solving, meaning that the tool has not reached the limits
of the underlying technique and can be made even faster.

3.6 Implementation
We implemented two versions of SPLat, one for Java and

one for Ruby on Rails. We selected these two languages
motivated by the subject programs used in our experiments
(Section 4).

For Java, we implemented SPLat on top of the publicly
available Korat solver for imperative predicates [25]. Korat
already provides code instrumentation (based on the BCEL
library for Java bytecode manipulation) to monitor field ac-
cesses, and provides basic backtracking over the accessed
fields. The feature variables in our Java subjects were al-
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ready represented as fields. The main extension for SPLat
was to integrate Korat with a SAT solver for checking satisfi-
ability of partial assignments with respect to feature models.
As mentioned earlier, we used SAT4J [34].

For Ruby on Rails, we have an even simpler implemen-
tation that only monitors accesses to feature variables. We
did not integrate a SAT solver, because the subject code
did not have a formal feature model and thus we treated all
combinations of feature variables as valid.

4. EVALUATION
Our evaluation addresses the following research questions:

RQ1 How does SPLat’s efficiency compare with alterna-
tive techniques for analyzing SPL tests?

RQ2 What is the overhead of SPLat?

RQ3 Does SPLat scale to real code?

In Section 4.1, we compare SPLat with related techniques
using 10 SPLs. In Section 4.2, we report on the evaluation of
SPLat using an industrial configurable system implemented
in Ruby on Rails.

4.1 Software Product Lines
We evaluate our approach with 10 SPLs listed in Table 1.2

Note that most of these subjects are configurable programs
that have been converted into SPLs. A brief description for
each is below:

• 101Companies [16] is a human-resource management
system. Features include various forms to calculate
salary and to give access to the users.

• Email [14] is an email application. Features include
message encryption, automatic forwarding, and use of
message signatures.

• Elevator [31] is an application to control an eleva-
tor. Features include prevention of the elevator from
moving when it is empty and a priority service to the
executive floor.

• GPL [29] is a product line of graph algorithms that
can be applied to a graph.

• JTopas [17] is a text tokenizer. Features include sup-
port for particular languages such as Java and the abil-
ity to encode additional information in a token.

• MinePump [26] simulates an application to control
water pumps used in a mining operation. Features
include sensors for detecting varying levels of water.

• Notepad [21] is a GUI application based on Java
Swing that provides different combinations of end-user
features, such as windows for saving/opening/printing
files, menu and tool bars, etc. It was developed for a
graduate-level course on software product lines.

• Prevayler [27] is a library for object persistence. Fea-
tures include the ability to take snapshots of data, to
compress data, and to replicate stored data.

• Sudoku [32] is a traditional puzzle game. Features
include a logical solver and a configuration generator.

2All subjects except 101Companies have been used in pre-
vious studies on testing/analyzing SPLs, including GPL by
[2, 5], Elevator, Email, MinePump by [2], JTopas by [6],
Notepad by [21, 20], XStream by [11, 35] Prevayler by [36,
1], and Sudoku by [1].

Table 1: Subject SPLs
SPL Features Confs LOC

101Companies 11 192 2,059
Elevator 5 20 1,046
Email 8 40 1,233
GPL 14 73 1,713

JTopas 5 32 2,031
MinePump 6 64 580
Notepad 23 144 2.074
Prevayler 5 32 2,844
Sudoku 6 20 853
XStream 7 128 14,480

• XStream [28] is a library for (de)serializing objects
to XML (and from it). Features include the ability to
omit selected fields and to produce concise XML.

Table 1 shows the number of optional features (we do not
count the mandatory features because they have constant
values), the number of valid configurations, and the code
size for each subject SPL. More details of the subjects and
results are available at our website [23].

4.1.1 Tests
We prepared three different tests for each subject SPL.

The first test, referred as LOW, represents an optimistic sce-
nario where the test needs to be run only on a small num-
ber of configurations. The second test, referred as MED (for
MEDIUM), represents the average scenario, where the test
needs to be run on some configurations. The third test, re-
ferred as HIGH, represents a pessimistic scenario, where the
test needs to be run on most configurations.

To prepare the LOW, MED, and HIGH tests, we modified
existing tests, when available, or wrote new tests because
we could not easily find tests that could be used without
modification. Because some subjects were too simple, tests
would finish too quickly for meaningful time measurement if
test code only had one sequence of method calls. Therefore,
we used loops to increase running times when necessary.
Each test fixes all inputs except the feature variables. The
tool, test suites and subjects are available on the project
website [23].

4.1.2 Comparable Techniques
We compared SPLat with different approaches for test

execution. We considered two näıve approaches that run
tests against all valid configurations: NewJVM and Reuse-
JVM. The NewJVM approach spawns a new JVM for each
distinct test run. Each test run executes only one valid con-
figuration of the SPL. It is important to note that the cost of
this approach includes the cost of spawning a new JVM. The
ReuseJVM approach uses the same JVM across several
test runs, thus avoiding the overhead of repeatedly spawn-
ing JVMs for each different test and configuration. This ap-
proach requires the tester to explicitly provide a reset func-
tion (Section 3.4). Because the tester likely has to write a
reset function anyway, we conjecture that this approach is
a viable alternative to save runtime cost. For example, the
tester may already need to restore parts of the state stored
outside the JVM such as files or database.

We also compared SPLat with a simplified version of a
previously proposed static analysis [20] for pruning con-
figurations. Whereas [20] performs reachability analysis,
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control-flow and data-flow analyses, the simplified version,
which we call SRA (Static Reachability Analysis), only per-
forms the reachability analysis to determine which configu-
rations are reachable from a given test and thus can be seen
as the static analysis counterpart to SPLat. SRA builds a
call graph using inter-procedural, context-insensitive, flow-
insensitive, and path-insensitive points-to analysis and col-
lects the features syntactically present in the methods of the
call graph. Only the valid combinations of these reachable
features from a test need to be run for that test.

Finally, we compared SPLat with an artificial technique
that has zero cost to compute the set of configurations on
which each test need to run. More precisely, we use a tech-
nique that gives the same results as SPLat but only counts
the cost of executing tests for these configurations, not the
cost of computing these configurations. We call this tech-
nique Ideal. The overhead of SPLat is the difference be-
tween the overall cost of SPLat explorations and the cost of
executing tests for Ideal.

4.1.3 Results
Table 2 shows our results. We performed the experiments

on a machine with X86 64 architecture, Ubuntu operating
system, 240696 MIPS, 8 cores, with each core having an In-
tel Xeon CPU E3-1270 V2 at 3.50GHz processor, and 16
GB memory. All times are listed in seconds. Our feature
model implementation solves the feature model upfront to
obtain all valid configurations; because this solving needs to
be done for every feature model (regardless of using SPLat
or otherwise), and because it takes a fraction of test execu-
tion time, we do not include it.

Here is a description of each column in Table 2:

• Test refers to one of the three categories of tests de-
scribed earlier.

• All Valid identifies the techniques that run the test
against all valid configurations, namely NewJVM
and ReuseJVM. ReuseJVM shows time absolutely
and as a percentage of NewJVM duration.

• Columns under SPLat details information for SPLat:

– Confs shows the number of configurations that
SPLat runs for a particular test.

– SPLatTime shows the time it takes to run a test
using SPLat. SPLat reuses the same JVM for
different executions, like ReuseJVM. The time is
shown absolutely and as a percentage of Reuse-
JVM (not NewJVM).

– IdealTime shows the time in seconds for run-
ning SPLat without considering the cost to de-
termine which configurations to run for the test;
therefore, this number excludes instrumentation,
monitoring, and constraint solving.

– Overhead shows the overhead of SPLat, calcu-
lated by subtracting IdealTime from SPLat-
Time, and dividing it by IdealTime.

• Columns under Static Reachability (SRA) show
results for our static analysis:

– Confs shows the number of configurations reach-
able with such analysis,

– Overhead shows the time taken to perform the
static reachability analysis, and

– Time shows the time taken to run the configura-
tions determined by this analysis.

Efficiency. The ReuseJVM column shows that reusing
JVM saves a considerable amount of time compared to
spawning a new JVM for each test run. For example, for
half of the tests, reusing JVM saves over 50% of the time,
because running these tests does not take much longer than
starting up the JVM. For tests that take considerably longer
than starting up the JVM, such saving is not possible.
SPLat further reduces the execution time over Reuse-

JVM by determining the reachable configurations. For ex-
ample, for the LOW test for Notepad, reusing the JVM takes
34% of the time to run without reusing the JVM, and with
SPLat, it takes just 2% of the already reduced time. In
fact, the table shows that in most cases, as long as SPLat
can reduce the number of configurations to test (ie Confs
is lower than the total number of configurations), it runs
faster than running each configuration (ie less than 100% of
ReuseJVM).

Comparison with Static Reachability Analysis.
The static reachability analysis yields less precise results
compared to SPLat: the number of configurations in the
column Confs is larger than the number of configurations
in the corresponding column for SPLat. In fact, for JTopas,
Notepad and MinePump, the SRA reports all features as be-
ing accessed from the call graph, and therefore reports that
all valid configurations have to be tested. For example, for
JTopas, this is due to its tests invoking the main method
of the SPL, from which all feature variable accesses may be
reached using different input values, which the analysis is in-
sensitive to. For Notepad, this is due to the the use of the
FEST automated GUI testing framework, which relies heav-
ily on reflection. Because the method being invoked through
reflection cannot necessarily be determined statically, the
analysis yields a conservative result. For MinePump, each
test happens to exercise a sequence of methods that together
reach all feature variable accesses.

Note that the SRA approach first statically determines
the configurations to run (which takes the time in column
SRA Overhead) and afterwards dynamically runs them
one by one (which takes the time in column SRA Time).
Comparing just the static analysis time (SRA Overhead)
with the SPLat overhead (SPLat Overhead) shows that
SRA has a considerably larger overhead, in some cases two
orders of magnitude larger. Although the static analysis
overhead can be offset by (re)using the reachable configu-
rations it determines against tests that have the same code
base but have different inputs, in general, it would require a
very large number of such tests for the approach to have a
smaller overhead than SPLat. Moreover, comparing just the
time to execute the configurations computed by SRA (col-
umn SRA Time with the time to execute the configurations
computed by SPLat (column IdealTime) shows that SRA
again takes longer because SRA computes a higher number
of configurations than SPLat due to the conservative nature
of static analysis.

RQ1. Based on the comparison with NewJVM, Reuse-
JVM, and SRA, we conclude the following:

SPLat is more efficient than the techniques that run all
valid configurations for tests of SPLs or prune reachable
configurations using static analysis. Moreover, compared
with static analysis, SPLat not only gives results faster
but also gives more precise results.
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Table 2: Experimental Results for Various Techniques
All Valid SPLat Static Reachability (SRA)

Test NewJVM ReuseJVM Confs SPLatTime IdealTime Overhead Confs Overhead Time

101Companies (192 configs)
LOW 35.46 2.13 (6%) 32 (16%) 1.64 (77%) 0.72 0.92 (127%) 96 84.04 1.28
MED 49.37 3.90 (7%) 160 (83%) 6.84 (175%) 3.58 3.26 (91%) 192 82.54 3.99
HIGH 283.69 45.26 (15%) 176 (91%) 47.6 (105%) 41.59 6.01 (14%) 192 81.93 45.16

Elevator (20 configs)
LOW 10.74 5.17 (48%) 2 (10%) 1.33 (25%) 0.71 0.62 (87%) 2 23.29 0.76
MED 50.97 46.65 (91%) 10 (50%) 23.62 (50%) 23.14 0.48 (2%) 20 23.74 46.17
HIGH 62.57 59.48 (95%) 20 (100%) 60.71 (102%) 59.28 1.43 (2%) 20 24.38 60.43

Email (40 configs)
LOW 40.63 10.74 (26%) 1 (2%) 1.00 (9%) 0.87 0.13 (14%) 1 23.62 0.87
MED 57.56 48.87 (84%) 30 (75%) 36.99 (75%) 37.14 -0.15 (0%) 40 22.81 49.02
HIGH 58.02 48.93 (84%) 40 (100%) 48.96 (100%) 49.26 -0.31 (0%) 40 23.84 49.16

GPL (73 configs)
LOW 19.21 2.23 (11%) 6 (8%) 0.79 (35%) 0.29 0.49 (168%) 6 104.97 0.30
MED 190.53 171.62 (90%) 55 (75%) 130.87 (76%) 128.52 2.35 (1%) 55 99.41 128.69
HIGH 314.20 285.89 (90%) 70 (95%) 278.77 (97%) 277.48 1.29 (0%) 73 103.52 286.28

JTopas (32 configs)
LOW 26.59 16.83 (63%) 8 (25%) 6.29 (37%) 4.49 1.80 (40%) 32 86.87 16.44
MED 29.04 18.55 (63%) 16 (50%) 13.16 (70%) 9.71 3.46 (35%) 32 86.87 18.70
HIGH 28.92 18.93 (65%) 32 (100%) 25.31 (133%) 18.43 6.88 (37%) 32 86.87 18.48

MinePump (64 configs)
LOW 23.71 7.53 (31%) 9 (14%) 3.65 (48%) 1.90 1.75 (91%) 64 22.69 7.49
MED 59.72 14.78 (24%) 24 (37%) 10.43 (70%) 6.26 4.17 (66%) 64 22.38 15.35
HIGH 13.72 5.75 (41%) 48 (75%) 37.80 (657%) 4.81 32.99 (685%) 64 22.18 5.77

Notepad (144 configs)
LOW 398.22 135.60 (34%) 2 (1%) 3.06 (2%) 2.45 0.61 (24%) 144 80.40 135.47
MED 418.23 156.27 (37%) 96 (66%) 104.95 (67%) 104.91 0.04 (0%) 144 80.62 156.35
HIGH 419.99 153.39 (36%) 144 (100%) 153.11 (99%) 152.16 0.94 (0%) 144 81.29 151.94

Prevayler (32 configs)
LOW 65.34 40.23 (61%) 12 (37%) 22.49 (55%) 22.8 -0.31 (-1%) 32 205.54 45.39
MED 121.38 96.50 (79%) 24 (75%) 102.49 (106%) 105.86 -3.37 (-3%) 32 214.67 111.37
HIGH 149.08 120.7 (80%) 32 (100%) 127.17 (105%) 131.37 -4.20 (-3%) 32 290.66 135.61

Sudoku (20 configs)
LOW 51.11 48.10 (94%) 4 (20%) 42.72 (88%) 24.12 18.6 (77%) 10 31.87 24.28
MED 118.14 105.67 (89%) 10 (50%) 58.31 (55%) 54.16 4.15 (7%) 10 31.75 53.67
HIGH 489.60 334.82 (68%) 20 (100%) 316.47 (94%) 332.36 -15.89 (-4%) 20 31.74 338.48

Xstream (128 configs)
LOW 111.26 30.04 (27%) 2 (1%) 1.57 (5%) 1.08 0.49 (45%) 2 106.50 1.06
MED 105.10 9.04 (8%) 64 (50%) 5.77 (63%) 5.26 0.51 (9%) 64 109.22 5.14
HIGH 101.66 8.68 (8%) 128 (100%) 9.16 (105%) 8.59 0.57 (6%) 128 105.68 8.74

Overhead. Table 2 also shows the overhead that SPLat
has over the Ideal technique (column SPLat Overhead).
The overhead is generally small, except for the LOW tests
and tests for several subjects (eg JTopas and Mine). The
overhead is high for the LOW tests because these tests finish
quickly (under 7 seconds, often under 1 second), meaning
that instrumentation, monitoring and feature model inter-
action take a larger fraction of time than they would for a
longer executing test. The overhead is high for JTopas be-
cause the feature variables are accessed many times because
they are accessed within the tokenizing loop. The overhead
is high for MinePump because feature accesses and their in-
strumentation take relatively longer to execute for this par-
ticular test as the subject is very small.
SPLat, due to its cost in monitoring feature variables,

should not execute a test faster than knowing the reach-
able configurations upfront and running the test only on
those configurations. Thus, the occasional small negative
overheads for Email, Prevayler, Sudoku are due to the

experimental noise and/or the occasionally observed effect
where an instrumented program runs faster than the non-
instrumented program. It is important to note that effi-
ciency and overhead are orthogonal. As long as the reduc-
tion in time due to the reduction in configurations is larger
than the overhead, SPLat saves the overall time. To illus-
trate, the GPL’s LOW test incurs over 168% overhead, but
the reduction in configurations outweighs the overhead, and
SPLat takes only 35% of running all valid configurations
with the same JVM.

RQ2. Based on the discussion about overhead, we con-
clude the following:

SPLat can have a large relative overhead for short-
running tests, but the overhead is small for long-running
tests.
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4.2 Configurable Systems
Groupon. Groupon is a company that “features a daily

deal on the best stuff to do, see, eat, and buy in 48 countries”
(http://www.groupon.com/about). Groupon PWA is
name of the codebase that powers the main groupon.com
website. It has been developed for over 4.5 years with con-
tributions from over 250 engineers. The server side is written
in Ruby on Rails and has over 171K lines of Ruby code.

Groupon PWA code is highly configurable with over 170
(boolean) feature variables. In theory, there are over 2170

different configurations for the code. In practice, only a
small number of these configurations are ever used in pro-
duction, and there is one default configuration for the values
of all feature variables.

Groupon PWA has an extensive regression testing infras-
tructure with several frameworks including Rspec, Cucum-
ber, Selenium, and Jasmine. The test code itself has over
231K lines of Ruby code and additional code in other lan-
guages. (It is not uncommon for the test code to be larger
than the code under test [37].)

Groupon PWA has over 19K Rspec (unit and integration)
tests. A vast majority of these tests run the code only for
the default configuration. A few tests run the code for a
non-default configuration, typically changing the value for
only one feature variable from the default value. Running
all the Rspec tests on a cluster of 4 computers with 24 cores
each takes under 10 minutes.

SPLat Application. We implemented SPLat for Ruby
on Rails to apply it to Groupon PWA. We did not have to
implement the reset function because it was already imple-
mented by Groupon testers to make test execution feasible
(due to the high cost of re-starting the system). Moreover,
no explicit feature model was present, so feature model con-
straints did not need to be solved.

We set out to evaluate how many configurations each test
could cover if we allow varying the values of all feature vari-
ables encountered during the test run. We expected that
the number of configurations could get extremely high for
some tests to be able to enumerate all the configurations.
Therefore, we set the limit on the number of configurations
to no more than 16, so that the experiments can finish in a
reasonable time. This limit was reached by 2,695 tests. For
the remaining 17,008 tests, Table 3 shows the breakdown of
how many tests reached a given number of configurations.
We can see that the most common cases are the number
of configurations being powers of two, effectively indicating
that many features are encountered independently rather
than nested (as in Figure 2 where the read of WORDCOUNT is
nested within the block controlled by the read of TOOLBAR).

We also evaluated the number of features encountered. It
ranges from 1 up to 43. We found 43 is a high number in the
absolute sense (indicating that a test may potentially cover
243 different configurations), 43 is also a relatively low num-
ber in the relative sense compared to the total of over 170
features. Table 4 shows the breakdown of how many tests
reached a given number of feature variables. Note that the
numbers of configurations and feature variables may seem
inconsistent at a glance, eg the number of tests that have 1
configuration is larger than the number of tests than have 0
feature variables. The reason is that some tests force certain
values for feature variables such that setting the configura-
tion gets overwritten by the forced value.

Table 3: Reachable Configurations
Configs Tests Configs Tests

1 11,711 2 1,757
3 332 4 882
5 413 6 113
7 19 8 902
9 207 10 120

11 29 12 126
13 6 14 32
15 10 16 349
17 2,695 - -

Table 4: Accessed Features
Vars Tests Vars Tests Vars Tests

0 11,711 1 1,757 2 1,148
3 1,383 4 705 5 389
6 466 7 323 8 425
9 266 10 140 11 86

12 80 13 34 14 28
15 54 16 62 17 1
19 14 20 260 21 109
22 45 23 19 24 22
25 9 26 2 27 14
28 17 29 6 30 8
31 24 32 6 33 14
34 31 35 11 36 15
37 8 38 2 39 2
40 3 42 2 43 2

In summary, these results show that the existing tests for
Groupon PWA can already achieve a high coverage of config-
urations, but running all the configurations for all the tests
can be prohibitively expensive. We leave it as a future work
to explore a good strategy to sample from these configura-
tions [8, 9, 30].

RQ3. Moreover, based on the fact that we could run
SPLat on the codebase as large as Groupon PWA, we con-
clude the following:

SPLat scales to real, large industrial code. The imple-
mentation effort for SPLat is relatively low and the num-
ber of configurations covered by many real tests is rela-
tively low.

4.3 Threats to Validity
The main threat is to external validity: we cannot general-

ize our timing results to all SPLs and configurable systems
because our case studies may not be representative of all
programs, and our tests may be covering an unusual num-
ber of configurations. To reduce this threat, we used multi-
ple Java SPLs and one real, large industrial codebase. For
SPLs, we designed tests that cover a spectrum of cases from
LOW to MED(IUM) to HIGH number of configurations. For
the Groupon codebase, we find that most real tests indeed
cover a small number of configurations. Our study has the
usual internal and construct threats to validity.
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We believe that SPLat is a helpful technique that can
be used in practice to improve SPL testing. An important
threat to this conclusion is that our results do not take into
account the cost of writing a reset function. Although other
techniques that use stateless exploration also require reset
functions (eg VeriSoft [13]), the cost of developing such func-
tions could affect practicality. NewJVM, ReuseJVM, and
SPLat all require the state outside of the JVM to be ex-
plicitly reset, but only NewJVM automatically resets JVM-
specific state by spawning a new JVM for each test run.

5. RELATED WORK

5.1 Dynamic Analysis
Korat. SPLat was inspired by Korat [4], a test-input

generation technique based on Java predicates. Korat in-
struments accesses to object fields used in the predicate,
monitors the accesses to prune the input space of the pred-
icate, and enumerates those inputs for which the predicate
returns true. Directly applying Korat to the problem of
reducing the combinatorics in testing configurable systems
is not feasible because the feature model encodes a precon-
dition for running the configurable system, which must be
accounted for. In theory, one could automatically translate
a (declarative) feature model into an imperative constraint
and then execute it before the code under test, but it could
lead Korat to explore the entire space of feature combina-
tions (up to 2N combinations for N features) before every
test execution. In contrast, SPLat exploits feature models
while retaining the effectiveness of execution-driven pruning
by applying it with SAT in tandem. Additionally, SPLat
can change the configuration being run during the test exe-
cution (line 51 in Figure 4), which Korat did not do for data
structures.

Shared execution. Starting from the work of d’Amorim
et al. [10], there has been considerable ongoing research on
saving testing time by sharing computations across similar
test executions [2, 3, 7, 10, 15, 19, 22, 24, 33, 38]. The
key observation is that repeated executions of a test have
much computation in common. For example, Shared Exe-
cution [22] runs a test simultaneously against several SPL
configurations. It uses a set of configurations to support test
execution, and splits and merges this set according to the
different decisions in control-flow made along execution. The
execution-sharing techniques for testing SPLs differ from
SPLat in that they use stateful exploration; they require
a dedicated runtime for saving and restoring program state
and only work on programs with such runtime support. Con-
sequently, they have high runtime overhead not because of
engineering issues but because of fundamental challenges in
splitting and merging state sets at proper locations. In con-
trast, SPLat uses stateless exploration [13] and never merges
control-flow of different executions. Although SPLat cannot
share computations between executions, it requires minimal
runtime support and can be implemented very easily and
quickly against almost any runtime system that allows fea-
ture variables to be read and set during execution.

Sampling. Sampling exploits domain knowledge to se-
lect configurations to test. A tester may choose features for
which all combinations must be examined, while for other
features, only t-way (most commonly 2-way) interactions

are tested [8, 9, 30]. Our dynamic program analysis safely
prunes feature combinations, while sampling approaches can
miss problematic configurations [2].

Spectrum of SPL testing techniques. Kästner et
al. [19] define a spectrum of SPL testing techniques based
on the amount of changes required to support testing. On
the one end are black-box techniques that use a conven-
tional runtime system to run the test for each configuration;
NewJVM is such a technique. On the other end are white-
box techniques that extensively change a runtime system
to make it SPL-aware; shared execution is such a technique.
SPLat, which only requires runtime support for reading and
writing to feature variables, is a lightweight white-box tech-
nique that still provides an optimal reduction in the number
of configurations to consider.

5.2 Static Analysis
We previously developed a static analysis that performs

reachability, data-flow and control-flow checks to determine
which features are relevant to the outcome of a test [20]. The
analysis enables one to run a test only on (all valid) com-
binations of these relevant features that satisfy the feature
model. SPLat is only concerned with reachability, so even if
it encounters a feature whose code has no effect, it will still
execute the test both with and without the feature. But a
large portion of the reduction in configurations in running
a test is simply due to the idea that many of the features
are not even reachable. Indeed, as Section 4 shows, SPLat
determines reachable configurations with much greater pre-
cision and is likely to be considerably faster than the static
analysis because SPLat discovers the reachable configura-
tions during execution. Static analysis may be faster if its
cost can be offset against many tests (because it needs only
be run once for one test code that allows different inputs),
and if a test run takes a very long time to execute (eg re-
quiring user interaction). But such situations do not seem to
arise often, especially for tests that exercise a small subset
of the codebase.

6. CONCLUSIONS
SPLat is a new technique for reducing the combinatorics

in testing configurable systems. SPLat dynamically prunes
the space of configurations that each test must be run
against. SPLat achieves an optimal reduction in the num-
ber of configurations and does so in a lightweight way com-
pared to previous approaches based on static analysis and
heavyweight dynamic execution. Experimental results on
10 software product lines written in Java show that SPLat
substantially reduces the total test execution time in most
cases. Moreover, our application of SPLat on a large indus-
trial code written in Ruby on Rails shows its scalability.
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