
A Standard Problem for Evaluating Product-Line
Methodologies

Roberto E. Lopez-Herrejon and Don Batory
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

{rlopez,batory}@cs.utexas.edu

Abstract. We propose a standard problem to evaluate product-line methodolo-
gies. It relies on common knowledge from Computer Science, so that domain-
knowledge can be easily acquired, and it is complex enough to expose the funda-
mental concepts of product-line methodologies. As a reference point, we present
a solution to this problem using the GenVoca design methodology. We explain a
series of modeling, implementation, and benchmarking issues that we encoun-
tered, so that others can understand and compare our solution with theirs.

1 Introduction

A product-line is a family of related software applications. A product-line architecture
is a design for a product-line that identifies the underlying building blocks or compo-
nents of family members, and enables the synthesis of any particular member by com-
posing these components. Different family members (product-line applications) are
represented by different combination of components. The motivation for product-line
architectures is one of economics and practicality: it is too expensive to build all possi-
ble family members; it is much cheaper to build components and to assemble desired
family members from them.

Many methodologies have been invented to create product-line architectures (e.g., [2,
3, 7, 9, 11, 12, 13, 14, 17, 20]). Unfortunately, the state-of-the-art is immature. We are
unaware of any attempts to evaluate different methodologies on a common set of prob-
lems. If this were done, we would understand better the strengths and weaknesses of
different methodologies. We would know when to use a particular methodology, and
when not to. Further, we would know if different methodologies relied on the same
concepts. For example, different OO design approaches rely on a common conceptual
foundation of classes, interfaces, and state machines, but offer different ways of pro-
ducing a design expressed in terms of these concepts. For product-line methodologies,
we generally do not know even this. Different methodologies have rather different
meanings for the terms “architecture”, “component”, and “composition” so that it is
not at all obvious what, if anything, is in common. It is not evident that the same con-
cepts are shared among product-line methodologies, let alone knowing what these con-
cepts are. From a practical standpoint, the choice of which methodology to use in a
situation is dictated by convenience (at best) or by random selection (at worst) rather
than by scientific fact. This is unacceptable.

dsb
Third International Conference on Generative and Component-Based Software Engineering (GCSE 2001), September 9-13, 2001 Messe Erfurt, Erfurt, Germany.

For this area to mature, it is essential that we compare and evaluate proposed method-
ologies. The scientific principles that underlie this area must be identified and the con-
tributions and novelties of different methodologies be exposed in a way that all can
appreciate and recognize. The immaturity of this area is not unique and has occurred in
other areas of Computer Science. In such cases, a standard problem has been proposed
and different authors have applied their methodologies to solve it (e.g., [1]). Doing so
exposes important details that would otherwise be overlooked or misunderstood. Such
studies allow researchers to more accurately assess the strengths, benefits, commonali-
ties, and variabilities of different methodologies. We believe this approach would be
beneficial for product-lines.

In this paper, we propose a standard problem for evaluating product-line methodolo-
gies. We believe a standard problem should have the following characteristics:

• It draws on common knowledge from Computer Science, so that the often difficult
requirement of becoming a domain expert or acquiring domain-expertise is mini-
mized.

• It is not a trivial design problem; it is complex enough to expose the key concepts
of product-lines and their implementation.

These characteristics should enable others to see the similarities and differences
among approaches both at a superficial level and more importantly, at a deeper concep-
tual level.

To carry this idea forward, we present as reference point a solution to this problem
using the GenVoca design methodology. We outline a set of design, implementation,
and benchmarking issues that we had to resolve before we settled on our final design.
Doing so exposed a variety of concerns and insights that we believe others would ben-
efit hearing. Our designs, code, and benchmarks are available at a web site (http://
www.cs.utexas.edu/users/dsb/GPL.html) for others to access.

2 A Standard Problem: The Graph Product Line

The Graph Product-Line (GPL) is a family of classical graph applications that was
inspired by early work on software extensibility [16, 19]. GPL is typical of product-
lines in that applications are distinguished by the set of features that they implement,

where no two applications have the same set of features.1 Further, applications are

modeled as sentences of a grammar. Figure 1a2 shows this grammar, where tokens are
names of features. Figure 1b shows a GUI that implements this grammar and allows
GPL products to be specified declaratively as a series of radio-button and check-box
selections.

1. A feature is a functionality or implementation characteristic that is important to clients [15].
2. For simplicity, the grammar does not preclude the repetition of algorithms, whereas the GUI

does.

The semantics of GPL features, and the domain itself, are uncomplicated. A graph is
either Directed or Undirected. Edges can be Weighted with non-negative num-
bers or Unweighted. Every graph application requires at most one search algorithm:
breadth-first search (BFS) or depth-first search (DFS); and one or more of the following
algorithms [10]:

• Vertex Numbering (Number): Assigns a unique number to each vertex as a
result of a graph traversal.

• Connected Components (Connected): Computes the connected components
of an undirected graph, which are equivalence classes under the reachable-from
relation. For every pair of vertices x and y in an equivalence class, there is a path
from x to y.

• Strongly Connected Components (StronglyConnected): Computes the
strongly connected components of a directed graph, which are equivalence classes
under the reachable-from relation. A vertex y is reachable form vertex x if there is
a path from x to y.

• Cycle Checking (Cycle): Determines if there are cycles in a graph. A cycle in
directed graphs must have at least 2 edges, while in undirected graphs it must have
at least 3 edges.

GPL := Gtp Wgt Src Alg+;

Gtp := Directed | Undirected;

Wgt := Weighted | Unweighted;

Src := DFS | BFS | None;

Alg := Number | Connected | StronglyConnected
| Cycle | MST Prim | MST Kruskal | Shortest;

(a)

(b)

Figure 1. GPL Grammar and Specification GUI

• Minimum Spanning Tree (MST Prim, MST Kruskal): Computes a Minimum
Spanning Tree (MST), which contains all the vertices in the graph such that the
sum of the weights of the edges in the tree is minimal. We include both algorithms
because they present distinct and interesting performance and design issues.

• Single-Source Shortest Path (Shortest): Computes the shortest path from a
source vertex to all other vertices.

A fundamental characteristic of product-lines is that not all features are compatible.
That is, the selection of one feature may disable (or enable) the selection of others.
GPL is no exception. The set of constraints that govern the GPL features are summa-
rized in Table 1.

A GPL application implements a valid combination of features. As examples, one GPL
application implements vertex numbering and connected components using depth-first
search on an undirected graph. Another implements minimum spanning trees on
weighted, undirected graphs. Thus, from a client’s viewpoint, to specify a particular
graph application with the desired set of features is straightforward. And so too is the
implementation of the GUI (Figure 1b) and constraints of Table 1.

We chose Java as our implementation language. Besides its simplicity over C++ and
availability of GUI libraries, we made use of Java containers, iterators, and sort meth-
ods, to avoid reimplementing these low-level routines by hand. We recommend others
to follow our lead to make comparisons easier.

Algorithm
Required
Graph Type

Required
Weight

Required
Search

Vertex Numbering Directed,
Undirected

Weighted,
Unweighted

BFS, DFS

Connected Components Undirected Weighted,
Unweighted

BFS, DFS

Strongly Connected Components Directed Weighted,
Unweighted

DFS

Cycle Checking Directed,

Undirected

Weighted,
Unweighted

DFS

Minimum Spanning Tree Undirected Weighted None

Single-Source Shortest Path Directed Weighted None

Table 1. Feature Constraints

3 GenVoca

GenVoca is a model of product-lines that is based on step-wise extension [3-6]3.
Among its key ideas is programs are values. Consider the following constants that rep-
resent programs with individual features:

f // program that implements feature f
g // program that implements feature g

An extension is a function that takes a program as input and produces an extended (or
feature-augmented) program as output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

It follows that a multi-featured application is an equation, and that different equations
define a set of related applications, i.e., a product-line, such as:

a1 = i(f) // application a1 has features i and f

a2 = j(g) // application a2 has features j and g

a3 = i(j(f)) // application a3 has features i, j, and f

Thus one can determine features of an application by inspecting its equation.

3.1 GPL

A GenVoca model of GPL is the set of constants and functions defined in Table 2.
There are three extensions that are not visible to the GUI: Transpose, Benchmark,
and Prog. Transpose performs graph transposition and is used (only) by the
StronglyConnected algorithm. It made sense to separate the StronglyConnected
algorithm from Transpose, as they dealt with separate concerns. (This means that an
implementation constraint in using the StronglyConnected extension is that the
Transpose extension must also be included, and vice versa). Benchmark contains
functions to read a graph from a file and elementary timing functions for profiling.
Prog creates the objects required to represent a graph, and calls the algorithms of the
family member on this graph.

Extensions can not be composed in arbitrary orders. The legal compositions of exten-
sions in Table 2 are defined by simple constraints called design rules [3] whose details
we omit from this paper, but do include with our source code. Our GUI specification
tool translates a sentence in the grammar of Figure 1 (in addition to checking for ille-
gal combinations of features) into an equation. Because features are in 1-to-1 corre-

3. A refinement adds implementation detail, but does not add methods to a class or change the
semantics of existing methods. In contrast, extensions not only add implementation detail
but also can add methods to a class and change the semantics of existing methods. Inherit-
ance is a common way to extend classes statically in OO programming languages.

spondence with extensions, this translation is straightforward. For example, a GPL
application app that implements vertex numbering and connected components using
depth-first search on an undirected graph is the equation:

app = Prog(Benchmark(Number(Connected(DFS(Undirected)))))

3.2 Mixin-Layers

There are many ways in which to implement extensions. We use mixin-layers [18]. To
illustrate, recall the Directed program implements a directed graph. This program is
defined by multiple classes, say Graph, Vertex, and Edge. (The exact set of classes is
an interesting design problem which we discuss in Section 4). A mixin-layer that rep-
resents the Directed program is the class Directed with inner classes Graph, Ver-
tex, and Edge:

class Directed {
class Graph {...}
class Vertex {...}
class Edge {...}

}

An extension is implemented as a mixin, i.e., a class whose superclass is specified by a
parameter. The depth-first search extension is implemented as a mixin DFS that encap-
sulates extensions (mixins) of the Graph and Vertex classes. That is, DFS grafts new
methods and variables onto the Graph and Vertex classes to implement depth first
search algorithms:

Directed directed graph Cycle(x) cycle checking

Undirected undirected
graph

MSTPrim(x) MST Prim
algorithm

Weighted(x) weighted graph MSTKruskal(x) MST Kruskal
algorithm

DFS(x) depth-first
search

Shortest(x) single source
shortest path

BFS(x) breadth-first
search

Transpose(x) graph
transposition

Number(x) vertex
numbering

Benchmark(x) benchmark
program

Connected(x) connected
components

Prog(x) main program

StronglyConnected(x) strongly
connected
components

Table 2. A GenVoca Model of GPL

class DFS<x> extends x {
class Graph extends x.Graph {...}
class Vertex extends x.Vertex {...}

}

The above describes the general way in which GenVoca-GPL model constants and
functions are implemented. When we write the composition A = DFS(Directed) in
our model, we translate this to the equivalent template expression:

class A extends DFS<Directed>;

In general, there is a simple mapping of model equations to template/mixin expres-
sions. Of course, Java does not support mixins or mixin-layers, but extended Java lan-
guages do. We used the Jakarta Tool Suite (JTS) to implement mixin-layers [4].

4 Graph Implementation

Designing programs that implement graph algorithms is an interesting problem. Every
implementation will define a representation of graphs, vertices, edges, and adjacency
— i.e., what vertices are adjacent (via an edge) to a given vertex. Further, there must
be some way to represent annotations of edges (e.g., weights, names). We did not
arrive at our final design immediately; we went through a series of designs that incre-
mentally improved the clarity of our code, which we document in the following sec-
tions. In the process, we learned a simple rule to follow in order to simplify extension-
based designs.

4.1 Adjacency Lists Representation (G)

The first representation we tried was based on a “legacy” C++ design [18, 5] that had
been written years earlier and that implemented few of the extensions listed in Table 2.
It consisted of 2 classes:

• Graph: consists of a list of Vertex objects.

• Vertex: contains a list of its adjacent Vertex objects.

That is, edges were implicit: their existence could be inferred from an adjacency list.
Figure 2 illustrates this representation for a weighted graph. The advantage of this rep-
resentation was its simplicity. It worked reasonably well for most extensions that we
had to implement. However, it failed on edge annotations (e.g., weights). Because
edges were implicitly encoded in the design, we had to maintain a weights list that was
“parallel” to the adjacency list. While this did indeed work, our layered designs were
obviously not clean or elegant — e.g., for operations like graph transposition which
needed to read edge weights, and Kruskal’s algorithm which needed to manipulate
edges directly. Because of these reasons, this lead us to our second design.

4.2 Neighbor List Representation (GN)

The second representation consisted of three classes:

• Graph: contains a list of Vertex objects.

• Vertex: contains a list of Neighbor objects.

• Neighbor: contains a reference to a Vertex object, the other end of an edge.

Edge annotations were encoded as a extensions — i.e., extra fields — of the Neigh-
bor class. Figure 3 illustrates this representation. By pushing the neighbor Vertex
object and edge annotations into a Neighbor object, we reduced the number of list
accesses required to obtain these annotations. While this did lead to a simplification of
the coding of some mixin-layers, it did not simplify the complexity of the Kruskal
algorithm. Since this mixin-layer was unnecessarily difficult to write (and read!), we
knew there was still something wrong. This lead to our final design.

4.3 Edge-Neighbor Representation (GEN)

Textbook descriptions of algorithms are almost always simple. The reason is that cer-
tain implementation details have been abstracted away — but this is, in fact, the
strength of layers and extensions. We wanted to demonstrate that we could (almost lit-
erally) copy algorithms directly out of text books into mixin-layer code. The benefits
of doing so are (a) faster and more reliable implementations and (b) easier transference
of proofs of algorithm correctness into proofs of program correctness. We realized that
the only way this was possible was to recognize that there are a standard set of “con-
ceptual” objects that are referenced by all graph algorithms: Graphs, Vertices, Edges,
and Neighbors (i.e., adjacencies). Algorithms in graph textbooks define the fundamen-
tal extensions of graphs, and these extensions modify Graph objects, Vertex objects,
Edge objects, and Neighbor objects. Thus, the simplest way to express such extensions
is to reify all of these “conceptual” objects as physical objects and give them their own
distinct classes.

Figure 2. Adjacency Lists Representation Example

�� ��

� �

���������

��	
�������

���	
������

��������

��������

������������ �� �� ����

��

��
�

� ��

����
�������

The problems of our previous designs surfaced because we tried to make “short-cuts”
to avoid the explicit representation of certain conceptual objects (e.g., Edge, Neigh-
bor). Our justification for doing so was because we felt the resulting programs would
be more efficient. That is, we were performing “optimizations” in our earlier designs
that folded multiple conceptual objects into a single physical object. In fact, such pre-
mature optimizations caused us nothing but headaches as we tried to augment our
design to handle new extensions and to produce easy to read and maintain code. (We
think that this may be a common mistake in most software designs, not just ours). So
our “final” design made explicit all classes of objects that could be explicitly extended
by graph algorithms. Namely, we had four classes:

• Graph: contains a list of Vertex objects, and a list of Edge objects.

• Vertex: contains a list of Neighbor objects.

• Neighbor: contains a reference to a neighbor Vertex object (the vertex in the
other end of the edge), and a reference to the corresponding Edge object.

• Edge: extends the Neighbor class and contains the start Vertex of an Edge.

Edge annotations are now expressed as extensions of Edge class, and were expressed
by the addition of extra fields in the Edge class. This representation is illustrated in
Figure 4.

Equating conceptual objects with physical objects may simplify source code, but the
question remains: were our original designs more efficient? Is “premature design opti-
mization” essential for performance? These questions are addressed next.

5 Profiling Results

We performed a series of benchmarks to quantify the trade-offs between our three
designs. Several implementations of the designs were tried, using different containers,
and different strategies to access and copy the edge annotations. This section shows the
results for our most fine-tuned implementations. The benchmarks were run on a Win-
dows 2000 platform using a 700Mhz processor with 196MB RAM.

Figure 3. Neighbor Lists Representation Example

���������

��	
�������

���������	��� �
 �� ���

��

��

�

�������������

�� ��

�

������
����	�

�����������	�

��������
�������

�������

����	�

���������

��	
�������

���������	��� �
 �� ���

��

��

�

�������������

�� ��

�

������
����	�

�����������	�

��������
�������

�������

����	�

The first program used the vertex number algorithm on undirected graphs using depth
first search. This program measured the performance of graph creation and traversal. A
randomly generated graph with 1000 vertices was used as test case. Figure 5 shows the
benchmark results.

Figure 5a indicates that design G (our first) performs better than the other two; 6%-
22% better that GN (our second), and 75%-120% better than GEN (our third). This is
not surprising: GN and GEN have object creation overhead that is absent in G —
Neighbor objects are created in GN, and Neighbor and Edge objects are created in
GEN. While this is an obvious difference, the overall speed of the benchmark was dic-
tated by the time reading the graph from disk. Figure 5b shows this total execution
time, where the difference between the G application and the GN application is about
5% and G with GEN is about 9%.

The second program benchmarked the impact of copying a graph with edge annota-
tions. StronglyConnected utilizes such an operation, transpose, that creates a new
copy of a graph but with the direction of the edges reversed. A randomly generated

Figure 4. Edge and Neighbor List Representation Example

��	
�������
���������	���

�� �� ��
��

��

��
�

� ��

��	
���	�
��

�� �

�����	���

�

�� ��

�

���������
���������	�
����

�������

������

�� �� �� ��

����� �����

� � ��

�����

����

Figure 5. Simple graph traversal comparison
(b)(a)

Number Vertices Execution

0

3

6

9

12

15

50K 100K 150K 200K 250K 300K

Number of Edges

S
ec

o
n

d
s

G

GN

GEN

Total Execution Time

0

30

60

90

120

150

180

50K 100K 150K 200K 250K 300K

Number of Edges

S
ec

o
n

d
s G

GN

GEN

graph with 500 vertices was used as test case. In general, there was no significant dif-
ference (see Figure 6a). The G design performed 2% better than GN and 6% better
than GEN. Although cost of graph creation is different among designs (as indicated by
Figure 5a), the differences are swamped by the large computation times of the
StronglyConnected algorithm. In particular, only 15% of the total execution time in
Figure 6b was spent in reading the graph in from disk.

The third program benchmarked the impact of algorithms that use edges explicitly, like
Kruskal’s algorithm. A randomly generated graph with 500 vertices was used as a test
case. As expected, the GEN representation outperformed the other two simply because
it does not have to compute and create the edges from the adjacency or neighbor lists.
It performed between 43% and 98% faster than representation G, and between 59%
and 120% faster than representation GN (see Figure 7a). The difference between G
and GN is due to the fact that in the latter, to get the weights for each edge, an extra
access to the weights lists is required; and that the creation of the output graph is more
expensive because it has to create Neighbor objects as well. Of the total execution
time (Figure 7b), approximately 60% was spent reading a graph of 25K edges from
disk, and less than 5% when the graph had 125K edges.

Overall, we found that the performance of algorithms that did not use weighted edges
(e.g., numbering, cycle-checking, connected components, strongly-connected compo-

Figure 6. Strongly Connected Components

Strongly Connected Components Execution

0

100

200

300

400

25K 50K 75K 100K 125K

Number of Edges

S
ec

o
n

d
s

G

GN

GEN

(a) (b)

Total Execution Time

0

100

200

300

400

25K 50K 75K 100K 125K
Number of Edges

S
ec

o
n

d
s

G

GN

GEN

Figure 7. MST Kruskal

MST Kruskal Execution Time

0

1000

2000

3000

4000

25K 50K 75K 100K 125K

Number of Edges

S
ec

o
n

d
s

G

GN

GEN

Total Execution Time

0

1000

2000

3000

4000

25K 50K 75K 100K 125K

Number of Edges

S
ec

o
n

d
s G

GN

GEN

(b)(a)

nents) had slightly better performance with the G design. For those algorithms that
used weighted edges (e.g., MST Prim, MST Kruskal, shortest path), the GEN design
was better. Because an application is specified by the same equation for all three mod-
els, we could exploit our performance observations in a “smarter” generator that would
decide which design/implementation would be best for a particular family member —
i.e., one equation might be realized by a G design, another by a GEN design (see [6]).

Focussing exclusively on performance may be appropriate for most applications. But a
more balanced viewpoint needs to consider program complexity (which indirectly
measures the ease of maintenance, understandability, and extensibility). The main
issue for us was the impact that the representation of edges had on program complex-
ity. By in large, all layers had visually simple representations. But the Kruskal layer
seemed more complicated than it needed to be. The reason was that in both the G and
GN designs, the Kruskal layer had an explicit Edge class that was private to that layer,

and used by no other layer4. (The Kruskal algorithm demanded the existence of
explicit edge objects). The fact that all layers might benefit from making Edge explicit
drove us to the GEN design, which we considered visually and conceptually more ele-
gant than our earlier designs. As it turns out, our instincts on “visual simplicity” were
not altogether accurate. To see why, we use two metrics for program complexity: lines

of code (LOC) and number of symbols (NSYMB).5 Table 3 shows these statistics for
the Kruskal layer. Making edges explicit did indeed simplify this layer’s encoding.
However, other parts of our design grew a bit larger (mostly because we had to make
the Neighbor and Edge classes and their extensions explicit). Table 4 shows these
same statistics, across all layers, for all three designs. Overall, the statistical complex-
ity of all three designs was virtually identical. So the drive for “visual simplicity”
among layers in the end did improve our designs, but surprisingly did not impact their
size statistics.

There is a benefit to the GEN design that is not indicated by the above tables. If we
chose to enlarge the G and GN product-line with more algorithms that directly manip-
ulate edges, then it is likely a local copy of the Edge class would be introduced into
these layers. And doing so would result in replicated code, possibly leading to prob-
lems with program maintenance. By making the Edge class global to all extensions as
in the GEN design, we would expect little or no code replication — precisely what we
want in a product-line design.

Finally, we wanted to see if explicit layering (which mixin-layers produce) affects the
overall performance. We created equations for each design that contained the most lay-
ers (10), and manually-inlined the resulting chain of mixin-layers into an unlayered
package called Flat. There are two equations that have 10 layers, namely:

4. The local version of Edge in the Kruskal layer is indicated in Table 4 as 7 lines of 52 tokens.
5. We used other metrics [8], but found they provided no further insights.

• Directed, Weighted, DFS, StronglyConnected, Number, Transpose, Shortest,
Cycle, Benchmark, Prog: in this case the difference between the layered version
and the flattened one oscillates between 0% and 2% in G, -1% and 1% for GN,
and -1% and 1% for GEN. A randomly generated graph with 500 vertices was
used as test case. These results are shown in Figure 8a.

• Undirected, Weighted, DFS, Connected, Number, Cycle, MST-Kruskal, MST-Prim,
Benchmark, Prog: for this application the difference between the layered version
and the flattened one varies between 0% and 3% in G, 0% and 5% in GN, and
between -1% and 1% in GEN. A randomly generated graph with 300 was used as
test case. The results are shown in Figure 8b.

G
LOC
GN GEN G

NSYMB
GN GEN

Kruskal 87 90 69 927 928 695

Table 3. Kruskal Algorithm Statistics

Class
Name G

LOC
GN GEN G

NSYMB
GN GEN

Graph 372 387 380 3554 3600 3492

Vertex 209 202 198 1832 1758 1631

Neighbor 0 30 16 0 229 49

Edge 7 7 26 52 52 304

Total 588 626 620 5438 5639 5476

Table 4. Lines of Code (LOC) and Number of Symbols (NSYMB)

Figure 8. Effect of Class Layering(a) (b)

Strongly CC, Shortest, Number, Cycle
Execution Time

0

100

200

300

400

25K 50K 75K 100K 125K
Number of Edges

S
ec

o
n

d
s

G

GFlat

GN

GNFlat

GEN

GENFlat

Prim, Kruskal, CC, Number, Cycle
Execution Time

0
100
200
300
400
500

15K 25K 35K 45K
Number of Edges

S
ec

o
n

d
s

G

GFlat

GN

GN

GEN

GENFlat

The small difference between the layered version and its corresponding flattened one
is due to the fact that few methods override their parent method. When overriding does
occur, it involves fewer than 3 layers. Again, this result is specific to GPL and may not
hold for other domains.

6 Conclusions

GPL is a simple and illustrative problem for product-line designs. Different applica-
tions of the GPL product-line are defined by unique sets of features, and not all combi-
nations of features are permitted. The state of the art in product-lines is immature, and
the need to understand the commonalities and differences among product-line design
methodologies is important. We want to know how methodologies differ, what are
their relative strengths and weaknesses, and most importantly what are the scientific
principles that underlie these models. We do not know answers to these questions. But
it is our belief that by proposing and then solving a standard set of problems, the
answers to these questions will, in time, be revealed.

We believe GPL is a good candidate for a standard problem. It has the advantages of
simplicity — it is an exercise in design and implementation that can be discussed in a
relatively compact paper — and understandability — domain expertise is easily
acquired because it is a fundamental topic in Computer Science. Further, it provides an
interesting set of challenges that should clearly expose the key concepts of product-
line methodologies.

In this paper, we presented a product-line model and implementation of GPL using the
GenVoca methodology and the Jakarta Tool Suite (JTS). We showed how GenVoca
layers correspond to features, and how compositions of features are expressed by
equations implemented as inheritance lattices. We presented a sequence of designs that
progressively simplified layer implementations. We benchmarked these implementa-
tions to understand performance trade-offs. As expected, different designs do have dif-
ferent execution efficiencies, but it is clear that a “smart” generator (which had all
three designs available) could decide which representation would be best for a particu-
lar application. As an additional result, we showed that there is a very small impact of
class layering in overall application performance.

We hope that others apply their methodology to GPL and publish their designs and
findings. We believe that our work would benefit by a close inspection of others, and
the same would hold for other methodologies as well. Our code can be downloaded
from http://www.cs.utexas.edu/users/dsb/GPL.html.

Acknowledgements. We would like to thank Vijaya Ramachandran for her valuable
help with the subtle details of the theory of graph algorithms. We also thank Jay Misra
for clarifying the distinction between refinements and extensions.

7 References

[1] J-R Abrial, E. Boerger, and H. Langmaack, Formal Methods for Industrial Applications:
Specifying and Programming the Steam Boiler Control, Lecture Notes in Computer
Science, Vol. 1165, Springer-Verlag, 1996.

[2] P. America, et. al. “CoPAM: A Component-Oriented Platform Architecting Method
Family for Product Family Engineering”, Software Product Lines: Experience and
Research Directions, Kluwer Academic Publishers, 2000.

[3] D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca
Generators. IEEE Transactions on Software Engineering, February 1997.

[4] D.Batory, B.Lofaso, and Y.Smaragdakis. “JTS: Tools for implementing Domain-Specific
Languages”, Int. Conf. on Software Reuse, Victoria, Canada, June 1998.

[5] D. Batory, R. Cardone, and Y.Smaragdakis. “Object-Oriented Frameworks and Product
Lines”, 1st Software Product-Line Conference, Denver, Colorado, August 2000.

[6] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual
Programming Environments for GenVoca Generators”, IEEE Transactions on Software
Engineering, May 2000, 441-452.

[7] J. Bosch, “Evolution and Composition of Reusable Assets in Product-Line Architectures:
A Case Study”, Software Architecture, Kluwer Academic Publishers, 1999.

[8] S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object Oriented
Design”, OOPSLA 1991.

[9] S. Cohen and L. Northrop, “Object-Oriented Technology and Domain Analysis”, Int.
Conf. on Software Reuse, Victoria, Canada, June 1998.

[10] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT Press,
1990.

[11] K. Czarnecki and U.W. Eisenecker, “Components and Generative Programming”,
SIGSOFT 1999, LNCS 1687, Springer-Verlag, 1999.

[12] K. Czarnecki and U.W. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[13] J-M. DeBaud and K. Schmid, “A Systematic Approach to Derive the Scope of Software
Product Lines”, Int. Conference on Software Engineering 1999.

[14] H. Gomaa et al., “A Prototype Domain Modeling Environment for Reusable Software
Architectures”, Int. Conf. on Software Reuse, Rio de Janeiro, November 1994, 74-83.

[15] M. Griss, “Implementing Product-Line Features by Composing Component Aspects”,
First International Software Product-Line Conference, Denver, Colorado., August 2000.

[16] I. Holland. “Specifying Reusable Components Using Contracts”, ECOOP 1992.

[17] D.L. Parnas, “On the Design and Development of Program Families”, IEEE Transactions
on Software Engineering, March 1976.

[18] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”,
ECOOP 1998.

[19] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”,
JSSST International Symposium on Object Technologies for Advanced Software,
Springer-Verlag, 1996, 22-37.

[20] D.M. Weiss and C.T.R. Lai, Software Product-Line Engineering, Addison-Wesley, 1999.

	A Standard Problem for Evaluating Product-Line Methodologies
	Roberto E. Lopez-Herrejon and Don Batory
	Department of Computer Sciences
	The University of Texas
	Austin, Texas 78712 {rlopez,batory}@cs.utexas.edu
	Abstract. We propose a standard problem to evaluate product-line methodologies. It relies on comm...
	1 Introduction
	2 A Standard Problem: The Graph Product Line
	Figure 1. GPL Grammar and Specification GUI
	Table 1. Feature Constraints

	3 GenVoca
	3.1 GPL
	Table 2. A GenVoca Model of GPL

	3.2 Mixin-Layers

	4 Graph Implementation
	4.1 Adjacency Lists Representation (G)
	Figure 2. Adjacency Lists Representation Example

	4.2 Neighbor List Representation (GN)
	4.3 Edge-Neighbor Representation (GEN)
	Figure 3. Neighbor Lists Representation Example
	Figure 4. Edge and Neighbor List Representation Example

	5 Profiling Results
	Figure 5. Simple graph traversal comparison
	Figure 6. Strongly Connected Components
	Figure 7. MST Kruskal
	Table 3. Kruskal Algorithm Statistics
	Table 4. Lines of Code (LOC) and Number of Symbols (NSYMB)
	Figure 8. Effect of Class Layering

	6 Conclusions
	7 References
	[1] J-R Abrial, E. Boerger, and H. Langmaack, Formal Methods for Industrial Applications: Specify...
	[2] P. America, et. al. “CoPAM: A Component-Oriented Platform Architecting Method Family for Prod...
	[3] D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca Generators. IEEE ...
	[4] D.Batory, B.Lofaso, and Y.Smaragdakis. “JTS: Tools for implementing Domain-Specific Languages...
	[5] D. Batory, R. Cardone, and Y.Smaragdakis. “Object-Oriented Frameworks and Product Lines”, 1st...
	[6] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Programming Environ...
	[7] J. Bosch, “Evolution and Composition of Reusable Assets in Product-Line Architectures: A Case...
	[8] S.R. Chidamber and C.F. Kemerer, “Towards a Metrics Suite for Object Oriented Design”, OOPSLA...
	[9] S. Cohen and L. Northrop, “Object-Oriented Technology and Domain Analysis”, Int. Conf. on Sof...
	[10] T.H. Cormen, C.E. Leiserson, and R.L.Rivest. Introduction to Algorithms, MIT Press, 1990.
	[11] K. Czarnecki and U.W. Eisenecker, “Components and Generative Programming”, SIGSOFT 1999, LNC...
	[12] K. Czarnecki and U.W. Eisenecker, Generative Programming: Methods, Tools, and Applications, ...
	[13] J-M. DeBaud and K. Schmid, “A Systematic Approach to Derive the Scope of Software Product Li...
	[14] H. Gomaa et al., “A Prototype Domain Modeling Environment for Reusable Software Architecture...
	[15] M. Griss, “Implementing Product-Line Features by Composing Component Aspects”, First Interna...
	[16] I. Holland. “Specifying Reusable Components Using Contracts”, ECOOP 1992.
	[17] D.L. Parnas, “On the Design and Development of Program Families”, IEEE Transactions on Softw...
	[18] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with Mixin Layers”, ECOOP 1998.
	[19] M. VanHilst and D. Notkin, “Using C++ Templates to Implement Role-Based Designs”, JSSST Inte...
	[20] D.M. Weiss and C.T.R. Lai, Software Product-Line Engineering, Addison-Wesley, 1999.

