
Modeling Interactions in Feature Oriented
Software Designs1

Jia LIU, Don BATORY and Srinivas NEDUNURI
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712, U.S.A.

{jliu,batory,nedunuri}@cs.utexas.edu

Abstract. Feature Oriented Programming (FOP) is a general theory of software
development where programs are assembled by composing feature modules. A fea-
ture X interacts structurally with another feature Y by changing Y’s source code. We
advance FOP by proposing an algebraic theory of structural feature interactions that
models feature interactions as derivatives. We use our theory to show how a legacy
Java application can be refactored into a feature-based design.

1 Introduction

A feature of a program is a functionality or implementation characteristic that is important
to a client. The feature set of a program is the set of services that the program provides
[13]. A software product-line is a family of related programs [13]. Programs — or product-
line members — are differentiated by the sets of features they implement. Feature Ori-
ented Programming (FOP) is a general theory of software development, and in particular,
software product-lines. A product-line model is an algebra, where each operation imple-
ments a feature. The design of a program is a composition of these operations (features).
Composition evaluation synthesizes the target program; composition optimization opti-
mizes the design of that program [5]. Nontrivial systems have been synthesized using FOP,
including database systems [3], extensible Java compilers [5], avionics [1], and program
verification tools [32].

FOP has direct relevance to main-stream software-development. FOP’s focus on fea-
tures as units of modularity advances contemporary trends in software design. Program
features are often expressed as use-cases in UML models and features frequently corre-
spond to product-requirements [15][16]; feature-level modularity helps software product-
family optimizations [20]. Further, incremental program evolution and maintenance often
involves the operations of adding, removing, or updating features from existing programs
[13]. FOP raises these informal activities to the study of features as a fundamental form of
software modularity, and shows how feature modules lead to systematic, general, and auto-
matic approaches to software synthesis and evolution.

Feature interactions are a key issue in feature-oriented designs. A feature interaction
occurs when one or more features modify or influence other features [14]. There are many

1. This research is sponsored in part by NSF's Science of Design Project #CCF-0438786.

dsb
Text Box
to appear, International Conference on Feature Interactions in Telecommunications and Software Systems (ICFI 2005), Leicester, United Kingdom

ways in which features can interact: we focus on a particular form of interactions that are
static and structural: how a feature influences (or changes) the source code of another. In
this paper, we sketch an algebraic theory of structural feature interactions for FOP that has
the following characteristics:

• Structural feature interactions are expressed by the concept of a derivative:
how one feature (or group of features) alters or influences another feature;

• Feature derivatives are general operators in FOP and obey algebraic laws.
Derivatives expose a rich algebraic structure of application designs that is suit-
able for automatic manipulation and automatic synthesis;

• Derivatives enable refactoring (Java) legacy applications into FOP designs,
thereby giving legacy applications an important measure of evolvability by
allowing features to be more easily added or removed.

Our work has applicability to domains where features are composed statically to syn-
thesize programs. We believe that many software-intensive domains fall into this category.
We begin with a brief introduction on the core ideas of FOP.

2 Feature Oriented Software Design and AHEAD

A feature is an increment in program functionality [37] and often corresponds to a user-ori-
ented functional requirement of an application. The earliest research in product-lines used
features both to define requirements incrementally and to specify programs. Not only was
declarative program specifications possible using features, it was cheaper to build individ-
ual features and to assemble them into desired applications [8][15][16].

The Graph Product-Line (GPL) [21] is a simple example (Figure 1a). GPL is a set of
programs that implement one or more algorithms on graphs. GPL has 9 features, grouped
into 4 categories. A graph can be directed or undirected, its edges are weighted or
unweighted, it can have a depth-first or breadth-first search algorithm, and it also has one
or more algorithms to detect cycles, calculate shortest paths and find connected regions.
Figure 1b lists, among many, two applications that can be built from this product-line:
GraphApp1 is a program that implements an unweighted, undirected graph with depth-
first search and connected region detection algorithm. GraphApp2 is a program that
implements a weighted, directed graph with depth-first search, shortest-path and cycle
checking algorithms. We will explain the dot (•) notation shortly.

Figure 1. A Graph Product-Line (GPL)

(a) GPL Features

(b) Sample Applications of GPL

Graph TypeSearch

Directed
Undirected

Breadth-First
Depth-First

GraphApp1 = Connected-Region • Depth-First • UnWeighted • Undirected

Algorithm

Cycle-Checking
Shortest-Path
Connected-Region

Weight

Weighted
UnWeighted

GraphApp2 = Cycle-Checking • Shortest-Path • Depth-First • Weighted • Directed

Viewing programs in terms of features provides benefits in evolution and mainte-
nance. Both involve requirement changes: some requirements may be modified or become
obsolete, while new requirements may be added to a system. Such changes usually trans-
late directly into changes of features — modifying, removing and/or adding them.

2.1 Feature Oriented Programming and AHEAD

The central idea of FOP is to modularize features and build programs from these modules
[28][3]. AHEAD (Algebraic Hierarchical Equations for Application Design) is a unique
formulation of FOP that integrates step-wise development, generative programming, and
algebras [2][5]. A fundamental premise of step-wise development is that a complex pro-
gram can be built from a simple program (called a base program) by progressively adding
features. This process can be given mathematical precision by appealing to fundamental
ideas of generative programming: programs are data and functions (called transforms) map
programs [7]. AHEAD unifies these ideas to show that models of product-lines have a sim-
ple algebraic structure. Namely, base programs are constants, and features that extend pro-
grams are functions. Consider the following constants that represent base programs with
different features:

f // program with feature f
g // program with feature g

A program extension is a function that takes a program as input and produces a fea-
ture-extended program as output, where • denotes function composition.:

i•x // adds feature i to program x
j•x // adds feature j to program x

A multi-featured application is an equation that defines how a base program is
extended by zero or more features. Different equations define a family of applications,
such as:

app1 = i•f // app1 has features i and f
app2 = j•g // app2 has features j and g
app3 = i•j•f // app3 has features i, j, f

Thus, the features of an application can be determined by inspecting its equation.

2.2 Code Synthesis

Figure 2 depicts a program P that is a
package of four classes (class1 —
class4). P is synthesized by compos-
ing features X, Y, and Z. Feature X
encapsulates a fragment of class1 —
class3. Feature Y extends class1
— class3 and introduces class4.
Feature Z extends all four classes. Fea-
tures encapsulate fragments of classes, and composing features yields packages of fully-
formed classes.

Figure 2. P = Z•Y•X

feature X

feature Y

feature Z

class1 class2 class3 class4

feature X

feature Y

feature Z

class1 class2 class3 class4

Code synthesis is straightforward:
method and class extensions follow common
notions of inheritance. Figure 3a shows
method A() whose body sequentially exe-
cutes statements r, s, and t. Figure 3b
declares an extension of this method whose
body says execute super.A() followed by
statement w. The statement super.A()

invokes the method’s previous definition. The composite method is Figure 3c; it is pro-
duced by substitution: super.A() is replaced with the original body of A().

Class extensions are similar. Figure 4a shows a class K that has three members: meth-
ods A(), B(), and variable C. Figure 4b shows an extension of K written in an extended-
Java language where class extensions are prefaced by the special keyword ‘refines’.
This particular example encapsulates extensions to methods A() and B() and adds a new
variable D. The composition of this base class and extension is Figure 4c: composite meth-
ods A() and B() are present, plus the remaining members of the base and extension.
Although we have illustrated the effects of composition using substitution, there are many
other techniques that can realize these ideas, such as mixins [9], mixin-layers [31], and
program transformations [7].

We scale these ideas as follows: each constant feature encapsulates a set of base
classes. Each function feature encapsulates a set of base classes and class extensions. In
Figure 5, feature X encapsulates the definitions of base classes class1 — class3. Fea-
ture Y encapsulates extensions of class1 — class3 plus base class4. When Y is com-
posed with X, corresponding classes in each feature are composed and the remaining
classes (in this case class4) are copied. Large systems, in excess of 200K LOC Java,
have been synthesized with these ideas [5].

void A() { r; s; t; }

void A() { super.A(); w; }

void A() { r; s; t; w; }

(a)

(b)

(c)

Figure 3. Method Definition and Extension

class K {
void A(){ x;y;z; }
void B(){ m;n; }
int C;

}

refines class K {
void A(){ super.A();w; }
void B(){ q;super.B(); }
String D;

}

class K {
void A(){ x;y;z;w; }
void B(){ q;m;n; }
int C;
String D;

}

(a) (b) (c)

Figure 4. Class Definition and Extension

class1

class2

class3

∆class1

∆class2

∆class3

class4

c lass1’

c lass2’

c lass3’

c lass4

Legend

classn is base c lass
∆c lassn is extens ion o f c lassn
c lassn’ is com posite c lass n

Y X Y X

class1

class2

class3

∆class1

∆class2

∆class3

class4

c lass1’

c lass2’

c lass3’

c lass4

Legend

classn is base c lass
∆c lassn is extens ion o f c lassn
c lassn’ is com posite c lass n

Y X Y XY X

Figure 5. Composition of Features Y and X

3 Structural Feature Interactions

A feature interaction occurs when one or more features modify or influence another fea-
ture. There are many ways in which features can interact (e.g., [11][17][28][36]): we focus
on a particular form of interactions that are static and structural: how a feature influences
(or changes) the source code of another. In this section we show how structural feature
interactions impact program designs with a simple example.

3.1 Stack Product-Line

In 1997, Prehofer presented an FOP model of a stack product-line [28]. The following is a
modified version and an AHEAD representation of his example. The product-line consists
of three features: stack, counter, and lock. stack implements basic stack operations
such as push() and pop(); counter adds a local counter to track the size of the stack;
lock provides a switch to allow/disallow operations on the stack. Implementations of
these features are shown in Figure 6a-c.

This is a common FOP design. There is a kernel feature (stack) that introduces the
underlying class structure of the program and defines the basic stack operations. Each sub-
sequent feature makes an improvement of the base program by adding a coherent set of
new functionalities. Note that each new feature builds upon prior features, so that it can
make proper extensions to integrate the new functionalities into the program. For example,
feature lock is written with the full knowledge of stack and counter, and it updates the
stack body and the counter when necessary. To generate programs from this product-line,
features are composed in order, for example counter•stack yields a stack with a
counter, and lock•counter•stack produces a full-featured stack.

Figure 6. Feature Modules in Stack Product-Line

class stackOfChar {
String s = new

String();

void empty() {
s = "";

}
void push(char a) {

s = a + s;
}
void pop() {

s = s.substring(1);
}
char top() {

return s.charAt(0);
}

}

(a) stack

refines class stackOfChar {
int ctr = 0;

int size() { return ctr; }
void reset() { ctr = 0; }
void inc() { ctr++; }
void dec() { ctr--; }

void empty() {
 reset();
 super.empty();
}
void push(char a) {
 inc();
 super.push(a);
}
void pop() {
 dec();
 super.pop();
}

}

(b) counter

refines class stackOfChar {
boolean lck = false;
void lock() { lck = true; }
void unlock() {
 lck = false;
}
void empty() {
 if (!lck)

super.empty();
}
void push(char a) {
 if (!lck)

super.push(a);
}
void pop() {
 if (!lck) super.pop();
}
void inc() {
 if (!lck) super.inc();
}
void dec() {
 if (!lck) super.dec();
}
void reset() {
 if (!lck) super.reset();
}

}

(c) lock

Features interact structurally by extending methods defined in other features [28].
Feature counter extends methods push(), pop(), empty() defined in feature stack.
It does so in order to integrate the ‘counter’ functionality into the stack. Feature lock
extends methods push(), pop(), empty() defined in feature stack and methods
inc(), dec(), reset() defined in feature counter. Again, these extensions are neces-
sary in order to add the ‘lock’ functionality to a stack with a counter.

3.2 Feature Optionality Problem

The above design has one problem: suppose we want a stack that is locked with no counter.
An intuitive way to compose stack with lock is by the expression lock•stack. A
closer examination, however, reveals that the composition does not produce the desired
program. Feature lock extends methods defined in stack (push(), pop(), empty())
and methods defined in counter (inc(), dec(), reset()). Now that counter is
absent, lock tries to extend non-existent methods; in another words, lock interacts with a
non-existent feature! This is a general problem — the Feature Optionality Problem — in
feature-oriented designs: because we build into a feature its interactions with other fea-
tures, the feature breaks when one of these other features is not present. This is an undesir-
able effect that undermines feature reusability, as feature optionality can no longer be
achieved. It is especially noticeable in software product-lines, since product-line members
often only use a partial set of all features.

Since the cause of the problem is that different feature interactions are encapsulated in
the same module, we can improve our feature design by separating these interactions into
different modules [28]. We restructure counter into two parts in Figure 7a-b: counter is
the base feature; stackcounter encapsulates counter interactions with stack: these
interactions extend methods push(), pop(), and empty(). Similarly we restructure
lock into three parts as Figure 7c-e shows: lock is the base feature; stacklock encapsu-
lates the interaction of lock with stack; and counterlock encapsulates the interaction
of lock with counter.

With this separation, we can compose the stack program with any combination of fea-
tures. To build a stack with only a counter, we use stackcounter•counter•stack. To
build a stack with a lock, we use stacklock•lock•stack. For a full-featured stack, we
compose every module:

counterlock • stacklock • lock • stackcounter • counter • stack

The value of this idea is clear: interactions and base features separate concerns. The
semantics of interaction modules and base feature modules are different. However, the idea
has its limitations. First, the example is too simple: it deals with a single class. Features
generally cross-cut many classes. Second, feature interactions are not limited to two fea-
tures; multi-feature interactions are possible. Third, there is no algebra or architectural
model to express these ideas or to generate the correct compositions of base features and
interaction modules from higher-level specifications. We show how to remove these limi-
tations in the next section.

4 Software Derivatives

Base features (e.g. lock) encapsulate method and variable definitions of an application or
product-line. That is, we generalize the stack example so that a base feature encapsulates
any number of methods and variables belonging to any number of classes, not just a single
class. Further, we require that no two base features define the same method or variable.

Interaction module XY expresses the concept of a derivative: how feature X changes
with respect to feature Y. Henceforth, we write XY as ∂X/∂Y. Like base features, a derivative
is a module that encapsulates methods and variables. Additionally and more importantly, a
derivative also encapsulates method extensions of its base feature. That is, derivative ∂X/
∂Y encapsulates extensions to zero or more methods of X made by Y. Figure 7 illustrates
these ideas. It shows two base features (counter and lock) and three derivatives —
stackcounter is ∂stack/∂counter, stacklock is ∂stack/∂lock, and counterlock is
∂counter/∂lock.

This definition of base features and derivatives leads to a large set of commutative
identities. For example, base features can be composed in arbitrary order. That is, for two
different base features X and Y:

X • Y = Y • X (1)

The reason is that base features do not interact and do not share members. Composi-
tion reduces to set-union (see [5]), and thus the order in which base features are composed
does not matter. Similarly, the composition of derivatives with different numerators com-
mute. For different features X, Y, and Z:

∂X/∂Y • ∂Z/∂Y = ∂Z/∂Y • ∂X/∂Y (2)

Figure 7. Separating Feature Interactions

refines class stackOfChar {
boolean lck = false;

void lock() {
lck = true;

}
void unlock() {

lck = false;
}

}

(c) lock (d) stacklock (e) counterlock

refines class stackOfChar {
int ctr = 0;
int size() { return ctr; }
void inc() { ctr++; }
void dec() { ctr--; }
void reset() { ctr = 0; }

}

(a) counter

refines class stackOfChar {
void empty() { reset(); super.empty();}
void push(char a) { inc(); super.push(a);}
void pop() { dec(); super.pop();}

}

(b) stackcounter

refines class stackOfChar {
void push(char a) {

if (!lck)
super.push(a);

}
void pop() {

if (!lck)
super.pop();

}
void empty() {

if (!lck)
super.empty();

}
}

refines class stackOfChar {
void inc() {

if (!lck)
super.inc();

}
void dec() {

if (!lck)
super.dec();

}
void reset() {

if (!lck)
super.reset();

}
}

∂X/∂Y encapsulates changes of X methods by Y and ∂Z/∂Y encapsulates changes of Z
methods by Y. Because the set of X and Z methods are disjoint, the order in which their
derivatives are composed does not matter.

Derivatives with the same numerators,
however, do not commute — the order of
composition is generally important. For dif-
ferent features X, Y, and Z, generally ∂X/∂Y •
∂X/∂Z ≠ ∂X/∂Z • ∂X/∂Y. A simple example of
non-commutativity is depicted in Figure 8,
where Xvar, Yvar, and Zvar are variables
belonging to features X, Y, and Z, respectively.
Composing these derivatives in different
orders yields different programs.

4.1 Forward and Backward Interactions

In our example we see that stack is modified by
counter and lock, yielding derivatives as ∂stack/
∂counter and ∂stack/∂lock. We call these forward
interactions, because a feature is modified by features that
are composed later. Forward interactions occur when a
method is extended by subsequent features. If we look at
the resulting extended method, it would appear that the
method’s body references members (e.g., variables, func-
tions) that are defined in the future by a feature that is
added.

With this same line of reasoning, a feature can be
modified by previously defined features. We call these
backward interactions. Backward interactions occur when
a feature references a data member or a method defined in
previously composed features, which is common in lay-
ered program designs. Consider the undo feature of
Figure 9. It backs up and restores the contents of a
counted stack. The composition of three features stack,
counter, and undo produces an undoable counted stack.

Feature undo extends basic stack operations —
push(), pop(), and empty() — which produces forward interactions with stack just
like counter. But in method backup() and undo(), it also references data members
defined in previous features: s in stack and ctr in counter. These are examples of
backward interactions where undo can be seen as being “modified” by stack and
counter. We can create derivatives that separate these interactions into individual mod-
ules, just as we did earlier. Figure 10a-d shows this separation. Figure 10a is the base fea-
ture of undo and Figure 10b is the forward interaction between stack and undo.
Figure 10c-d shows undo’s backward interactions with stack and counter respectively.

In the general case, every feature can influence every other feature in a program: so
not only can a feature influence the features that were composed previously, it also can

void methodX() {
super.methodX();
Xvar = Xvar + Yvar;

}

void methodX() {
super.methodX();
Xvar = Xvar * Zvar;

}

(a)∂X/∂Y

(b)∂X/∂Z

Figure 8. Non-Commutable Derivatives

Figure 9. Feature undo

refines class stackOfChar {
String s_bak;
int ctr_bak;

void backup() {
 s_bak = s;
 ctr_bak = ctr;
}
void undo() {
 s = s_bak;
 ctr = ctr_bak;
}
void empty() {
 backup();
 super.empty();
}
void push(char a) {
 backup();
 super.push(a);
}
void pop() {
 backup();
 super.pop();
}

}

exert an influence on features that will be subsequently composed. Both kinds of interac-
tions are common in applications we have seen.

4.2 Higher-Order Derivatives

As in differential calculus, derivatives are operators. We believe the same applies here. ∂/
∂X denotes an operator on programs that denotes how feature X changes a program. If P is a
program, the change is denoted ∂P/∂X. This leads to a pair of interesting ideas and general-
izations.

First, we now have a general way to express interactions among multiple features. For
example, the interaction of X with the interaction of Y with Z is a second order derivative:

(∂/∂X)(∂Z/∂Y) = ∂2Z/∂X∂Y (3)

Such derivatives have a simple interpretation: ∂2Z/∂X∂Y is a module that encapsulates
the changes made to feature Z by the combined features X and Y. Such a module typically
encapsulates (before, after, and around) extensions of Z methods, such as:

void methodZ() { // example of “after advice”
super.methodZ();
code that references members of by X, Y, and/or Z;

}

where methodZ is a method introduced by Z, and its body references members intro-
duced by features X, Y, and/or Z. Nth-order derivatives have a similar interpretation. That
is, ∂nA/(∂B1...∂Bn) defines a module that extends methods introduced by A and refer-
ences members in A, B1...Bn.

Figure 10. Derivatives of Bi-Directional Interactions

refines class stackOfChar {
void backup() {}
void undo() {}

}

(a) undo (b) ∂stack/∂undo

refines class stackOfChar {
void empty() {
 backup();
 super.empty();
}
void push(char a) {
 backup();
 super.push(a);
}
void pop() {
 backup();
 super.pop();
}

}

refines class stackOfChar {
String s_bak;
void backup() {
 super.backup();
 s_bak = s;
}
void undo() {
 super.undo();
 s = s_bak;
}

}

(c) ∂undo/∂stack

refines class stackOfChar {
int ctr_bak;
void backup() {
 super.backup();
 ctr = ctr_bak;
}
void undo() {
 super.backup();
 ctr_bak = ctr;
}

}

(d) ∂undo/∂counter

Second, our observations on a wide set of programs suggest that differentiation dis-
tributes over composition. That is, the derivative of a composition equals the composition
of its derivatives:

(∂/∂X)(R•S) = (∂R/∂X)•(∂S/∂X) (4)

Intuitively, (4) states the fact that the impact of a feature (X) to a composite of two
modules (R and S) can be seen as the composition of this feature’s impact to each of the
two modules (∂R/∂X and ∂S/∂X). A simple case is when R and S are base features or deriv-
atives of different base features, meaning they define or extend different set of class mem-
bers. In this case their composite R•S is the union of the definitions/extensions they each
encapsulate, and any modification that X makes to them can be classified as either X’s mod-
ification to R (∂R/∂X), or X’s modification to s (∂S/∂X). It is less obvious when R and S
define or extend the same class members. Feature X further modifies these class members
by extending them after the composition of R and S. We believe these modifications made
by X can be factored into two parts, ∂R/∂X and ∂S/∂X, where (4) holds.

4.3 Abstract and Concrete Models

In earlier discussions we implicitly used two different feature models: an abstract model
and a concrete model. An abstract model contains a set of abstract features where feature
interactions are implicit. This represents a user’s view of the system. An abstract feature X
(names of abstract features are underlined) has the exactly the same methods of its concrete
base feature X, but the implementation of these methods is undefined. For the stack exam-
ple, the abstract model A has four features:

A = { stack, counter, lock, undo }

Applications of a product-line are produced by composing abstract features. Among
the members of A’s product-line are:

stack // stack
counter • stack // stack with a counter
lock • stack // stack with a lock
lock • counter • stack // stack with both a counter and a lock
undo • stack // undoable stack
undo • counter • stack // undoable stack with a counter

On the other hand, a concrete model makes feature interactions explicit — it is the set
of all base features and all feature interaction modules that represent the implementation
view of a product-line. For the stack example, a concrete model C contains 10 non-empty
modules — 4 base features and 6 derivatives:

C = {stack, counter, lock, undo, ∂stack/∂counter,
∂stack/∂lock, ∂stack/∂undo, ∂counter/∂lock, ∂undo/∂stack,
∂undo/∂counter }

Although product-line members are specified by compositions of abstract features,
they must be built by composing concrete modules — base features and derivatives. Thus,
we need a way to translate abstract expressions into concrete expressions.

Let X and Y be abstract features and X•Y their composition. Let X, Y, ∂Y/∂X, and ∂X/∂Y
denote the corresponding concrete base features and their interactions. The relationship
that maps an abstract feature expression to a concrete feature expression is:

X • Y = ∂X/∂Y • ∂Y/∂X • X • Y (5)

The semantics of (5) is straightforward: to compose abstract features X and Y, we
compose their base features (X and Y) and their mutual interactions (∂X/∂Y and ∂Y/∂X).
(5) elevates this relationship to a general identity. Here is why (5) is useful: it specifies
how a composition of abstract features can be automatically translated to a composition of
concrete features, which would otherwise be much larger and much more difficult to write:

 undo • counter • stack
= ∂2undo/∂counter∂stack • ∂undo/∂counter • ∂undo/∂stack • undo
• ∂2counter/∂undo∂stack • ∂counter/∂undo • ∂counter/∂stack
• counter • ∂2stack/∂undo∂counter • ∂stack/∂undo • ∂stack/∂counter
• stack

We can build a database or code repository of non-empty base features and deriva-
tives. Tools will translate abstract expressions into their corresponding concrete expres-
sions. These same tools will lookup each term in the database: if a term is not present (such
as ∂2stack/∂undo∂counter above), it is inferred to be empty. (An empty module is
equivalent to the identity function). If it is present, the module is retrieved. All non-empty
modules are then composed in the order dictated by the concrete expression, and the target
application is then synthesized:

(∂undo/∂counter • ∂undo/∂stack • undo) • counter
• (∂stack/∂undo • ∂stack/∂counter • stack)

In theory, a composition of n abstract features may map to a composition of O(n*2n)
concrete features. We have observed that a vast majority of derivatives are empty, so that a
composition of n abstract features maps to a composition of something like O(n2) concrete
features or less. Future experimentation will better reveal the nature of this expansion.

5 Feature-Oriented Refactoring of Legacy Applications

How can derivatives be used to solve a practical problem? We consider such an application
in this section, along with some preliminary experimental results.

A common maintenance request is to add and remove features from an existing appli-
cation. If the application has an FOP design, this is a simple task. Features are added and
removed, and the application is rebuilt. If non-FOP designs are used, this task is much
more expensive because the source for individual features is scattered throughout the code
base, and engineers must manually find and edit this code. An interesting problem is to
refactor legacy applications which do not have FOP designs into an equivalent form where
they do have FOP designs. By doing so, FOP’s ease of feature extensibility can be
exploited.

To refactor legacy applications, we will use a relationship between FOP designs and
OO frameworks [4]. An OO framework is a set of abstract classes that encapsulate generic

code. Some methods are abstract — called hot-spot methods — whose bodies have yet to
be defined. An OO framework is instantiated when a concrete class is created for every
abstract class. These concrete classes define the bodies of hot-spot methods. From an FOP
perspective, the resulting program is C•F, meaning F is the (possibly composite) feature
that defines a set of abstract classes of the framework, and C is the (possibly composite)
feature that defines an extension to F that completes the program.

Legacy applications can be refactored into an FOP design in two phases. First, a user
defines an abstract FOP expression from which the legacy program is to be synthesized.
This expression states what abstract features are present in the program and what order
these features are composed. Our model of derivatives tells us that features partition the set
of data members and methods of an application. The first step in a Legacy-to-FOP refac-
toring is the process of assigning data members and methods of the application to distinct
features. Doing so partitions the application so that each member and method is “tagged”
with the name of a feature that introduced the method. Tool support can simplify this tag-
ging process [30].

The next step is to refactor the bodies of methods into base components and deriva-
tives. For each feature, its data member definitions and method definitions should be put
into its base feature. If a method does not reference any member defined outside the fea-
ture, its body goes to the concrete base feature. The only non-obvious cases are methods
that reference data members and/or methods defined in other features. These are hot-spot
methods.

Hot-spot methods are easy to detect. Suppose method M belongs to feature Fi. If M ref-
erences data members or methods of another feature Fj, then M is a hot-spot method. That
is, M must be partitioned into a core method Mi (which references only Fi members and will
be part of the its base feature) and a method extension Mj (which references Fj members
and will be part of the derivative ∂Fi/∂Fj). If j>i, meaning that Fj was composed after Fi,
then ∂Fi/∂Fj is a forward interaction; otherwise it is a backward interaction. Figure 11
illustrates this concept. Of course, we expect the original methods may not be easily parti-
tioned without rewriting, as first observed by Murphy [24]. As in [24], our initial approach
will ask users to partition methods manually. As our understanding of this process matures,
we expect to add to our tools an infrastructure that analyzes and manipulates control flow
and data flow graphs to suggest an automatic means of method partitioning.

void M() {
...reference Fi members...

...reference Fj members...

...reference Fk members...

...reference Fm members...
}

void M() { ..reference Fi members.. }

void M() {
super.M();
..reference Fj,Fi members..

}

void M() {
super.M();
..reference Fk,Fi members..

}

void M() {
super.M();
..reference Fm,Fi members..

}

feature Fj

feature Fk

feature Fm

Figure 11. Factoring Hot-Spot Methods

feature Fi

(a)

(b)

In summary, we begin with a legacy application P (Figure 12a). We then assign each
class member to a feature (Figure 12b) which vertically partitions an application. Each par-
tition contains only the class members assigned to the corresponding feature. Next, we
classify methods into derivatives and allow users to refactor methods so that each vertical
partition is decomposed into a base feature and derivatives (Figure 12c). We then use our
algebra to reshuffle the resulting FOP expression into “horizontal” layers which yields an
FOP design (Figure 12d) that conforms to Figure 2. That is, each layer defines an imple-
mentation of an abstract feature the user specified in the beginning of the refactoring pro-
cess. Without derivatives, we could not do these last critical steps. We believe that the
resultant FOP design will make it easier to add new features to P, remove existing features
from P or modify existing features, thus making P easier to evolve.

5.1 An Example — Java Notepad Application

In this section we use a notepad application2 as an example to demonstrate our feature-ori-
ented refactoring process. This is a simple application written in Java that supports com-
mon file operations (open, save, etc.) and edit operations (copy, paste, etc.) as Figure 13
illustrates. The original program consists of a single source file Notepad.java which is
about 24K bytes in size and contains 1K lines of code.

To refactor this program, our first step identifies the set of features in the application
and defines a composition order. We identified 13 features and grouped them into 6 catego-
ries as Table 1 shows.

2. This application was written by S. Al-Thubaiti and can be downloaded at http://
www.pscode.com/vb/scripts/ShowCode.asp?txtCodeId=3153&lngWId=2

(a) (b) (c)

Figure 12. Refactoring Process

(d)

Figure 13. Notepad.java

Feature Base provides a framework for the notepad. There are 4 file features, 4 edit
features, and some additional features such as Print, Format, LineWarp, and Help.
These features are composed in an order (there are many such orders) that is consistent
with step-wise development:

Notepad = Help
 • LineWarp • Format
 • Print
 • Find • Paste • Copy • Cut
 • SaveAs • Save • Open • New
 • Base

During refactoring, we noticed that there are no interactions between features from
different groups other than Base. This is because other than the adding menu items and
buttons to the base notepad frame, each feature group implements separate functions of the
application that neither depend nor influence each other. For example, file operations and
edit operations are independent of each other and do not change each other’s code at all.
However, inside each feature group there are quite a number of interactions. To name a
few, the presence of feature Save requires prompting to save the current file before open-
ing a new file with feature Open; feature Save and feature SaveAs share common code
for disk operations. The following list shows the base features and interactions among the
base frame and file operation group:

{ Base, New, Open, Save, SaveAs, ∂Base/∂Open,
∂2Base/∂Open∂New, ∂Base/∂Save, ∂Base/∂SaveAs,
∂2Base/∂SaveAs∂Open, ∂2Base/∂Save∂Open, ∂New/∂Base,
∂2New/∂Open∂Base, ∂Open/∂Base, ∂Open/∂Save,
∂Save/∂Base, ∂Save/∂Open, ∂Save/∂SaveAs }

For the most part, methods of the original application were easily factorable as sug-
gested in Figure 11, although doing so manually consumes time. As expected, we did have
to restructure some methods — by reordering statements for example — so that they could
be composed from feature modules. These restructurings were not difficult to do and did
not alter the application’s behavior. We did notice that we could have used several different
ways to restructure a method. Choosing the “best” requires some foresight on what new
features might be added subsequently to the application. This is typical of issues in FOP
product-line designs and is not new or surprising.

Once we refactored the application into base features and derivatives, we were able to
build different versions by omitting abstract features. Suppose a user wants a notepad N
with the basic file functions — only New, Open and SaveAs, which is the abstract compo-
sition

Table 1. Feature Set of Notepad

Group Base File Edit Print Format Help

Features Base New

Open

Save

SaveAs

Cut

Copy

Paste

Find

Print Format

LineWarp

Help

N = SaveAs • Open • New • Base

To build N, we need to map this abstract expression to a concrete expression. Applying
the mapping rule (5) and eliminating empty terms, we get:

N = (∂2Base/∂SaveAs∂Open • ∂Base/∂SaveAs • SaveAs)
 // implements SaveAs

• (∂Open/∂Base • ∂2New/∂Open∂Base• ∂2Base/∂Open∂New
• ∂Base/∂Open • Open) // implements Open
• (∂New/∂Base • New) // implements New
• Base // implements Base

Note that we have rearranged terms
with commutativity law (2) so that it
shows the layered structure with each
layer implementing an abstract feature
under this configuration. When an
abstract feature is composed to the pro-
gram, derivatives are introduced only if
their corresponding feature interactions
appear. Evaluating this concrete feature
expression yields the version of notepad
illustrated in Figure 14.

Given an FOP design, it is easy to
synthesize other versions of notepad.
Figure 15a is a version with both basic file operations and edit operations. Figure 15b
enhances it with additional edit operations and a help menu. Although much of our work
for this example was done manually, it demonstrated the basic soundness of our approach.
Our next steps are to develop tools to aid this process.

Figure 14. Notepad with Basic File Operations

Figure 15. Different Customizations of Notepad
(b)(a)

6 Related Work

6.1 Feature-Related Models

FOP models have a long history, originating in collaboration-based designs and their
implementations as mixins and mixin-layers [9]. Features encapsulate cross-cuts, a concept
that was popularized by Aspect-Oriented Programming (AOP) [18]. There are three basic
differences between AOP and FOP. First, FOP is based on a step-wise development meth-
odology that is innate to the familiar component-based software development approaches;
AOP is based on a different methodology [22]. Second, the starting points for FOP and
AOP differ: product-lines are the consequence of pre-planned designs (so features are
designed to be composable); this is not a part of the standard AOP paradigm. Third, the
novelty and power of AOP is in quantification. Quantification is the specification of where
advice is to be inserted (or the locations at which extensions are applied). The use of quan-
tification in AHEAD is no different than that used in traditional OO frameworks [4][23].
There is work on aspect “interactions”, but it deals more with the ordering in which aspects
are composed, rather than the changes one aspect makes to another [12].

Multi-Dimensional Separation of Concerns (MDSoC) is another program extension/
composition technology [33], where Hyper/J [25] is the premier tool. Features correspond
to hyperslices, and feature compositions correspond to compositions of hyperslices. The
primary difference between FOP and Hyper/J is the algebraic foundation of FOP and its
relationship to step-wise program development. Hyper/J has no algebraic model of pro-
gram synthesis/composition, and no emphasis on feature/concern interactions.

Plath and Ryan proposed a feature integration model for specifying and composing
features [27]. Features are written in a model checking language, where each feature can
introduce new modules and/or change modules defined in other features. These feature
specifications can be used as inputs to a model checker to verify certain temporal logic
properties of the system. While our model deals with code artifacts, the work on feature
integration models features highly abstractly.

6.2 Feature Interactions

There is an enormous literature on feature interactions in telecommunications (e.g.,
[10][11][17][36]). Despite progress, it is found that feature interactions still are intrinsi-
cally difficult [10][11]. Generally prior work addresses different topics of feature interac-
tions, as most emphasize the dynamic or run-time impact features have on each other (e.g.
[36]), rather than the structural interactions that we examine. There are a few examples of
static interaction models but they follow Prehofer’s initial work [28][29].

It has been argued that prior research on structural feature interactions in telecommu-
nications (e.g., [26][28]) has not worked [14]. A typical argument goes like this: Features
are defined by finite state machines (FSMs). A FSM defines a base telecommunications
system. Feature A adds states to this FSM and transitions to/from the base to these states.
Feature B adds its own set of states and transitions to/from the base. Events that are spe-
cific to B can arise during the execution of A-added states, and vice versa. To properly han-
dle these events, transitions between A- and B-added states are needed. This clearly
doesn’t scale, as feature interactions grow exponentially.

There is a simple explanation for this: not all domains should compose features stati-
cally. An example is an FOP design created for Motorola’s product-line of hand-held

radios [6]. Features were modularized as message and signal transducers and each feature
was realized as a state machine. Features were composed dynamically at run-time, where
the order in which features were composed changed as external events were processed.
Creating a static FSM to describe feature interactions exposes the problems outlined in the
previous paragraph. This and earlier studies [1] have shown that when features are com-
posed dynamically, features transform messages/signals. When features are composed stat-
ically, they transform source code.

The architecture invented for Motorola is similar to Jackson and Zave’s Distributed
Feature Composition (DFC) [14][38]. That is, features are defined as message and signal
transducers and the order in which features are composed changes at run-time as external
events are processed. Many of the advantages cited for DFC are exactly the same as those
we have observed for AHEAD, and consequently we believe AHEAD and DFC are closely
related. For example, even when features are composed dynamically, software derivatives
can arise. Zave gives the following example [38]: a mid-call-move (MCM) and call-waiting
(CW) feature can be composed in different orders to yield different behaviors:

“Because of the structure imposed by the DFC architecture, the composition is
guaranteed to be well-defined. On the other hand, the requirements analyst might
feel that a subscriber should be prevented from executing a mid-call move when he
has someone on hold. To achieve this behavior, it will be necessary to compromise
the modularity slightly. For example, the CW program might be modified to absorb
move commands when someone is on hold, so that they never reach an MCM box.”

This “compromise in modularity” is changing ∂CW/∂MCM from an identity function to
an extension of CW that absorbs mid-call move events.

6.3 Feature Refactoring and Program Slicing

Feature refactoring focuses on identifying and extracting features from a program and is a
relatively new area of research. Prior work known to us concentrates on identifying code of
a feature (for example, having tools display how feature code is distributed throughout a
program) and factoring the code into a single module or aspect. Unlike our work, there is
(1) no underlying algebraic model of composition (i.e., to know what to do with the feature
after it has been identified and modularized), (2) no precise guidelines to determine what
can go into a feature and what should not, (3) no mechanism by which identified features
can be added to other programs (as is done in product-lines and generative programming),
and (4) no model or notion of feature interaction. Despite these differences, the essential
idea of labeling methods to identify feature contents is similar to the approach that we are
taking.

Robillard and Murphy [30] utilize a feature exploration and analysis tool called FEAT
to find concerns in software applications. After a user has specified a concern and identi-
fied one class that belongs to it as a seed, FEAT analyzes the program and constructs a con-
cern graph by tracing class member references and declarations relationships starting from
the seed. It allows users to traverse the graph and examine class members encountered and
decide whether to label them as part of the concern. Another technique to identify features
by running test cases has been proposed in [19]. Test cases are classified by the features
they belong, and features can be identified by analyzing code blocks that are impacted by
each group of test cases.

Program slicing [34][35] is a technique to isolate code in a program that is dependent
on a particular code fragment, so that programmers can better understand and debug the
program. It also supports various kinds of code refactorings, such as function extraction
and function in-lining. A major difference between program slices and derivatives is that
slices are identified by data flow and control flow dependence, while derivatives represent
changes made to features’ source code. Derivative-based refactorings may be performed
by a simple static code analysis. Slice construction process, especially data dependence
analysis, is very difficult by just looking at the source code; it is usually done by generating
execution traces that track control and data flows.

7 Conclusions

A feature is an increment in program functionality [37]. Features reflect a user’s view of a
software application, where features generally correspond to end-user requirements. Fea-
ture Oriented Programming is a general theory of software development, and in particular,
software product-lines where each member program is built from a composition of fea-
tures. FOP studies features as a fundamental form of software modularity, and shows how
feature modules lead to systematic, general, and automatic approaches to software synthe-
sis and evolution. FOP has direct relevance to main-stream software-development. Its
focus on features as a unit of modularity advances contemporary trends in software design,
and supports feature-based software specification, optimization and evolution. Nontrivial
systems of different domains have been synthesized using FOP.

Feature interactions are important in feature-oriented designs. Features interact with
each other structurally by influencing or changing each other’s source code in controlled
and well-defined ways. The need for modularizing feature interactions becomes obvious
when some feature X modifies the source code of optional feature Y. Changes to Y can’t be
modularized with X, because Y is not always present. Such changes must be stored in a sep-
arate module. We outlined a theory based on software derivatives in which structural fea-
ture interactions are distinguished from base features and are encapsulated separately. Our
theory treats feature interactions as general operators that obey algebraic laws. This makes
it possible to reason algebraically about features and their interactions in software design,
and allows tools to be developed to aid in the process of synthesizing applications from
base features and their interactions.

This paper describes only the first few steps and experiments that we have undertaken
to develop this theory and to use it to solve an interesting and challenging practical prob-
lem. The problem is to refactor legacy OO applications into a feature-based design, where
common maintenance operations of feature addition, modification, and removal should be
easier to express. The next steps in our research are to develop the theory more formally, to
build tools that will aid in the process of legacy-to-FOP refactorings, and to apply this the-
ory and tools to the refactoring of large legacy applications.

References

[1] D. Batory, L. Coglianese, M. Goodwill, and S. Shafer, “Creating Reference Architectures: An Example
from Avionics”, In Proc. Symposium on Software Reusability, Seattle Washington, April 1995.

[2] D. Batory, J. Liu, J.N. Sarvela, “Refinements and Multi-Dimensional Separation of Concerns”, ACM
SIGSOFT 2003 (ESEC/FSE2003).

[3] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software Systems with
Reusable Components”, ACM TOSEM, October 1992.

[4] D. Batory, R. Cardone, and Y. Smaragdakis, “Object-Oriented Frameworks and Product-Lines”. 1st
Software Product-Line Conference, Denver, Colorado, August 1999.

[5] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refinement”, IEEE Transactions on
Software Engineering, June 2004.

[6] D. Batory, B. Tremain, S. Nayar, “A Layered Architecture for Ergonomics Software”, internal Motorola
design document, 1997.

[7] I. D. Baxter, “Design Maintenance Systems”, CACM, Vol. 55, No. 4 (1992) 73-89.

[8] D. Beuche, H. Papajewski, W. Schröder-Preikschat, “Variability management with feature models”,
Science of Computer Programming, Volume 53, Issue 3, Pages 333-352, December 2004.

[9] G. Bracha and W. Cook, “Mixin-based inheritance”. In Proc. of OOPSLA, 1990.

[10] M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and Software Systems VI,
IOS Press, Amsterdam, 2000.

[11] E.J. Cameron, N.D. Griffeth, Y.-J. Lin, M.E. Nilson, et al, “A Feature Interaction Benchmark for IN and
Beyond”, Feature Interactions in Telecommunications Systems, IOS Press, pp. 1-23, 1994.

[12] R. Douence, P. Fradet, and M. Sudholt, “A Framework for the Detection and Resolution of Aspect
Interactions”, Generative Programming and Component Engineering (GPCE) 2002.

[13] M. Griss, “Implementing Product-Line Features by Composing Component Aspects”, First
International Software Product-Line Conference (SPLC), Denver, August 2000.

[14] M. Jackson and P. Zave, “Distributed Feature Composition: A Virtual Architecture For
Telecommunications Services”, IEEE Transactions on Software Engineering, October 1998

[15] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”. Technical Report CMU/SEI90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[16] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh, “FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures”. Annals of Software Engineering, 5:143--168, 1998.

[17] D.O. Keck and P.J. Kuehn, “The Feature and Service Interaction Problem in Telecommunications
Systems: A Survey”, IEEE Transactions on Software Engineering, October 1998.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-
oriented programming”. In Proc. of ECOOP, 1997.

[19] D. Licata, C. Harris, and S. Krishnamurthi, “The Feature Signatures of Evolving Programs”, IEEE Inter-
national Symposium on Automated Software Engineering (short paper), 2003.

[20] J. Liu and D. Batory, "Automatic Remodularization and Optimized Synthesis of Product-Families",
Generative Programming and Component Engineering (GPCE), October 2004.

[21] R. E. Lopez-Herrejon and D. Batory, “A Standard Problem for Evaluating Product-Line
Methodologies”, In Proc. of GCSE, 2001.

[22] R. Lopez-Herrejon and D. Batory, “Improving Incremental Development in Aspectj by Bounding
Quantification”, Software Engineering Properties and Languages for Aspect Technologies (SPLAT),
March 2005.

[23] M. Mezini and K. Ostermann, “Variability Management with Feature-Oriented Programming and
Aspects”, SIGSOFT 2004.

[24] G. C. Murphy, A. Lai, R.J. Walker, and M. P. Robillard, “Separating Features in Source Code: An
Exploratory Study”. In Proc. of ICSE, 2001.

[25] H. Ossher and P. Tarr, “Hyper/J: Multi-Dimensional Separation of Concerns for Java”. In Proc. of ICSE,
2000.

[26] J. Pang and L. Blair, “Separating Interaction Concerns from Distributed Feature Components”,
Electronic Notes in Theoretical Computer Science, 2003.

[27] M. Plath and M. D. Ryan, “Feature Integration using a Feature Construct”, Science of Computer
Programming, 41(1), 53-84.

[28] C. Prehofer, “Feature-Oriented Programming: A Fresh Look at Objects”. ECOOP, 1997.

[29] C. Prehofer, "Feature-Oriented Programming: A New Way of Object Composition," Concurrency and
Computation, vol. 13, 2001.

[30] M. P. Robillard and G. C. Murphy, “Concern Graphs: Finding and Describing Concerns Using Structural
Program Dependencies”. In Proc. of ICSE, May 2002.

[31] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-Oriented Implementation Technique for
Refinements and Collaboration-Based Designs”, ACM TOSEM, April 2002.

[32] R. E. K. Stirewalt and L. K. Dillon, “A Component-Based Approach to Building Formal Analysis
Tools”, International Conference on Software Engineering, 2001, 57-70.

[33] P. Tarr, H. Ossher, W. Harrison and S.M. Sutton, “N Degrees of Separation: Multi-Dimensional
Separation of Concerns”. In Proc. of ICSE, 1999.

[34] F. Tip, “A Survey of Program Slicing Techniques”, Journal of Programming Languages, 3(3),
September 1995.

[35] M. Weiser, “Program Slicing”, IEEE Transactions on Software Engineering, 10(4), 1984.

[36] P. Zave, “Address Translation in Telecommunication Features”, ACM Transactions on Software
Engineering and Methodology, January 2004.

[37] P. Zave, “FAQ Sheet on Feature Interactions”, http://www.research.att.com/~pamela/
faq.html

[38] P. Zave, “Distributed Feature Composition: Middleware for Connection Services”, available from
http://www.research.att.com/projects/dfc.

	Modeling Interactions in Feature Oriented Software Designs
	Abstract. Feature Oriented Programming (FOP) is a general theory of software development where pr...
	1 Introduction
	2 Feature Oriented Software Design and AHEAD
	2.1 Feature Oriented Programming and AHEAD
	2.2 Code Synthesis

	3 Structural Feature Interactions
	3.1 Stack Product-Line
	3.2 Feature Optionality Problem

	4 Software Derivatives
	4.1 Forward and Backward Interactions
	4.2 Higher-Order Derivatives
	4.3 Abstract and Concrete Models

	5 Feature-Oriented Refactoring of Legacy Applications
	5.1 An Example — Java Notepad Application

	6 Related Work
	6.1 Feature-Related Models
	6.2 Feature Interactions
	6.3 Feature Refactoring and Program Slicing

	7 Conclusions

