
Is the Derivation of a Model Easier to Understand
Than the Model Itself?

Janet Feigenspan
University of Magdeburg, Germany

feigensp@ovgu.de

Don Batory
University of Texas, USA

batory@cs.utexas.edu

Taylor Riché
National Instruments, USA

taylor.riche@ni.com

Abstract—Software architectures can be presented by graphs
with components as nodes and connectors as edges. These
graphs, or models, typically encode expert domain knowledge,
which makes them difficult to understand. Hence, instead of
presenting a complete complex model, we can derive it from a
simple, easy-to-understand model by a set of easy-to-understand
transformations. In two controlled experiments, we evaluate
whether a derivation of a model is easier to understand than
the model itself.

I. INTRODUCTION

Equations are used in physics to describe the movement of

planets, predict the stress load on bridges, and to anticipate

interaction of atomic particles. In graduate level physics, it is

standard fare for students and researchers to rederive published

equations from scratch, in order to understand them [3]. It

is also generally easier to remember how an equation was

derived, rather than to memorize the equation outright. The

reason is simple: Most equations are specific to the nuances

of a particular application, rather than a fundamental identity

(e.g., E = mc2). The laws presented in undergraduate physics

texts are usually examples of the latter; the exercises at the end

of each chapter are usually examples of the former.

In software engineering, we might expect the same. Com-

plex architectural models (typically represented as graphs

where nodes are components and edges are connectors) encode

a substantial amount of expert domain knowledge [9]. Without

such knowledge, it is difficult to understand a model and why

it has the “shape” that it does.

A host of researchers in the last 15 years [9] have sug-

gested another way to explain software architectures: Instead

of presenting an architectural model as a fully-completed

“spaghetti diagram”, they start from an elementary model

that is readily understood, and apply a series of semantics-

preserving refinements and optimizations to transform the

simple model into the complex model that represents the

complete architecture. Each transformation, in isolation, can

be easily grasped and represents a fundamental mapping that

arises in architectural designs in that domain. These mappings,

which equate a computational abstraction with one of its

implementations, correspond to a “law” in that domain. The

sequence in which these mappings are applied to a simple

architecture to produce the final architecture corresponds to

an application-specific equation in physics.

It seems plausible that the derivation of a model is easier to

understand than the model itself. However, “understanding”

is an internal cognitive process. Plausibility is not sufficient

to argue that something is easier to understand; empirical

investigations are necessary. In this paper, we present two

experiments in which we analyze whether the derivation of

a model is easier to understand than the model itself. The

results do not confirm this expectation.

II. OBJECTIVE

Using the goal-question metric [2], we analyze the deriva-

tion of a model for the purpose of the evaluation with respect
to memorization, comprehension, and modification from the
point of view of the software developer/architect in the context
of pipe & filter architectures [10].

We believe that the derivation of a model is easier to

understand than the model itself. The reason lies in working

memory capacity, which is limited to few items (since the

discussion about the exact number of items ranges from 5 to

more than 10 [7], [1], we cannot give a fixed number). This

means we can handle only few items at once; if there are too

many, we need support (e.g., by writing information down).

If we have a complex model with many items, we cannot

understand it all at once, but look only at parts of the model

to comprehend it. Thus, when we present an architectural

model piece by piece, subjects do not have to absorb more

information at a given time than they can. Hence, we defined

the following research hypotheses:

RH1: The derivation of model is easier to memorize than the

model itself,

RH2: The derivation of model is easier to comprehend than

the model itself, and

RH3: The derivation of model is easier to modify than the

model itself.

III. PILOT STUDY

The pilot study tested our experimental material and setting

(e.g., to avoid ambiguous formulations of the tasks). The

material and detailed results of the experiments is available

as technical report [5].

A. Material

We used two systems: Gamma (a relational database

machine) and Upright (a synchronous crash-fault-tolerance

dsb
Text Box
Accepted as a short paper. International Conference on Program Comprehension, 2012

Bn

B1

HSPLIT

HSPLIT

BLOOM

BLOOM

BFILTER

BFILTER

HJOIN

HJOIN

MERGE

A1

An

B1

Bn

A1

An

BA

A

B

A1

An

Mn

M1

B’1

B’n

Fig. 1. Parallel hash join in Gamma.

server). First, Gamma is a data base machine, which is known

for its innovative parallelization of hash joins [4]. In Figure 1,

we show how Gamma implements parallel hash joins. The

relations to be joined are first split into substreams using a

hash function (HSPLIT). For each tuple of the first relation,

the join key is hashed and stored in a bitmap M (BLOOM).

Then, for each tuple of the second relation, the join key is

hashed and compared with the join key hashes stored in M. All

tuples that have no entry of the hashed join key in M cannot be

joined and are deleted from the second relation (BFILTER).

Then the remaining tuples of the second relation are joined

with the tuples of the first relation (HJOIN). Finally, the joined

substreams are merged and the result is returned. We decided

to use the hash join in Gamma, because it is simple enough

to understand in a limited amount of time, but not too simple

to understand at first sight.

Second, we used Upright, a synchronous crash-fault-

tolerance server [9]. Client messages are processed sequen-

tially by a server (Figure 2a). Through server and client-

message replication, a certain number of server crashes can

be tolerated and still provide the image of a single server

processing client messages (Figure 2b). A client Cj sends

a message to a routing box Rtj , which routes a copy of

the message to all agreement nodes (A1 to An). As part

of the agreement protocol, each agreement node votes by

broadcasting the message that it believes should be processed

next to all quorum nodes (QA1 to QAk). When the quorum

nodes have received a sufficient number of identical messages,

that message is sent to each server replica (S1 to Sk). Each

server processes the same message, and sends its response to a

quorum node (for a message from Cj , the quorum node would

be QSj) that “sits” in front of the receiving client. A quorum

is taken, and a single response is returned to the client.

For both Gamma and Upright, we found a derivation of

their models. For demonstration, we illustrate the derivation

of Gamma in Figure 3. We start with a hash join without

optimization (Figure 3(a)). Then, we introduce a bloom filter

before the hash join, in which we delete tuples of B that

cannot be joined with A (Figure 3(b)). In the next steps,

we parallelize each box by splitting the stream of tuples

into substreams, processing each substream, and merging each

1

2

j

1

2

j

1

2

m

1

2

k

1

2

j

1

2

k �
�

�

1

2

j

�

�

(a)

(b)

Fig. 2. Synchronous crash-fault-tolerance server. (a): before transformations;
(b): after transformations.

substream (Figure 3(c) – 3(e)). We put the parallelized boxes

together (Figure 3(f)) and by deleting unnecessary merge and

split operations, we obtain the final architecture (cf. Figure 1).

For Upright, we started with a simple client-server ab-

straction of j clients C1...Cj sending messages to a single,

state-free server (cf. Figure 2a). By applying a sequence of

semantics-preserving transformations, we derive the architec-

ture of Upright (cf. Figure 2). (Presenting these transforma-

tions is beyond the scope of this paper. We refer interested

readers to [9]).

We created two sets of slides–one with the derivation, one

with the complete model–with explanations of the boxes. One

group of subjects received the set with the derivation, the other

group the set with the complete model, both on paper.

We created three tasks to test each hypothesis. First, subjects

should redraw the models of Gamma and Upright. Second,

subjects should answer multiple-choice comprehension ques-

tions (five questions per model), for example:

Why are A nodes required to communicate amongst

themselves?

a) To combine messages from the clients to reduce server

load.

b) The A nodes split the load coming from the clients.

c) The A nodes run a decision making protocol that can

tolerate if some number of them crash.

Third, subjects should modify the models of Gamma and

Upright. For Gamma, they should delete the BLOOM box

(requiring to also delete the BFILTER box). For Upright,

they should add a server replica, such that the system can

tolerate one more server crash. The tasks were identical for

the derivation and the complete model.

Finally, we asked our subjects to estimate the difficulty

of the tasks and their motivation to solve them on a five-

point Likert scale [6]. We also assessed the background with

a questionnaire.

(a) Hash join without optimization.

BLOOM

BFILTER

HJOIN BA

A

B

A

M

B’

(b) Bloom filter before hash join.

M1

An

Mn

HSPLIT

BLOOM

BLOOM

MERGE
A1

A

A
An

A1

MERGE M

(c) Parallelization of BLOOM.

Bn

B’n

B’1
MSPLIT

HSPLIT

BFILTER

BFILTER

MERGE

M1

Mn

B1

B’

M

B

(d) Parallelization of BFILTER.

Bn

Bn

B1

HSPLIT

HSPLIT

HJOIN

HJOIN

MERGE

A1

An

B1

A1

An

BA

A

B

(e) Parallelization of HJOIN.

B’n

B’1 B’

M1

Mn

A1

An

B’n

B’1

A

Mn

M1

M

Bn

A1

An

Bn

B1

HSPLIT

HSPLIT

BLOOM

BLOOM

BFILTER

BFILTER

HJOIN

HJOIN

MERGE

A1

An

B1

A1

An

BA
A

B

MERGE

MERGE

MSPLIT

HSPLIT

MERGE

HSPLIT

(f) Putting parallelized boxes together.

Fig. 3. Derivation of Gamma.

B. Subjects

As subjects, we recruited four male PhD students from the

University of Texas. Two were working in empirical software

engineering, two in data bases. All volunteered and did not

receive any compensation for their participation.

C. Execution

We conducted the pilot study in November 2011. Subjects

completed the background questionnaire first. After an intro-

duction, we handed out the slides for Gamma. When subjects

finished reviewing the slides, we distributed the tasks one at

a time. We recorded the time subjects needed to finish a task.

Then, we gave subjects the questionnaire regarding motivation

and difficulty. After a few minutes break, we repeated the same

procedure with Upright. There are no deviations to report.

D. Results and Consequences
The pilot study yielded two important results. First, two

models were too much. Although we included a short break,

subjects were fatigued when working with the second model.
Second, we noticed (and subjects told us) that going through

the models on their own is tedious. There were many slides,

especially for the derivation, to absorb. Furthermore, subjects

with the derivations felt rushed, since the other subjects had

to wait for them before they could start the tasks.
As consequences, we henceforth used only one model. We

selected Upright, because it is more complex and has many

elements, such that working memory capacity is exceeded.

Hence, we assumed that the benefit of the derivation would

be more evident (cf. Section II).

IV. EXPERIMENTAL RUN 1

With our first experimental run, we evaluated our research

hypotheses. The material was the same as for the pilot study,

except that we had an expert present Upright.

A. Experiment Design and Execution
Our subjects were undergraduate students from the Uni-

versity of Texas who were enrolled either in a database or

software-engineering course. The mean age of subjects that

worked with the complete model was 23, the mean age of

subjects that worked with the derivation was 25.7. One female

subject worked with the derivation. Both groups estimated

their experience with crash-fault-tolerance servers as low (2 for

the derivation, 1.5 for the complete model; both on a five-point

scale). The same counts for their experience with modeling (3

for the derivation, 2.5 for the complete model). Subjects partic-

ipated voluntarily and were rewarded with food and beverages.

Subjects were aware that their performance in the experiment

did not affect their grade and that they could leave any time.
We had two appointments for the experiment. In the first,

we presented the derivation, in the second the complete model.

Subjects could choose the appointment to their convenience,

which lead to different group sizes: Eight subjects worked with

the derivation, four with the complete model. We prepared a

booklet with all tasks and questionnaires, which we distributed

at the beginning of the experiment. After an introduction,

an expert on Upright presented either the derivation or the

complete model. Then, subjects solved the tasks. For each

task, subjects had a time limit (based on the pilot study), after

which they had to turn to the next task. The time limit was

large enough so that no subject experienced time pressure.
One experimenter checked that subjects worked as planned.

There was one deviation: For one subject in the derivation

group, the first and third tasks were in reverse order. Since we

cannot measure the performance for these tasks, we excluded

this subject from the analysis.

TABLE I
EXPERIMENT 1: OVERVIEW OF CORRECTNESS OF SOLUTIONS.

Group Task Median Min Max U value significant?

Derivation 1 4 2 4 7 no
Complete 3 2 5

Derivation 2 4 2 6 10 no
Complete 4 4 5

Derivation 3 0 0 1 19 no
Complete 0.5 0 1

B. Analysis and Interpretation

To analyze the first and third task, we counted the number

of elements that did not belong to the model, were missing,

or were in the wrong order. Hence, the larger the number, the

more errors subjects made. For the second task, we counted

the number of correctly solved comprehension questions. The

differences between groups are small or non-existent (see

Table I). For the first task, the group with the derivation

made one error more than the group with the complete model.

For the second task, both showed the same performance. For

the third task, the difference is smaller than one error. A

Mann-Whitney-U [8] test revealed that the differences between

groups are not significant for any of the tasks. Hence, we

cannot accept our research hypotheses.

At first sight, this result means that the derivation does not

provide a benefit, compared to presenting the complete model.

However, we took a closer look at the model of Upright:

There are groups of similar elements. We have a group of

clients, routing boxes, agreement nodes, quorum nodes, and

servers. Hence, we have six different groups of boxes. It is

possible that subjects looked at the group of boxes, not the

single boxes, which is called chunking [7]. Thus, the working

memory capacity might not have been exceeded, which means

that the model could have been too simple to show a benefit

of derivation. Looking at the estimation of difficulty for each

task, it was perceived as medium to easy, except for the first

task (difficult). Looking at the correctness of the first task,

subjects only made three to four errors. Thus, we think that

the model was too easy to reveal a benefit of derivation. Hence,

we conducted a follow-up experiment with a more complex

model, which we explain next (we discuss threats to validity

for both experiments in Section VII).

V. EXPERIMENTAL RUN 2

A. Experiment Design and Execution

In the second run, we extended the server with a recovery

feature, shown in Figure 4. Via a backward loop, a server

replica can now recover from a crash. To this end, it sends

a message to the agreement nodes via quorum nodes asking

for the correct timestamp. Furthermore, the server replicas

communicate amongst each other to get the correct status.

1

2

j

1

2

j

1

2

m

1

2

k

1

2

j

1

2

k �
�

�

�
�

�1

2

m

Fig. 4. Asynchronous crash-fault-tolerance server.

TABLE II
EXPERIMENT 2: OVERVIEW OF CORRECTNESS OF SOLUTIONS.

Group Task Median Min Max U value significant?

Derivation 1 2.5 1 4 10.5 no
Complete 2.5 1 3

Derivation 2 5 2 6 11.5 no
Complete 5 2 7

Derivation 3 3 1 4 8 no
Complete 3 1 3

With the recovery feature, we included two more compre-

hension questions, so we had seven questions. Other than that,

the experimental material was the same as before.

We recruited different students from the same software-

engineering course as before; six worked with the derivation,

four with the complete model. The mean age was 24.3 for the

derivation group, and 21.8 for the other group. One subject

in each group was female. Subjects estimated their experience

with crash-fault-tolerance servers and modeling as low (1 and

3 for the derivation, 1.5 and 2.5 for the complete model).

The experimental sessions were now held in parallel. Hence,

an additional expert on crash-fault-tolerance servers explained

the derivation. No deviations occurred.

B. Analysis and Interpretation

To evaluate whether a task was solved correctly, we used a

four-point scale for the first and third task. A solution could

either be completely correct (4), almost correct (3), correct to

some extent (2), or completely wrong (1). An expert evaluated

to which category a solution belonged. In Table II, we show

an overview of the correctness. We can see that the medians

for both groups are the same. Furthermore, the modification

task seems to be easier than the memorization task. A Mann-

Whitney-U test revealed no significant differences. Hence, we

cannot accept our research hypotheses.

So, although we increased the complexity of the underlying

model, we still did not observe a significant difference in the

performance of subjects. The perceived difficulty of the tasks

is comparable with that of the first experimental run (medium

to easy difficulty). Hence, the model might still have been too

simple to show a benefit of its derivation.

VI. PUTTING IT ALL TOGETHER

So far, we conducted two controlled experiments to

evaluate our research hypotheses (i.e., that the derivation

of a model is easier to memorize, comprehend, and modify

than the model itself). We could not accept our research

hypotheses, for which we suspect three possible reasons:

First, the models were too simple; second, understanding the

derivation required too much cognitive resources; third, there

is no benefit of derivation.

First, the model of the crash-fault-tolerance servers could

be too simple. In the first experimental run, the elements of

the model could have been grouped, such that the working

memory capacity was not exceeded. We made the model more

complex in the second experimental run. However, with group-

ing, the number of elements still lies in the upper bound of the

working memory capacity. Replicating the experiment with a

more complex model would reveal more insights into the rela-

tionship of the size of the model and the effects of derivation.

Second, subjects that worked with the derivation had to un-

derstand several transformations. It is possible that understand-

ing the transformations required too many cognitive resources,

such that the benefits of the derivation are erased. To test this

hypothesis, we would have to conduct another experiment.

Third, it could also be possible that in our context (i.e., with

students and our certain model), there simply is no benefit of

using a derivation. Hence, whether we explain a model to

students incrementally or all at once, might not matter.

The bottom line is that we need to conduct further experi-

ments to gain better insights into the effects of derivation on

memorizing, understanding, and modifying models. However,

instead of keeping our results to ourselves, we like to share

our experiences and initiate a discussion of our results. To gain

deeper insights, we are currently planning an experiment in

which one group of subjects should implement the derivation

of Gamma, the other group the complete model. As dependent

variable, we plan to measure development time and code

quality.

VII. THREATS TO VALIDITY

There are several threats to internal validity for both ex-

periments. First, we used convenient sampling to create our

samples. However, the background of subjects is similar for

both groups, as we found with a questionnaire. Furthermore,

we have different group sizes, because we could not assign

subjects to the appointments. Nevertheless, we do not believe

that it affected our result significantly, since both groups have

a comparable background.

Second, we did not test the memory skill of subjects.

However, memory skills can have a significant influence

on our result, especially the performance for the first task.

Unfortunately, there is no way to control this threat.

Third, we used multiple choice questions to measure com-

prehension. This could have made the tasks too easy, such

that we could have measured how well subjects are able to

rule out wrong answers, not how well subjects understood

the model. However, we made sure that all possible answers

sounded plausible and had about the same length and detail.

Furthermore, none of the subjects noted that there were

obvious wrong answers. Hence, we believe that we sufficiently

controlled this threat.

External validity is limited by our sample and by our model.

First, we only recruited students as subjects. Hence, our results

can only be interpreted in the context of students and cannot

be generalized to experts. Second, we used only one model of

a particular domain with a certain size. With larger models of

different domains we may observe different results. To reduce

these limitations, further experiments with different subjects

and models are necessary.

Last, our small sample threatens statistical conclusion va-

lidity. We controlled this threat by using a Mann-Whitney-U

test with a table for U values especially developed for small

sample sizes.

VIII. CONCLUSION

In physics and more generally in the mathematical sciences,

understanding the derivation of an equation or model seems

to be easier than understanding an equation or model itself. In

two controlled experiments, we evaluated the validity of this

statement. Our experiments found no evidence to support it.

However, our experimental setting is limited, which could

have prevented us from finding evidence for a benefit of the

derivation of a model. Thus, as a next step, we plan to let

subjects implement an architecture and analyze whether imple-

menting its derivation has a benefit compared to implementing

it at once.

IX. ACKNOWLEDGEMENTS

Thanks to Dewayne Perry for supporting us with is ex-

pertise. Thanks to Daniel Miranker for his support in re-

cruiting subjects. Thanks to Chandrajit Bajaj for fruitful dis-

cussions. Feigenspan’s work is supported by BMBF project

01IM10002B and the German Academic Exchange Service

(DAAD).

REFERENCES

[1] A. D. Baddeley. Is Working Memory still Working? The American
Psychologist, 56(11):851–864, 2001.

[2] V. R. Basili. Software modeling and measurement: The
goal/question/metric paradigm. Technical Report CS-TR-2956,
University of Maryland at College Park, 1992.

[3] R. Coker. Private Correspondence. Department of Physics, University
of Texas at Austin, 2011.

[4] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen. The Gamma Database Machine Project. IEEE
Trans. Knowl. & Data Eng., 2(1):44–62, 1990.

[5] J. Feigenspan, D. Batory, and T. Riché. Material and Detailed Results
of Experiment on Model Comprehension. Technical Report TR-12-01,
University of Texas at Austin, Department for Computer Science, 2012.

[6] R. Likert. A Technique for the Measurement of Attitudes. Archives of
Psychology, 22(140):1–55, 1932.

[7] G. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits
on our Capacity for Processing Information. Psychological Review,
63(2):81–97, 1956.

[8] N. Nachar. The Mann-Whitney U: A Test for Assessing Whether Two
Independent Samples Come from the Same Distribution. Tutorials in
Quantitative Methods for Psychology, 4(1):13–20, 2008.

[9] T. Riche, D. Batory, R. Goncalves, and B. Marker. Architecture Design
by Transformation. Technical Report TR-10-39, University of Texas at
Austin, Department for Computer Science, 2010.

[10] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, 1996.

