
Feature Oriented Model Driven Development: A Case Study for Portlets

Salvador Trujillo
Department of Computer Sciences
University of the Basque Country

20009 San Sebastian, Spain
struji@ehu.es

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.
batory@cs.utexas.edu

Oscar Diaz
Department of Computer Sciences
University of the Basque Country

20009 San Sebastian, Spain
oscar.diaz@ehu.es

Abstract
Model Driven Development (MDD) is an emerging para-
digm for software construction that uses models to specify
programs, and model transformations to synthesize executa-
bles. Feature Oriented Programming (FOP) is a paradigm
for software product lines where programs are synthesized
by composing features. Feature Oriented Model Driven
Development (FOMDD) is a blend of FOP and MDD that
shows how products in a software product line can be syn-
thesized in an MDD way by composing features to create
models, and then transforming these models into executa-
bles. We present a case study of FOMDD on a product line of
portlets, which are components of web portals. We reveal
mathematical properties of portlet synthesis that helped us to
validate the correctness of our abstractions, tools, and spec-
ifications, as well as optimize portlet synthesis.

1 Introduction
Model Driven Development (MDD) is an emerging paradigm
for software development that specifies programs in domain-
specific languages (DSLs), encourages greater degrees of
automation, and exploits standards [10][11][24]. MDD uses
models to represent a program. A model is written in a DSL
that specifies particular details of a program’s design. As an
individual model captures limited information, a program is
often specified by several different models. A model can be
derived from other models by transformations, and program
synthesis is the process of transforming high-level models
into executables (which are also models).

Feature Oriented Programming (FOP) is a paradigm for
software product lines where programs are synthesized by
composing features [6]. A feature is an increment of pro-
gram functionality, and is implemented by refinements that
extend existing artifacts and that add new artifacts (code,
makefiles, documentation, etc.). When features are com-
posed, consistent artifacts that define a program are synthe-
sized. A tenet of FOP is the use of algebraic techniques to
specify and manipulate program designs.

Feature Oriented Model Driven Development (FOMDD) is a
blend of FOP and MDD. Models can be refined by compos-
ing features (a.k.a. endogenous transformations that map

models expressed in the same DSL [30]), and can be derived
from other models (a.k.a. exogenous transformations that
map models written in different DSLs [30]).

We present a case study of FOMDD that is a product-line of
portlets, which are building blocks of web portals. We
explain how we specify a portlet as a set of models from
which we refine and derive an implementation. Combining
model derivation and model refinement exposes a fundamen-
tal commuting relationship that should arise in all examples
of FOMDD: namely, the transformation of a composed
model equals the composition of transformed models.
Hence, an executable can be synthesized in very different
ways. Commuting relationships impose stringent properties
on domain models and the implementations; they have
helped us validate the correctness of our abstractions, tools,
and portlet specifications, as well as optimize portlet synthe-
sis. We begin with a review of MDD, FOP, and portlets.

2 Background

2.1 Model Driven Development
Program specification in MDD uses one or more models to
define a target program. Ideally, these models are platform
independent (PIM). Model derivations convert platform
independent models to platform specific models (PSM),
where assorted technology bindings are introduced. Possible
results of transforming PIMs can be an executable or an
input to an analysis tool, where both an executable and an
analysis-input file are themselves considered models.

Metaprogramming is the concept that program development
is a computation. We assert that MDD is a metaprogramming
paradigm [8]. That is, models are values and transformations
are functions that map values to other values. Scripts that
transform models into executables are metaprograms (i.e.,
programs that manipulate values that themselves are pro-
grams). For example, ant makefiles are metaprograms; the
values of a makefile are files (programs) and the execution
of a makefile can produce an executable [2]. An MDD pro-
cess can be written as a makefile (metaprogram) whose input
values are DSL specifications (models) of target programs,
and whose output values are synthesis targets. We will see
examples of such metaprograms in Section 3.

dsb
Accepted for Publication, International Conference on Software Engineering (ICSE) 2007

2.2 Feature Oriented Programming
FOP is a paradigm for creating software product lines [6].
Features (a.k.a. feature modules) are the building blocks of
programs. An FOP model of a product line is an algebra
that offers a set of operations, where each operation imple-
ments a feature. We write M = {f, h, i, j} to mean model M
has operations or features f, h, i, and j. FOP distinguishes
features as constants or functions. Constants represent base
programs. For example:

f // a base program with feature f
h // a base program with feature h

Functions represent program refinements that extend a pro-
gram that is received as input. For instance:

i•x // adds feature i to program x
j•x // adds feature j to program x

where • denotes function application.

The design of a program is a named expression, e.g.:

prog1 = i•f // prog1 has features f and i
prog2 = i•j•h // prog2 has features h,j,i

The set of programs that can be created from an FOP model
is its product line. Expression optimization corresponds to
program design optimization, and expression evaluation
corresponds to program synthesis [4][39].1

Note: Although we write the composition of features a and b
as a•b, it really is an abbreviation of the expression
compose(a,b). We use • to simplify FOP expressions.

The connection of FOP to metaprogramming and MDD is
simple: FOP treats programs as values, and features are
functions that map values to other values. In Section 4, we
show how FOP and MDD can be integrated.

2.3 Portlets
A portal is a web page that provides centralized access to a
variety of services [16]. An increasing number of these ser-
vices are not offered by the portal itself, but by a third-party
component called a portlet. Figure 1 depicts a 3-tier archi-
tecture for portlets, where an end-user’s MyBrowser

accesses the MyPortal page through HTTP. MyPortal is
hosted by Consumer1 and consists of a layout aggregating
(through SOAP [44]) the Alpha, Beta, and Delta portlets
that are hosted by different producers.

Unlike web services, which offer only business logic meth-
ods, portlets additionally provide a presentation-oriented
web service. Hence, portlets not only return raw data but
also renderable markup (e.g. XHTML) that can be dis-

played within a portal page. Figure 2 shows the MyYahoo
portal [46], where a variety of services are provided, some
of which may be portlets.

Until recently, portlet realization was dependent on the
infrastructure of the producer of portlets (service provider)
and the portal consumer (service container). This changed
with the release of the Web Services for Remote Portlets
(WSRP) [32], which standardized the web service interface
between portlet consumers and portlet producers, and the
Java Specification Request 168 (JSR 168) [23], which
defined how portlets should be implemented in Java. These
standards foster a COTS market, where portlets can be
deployed independently of the platform on which they were
developed. Further, different customers demand different
portlets that overlap in functionality. Consequently, tech-
niques for customizing portlets are increasingly sought
[17][42].

Our experience with portlet implementations is that a siz-
able fraction of their code is common. This led us to create
an OO framework (using eXo portal platform [18]) that is
realized by 85 classes and 9 KLOC Java. It encapsulates
and reuses logic and infrastructure common to all portlets
and provides the base functionality on top of which applica-
tion-specific functionality is built. We created a Domain
Specific Language for Portlets (PSL) to define this func-
tionality. A PSL specification is represented by several
XML documents. The next section shows how portlets can
be synthesized using MDD.

1. The use of one feature may preclude the use of some features or may
demand the use of others. Tools that validate compositions of features are
discussed in [7].

Figure 1. A 3-Tier Architecture for Portlets

MyBrowser

HTTP
SOAP

Portlet
Alpha
Portlet
Alpha

Portlet
Beta
Portlet
Beta

Portlet
Delta
Portlet
Delta

MyPortal

End-user 1 Consumer 1 Producer A Producer B Producer C

Figure 2. MyYahoo Portal

P o rt le t BE TA

Po rt l et A LP HA

3 Model Driven Development of Portlets
Portlet MDD (PMDD) is a model-driven approach that
automates portlet implementation. PinkCreek is a portlet
that provides flight reservation capabilities to different por-
tals. Its functionality is roughly: (i) search for flights, (ii)
present flight options, (iii) select flights, and (iv) purchase
tickets. In this section, we illustrate PMDD using
PinkCreek as an example, and explain its MDD metapro-
gram.

3.1 Step 1: Define Portlet Controller
A State Chart (SC) provides a platform independent model
for representing the flow of computations in a portlet
[19][22][33]. Each portlet consists of a sequence of states
where each state represents a portlet page. States are con-
nected by transitions whose handlers either execute some
action, render some view, or both.

Figure 3 shows an SC diagram fragment for PinkCreek
where each state represents a step in making a flight reser-
vation. We removed transition details to make the figure
clearer. Existing tools (e.g. IBM Rational Rose, Poseidon)
can draw an SC model in UML notation, and represent the
model as an XMI specification [34]. We specify state charts
in the W3C SCXML language [43]. Figure 4 lists a frag-
ment of a PinkCreek specification.

The SC of a portlet defines its controller; the details of
actions and views are defined elsewhere. So the first step is
to define the SC of the portlet’s controller. The next step is
to map an SC specification to a PSL specification.

3.2 Step 2: Map SC to PSL
A PSL specification of a portlet consists of three distinct
XML documents. One document (PSLctrl) defines a state

machine controller for a portlet. The other two documents
(PSLact, PSLview) define the actions to be performed and the
views to be rendered during controller execution. The pro-
duction of each is described next.

3.2.1 Step 2.1: Transforming SC to PSLctrl

We designed the PSL controller language prior to the
release of the SCXML standard. As we now use the stan-
dard, we reused our PSL language and framework by writ-
ing an XSL translator (Tsc2ctrl) that maps a state chart
specification SC to a PSL controller document (PSLctrl):

PSLctrl = Tsc2ctrl (SC) (1)

The PSLctrl document is interpreted by our Portlet frame-
work at portlet execution time.

3.2.2 Step 2.2: Transforming PSLctrl to PSLact

Activities in a state chart are defined as actions to perform
and views to render when a transition occurs. An action
skeleton is an interface that defines only the names of action
methods. (We will see shortly that there is a corresponding
view skeleton that defines the names of view methods). An
action skeleton (PSLact-sk) is derived by a simple analysis
of the PSLctrl document that extracts action names. The
transformation (Tctrl2act) implements this derivation:

PSLact-sk = Tctrl2act (PSLctrl) (2)

Figure 5 shows a snippet of PSLact-sk skeleton, where the
name of action pinkcreek.LoadAirport was extracted.

The name of an action is not sufficient: we still need to
specify the input (Params) and output (Results) of each
action method. This platform-specific information is added
by refining the generated PSLact-sk document. Figure 6
shows a snippet of such a refinement (denoted ∆PSLact-usr)
that extends the pinkcreek.LoadAirport method with its
input parameters and output result.2 The tool that we use to
compose an XML file with its refinements is described in
[41].

Figure 3. SC fragment from PinkCreek

s2Select s3Summarys1Search s5Itinerarys4Reserve

<scxml version="1.0" initialstate="s1Search">
<state id="s1Search">

<transition event="actionEvent">
<target next="s1Search"/>
<action>LoadAirport</action>

</transition>
<transition event="viewEvent">

<target next="s2Select"/>
<action>SearchFlightView</action>

</transition>
</state>
<!-- remaining states omitted -->

</scxml>

Figure 4. SC.xml fragment for PinkCreek

2. ∆PSLact-usr (and its counterpart ∆PSLview-usr) are platform-spe-
cific, as the parameters to actions and views are not platform invariant.
Alternatively, some MDD approaches define code in a platform-indepen-
dent language and translate code to a platform-specific language [24].

<Portlet.actions id="PinkCreek">
<Action id="LoadAirport" type="JAVA_CLASS">

<class>pinkcreek.LoadAirport</class>
<!-- TODO Params -->
<!-- TODO Results -->

</Action>
<!-- remaining actions omitted -->

</Portlet.actions>

Figure 5. PSLact.xml skeleton (PSLact-sk) for PinkCreek

Composing the generated action skeleton (PSLact-sk) with
its user hand-written refinement (∆PSLact-usr) yields a com-
plete PSL action document (PSLact), which defines the
name, type, and parameters of each action method:

PSLact = ∆PSLact-usr • PSLact-sk (3)

3.2.3 Step 2.3: Transforming PSLctrl to PSLview

An identical procedure is used to create a PSL view docu-
ment (PSLview) from the PSL controller document (PSLctrl).
A view skeleton (PSLview-sk) is generated from PSLctrl, and
it is composed with a hand-written refinement (∆PSLview-
usr) that refines view methods with their input parameters,
to yield the desired view document3:

PSLview-sk = Tctrl2view (PSLctrl) (4)
PSLview = ∆PSLview-usr • PSLview-sk (5)

At this point, we have a PSL specification for a portlet.
However, additional platform-specific implementation
details remain to be given.

3.3 Step 3: from PSL to Implementation
A PSL specification almost completely defines what the
interpreter needs to execute a portlet. What is lacking is (i)
business logic of each action method, and (ii) the logic to
draw the layout page of each view method.

3.3.1 Step 3.1: Transforming PSLact to Jak Code
Jak(arta) is a superset of the Java language, where class and
method refinements can be declared [6]. Jak is the primary
language for implementing refinements in FOP.

PSLact is an XML document that sketches the source code
skeleton of a set of Jak classes: it specifies the signatures of
all portlet-specific methods. We can generate skeletal Jak
classes (Jaksk) by a transformation (Tact2jak) of PSLact. A
unique Jak class is generated for each action in PSLact. Also
generated are portlet-specific methods and members that
are required by our portlet framework.

Jaksk = Tact2jak (PSLact) (6)

Figure 7 shows the derived Jak code for the action
pinkcreek.LoadAirport. Note that extra methods (e.g.,
execute) that are specific to our portlet framework are also
produced, along with additional data members (not shown).
Their generation simplifies the development of user code
provided in the next step.

Jak code is generated instead of Java because the actions of
the generated methods must be completed by a program-
mer. We complete the generated skeleton (Jaksk) by com-
posing it with a hand-written refinement (∆Jakusr) that
encapsulates the business logic for each method:

Jakcode = ∆Jakusr • Jaksk (7)

Figure 8 shows the corresponding refinement for Figure 7.

3.3.2 Step 3.2: Transforming PSLview to JSP
In an analogous manner, JSP code skeletons (Jspsk) are cre-
ated from PSLview, one JSP page per view. Each skeleton is
completed by composing it with a hand-written refinement
(∆Jspusr). The result is a compilable set of JSP files
(Jspcode), one per PSLview view method:

Jspsk = Tview2jsp (PSLview) (8)
Jspcode = ∆Jspusr • Jspsk (9)

3.4 Step 4: Building the Product
A PSL specification together with Jakcode and Jspcode form
the raw material of a Portlet product (Praw). Other artifacts
(∆Padditional) are needed, such as deployment descriptors
and JAR libraries, to complete a portlet’s source (Psrc).
These artifacts are introductions (i.e., new artifacts that do
not refine existing ones) that are added by composing ∆Pad-
ditional to Praw:3. View methods return no results.

<xak:refines id="PinkCreek">
<xak:extends id="LoadAirport">

<xak:super id="LoadAirport"/>
<Param name="from" value="$data/orgn"/>
<Param name="to" value="$data/dest"/>
<!-- remaining Params omitted -->
<Result name="flight"/>
<!-- remaining Results omitted -->

</xak:extends>
</xak:refines>

Figure 6. PSLact.xml user refinement (∆PSLact-usr)
fragment for PinkCreek

import java.util.Hashtable;
import org.onekin.pf.action.jc.IJavaAction;
public class LoadAirport implements IJavaAction
{
/** This is the default Constructor ... */
public LoadAirport()
{ /* empty */ }

/** This method executes ... */
public void execute(Hashtable prm,Hashtable rs)
{ /* empty */ }

}

Figure 7. LoadAirport.jak fragment for PinkCreek

refines class LoadAirport {
public LoadAirport()
{ /* USER CODE GOES HERE */ }

public void execute(Hashtable prm,Hashtable rs)
{ /* USER CODE GOES HERE */ }

}

Figure 8. LoadAirport.jak refinement for PinkCreek

Praw = {PSLctrl, PSLact, PSLview, Jakcode, Jspcode}(10)
Psrc = ∆Padditional • Praw (11)

Among the artifacts added by ∆Padditional is an ant make-
file [40], which builds the web archive (WAR) of the portlet.
Executing the makefile translates Jak files to Java files,
compiles Java files into class files, and creates the portlet
web archive (Pwar) which is deployed into the target portal.

Pwar = antBuild (Psrc) (12)

3.5 Recap and Perspective
Our PMDD process for building PinkCreek is a straightfor-
ward metaprogram. Given all the inputs (i.e., MDD models)
that define a portlet, namely (SC, ∆PSLact-usr, ∆PSLview-usr,
∆Jakusr, ∆Jspusr), the process automatically generates the
portlet’s WAR (Pwar). Model refinements are expressed as
endogenous transformations, and model derivations are
exogenous transformations [30]. Figure 9 shows this pro-
cess as three functions (Tmkraw, Traw2war, Tsc2war). (The rea-
son why we used three functions, instead of one, will
become clear in Section 4). Tsc2raw automates significant
and tedious tasks in portlet development. For example, 59
files and 4250 LOC are derived from an input of 10 files
and 730 LOC.

Of the five inputs that we need to specify, only one (the
statechart) is platform-independent. The remaining are plat-
form-specific, expressing customized business logic and
view logic. Ideally, these remaining inputs should be
derived from one or more PIMs, which would marginally
alter the metaprogram of Figure 9. Although we do not yet
have such PIMs, this does not impact the results of this
paper. In general, our situation is symptomatic of a general
problem in MDD on how to express customized business

logic in PIMs. It is common to use model “escapes” from
which code can be specified. Sometimes a generic pro-
gramming language is used to express code fragments,
from which Java or C# is produced [24]. Creating declara-
tive models for all PMDD inputs seems unlikely.

4 Feature Oriented MDD
The input to our PMDD process is a 5-tuple <SC,∆PSLact-
usr,∆PSLview-usr,∆Jakusr,∆Jspusr>, which we abbreviate
as <s,a,v,b,j>. Given a tuple that defines a portlet, the
transformation Tsc2war synthesizes the portlet’s WAR file.

Portlets are like other software applications: there is a fam-
ily of related portlet designs and capabilities that we want to
create. The designs and capabilities that differentiate one
portlet from another can be explained in terms of features
(i.e., increments in portlet functionality). Instead of manu-
ally creating portlet specifications (5-tuples), we want to
synthesize their 5-tuples using FOP.

An FOP model of a portlet domain includes one or more
base portlets called constants, and one or more refinements,
called functions, that add functionality to a portlet
(Section 2.2). A constant C is a 5-tuple <s,a,v,b,j>. A
function is also a 5-tuple <∆s,∆a,∆v,∆b,∆j> that defines
changes to a base tuple in terms of:

• refinements to a base state chart (∆s)
• refinements to a base action document (∆a)
• refinements to a base view document (∆v)
• refinements to a base actions business logic (∆b)
• refinements to a base jsp page (∆j)

Suppose we want to synthesize the 5-tuple
<s’,a’,v’,b’,j’> of a portlet P by starting with a base
portlet C (a constant) and refining it by the features (func-
tions) F1 and F2. Our portlet specification P is:

P = F2 • F1 • C

= <∆s2, ∆a2, ∆v2, ∆b2, ∆j2> •
<∆s1, ∆a1, ∆v1, ∆b1, ∆j1> • <s, a, v, b, j>

= <∆s2•∆s1•s, ∆a2•∆a1•a, ∆v2•∆v1•v, ∆b2•∆b1•b,
∆j2•∆j1•j>

= <s’, a’, v’, b’, j’> (13)

That is, the 5-tuple of our desired portlet is synthesized by
composing the base state chart with its refinements, the
base action document with its refinements, and so on [6]. In
this section, we explain the interesting challenges we faced
in developing portlet features in a model-driven way. It
required an extension of PMDD to cope with product lines.

Tmkraw(SC,∆PSLact-usr,∆PSLview-usr,∆Jakusr,∆Jspusr)
{ PSLctrl = Tsc2ctrl (SC); // (1)

PSLact-sk = Tctrl2act (PSLctrl); // (2)
PSLact = ∆PSLact-usr • PSLact-sk; // (3)
PSLview-sk = Tctrl2view (PSLctrl); // (4)
PSLview = ∆PSLview-usr • PSLview-sk; // (5)
Jaksk = Tact2jak (PSLact); // (6)
Jakcode = ∆Jakusr • Jaksk; // (7)
Jspsk = Tview2jsp (PSLview); // (8)
Jspcode = ∆Jspusr • Jspsk; // (9)
Praw = { PSLctrl, PSLact, PSLview,

Jakcode, Jspcode }; // (10)
return Praw; }

Traw2war(Praw)
{ Psrc = ∆Padditional • Praw // (11)

Pwar = antBuild (Psrc) // (12)
return Pwar; }

Tsc2war(SC,∆PSLact-usr,∆PSLview-usr,∆Jakusr,∆Jspusr)
{ Praw = Tmkraw(SC,∆PSLact-usr,∆PSLview-usr,

∆Jakusr,∆Jspusr);
return Traw2war(Praw); }

Figure 9. Metaprograms for PMDD

4.1 Developing Feature Constants
A feature constant is developed as a base portlet, as dis-
cussed in Section 3. It is defined by a 5-tuple and represents
a base portlet to which more features can be added.

4.2 Developing Feature Functions
4.2.1 Challenge 1: Model Refinement
A model in MDD is a specification of a program (or some
part or view of a program). Model refinement elaborates a
model to reflect the changes made by adding a feature.

A state chart refinement4 adds new states, new transitions,
and refines the activities associated with existing states or
transitions [5][28][29]. For example, consider a feature
seat that extends the PinkCreek portlet to allow passengers
to select their seat after purchasing flight tickets. Figure 10
shows how a new state s6Seating is added to handle the
seat selection pages, and how state s5Itinerary is refined
by linking it with s6Seating.

A state chart is defined by an XML document. A refine-
ment of a state chart can also be defined in an XML docu-
ment (and the tool in [41] can compose such documents).

4.2.2 Challenge 2: Transforming Refinements
Recall that a feature function is a 5-tuple of refinements
<∆s,∆a,∆v,∆b,∆j>. Defining the changes to a state chart is
easy. However, defining the remaining artifact refinements
is a bit harder. This section presents the approach that we
took to develop feature function 5-tuples.

Recall from Section 3 that Praw is the raw material from
which we could build a portlet WAR file. We want to gener-
ate a raw material refinement ∆Fraw for each feature F that
can be added to a base portlet. If we could do so, we could
synthesize the raw material for a target portlet. For exam-
ple, suppose we want to synthesize the raw material for
portlet P=F2•F1•C by composing the raw material (Craw) for
base feature C and the raw material (∆F1raw and ∆F2raw) of
its feature functions F1 and F2. The raw material for portlet
P would be:

Praw = ∆F2raw • ∆F1raw • Craw (14)

To accomplish this, we must derive the raw material refine-
ments for each feature function. More precisely, let feature
function F be defined by the 5-tuple <∆s,∆a,∆v,∆b,∆j>.
We want a transformation T’mkraw that maps the 5-tuple of
any feature function F to its raw material ∆Fraw. The details
of the T’mkraw process are given in the Appendix and are
virtually identical to the metaprogram of Figure 9 that maps
a tuple <s,a,v,b,j> to raw materials. Figure 11 shows this
process as the metaprogram T’mkraw. For a typical feature,
the output size is 3-5 times the size of the input. For the
seat feature in the PinkCreek product line, 27 files (755
LOC) are derived from an input of 9 files and 163 LOC. As
in the case of Tmkraw, T’mkraw automates significant and
tedious tasks in portlet development.

4.3 Product Synthesis
Our PinkCreek product line has 26 features (constants and
functions), yielding hundreds of interesting and distinct
portlets. A particular portlet is specified by an FOP expres-
sion that composes a base portlet with zero or more extend-
ing features (seat, checkin, etc.):

PinkCreek1 = seat • base
PinkCreek2 = checkin • seat • base
... // other products

We synthesized portlets by deriving the raw materials of the
base and refining features, and composing them. Let the 5-
tuples for base, seat, and checkin be <>base, <>seat, and
<>checkin. The raw material for PinkCreek2 is computed by:

PinkCreekraw = T’mkraw(<>checkin) • T’mkraw(<>seat)
• Tmkraw(<>base) (15)

Given the raw material of a portlet, we invoke the Traw2war
transformation of Figure 9 to produce the portlet’s WAR:

PinkCreekwar = Traw2war(PinkCreekraw)

4. Note that a refinement is based on mixin inheritance. Weber et al.
extend statecharts by regular inheritance [45].

Figure 10. SC Refinement for PinkCreek seating

s2Select s3Summarys1Search s5Itinerarys4Reserve

s6Seating

T’mkraw(∆Fsc,∆Fact-usr,∆Fview-usr,∆Fjak-usr,∆Fjsp-usr)
{

∆Fctrl = T’sc2ctrl (∆Fsc); // (1)
∆Fact-sk = T’ctrl2act (∆Fctrl); // (2)
∆Fview-sk = T’ctrl2view (∆Fctrl); // (3)
∆Fact = ∆Fact-usr • ∆Fact-sk; // (4)
∆Fview = ∆Fview-usr • ∆Fview-sk; // (5)
∆Fjak-sk = T’act2jak (∆Fact); // (6)
∆Fjsp-sk = T’view2jsp (∆Fview); // (7)
∆Fjakcode = ∆Fjak-usr • ∆Fjak-sk; // (8)
∆Fjspcode = ∆Fjsp-usr • ∆Fjsp-sk; // (9)
∆Fraw = {∆Fctrl,∆Fact,∆Fview,

∆Fjakcode,∆Fjspcode} // (10)
return ∆Fraw;

}

Figure 11. The Metaprogram T’mkraw

5 Commuting Diagrams
Synthesizing portlets by composing raw materials is not the
way we originally planned. Our intent in Section 4 was to
synthesize the 5-tuple of a portlet by composing the 5-
tuples of its base and refining features, such as:

<>PinkCreek2 = <>checkin • <>seat • <>base

And use Tmkraw of Figure 9 to derive portlet raw material:

PinkCreekraw = Tmkraw(<>PinkCreek2) (16)

We now had two different ways to produce the raw materi-
als of a portlet, namely (15) and (16). That is, a transfor-
mation of a composition of 5-tuples (16) equals the
composition of the transformation of each 5-tuple (15):

Tmkraw(<>F1•<>base) = T’mkraw(<>F1)•Tmkraw(<>base) (17)

Figure 12 illustrates (17): we synthesized portlets via the
path labeled A (15), but had an alternate path B (16).

FOMDD explicitly
combines model refine-
ment and model deriva-
tion. Our research
exposed a fundamental
relationship between the
two, which is expressed
in Figure 13 as a commuting diagram [37], where M0, M1, D0,
and D1 are domains and ∆M:M0→M1, ∆D:D0→D1 and
f:(M0∪M1)→(D0∪D1) are functions satisfying:

f • ∆M = ∆D • f (18)

In PMDD, we encountered instances of these domains:
M0∈M0, M1∈M1, D0∈D0, and D1∈D1. We refined model M0 by ∆M
to produce model M1. Function or transformation f derived
model D1 from M1. Alternatively, we could derive model D0
from M0 using function f, and then refine D0 by ∆D (that cor-
responds to ∆M) to produce D1. An operator f’ maps func-
tion ∆M to function ∆D. The general relationship is:

f(∆M • M0) = f’(∆M) • f(M0) (19)

where (17) is a PMDD instance of (19) which in our case
states that the transformation of a composed model equals

the composition of transformed models. Note that no spe-
cial restrictions are placed on models and features by com-
muting diagrams, except that (19) must hold.

The reason why (17) holds is because functions Tmkraw and
T’mkraw are morphisms (i.e., structure preserving mappings
[37]). Formally proving structure preservation is difficult,
as it requires a formalization of the input and output
domains, a formalization of the properties to be preserved,
and a faithful implementation of this formalization, each
step of which is a non-trivial undertaking. An alternative
approach is to validate each instance of a transformation.
For example, Narayanan and Karsai [31] presented an algo-
rithm to validate that the translation between two different
state chart representations preserves each state, transition,
and activity (and no additional states, transitions, and activ-
ities are added). This is accomplished by maintaining an
internal mapping between input and output representations
and validating that there is a 1-1 correspondence between
input/output states, transitions, and activities.

We took a different approach by computing the results in
both directions (paths A and B) and used a source equiva-
lence “diff” to test for equality. Source equivalence is syn-
tactic equivalence with two relaxations: it allows
permutations of members when member ordering is not sig-
nificant and it allows white space to differ when white
space is unimportant. We added this extra computation as
an option to our metaprograms to validate (17).

We soon discovered that there are many other commuting
diagrams/relationships in PinkCreek. For example, state
charts can be refined and then mapped to PSL controllers,
or a PSL controller can be derived from a state chart and
then refined:

Tsc2ctrl(∆FSC•BSC) = T’sc2ctrl(∆FSC)•Tsc2ctrl(BSC) (20)

where BSC is a base state chart and ∆FSC is a state chart
refinement of feature F. These relationships helped us vali-
date individual transformations of Figure 9 and Figure 11.

5.1 Experience
Initially, our tools did not satisfy (17). That is, synthesizing
portlet raw material via paths A and B yielded different
results. Upon closer inspection, we discovered errors in
both our tools and portlet specifications. Such errors were
not exposed until we synthesized raw materials via path B.

We soon realized the significance of commuting diagrams/
relationships. While checking validity increases build times
(more in Section 5.2), we obtain assurances on the correct-
ness of our PMDD abstractions, our portlet specifications,
and our tools. (17) defines stringent properties that our
models, tools, and specifications must satisfy, and without

Figure 12. Alternative Synthesis Paths

M1M0

D1D0
∆D

∆M

f f

Figure 13. Commuting Diagram

these diagrams, we were unaware that these constraints
existed. Our results are general: their benefits will hold in
the development of tools, models, and specifications for
other domains using FOMDD, as they too will have com-
muting diagrams like Figure 13. More on this in Section 6.

5.2 Build Optimization
Figure 12 offers two ways in which portlet raw materials
can be synthesized: either build raw materials via path A or
via path B. Figure 14 shows experimental results of synthe-
sizing portlets via each path. The A line indicates the cost
of traversing path A, which includes the cost of transform-
ing 5-tuples to raw materials. Tuple transformations only
have to be computed once, as raw materials of model
refinements are portlet invariant. This offers a very useful
optimization: raw materials only have to be computed once.
The A-T line shows the reduction in cost by this optimiza-
tion. Note that the A-T path is 2-3 times faster than path B
(indicated by line B). The results confirm our intuition:
composing features and transforming (path B) is substan-
tially faster than transforming and then composing features
(path A). However, when the raw material optimization is
used, the reverse is true (path A-T is faster than B). If we
validate compositions by building both ways (A+B-T),
build times increase, but this is a one-time cost.

In general, metrics other than cost might be used in path
selection (e.g., ease of tooling).

6 Related Work
Model derivation and model refinement are common in
FOMDD. We expressed derivations by exogenous transfor-
mations (mappings of models written in different DSLs)
and refinements by endogenous transformations (mappings
of models written in the same DSL). We explicitly represent
MDD processes as functional metaprograms (where pro-
grams are values and transformations are functions that
map programs); this idea is latent in the MDD community.
We took an additional step forward by merging MDD ideas
with those of FOP, which itself has a long history of devel-
opment [4]-[8]. A complimentary view which describes

MDD and FOP as an object-oriented metaprogramming
paradigm is given in [8].

Horizontal and vertical transformations are also common in
MDD [30]. Horizontal transformations map source and tar-
get models at the same level of abstraction (e.g, refactor-
ings), while vertical transformations map models that reside
at different levels of abstraction (PIM to PSM mappings).
We have clearly used both kinds of transformations in
PinkCreek, but we found no advantage in making horizon-
tal and vertical distinctions in our work.

Much of the tooling effort in MDD today is focussed on
UML models. What is generally lacking are tools to express
refinements of UML models, on which FOMDD relies.
Building such tools is the subject of future work.

Kurtev uses XML transformations to develop XML appli-
cations [26]. The design of web applications includes not
only functionality but also content, navigation and presen-
tation issues. This calls for a model-based approach (e.g.
W2000 [3], WebML [12], UWE [25] or OO-HMethod [35])
from which web applications are derived [36]. However,
we are unaware of MDD approaches for building portlets.

Merging MDD and product lines is not new
[1][13][14][15][20][21][38], we know of few examples that
explicitly use features in MDD. One is BoldStroke: a prod-
uct-line written in several millions lines of C++ for support-
ing a family of mission computing avionics for military
aircraft. Gray used MDD to express maintenance tasks on
BoldStroke [21]. Adding a feature required both updating
BoldStroke’s model and code base. Although build optimi-
zations were used (e.g., delaying the updates of the code
base after model refinement), no commuting relationships
were used, although we believe they exist.

Proving properties of large programs remains a difficult
challenge. The programs used in PMDD (javac, XSLT,
AHEAD tools) may be on a scale that is appropriate for the
Verified Software Grand Challenge of Hoare, Misra, and
Shankar [27], which seeks scalable technologies for pro-
gram verification.

We mentioned earlier that commuting diagrams are com-
mon in FOMDD. In the construction of the AHEAD tool
suite, for example, customized parsers were built by first
composing a base grammar with its refinements, and then
using JavaCC to derive a parser [6]. This is comparable to
“path B” in Figure 12. A counterpart to path A would be to
compose a base parser with its refinements. Unfortunately,
JavaCC translates only complete grammars into complete
parsers (not grammar refinements into parser refinements),
so path A could not be evaluated.

Figure 14. PinkCreek Build Time Alternatives

0
50

100
150
200
250
300
350
400
450
500

1 2 5 10 15 20 23#features

sec B
A -T
A
A+B-T

Commuting diagrams are fundamental to category theory
(CT) [37], which is a general mathematical theory of struc-
tures and of systems of structures. A benefit of FOMDD is
that it is mathematically based, and this makes connections
with category theory easier to recognize. PinkCreek has
provided us with an invaluable example that has enabled us
to unify the ideas of FOMDD program synthesis and CT.
An exposition of these ideas is the subject of forthcoming
work [9].

7 Conclusions
MDD and FOP are complementary paradigms. MDD
derives models and FOP refines models. Metaprogramming
unifies models with values; transformations map values to
values. This unification of MDD and FOP, here called
FOMDD, offers a powerful paradigm for creating product
lines using MDD technology.

We presented a case study of FOMDD that created a prod-
uct line of portlets. We showed how the MDD production of
a portlet is a metaprogram that transforms a multi-model
specification of a portlet into a web archive file. We
expressed variations in portlet functionality as features, and
synthesized portlet specifications by composing features.
Our work exposed a fundamental relationship between
model derivation and model refinement in FOMDD, which
we expressed as a commuting diagram/relationship. We
exploited this relationship — the transformation of a com-
position of models equals the composition of transformed
models — to validate the correctness of our domain
abstractions, tools, and portlet specifications at a cost of
longer synthesis times. The relationship could also be used
to reduce synthesis times if validation is not an issue.

While the portlet domain admittedly has specific and
unusual requirements, there is nothing domain-specific
about the need for MDD and FOP and their benefits. In this
regard, PMDD is not unusual; it is an example of many
domains where both technologies naturally complement
each other to produce a result that is better than either could
deliver in isolation. FOMDD offers a fresh perspective in
program and product-line synthesis where mathematical
properties — in addition to engineering feats — guide a
principled design of complex systems. Research on MDD
and FOP should focus on infrastructures that support their
integration, and researchers should be cognizant that their
synergy is not only possible, but desirable.

Acknowledgments. We thank F. I. Anfurrutia, M. Azanza,
D. Benavides, and J. Gray for their helpful comments on
earlier drafts of this paper. This work was co-supported by
the Spanish Ministry of Science & Education, the European
Social Fund under contract TIC2005-05610 and by NSF’s
Science of Design Project #CCF-0438786. Trujillo has a

doctoral grant from the Spanish Ministry of Science & Edu-
cation. This work was partially done while Trujillo was vis-
iting the University of Texas at Austin.

8 References
[1] M. Anastaspoulos, et. al. “Optimizing Model-Driven Devel-

opment by Deriving Code Generation Patterns from Product
Line Architectures”. NetObject Days 2005.

[2] Apache ant. http://ant.apache.org/
[3] L. Baresi, F. Garzotto and P. Paolini. “From Web Sites to

Web Applications: New Issues for Conceptual Modeling”.
ER Workshops 2000.

[4] D. Batory, G. Chen, E. Robertson, and T. Wang. “Design
Wizards and Visual Programming Environments for Gen-
Voca Generators”. IEEE TSE, May 2000.

[5] D. Batory, et al. “Achieving Extensibility Through Product-
Lines and Domain-Specific Languages: A Case Study”. ACM
TOSEM, April 2002.

[6] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-
Wise Refinement”. IEEE TSE, June 2004.

[7] D. Batory. “Feature Models, Grammars, and Propositional
Formulas”. SPLC 2005.

[8] D. Batory. “Multi-Level Models in Model Driven Develop-
ment, Product-Lines, and Metaprogramming”. IBM Systems
Journal, Volume 45, Number 3, 2006.

[9] D. Batory. “From Implementation to Theory in Program Syn-
thesis”. Keynote at POPL 2007.

[10] J. Bezivin. “Model Driven Engineering: Principles, Scope,
Deployment, and Applicability”. GTTSE 2005.

[11] G. Booch, A. Brown, S. Iyengar, J. Rumbaugh, and B. Selic.
“The IBM MDA Manifesto”. The MDA Journal, May 2004.

[12] S. Ceri, P. Fraternali and M. Matera. “Conceptual Modeling
of Data-Intensive Web Applications”. IEEE Internet Comput-
ing, vol. 6, no. 4, pp. 20-30. 2002.

[13] K. Czarnecki, M. Antkiewicz, et al. “Model-Driven Software
Product-Lines”. OOPLSA 2005 Posters.

[14] K. Czarnecki and M. Antkiewicz. “Mapping Features to
Models: A Template Approach Based on Superimposed Vari-
ants”. GPCE 2005.

[15] S. Deelstra, M. Sinnema, J. van Gurp, and J. Bosch. “Model
Driven Architecture as Approach to Manage Variability in
Software Product Families”. MDAFA 2003 Workshop.

[16] O. Diaz and J.J. Rodriguez. “Portlets as Web Components: an
Introduction”. Journal of Universal Computer Science,
10(4):454-472. April 2004.

[17] O. Diaz, S. Trujillo and S. Perez. “Turning Portlets into Ser-
vices: Introducing the Organization Profile“. WWW 2007.

[18] Exo Portal Platform. http://www.exoplatform.com/
[19] M. C. Ferreira de Oliveira, M. A. Santos Turine, and P. C.

Masiero. “A Statechart-Based Model for Hypermedia Appli-
cations”. ACM TOIS, January 2001.

[20] B. González-Baixauli, M.A. Laguna, and Y. Crespo. “Product
Lines, Features, and MDD”. EWMT 2005 Workshop.

[21] J. Gray. et al. “Model Driven Program Transformation of a
Large Avionics Framework”. GPCE 2004.

[22] D. Harel. “Statecharts: A visual formalism for complex sys-
tems”. Science of Computer Programming, 8(3), 1987.

[23] Java Community Process. JSR 168 Portlet Specification,
October 2003. http://www.jcp.org/en/jsr/detail?id=168.

[24] A. Kleppe, J. Warmer, and W. Bast. “MDA Explained: The
Model Driven Architecture: Practice and Promise”, Addi-
son-Wesley, 2003.

[25] N. Koch and A. Kraus. “The Expressive Power of UML-
based Web Engineering”. IWWOST 2002.

[26] I. Kurtev and K. van den Berg. “Building Adaptable and
Reusable XML Applications with Model Transformations”.
WWW 2005.

[27] G. Leavens, et al. “Roadmap for Enhanced Languages and
Methods to Aid Verification”, ftp://ftp.cs.iastate.edu/pub/
techreports/TR06-21/TR.pdf

[28] J. Lee, N.L. Xue, and T.L. Kuei. “A Note on State Modeling
through Inheritance”, SIGSOFT Soft. Eng. Notes 23 (1998).

[29] A.T. McNeile and N. Simons. “State Machines as Mixins”.
Journal of Object Technology 2, 2003.

[30] T. Mens, K. Czarnecki, and P. van Gorp. “A Taxonomy of
Model Transformations”, Dagstuhl Seminar Proceedings 04101
http://drops.dagstuhl.de/opus/volltexte/2005/11.

[31] A. Narayanan and G. Karsai. “Towards Verifying Model
Transformations”. In GT-VMT workshop at ETAPS 2006.

[32] OASIS. Web Service for Remote Portals (WSRP) Version 1.0.
2003. http://www.oasis-open.org/committees/wsrp/

[33] OMG. Unified Modeling Language (UML), version 2.0.
2005. http://www.uml.org/#UML2.0

[34] OMG. XML Metadata Interchange Mapping Specification,
version 2.1, 2005, http://www.omg.org/technology/docu-
ments/formal/xmi.htm

[35] O. Pastor et al. “The OO-method approach for information
systems modeling: from object-oriented conceptual modeling
to automated programming”. Inf. Syst., vol. 26, no. 7, 2001.

[36] F. Paterno and C. Mancini. “Model-Based Design of Interac-
tive Applications”. ACM Intelligence, pp. 27-37. 2000.

[37] B. Pierce. Basic Category Theory for Computer Scientists,
MIT Press, 1991.

[38] D. Schmidt, A. Nechypurenko, and E. Wuchner. “MDD for
Software Product-Lines: Fact or Fiction”, Models 2005
Workshop 9.

[39] P. Selinger, et al. “Access Path Selection in a Relational Data-
base System”, ACM SIGMOD, 1979.

[40] N. Serrano and I. Ciordia. “Ant: Automating the Process of
Building Applications”. IEEE Software, 21(6):89-91,
November/December 2004.

[41] S. Trujillo, D. Batory, and O. Diaz. “Feature Refactoring a
Multi-Representation Program into a Product Line”. GPCE
2006.

[42] S. Trujillo. Feature Oriented Model Driven Product Lines.
Ph.D. thesis. University of the Basque Country. 2007.

[43] W3C. State Chart XML (SCXML): State Machine Notation
for Control Abstraction, W3C Working Draft 24 January
2006. http://www.w3.org/TR/scxml/.

[44] W3C. Simple Object Access Protocol (SOAP) 1.1, June 2003.
http://www.w3.org/TR/soap12/.

[45] W. Weber and P. Metz. “Reuse of Models and Diagrams of
the UML and Implementation Concepts Regarding Dynamic

Modeling”. In The Unified Modeling Language: Technical
Aspects and Applications, 190-203, 1998. Physica-Verlag.

[46] MyYahoo. http://my.yahoo.com/.

9 Appendix: Transforming Refinements
Let feature function F be defined by the tuple: <∆Fsc, ∆Fact-
usr, ∆Fview-usr, ∆Fjak-usr, ∆Fjsp-usr>. We can map F to a
∆Fraw in the following way. First, we define a new transfor-
mation (T’sc2ctrl) that maps a refinement of a state chart
(∆Fsc) to a refinement or delta of a PSL controller (∆Fctrl):

∆Fctrl = T’sc2ctrl (∆Fsc) (21)

Second, we need other transformations to map ∆Fctrl to an
action skeleton delta (∆Fact-sk) and a view skeleton delta
(∆Fview-sk):

∆Fact-sk = T’ctrl2act (∆Fctrl) (22)
∆Fview-sk = T’ctrl2view (∆Fctrl) (23)

Third, we composed the action skeleton delta (∆Fact-sk)
computed above with a hand-written refinement (∆Fact-usr)
to yield a complete PSL action delta (∆Fact). The same
applies to producing a complete PSL view delta (∆Fview) by
composing its skeleton and hand-written refinement:

∆Fact = ∆Fact-usr • ∆Fact-sk (24)
∆Fview = ∆Fview-usr • ∆Fview-sk (25)

Given these deltas (∆Fact, ∆Fview), we wrote additional
transformations to map them to their delta Jak and Jsp code
skeleton counterparts:

∆Fjak-sk = T’act2jak (∆Fact) (26)
∆Fjsp-sk = T’view2jsp (∆Fview) (27)

and composed them with their code refinements:

∆Fjakcode = ∆Fjak-usr • ∆Fjak-sk (28)
∆Fjspcode = ∆Fjsp-usr • ∆Fjsp-sk (29)

The delta raw material that a feature F adds to its base is:

∆Fraw = {∆Fctrl, ∆Fact, ∆Fview,∆Fjakcode,∆Fjspcode}(30)

where the components of ∆Fraw are derived by (21)-(30).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

