
Reasoning about Edits to Feature Models

Thomas Thüm
School of Computer Science

University of Magdeburg
tthuem@st.ovgu.de

Don Batory
Dept. of Computer Science

University of Texas at Austin
batory@cs.utexas.edu

Christian Kästner
School of Computer Science

University of Magdeburg
ckaestne@ovgu.de

Abstract

Features express the variabilities and commonalities
among programs in a software product line (SPL). A feature
model defines the valid combinations of features, where each
combination corresponds to a program in an SPL. SPLs
and their feature models evolve over time. We classify the
evolution of a feature model via modifications as refactor-
ings, specializations, generalizations, or arbitrary edits. We
present an algorithm to reason about feature model edits
to help designers determine how the program membership
of an SPL has changed. Our algorithm takes two feature
models as input (before and after edit versions), where the
set of features in both models are not necessarily the same,
and it automatically computes the change classification. Our
algorithm is able to give examples of added or deleted prod-
ucts and efficiently classifies edits to even large models that
have thousands of features.

1 Introduction

Software product line (SPL) engineering is a paradigm
for systematic reuse [2, 32, 21]. From common assets, dif-
ferent programs of a domain can be assembled. Programs
of an SPL are distinguished by features, which are domain
abstractions relevant to stakeholders and are typically incre-
ments in program functionality. Every program of an SPL
is represented by a unique combination of features, and an
SPL could have millions of distinct programs. A feature
model compactly defines all features in an SPL and their
valid combinations; it is basically an AND-OR graph with
constraints.

SPLs and their feature models evolve over time. Even
small changes to a feature model, like moving a feature from
one branch to another, can unintentionally change the set of
legal feature combinations. For example, edits may preclude
the creation of programs that were previously built or enlarge
the set of programs that can be built. Understanding the
impact of feature model edits is known to be impractical to

determine manually. Tool support to provide feedback to
engineers to explain how changes to a feature model have
altered the program membership of an SPL is a fundamental
problem.

In prior work, Czarnecki et al. defined operations to spe-
cialize feature models [13, 14, 25], where a feature model X
is a specialization of a feature model Y if the set of products
in X is a subset of that in Y. Alves et al. discussed operations
called refactorings that maintain the set of products or add
new products to an SPL [1]. We call this latter case (when
new products are added) a generalization of a feature model.
In both approaches, a set of sound operations is used to edit
feature models to determine whether a model is a specializa-
tion or refactoring or generalization of another. To determine
the effects of feature model edits using these results requires
that all edits be expressed as a sequence of predefined op-
erations (refactorings, generalizations, or specializations).
However, a tool that allows only sound operations to be per-
formed would have the feel of a hard-to-use structure editor,
e.g., how one changes a feature model X into a target feature
model Y using a sequence of sound operations is not obvi-
ous. A path planner [17] would be needed to automatically
compute a sequence (if it exists). If a required operation
is missing, designers would be out of luck, as the desired
change to a feature model would be precluded by the editor.
This approach seems too difficult.

In other work, Sun et al. used first-order logic to deter-
mine if two feature models are equivalent, i.e., both models
have the same set of products [37]. Janota and Kiniry used
higher-order logic to determine whether a feature model is a
specialization of another [20]. Both approaches work if both
models have the same set of features; their results are not
applicable to model edits that add or delete features. Further,
we are unaware of performance studies that demonstrate
first-order and higher-order logic approaches scale to large
feature models efficiently.

In this paper, we present and evaluate an algorithm to
determine the relationship between two feature models (i.e.,
specialization/refactoring/generalization/none of these) us-
ing satisfiability solvers. We overcome the limitations of

dsb
Text Box
International Conference on Software Engineering (ICSE) 2009

previous solutions: (a) arbitrary edits on feature models are
supported, (b) the models to be compared need not have the
same set of features, and (c) we empirically show that our
algorithm can efficiently compare models with thousands of
features.

2 Feature Model Background

A feature model defines the valid combinations of features
in a domain. It is organized hierarchically and is graphically
depicted as a feature diagram [21]. As an example, we
show a feature model of an embedded database product line
called FAME-DBMS [33] in Figure 1. Every feature has
one parent except the root feature. Connections between a
feature and its group of children are distinguished as And-
(no arc), Or- (filled arc) and Alternative-groups (unfilled
arc) [19, 12, 4, 8, 16]. The children of And-groups can be
either mandatory (filled circle) or optional (unfilled circle).

Figure 1. Feature Model of FAME-DBMS

Feature models have the following semantics: if a feature
is selected, so too is its parent. Further, if the parent is
selected, all mandatory children (features) of an And-group
are selected; in Or-groups, at least one child must be selected,
and in Alternative-groups, exactly one child is selected.

A feature model may also have constraints, called cross-
tree constraints, that cannot be easily expressed hierarchi-
cally [12, 3, 7]. Cross-tree constraints can be arbitrary propo-
sitional formulas and may be written below a feature diagram
as in Figure 1. Our notation is based on guidsl [3].

As in [3], a terminal or concrete feature is a leaf and a
non-terminal or compound or abstract feature (we do not
distinguish between these terms) is an interior node of a
feature diagram. A unique characteristic of [3] is that each
non-terminal feature represents a composition of features
that are its descendants. This is not a standard interpretation
in the feature modeling literature. (Stated differently, [3]
assumes no assets are associated with a non-terminal feature;
assets are bound only to concrete features). Although we
develop our work using guidsl assumptions, simple tree

Group Type Propositional Formula

And (P ⇒
∧

i∈M Ci) ∧ (
∨

1≤i≤n Ci ⇒ P)

Or P ⇔
∨

1≤i≤n Ci

Alternative (P ⇔
∨

1≤i≤n Ci) ∧ atmost1(C1, . . . , Cn)

Table 1. Propositional Formulas

rewrites can transform non-terminal features with assets into
terminal features. Figure 2 illustrates such a transformation.

Transformation
(refactoring)

Mapping to
assets

Figure 2. Refactoring for Non-Terminal Fea-
tures with Assets

Our choice of guidsl assumptions is not critical to our
results, although it does simplify their development as
clean distinctions among different types of features are
made. Different notations or extensions of feature models,
e.g, [21, 19, 12, 37, 1, 16, 34], can be translated into guidsl
representations [39].1 This includes non-terminal features
that have assets, which can be handled appropriately and
transparently by translations.

A configuration of a feature model is a set of concrete
features. A configuration is valid if the selection of all fea-
tures contained in the configuration and the deselection of
all other concrete features is allowed by the feature model.
For example, a valid configuration of the feature model in
Figure 1 is {Win, InMemory, get, BTree}. A software prod-
uct line L(f) is the set of all configurations that are valid for
the feature model f .

Propositional Formulas. Every feature model can be
translated into a propositional formula with a variable for
each feature using the rules given in Table 1 [3]. P de-
notes a compound feature and C1, . . . , Cn are its chil-
dren. If the relationship among children is of type And,
then M ⊆ {1, . . . , n} identifies the mandatory features by
their index. The term atmost1(C1, . . . , Cn) is equivalent to∧

i<j(¬Ci ∨ ¬Cj) [17].
The propositional formula of a feature model is con-

structed by (a) conjoining the propositional formula for each

1An exception are feature models with local attributes, i.e., with at-
tributes whose values are defined by configurations and not by the feature
model itself [13].

2

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS, Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))
≡ P (f) ∧ ¬P (g)

(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

3

a feature model, a crude upper bound on the worst case
number of clauses is O(n2) and the number of disjuncts in a
clause is O(n) [39]. In practice, the number of clauses and
the average number of disjuncts per clause is much lower
than these bounds.

We implemented this strategy and tested it with several
feature models (see Section 4). For very small feature models
this algorithm can classify edits quickly (changes to feature
models with 25 features can be classified in less than a
second). However, already with feature models with as
little as 50 features, the calculation time exceeds the mark
of 10-20 seconds considered acceptable by user interface
guidelines [31, 35]. For feature models with hundreds of
features often used in practice, this algorithm does not scale.
Our results are consistent with experience by others [9, 40].

The source of these long calculation times lies in the
negation of P(g) in Equation 2. Let c denote the number of
CNF clauses in P (g) and let d denote the number of disjuncts
per clause. When P (g) is negated and transformed into CNF,
the number of clauses produced is O(dc) where each clause
has O(c) terms. Observe that an exponential explosion of
clauses occurs, rendering a straightforward evaluation of
Equation 2 for even small values of c and d impractical.2 In
the next section, we explain how to avoid explosions.

3.2 Simplified Reasoning

In the typical case when feature model g is derived from
f , we would expect f and g to have many CNF clauses in
common. We can rewrite P (f) and P (g) as:

P (f) = pf ∧ c (3)
P (g) = pg ∧ c (4)

where c denotes the conjunction of the common clauses of
P (f) and P (g), and pf is the conjuction of clauses that are
contained in P (f) but not in P (g). The fact that pf ∧ c∧¬c
is a contradiction leads to the following equivalence:

P (f) ∧ ¬P (g) ≡ P (f) ∧ ¬pg (5)

This rewrite helps significantly when f and g are largely
similar, but by itself does not avoid the exponential explosion.
It simply reduces the number of clauses in P (g) from n to a
lower n′.

To eliminate the explosion, let pg denote the CNF expres-
sion R1 ∧R2 ∧ . . .∧Rn′ , where each Ri is a disjunction of

2As an optimization, we could use ‘satisfiability equivalent’ transfor-
mations of ¬P (g) into CNF, instead of equivalent transformations [10].
This would limit the explosion of terms, but requires additional variables.
Furthermore, it is not possible to calculate an example to why an edit is
a generalization or to determine the number of added or deleted products.
Therefore, we base our solution on equivalent transformations.

terms, and a term is a feature variable or its negation. We
now simplify Equation 5:

P (f) ∧ ¬pg ≡ P (f) ∧ ¬
∧

1≤i≤n′

Ri

≡ P (f) ∧
∨

1≤i≤n′

¬Ri

≡
∨

1≤i≤n′

(P (f) ∧ ¬Ri)

(6)

Equation 6 tells us that we can now make n′ distinct calls
to a SAT solver to determine whether formula (P (f)∧¬Ri)
is satisfiable, once for each value of i. If any formula is sat-
isfiable, we know that L(f) is not a subset of L(g) because
Equation 1 evaluates to false. The possibility to terminate
early also helps to reason efficiently with large feature mod-
els. Moreover, each formula (P (f) ∧ ¬Ri) is simple: Ri

is a disjunction of di terms, and its negation is a conjunc-
tion of di terms. That is, small problems are submitted to a
SAT solver, and this increases reasoning efficiency, too. In
addition, the output of a SAT solver is useful: it provides
an example that justifies our classification (e.g., a product
configuration that is present in P (f) but not in P (g), or vice
versa). This too is helpful in explaining to engineers how
edits change a feature model.

In summary, it is not necessary to compute the CNF of
a negated feature model. We can efficiently classify fea-
ture model edits using multiple calls to SAT solvers, posing
simple questions each time. This makes it possible to clas-
sify changes for large feature models efficiently, as well as
illustrating changes using counter examples. We call this
technique simplified reasoning.

3.3 Adding/Removing Concrete Features

Simplified reasoning applies to feature models that have
the same set of features. But what if edits add or remove
concrete features? To motivate our solution, consider an
example.

Example. Figure 3 shows a feature model f where an op-
tional concrete feature C has been added to produce fea-
ture model g. We know that this edit is a generalization
as g contains all products of f and more. Now let’s see if
P (f)⇒ P (g) holds by applying our technique:

P (f) =(S ∧ (S ⇔ T ∨D) ∧ (T ⇒ B)∧
(A ∨B ⇒ T))

(7)

P (g) =(S ∧ (S ⇔ T ∨D) ∧ (T ⇒ B)∧
(A ∨B ∨ C ⇒ T))

(8)

P (f)⇒ P (g) holds if and only if the following formula
is unsatisfiable:

P (f) ∧ ¬(A ∨B ∨ C ⇒ T) (9)

4

(a) Feature Model f (b) Feature Model g

Figure 3. Adding Concrete Feature C to f

Unfortunately, Equation 9 is satisfiable and therefore
P (f)⇒ P (g) fails. Here is a counter-example: let S, D and
C be true and T , A and B be false. For this assignment,
P (f) is true, and P (g) is false. This example tells us
that we have to generalize Equation 1 to take into account
concrete feature additions and deletions. Futhermore, we
cannot simply say that adding a feature creates new products.
A user might add or remove a dead feature (that by some
constraint can never be selected in any product), which is in
fact a refactoring.

The solution for this example, which we extrapolate into
a general solution, is the following: when we change feature
model f to feature model g by adding a feature, we auto-
matically add this feature to f as well but deselect it there.
Now our algorithm detects a refactoring if the new feature is
always deselected in g (i.e., it is a dead feature) or a gener-
alization (new products) in all other cases. Similarly, when
we change feature model f to feature model g by removing
a concrete feature, we automatically add this feature to g but
deselect it. Our algorithm detects a refactoring when the re-
moved feature was dead or a specialization (fewer products)
in all other cases.

We operationalize the above in the following way: For
every conrete feature A that is contained in g but not in f
we conjoin the new clause ¬A to P (f) resulting in P ′(f).
Thus, when feature A is deselected in g, its deselection in f
will have no impact on f ’s product-line (i.e., P ′(f) reduces
to P (f)). Analogously, we conjoin a new clause ¬B to P (g)
for every feature B that is contained in f but no longer in g
resulting in P ′(g). Doing all this generalizes Equation 1:

(L(f) ⊆ L(g))⇔ (P ′(f)⇒ P ′(g)) (10)

By using Equation 10, we can apply our simplified rea-
soning algorithm to classify edits when concrete features are
added or removed.

In our above example, when feature C is selected, P ′(f)
is false for all remaining variable assignments. For all as-
signments where P ′(f) is true, C is deselected and P ′(g)
is also true, which is what we wanted to prove.

3.4 Handling Abstract Features

Our last topic considers the handling of abstract features.
Again, we start with an example to motivate why abstract
features need special treatment.

Example. Figure 4(a) shows a feature model f , where A
and B are Or-connected. Feature model g is derived from f
by adding a new abstract feature T which does not change
the product line membership of f (i.e., L(f) = L(g)).

(a) Feature Model f (b) Feature Model g

Figure 4. Adding Abstract Feature T to f

Using our translation of Section 3.2, the propositional
formulas of f and g are as follows:

P ′(f) = (S ∧ (S ⇔ A ∨B)) (11)
P ′(g) = (S ∧ (S ⇔ T) ∧ (T ⇔ A ∨B)) (12)

As before, we give a counter-example: setting T false
and all other variables to true shows P ′(f) ; P ′(g).

The fundamental difference between concrete features
and abstract features is that an abstract feature does not ap-
pear in a configuration; its value is computed from the values
of its children. (Remember that in other feature modeling
approaches, there may not be a clear distinction between
non-terminal features that can be selected, and abstract fea-
tures whose value is computed. As mentioned earlier, by
applying rewrites such as that in Figure 2, we model the
selection of a non-terminal feature as that of selecting a con-
crete subfeature of a non-terminal feature that is abstract).
In principle, abstract features need a different treatment than
concrete features because they represent a semantically dif-
ferent concept.

The solution for this example, which we extrapolate into a
general solution, is based on the observation that an abstract
feature is selected if and only if at least one of its children
is selected. Hence, the propositional formula

∨
1≤i≤n Ci

computes the value of the abstract feature P , where Ci are
the children of P . We call this formula the definition of P .

Given definitions, our solution is to replace every oc-
currence of an abstract feature by its definition. Since a
definition might contain an abstract feature itself, we iterate
this process until the resulting propositional formula only
contains concrete features.

5

3.5 Recap

With the algorithms and ideas that we have outlined, it is
possible to classify edits that transform one feature model
into another as being a refactoring, a specialization, a gen-
eralization, or an arbitrary edit. Our approach avoids an
exponential explosion of CNF clauses that has has been a
stumbling block in prior work; we use several simplifica-
tions and break reasoning into smaller steps. Furthermore,
we developed extensions to support the addition and removal
of concrete features and the substitution of abstract features
to cover all possible edits on feature models.

Because we have reduced the problem of reasoning about
feature model edits to the satisfiability problem, the algo-
rithm could still have an exponential run-time in the worst
case. Therefore, in the next section, we analyze the run-time
of our algorithm empirically and show that it scales well for
common and even for very large feature models.

4 Evaluation

We implemented the algorithm presented in the previ-
ous sectionas part of the graphical feature model editor of
FeatureIDE3 [24]. In the editor, the user can freely modify
a feature diagram via drag and drop or using built-in oper-
ations. After each change, the tool shows whether all edits
performed since the feature model was last saved consti-
tute a refactoring, a specialization, a generalization, or an
arbitrary edit. It illustrates this result by providing an accord-
ing example of added and removed products. For solving
propositional formulas, we used the SAT solver Sat4J4.

For an initial evaluation, we took existing feature models
and manually modified them. We used several small and
medium-sized feature models that were publicly available,
e.g., FAME-DBMS [33] of Figure 1 with 21 features, de-
composed Berkeley DB [23] with 38 features, decomposed
Violet UML editor5 with 101 features, e-Shop [29] with 287
features, different versions of a graph product line [27] with
25 to 64 features, and several AHEAD tools [5] with 24 to
52 features. Additionally, we checked all feature models
depicted in the proceedings of the International Conference
of Software Product Lines (SPLC) 2007. Our tool worked as
expected, and in every case, for every edit, we found that the
response time for computing relationships between before
and after-edited models was essentially instantaneous. This
challenged us to evaluate how scaling the size of the models
would affect performance.

Even though there are reports from industry of feature
models with hundreds or thousands of features [26, 36], au-

3FeatureIDE is open source and available at: http://www.fosd.
de/featureide/

4http://www.sat4j.org
5http://sf.net/projects/violet/

thors typically publish only a small excerpt of their feature
models. We did not find large feature models for a thorough
evaluation. Therefore, we decided to perform an experiment
using randomly generated feature models with different char-
acteristics.

4.1 Experimental Setup

We randomly generated feature models and performed
random edits on them. In this way, we can parametrically
control the size of feature models and the number and kind
of edits which allows a thorough run-time evaluation.

Independent variables in our experiment are (a) the num-
ber of features in a feature model, (b) number of edits, and
(c) kind of edits. As a dependent variable we measured
the time needed to determine the classification. To reduce
fluctuations in the dependent variable caused by random gen-
eration, we performed 200 iterations for each configuration
of independent variables, i.e., we generated 200 random fea-
ture models with the same parameters and each performed
the same number of random edits of the same kind. Extrane-
ous variables like hardware are kept constant by performing
all measurements on the same Windows XP lab PC with
2.4 GHz and 2 GB RAM.

In the following, we describe the algorithms for generat-
ing feature models and edits on them.

Feature model generation. Our algorithm to randomly
generate feature models of size n works as follows: Start-
ing with a single root node, it runs several iterations. In
each iteration, an existing node without children is randomly
selected, and one to ten (random amount) of child nodes
are added. Those child nodes are connected either by And-
(50 % probability), Or- (25 % probability) or Alternative-
group (25 % probability). Children in an And-group are
optional by a 50 % chance. This iteration is continued until
the feature model has n features. All features with children
are considered abstract.

Additionally to the tree structure, we also generate
cross-tree constraints. For every 10 features, we create
one cross-tree constraint using the following algorithm: A
constraint is generated consisting of two to five (random
amount) variables or negated variables, connected randomly
by ¬,∧,∨,⇒, or⇔. Finally, we discard all feature models
that do not have a single valid configuration (by unfortunate
choice of cross-tree constraints) and repeat the entire process
until the appropriate number of models are generated.

The parameters used in this generation algorithm (maxi-
mum number of children = 10; type of child group = (50 %,
25 %, 25 %); optional child = 50 %; number of cross-tree
constraints = 0.1 ∗ n; variables in cross-tree constraints =
2–5) are fixed for in the entire experiment. They are backed
up by a survey of all feature models we had available (see

6

Figure 5. Random Generated Feature Model

above). The surveyed models were very different (e.g., some
use almost only And-groups while others use almost only
Alternative-groups), but these percentages represent a rough
average. In this way, our generated feature models are sta-
tistically similar to the ones that we have found. All 2000
generated feature models that we used in our experiment are
available on the FeatureIDE website to enable comparative
studies. In Figure 5, we show one generated feature model
for n = 20.

Feature model edit generation. Edits to a feature model
are also generated randomly. Our generator takes a feature
model and the number of edits as input. Furthermore, the
edits can be limited to known refactorings or generalizations,
which is useful to evaluate whether the performance depends
on the kind of edits.

As refactorings and generalizations we implemented the
16 operations presented by Alves et al. [1], e.g., ‘pull up
node’, ‘add optional node’, or ‘collapse optional and or’. For
arbitrary edits we implemented the following operations: (a)
create or delete a feature without children; (b) change the
type of a group, i.e., to And-, Or, or Alternative-group that is
different from the type before; (c) make a mandatory feature
optional or vice versa; (d) create a new constraint with the
above defined parameters or delete a constraint. Finally, (e)
move one concrete feature to a new parent.

These edits cover both, a sound sets of operations and
operations a user could make in our editor (drag ’n’ drop,
double click, etc). When an edit is applied to a feature model,
one of the available operations is randomly selected.

4.2 Experimental Results

Number of Features. First, we measured how calculation
time scales as feature models increase in size. Therefore,
we varied the size of the generated feature model between
10 and 10 000 features (which is significantly larger than all
reported feature models in practice we came across). For

10 20 50 100 200 500 1000 2000 5000 10000

1
10

10
0

10
00

10
00

0

features

C
al

cu
la

tio
n

tim
e

(m
s)

Figure 6. Calculation Time in Milliseconds for
10 Random Edits

each feature model, we performed 10 random edits (not
restricted to refactorings or generalizations). As described
above, we performed 200 repetitions for each model size,
as there is a fluctuation of calculation times depending on
the randomly generated models (with the same size) and the
randomly performed edits. In Figure 6, we show the result
of this measurements as boxplots with a logarithmic scale.6

For small feature models (< 200 features) the average
calculation time is less than 0.1 second (standard deviation
less than 0.03 seconds, worst measured case was 0.4 sec-
onds). For large feature models (1000 features) the average
calculation time is 0.2 seconds (standard deviation 0.1 sec-
ond, worst measured case 0.9 seconds). Only for very large
feature models with up to 10 000 features, the calculation re-
quires several seconds (mean 11 seconds, standard deviation
0.7 seconds, worst measured case 12 seconds).

Kind of Edits. Next, we performed the same measurement
varying the feature model size from 10 to 10 000, but now we
distinguished between different possible edits. This should
determine whether changes that make arbitrary edits are
more difficult to detect than those selected from Alves’ set
of sound operations. We distinguish between three possible
kinds of edits: refactorings from the catalog of sound opera-
tions, generalizations from the same catalog, and arbitrary
edits as described above. Specializations are not considered
as they are the inverse of generalizations. Again we applied
10 random edits of this classification (i.e., 10 refactorings,
or 10 generalizations, or 10 arbitrary edits) to each feature
model.

In Figure 7, we show the results of our measurement
(mean value of 200 repetitions for each combination of fea-
ture model size and type of edits). There is no significant

6A box plot is a common form to depict groups of numerical data and
their dispersion. It plots the median as thick line and the quartiles as thin
line, so that 50 % of all measurements are inside the box. Values that
strongly diviate from the median are outlies and drawn as separate dots.

7

10 50 100 500 1000 5000 10000

1
10

10
0

10
00

10
00

0

features

C
al

cu
la

tio
n

tim
e

(m
s)

Refactoring
Generalization
Arbitrary edit

10 20 50 100 200 500 1000 2000 5000 10000

Figure 7. Calculation Time in Milliseconds for
10 Random Edits per Kind of Edit

difference between the three classifications refactoring, gen-
eralization, and arbitrary edits. The reason is that for 10
edits the time for initializing the solver often takes more
time than verifying particular edits. The predicate that we
supply to each invocation of a SAT solver is largely the size
of P (f), the original model. So as the size of the feature
model increases, we would expect to see a (small) increase
in computation size. As we will see in the next experiment,
10 edits turns out not to enough to distinguish computation
times for refactorings, generalizations, or arbitrary edits.

Number of Edits. Finally, we measured the calculation
time while varying the number of edits for a fixed feature
model size of 1000 features. In this way, we can deter-
mine whether more edits require longer calculation times.
We again distinguish between the three classifications refac-
toring, generalization (which includes specialization), and
arbitrary edits.

The results (mean value of 200 iterations each) are shown
in Figure 8. Additionally, we measured the mean calculation
time for one edit (0.18 seconds), two edits (0.22 seconds),
and five edits (0.23 seconds). For any number of edits, ar-
bitrary edits and generalizations are calculated in approxi-
mately 0.3 seconds, almost independent of the number of
edits. Only refactorings require longer, but still less than
0.5 seconds even for 100 edits in a feature model with 1000
features.

Although these almost constant times appear counter-
intuitive at first, there is a simple explanation: The algorithm
aborts as soon as an added and a deleted product is found
(cf. Sec. 3.2). Since almost all arbitrary edits add or delete
products, the algorithm terminates fastest for these inputs.
Detecting refactorings is more time-consuming because all
changed clauses need to be verified and the algorithm cannot
stop earlier. But still it increases roughly linearly with the
number of edits. Generalizations are in between as an added
product can be found very fast and the nature of generaliza-

0 20 40 60 80 100

10
0

20
0

30
0

40
0

50
0

edits

C
al

cu
la

tio
n

tim
e

(m
s)

Refactoring
Generalization
Arbitrary edit

0 5 10 20 30 40 50 60 70 80 90 100

Figure 8. Calculation Time vs. Number of Ed-
its (Feature Model Size = 1000)

tion edits usually simplifies the remaining formula c to check
that no product was removed.

As special cases, we also measured identical feature mod-
els (0 edits) and compared completely independently gen-
erated feature models with the same feature names (which
is roughly similar to an infinite number of edits and can be
regarded as upper bound). Identical feature models with
1000 features are detected instantaneously, on average in
0.06 seconds. Completely independent feature models are
classified in 0.7 seconds.

4.3 Discussion & Threats to Validity

Experiments show that our algorithm works efficiently
even for large feature models. Mostly independent from the
kind and number of edits, the algorithm can determine the
classification of an edit in less than 0.1 seconds for small
models (< 200 features), in less than 0.5 seconds for large
models (< 1000 features) and even for very large feature
models (up to 10 000 features) in few seconds.

This comfortably allows an implementation in our graph-
ical editor that shows the classification on the fly for every
change. It is calculated in a background thread, whose result
is shown almost instantly. For very large feature models,
a calculation time of 11 seconds (worst case 12 in our ex-
periment) seems acceptable, given that such feature models
are probably so complex that automatic reasoning for edits
would be appreciated and a few seconds wait (for which we
can even offer a progress bar) is tolerable.

Threats to internal validity are influences that can affect
the calculation time that have not been considered. To avoid
influence of computing power, all calculations have been
performed on the same PC. We cannot guarantee that compu-
tation time depends on certain shapes of a feature model, or
certain kinds of edits. However, to avoid misleading effects
of specially-shaped feature models, we generated feature
models automatically that statistically resemble known fea-

8

ture models, and repeated each measurement 200 times with
freshly generated models. To avoid effects of certain edits,
we randomly selected from a pool of edits that have been
suggested in prior work.

Threats to external validity are conditions that limit our
ability to generalize the results of our experiment to indus-
trial practice. Our prior concern is whether generated feature
models and edits are representative of industrial usage. First,
we generated feature models with the described algorithm
and parameters, and confirmed that they align well with
those feature models we acquired from our own research,
and publications in the software product line community.
However, as we mentioned earlier, these models are typ-
ically small, and published feature models usually reveal
excerpts from a larger model. Additionally, we tested our
algorithm with feature models generated by others [29] and
found no significant difference in computation times. Sec-
ond, we applied edits from the catalog of feature model
refactorings of Alves et al. [1] and added some edits that
are possible using our editor (e.g., drag ’n’ drop to move
features or double click to change group type). We cannot
guarantee that these edits are complete and typical in prac-
tice, however all reasonable edits we wanted to perform in
our manual experiments could be performed with one or a
sequence of these edits. Additionally, we also measured that
comparing two feature models that were generated indepen-
dently (which can be considered as a result of a worst case
sequence of edits) performs within reasonable range.

5 Related Work

Operations on feature models have been classified in re-
cent research on SPLs. Specializations were introduced by
Czarnecki et al. for the process of deriving configurations of
a feature model [13, 14, 25]. Specializations on cardinality-
based feature models were shown, that result in feature mod-
els where some products are deleted. Specializations are
defined formally by Janota and Kiniry [20], but both feature
models have to be defined on the same set of features. We
allow feature models also to be defined on different sets of
features. For instance, we can remove an optional feature to
achieve a specialization or remove a dead feature which is a
refactoring.

Alves et al. proposed refactorings and generalizations [1].
They discussed several operations that maintain the set of
products which they call bi-refactorings and operations that
add new products which they call refactorings. In this paper,
we decided to use the terms refactoring and generalization in-
stead of bi-refactoring and refactoring, as a generalization is
the inverse of a specialization, and a refactoring (as defined
by Fowler [18]) should improve the feature model without
modifying its ‘behavior’, i.e., the possible set of products.
The main disadvantages of using sound operations is that de-

signers have limited possibilities to alter feature models and
that all edits that convert one model into another one must
be known. For example, two feature models designed by
different domain engineers could be extraordinarily difficult
to compare.

While our paper is about alteration of feature models,
automated analysis of feature models focuses on proper-
ties of a feature model, e.g., if a feature model contains at
least one product or how many valid configurations it de-
scribes [28, 9, 15, 7, 6]. We see our work as yet another ex-
tension of this line of research, namely computing properties
of (or relationships among) feature models. Benavides et al.
analyzed the performance of CSP, SAT and BDD solvers in
finding valid configuration given a feature model [8]. Their
main result is that BDDs are faster than CSP or SAT solvers,
but with a ten times higher memory usage. In particular, they
state that BDDs are much faster in counting all solutions.
Computation speed in our work is not a paramount prob-
lem. It might be when feature models become extremely
large, and BDDs, rather than SAT solvers, may be a better
underlying tool.

We performed reasoning purely on feature models. Some
researchers also investigated relationships to other models
or code artifacts. For example, Thaker et al. presented the
safe composition of product lines [38]. The challenge is
to ensure that every product (program) that is defined by a
feature model is type safe. A similar form of type-checking
an entire SPL on the background of a feature model has
been formalized by Kästner and Apel [22]. Furthermore,
Metzger et al. formalized orthogonal variability models as
an instrument for product management and feature models
to express software variability [30]. They proposed the use
of SAT solvers for reasoning, e.g., to check whether the all
product line members of the variability model are realizable
according to the feature model.

It recently occurred to us that the problem of reasoning
about feature model edits may be recast as a specific sub-
problem of language containment, whether one language
contains the sentences of another [11]. This problem is
computationally difficult, belonging to PSPACE.

6 Conclusion

Feature models are a fundamental representation of soft-
ware product lines. They compactly define the set of legal
combinations of features, where each combination corre-
sponds to a product in a product line. As the number of
optional features increases linearly, the number of possible
products in a product line can increase exponentially. This
means that small changes to a feature model can have a sig-
nificant impact on the membership of a product line. Prior
to our work, there was little or no tool support for helping
product line designers gauge the impact of their changes to a

9

feature model. As a consequence, inadvertently adding and
deleting products was always a possibility, and discovering
errors was fortuitous. This no longer has to be the case.

We presented an efficient algorithm to determine the re-
lationship between two feature models, where an edit of a
feature model is classified as a specialization, refactoring,
generalization, or none of these. Our algorithm overcomes
four limitations of earlier attempts. First, it supports ar-
bitrary edits on feature models, even arbitrary changes to
cross-tree constraints. Second, it supports addition or dele-
tion of features. Third, the algorithm provides examples
to explain computed classifications. Fourth, due to several
optimizations it scales even to very large feature models with
thousands of features.

Future work could generalize our analysis to other vari-
ability models, e.g., feature models with attributes [6].
Another possibility is to make finer distinctions than our
refactoring-generalization-specialization-arbitrary classifi-
cations. For example, suppose a feature X is split into fea-
tures X1 and X2 (where the use of X1 implies the use of X2,
and vice versa). Clearly, the set of products in a product line
have not been changed by this edit, but we would classify the
change as an arbitrary edit. A compact representation of all
added and removed products would be an extension to our
proposed reasoning that seems desirable for tool support.

We believe our work is a practical step forward in improv-
ing tools for managing the evolution of feature models.

Acknowledgment. The authors thank Daniel Le Berre for
his help with SAT4J, and for fine-tuning it for our purpose.
We also thank David Benavides for his comments on an
earlier draft of our paper. Thüm’s work was supported by
DFG project #SA 465/32-1 and the Metop GmbH. Batory’s
work was supported by NSF’s Science of Design Project
#CCF-0438786 and #CCF-0724979.

References

[1] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. J. P. de Lucena. Refactoring Product Lines. In Proc. Int’l
Conf. Generative Programming and Component Engineering,
pages 201–210. ACM, 2006.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 1998.

[3] D. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proc. Int’l Software Product Line Conference,
volume 3714 of LNCS, pages 7–20. Springer, 2005.

[4] D. Batory, R. E. Lopez-Herrejon, and J.-P. Martin. Gen-
erating Product-Lines of Product-Families. In Proc. Int’l
Conf. Automated Software Engineering, pages 81–92. IEEE
Computer Society, 2002.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Trans. Softw. Eng., 30(6):355–371,
2004.

[6] D. Benavides. On the Automated Analysis of Software Prod-
uct Lines Using Feature Models - A Framework for Devel-
oping Automated Tool Support. PhD thesis, University of
Seville, Spain, 2007.

[7] D. Benavides, A. Ruiz-Corts, P. Trinidad, and S. Segura. A
Survey on the Automated Analyses of Feture Models. Jor-
nadas de Ingeniera del Software y Bases de Datos, pages
367–376, 2006.

[8] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A
First Step Towards a Framework for the Automated Analysis
of Feature Models. In Proc. Managing Variability for Soft-
ware Product Lines: Working With Variability Mechanisms,
pages 39–47, 2006.

[9] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Using Con-
straint Programming to Reason on Feature Models. In Proc.
Int’l Conf. on Software Engineering and Knowledge Engi-
neering, pages 677–682, 2005.

[10] H. K. Buning and T. Letterman. Propositional Logic: Deduc-
tion and Algorithms. Cambridge University Press, 1999.

[11] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified
approach for showing language containment and equivalence
between various types of ω-automata. In Information Pro-
cessing Letters, Vol. 46, pages 301–308, 1993.

[12] K. Czarnecki and U. W. Eisenecker. Generative Pro-
gramming: Methods, Tools, and Applications. ACM
Press/Addison-Wesley, 2000.

[13] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
Cardinality-Based Feature Models and their Specialization.
Software Process: Improvement and Practice, 10:7–29, 2005.

[14] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged Con-
figuration through Specialization and Multi-Level Configura-
tion of Feature Models. Software Process: Improvement and
Practice, 10(2):143–169, 2005.

[15] K. Czarnecki and C. H. P. Kim. Cardinality-Based Feature
Modeling and Constraints: A Progress Report. In Proc. of
Int’l OOPSLA Workshop on Software Factories, pages 16–20,
2005.

[16] K. Czarnecki and A. Wasowski. Feature Diagrams and Log-
ics: There and Back Again. In Proc. Int’l Software Prod-
uct Line Conference, pages 23–34. IEEE Computer Society,
2007.

[17] K. D. Forbus and J. de Kleer. Building problem solvers. MIT
Press, 1993.

[18] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 2000.

[19] M. L. Griss, J. Favaro, and M. d’ Alessandro. Integrating
Feature Modeling with the RSEB. In Proc. Int’l Conf. on
Software Reuse, pages 76–85, 1998.

[20] M. Janota and J. Kiniry. Reasoning about Feature Models
in Higher-Order Logic. In Proc. Int’l Software Product Line
Conference, pages 13–22. IEEE Computer Society, 2007.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, 1990.

[22] C. Kästner and S. Apel. Type-checking Software Product
Lines - A Formal Approach. In Proc. Int’l Conf. on Auto-
mated Software Engineering (ASE), pages 258–267. IEEE
Computer Society, 2008.

10

[23] C. Kästner, S. Apel, and D. Batory. A case study implement-
ing features using AspectJ. In Proc. Int’l Software Product
Line Conference, pages 223–232. IEEE Computer Society,
2007.

[24] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich,
F. Wielgorz, and S. Apel. FeatureIDE: Tool Framework for
Feature-Oriented Software Development. In Proc. Int’l Conf.
on Software Engineering. IEEE, 2009. Formal Demonstra-
tion.

[25] C. H. P. Kim and K. Czarnecki. Synchronizing Cardinality-
Based Feature Models and Their Specializations. In Proc.
European Conf. on Model Driven Architecture - Foundations
and Applications, volume 3748 of LNCS, pages 331–348.
Springer, 2005.

[26] F. Loesch and E. Ploedereder. Optimization of Variability in
Software Product Lines. In Proc. Int’l Software Product Line
Conference, pages 161–170. IEEE Computer Society, 2007.

[27] R. Lopez-Herrejon and D. Batory. A standard problem for
evaluating product-line methodologies. In Proc. Int’l Conf.
Generative and Component-Based Software Engineering,
pages 10–24. Springer, 2001.

[28] M. Mannion. Using First-Order Logic for Product Line
Model Validation. In Proc. Int’l Software Product Line Con-
ference, volume 2379 of LNCS, pages 176–187. Springer,
2002.

[29] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan.
Efficient Compilation Techniques for Large Scale Feature
Models. In Proc. Int’l Conf. Generative Programming and
Component Engineering, pages 13–22. ACM, 2008.

[30] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval. Disambiguating the documentation of variability
in software product lines: A separation of concerns, formal-
ization and automated analysis. In Proc. Int’l Conf. Require-
ments Engineering, pages 243–253. IEEE Computer Society,
2007.

[31] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.
[32] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-

uct Line Engineering: Foundations, Principles and Tech-
niques. Springer, 2005.

[33] M. Rosenmüller et al. FAME-DBMS: Tailor-made Data
Management Solutions for Embedded Systems. In Proc.
EDBT Workshop on Software Engineering for Tailor-made
Data Management, pages 1–6. ACM, 2008.

[34] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps.
Generic Semantics of Feature Diagrams. Computer Networks,
51(2):456–479, 2007.

[35] J. Spolsky. User Interface Design for Programmers. Springer,
2001.

[36] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz,
and S. Ferber. Introducing PLA at Bosch Gasoline Systems:
Experiences and Practices. In Proc. Int’l Software Prod-
uct Line Conference, volume 3154 of LNCS, pages 34–50.
Springer, 2004.

[37] J. Sun, H. Zhang, Y. F. Li, and H. Wang. Formal Semantics
and Verification for Feature Modeling. In Proc. Int’l Conf. on
Engineering of Complex Computer Systems, pages 303–312.
IEEE Computer Society, 2005.

[38] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Com-
position of Product Lines. In Proc. Int’l Conf. Generative

Programming and Component Engineering, pages 95–104.
ACM, 2007.

[39] T. Thüm. Reasoning about Feature Model Edits. Bachelor’s
thesis, University of Magdeburg, Germany, 2008.

[40] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and
A. Ruiz-Cortés. Automated Diagnosis of Product-line Con-
figuration Errors in Feature Models. In Proc. Int’l Software
Product Line Conference. IEEE Computer Society, 2008.

11

