
Integrating and Reusing GUI-Driven Applications

Mark Grechanik, Don Batory, and Dewayne E. Perry
UT Center for Advanced Research In Software Engineering

(UT ARISE)
University of Texas at Austin

Austin, Texas 78712
{grechani, perry}@ece.utexas.edu, batory@cs.utexas.edu

Abstract. Graphical User Interface (GUI) Driven Applications (GDAs) are
ubiquitous. We present a model and techniques that take closed and monolithic
GDAs and integrate them into an open, collaborative environment. The central
idea is to objectify the GUI of a GDA, thereby creating an object that enables
programmatic control of that GDA.

We demonstrate a non-trivial application of these ideas by integrating a stand-
alone internet application with a stand-alone Win32 application, and explain how
PDAs (Personal Digital Assistants) can be used to remotely control their com-
bined execution. Further, we explain how Integrated Development Environment
(IDEs) may be extended to integrate and reuse GDAs using our approach. We
believe our work is unique: we know of no other technology that could have
integrated the GDAs of our example.

1 Introduction

Graphical user interface (GUI) driven applications (GDAs) are ubiquitous and provide
a wealth of sophisticated services. Spread sheets, for example, provide general-purpose
computational capabilities and web sites provide internet browser access to data stores.
Mega-applications — programs that manipulate different data and computational
resources by integrating different applications — are both common and important. For
example, using spread sheets and databases to perform calculations on data harvested
from different web sites is an increasingly common task.

Building mega-applications from GDAs is a challenging and fundamental problem of
reuse. GDAs should be black-box components that are easy to integrate. Unfortunately,
the opposite is true. Integration is extremely difficulty because GDAs are often distrib-
uted as binaries with no source. Further, the Application Programmer Interfaces (APIs)
of GDAs are often not published or don’t exist, and the only way to access their ser-
vices is through their GUI. Internet applications are a special case. They are even more
challenging because their binaries aren’t available; clients can only invoke methods on
remote servers through interactions with web pages or web services.

Conventional component technologies are focussed on interface-centric programming
where components expose well-known APIs to allow clients to invoke their services.

dsb
To be presented at the International Conference on Software Reuse,
April 2002, Austin, Texas

COM, DCOM, COM+, CORBA, JavaBeans, and Enterprise JavaBeans are typical of
this paradigm: they rely on explicitly defined interfaces with public methods. GDAs
can be different from traditional components because they expose only GUIs or web-
interfaces to their clients, “interfaces” that are not recognizable as COM, CORBA, etc.
interfaces. For example, imagine an application that harvests data from amazon.com
and summarizes data in a Quicken ExpensAble (QE) application. What is the program-
mable “interface” to amazon.com? What is the programmable “interface” to QE’s
GUI? It is easy to imagine how data could be harvested and summarized manually, but
how a mega-application could be written that programmatically calls these “interfaces”
to perform these tasks automatically is not obvious. The only solutions that we are
aware involve hard and tedious work: they require a high-degree of software interoper-
ability, say using COM or CORBA, coupled with sufficient engineering knowledge
and a mature and stable domain. Many GDAs do not satisfy such constraints.

In principle, invoking the services of a GDA through its GUI or web-interface should
be no different than invoking services through an API. We know GUIs and web-inter-
faces are indeed “interfaces”, but what is lacking is a technology that allows us to
access these applications programmatically through their GUIs. Outlining the princi-
ples of this technology and demonstrating a non-trivial application built using them is
the contribution of this paper.

We begin with an explanation of instrumented connectors, the central concept that
underlies our work. We review prior work and explain that programmatic interaction
with GDAs is a special case with unusual properties that are not handled by traditional
approaches. Next we present novel techniques to instrument GDAs and web-browser
interfaces, and outline how our ideas can be added to Integrated Developoment Envi-
ronments (IDEs) to provide tool support to integrate and reuse GDAs in an open and
collaborative environment. We demonstrate a non-trivial application of these ideas by
integrating a stand-alone internet application with a stand-alone Win32 application,
and show how PDAs (Personal Digital Assistants) can be used to remotely control
their combined execution. We believe our work is unique: we know of no other tech-
nology that could have integrated the GDAs of our example.

2 Connectors and Related Work

Classical models of software architecture [16][9] use connectors as an abstraction to
capture the ways in which components interact with each other (Figure 1a). Connec-
tors can be simple (component C calls component B directly via procedure calls) or
complicated (C calls B remotely through CORBA, DCOM, or RMI). Connectors
explicitly use APIs — the ends of a connector present the same interface; a client calls
an API and server (at the other end of the connector) implements the API.

Instrumented connectors are connectors whose message traffic is observed by an inter-
mediary component (Figure 1b).1 An intermediary can record message traffic for later
play-back (e.g., to simulate actual usage), analysis (e.g., to determine message invoca-
tion frequency), or to act as a transducer that modifies message traffic to achieve a par-

ticular purpose [11]. As a general rule, instrumented connectors are non-invasive and
idempotent. Non-invasive means that their presence in a connector’s implementation is
undetectable; idempotent means that any number of intermediaries can be chained
because their import and export interfaces are the same and that they are non-invasive.

Balzer was among the first to explore the use of coordinative connectors and their ben-
efits [1]. The techniques that he used for realizing intermediaries relied on standard
debugging concepts. Instead of placing breakpoints at the entries of the functions to be
monitored, detours were used. A detour is a code fragment that is executed immedi-
ately prior to a function call and is unobtrusively injected like a breakpoint into the
process space that contains the target function [12][13]. The detour encapsulates the
actions of an intermediary — e.g. call monitoring code. Upon execution of the moni-
toring code, the execution of the target function resumes. Although initially demon-
strated on Windows platforms (and tool support for detours is available for Windows
[14]), the technique is applicable to all operating systems.

A common technique in Windows platforms is emulation [15]. Each COM component
(or dynamically linked library (DLL)) has a GUID (Globally Unique IDentifier). The
Windows registry is a database of DLLs organized by GUIDs. A client loads a DLL by
invoking a system call with the DLL’s GUID; the registry is searched for the location
of that DLL. Emulation is a registry technique that replaces an existing DLL with an
intermediary DLL that implements the same COM interfaces but has a different GUID.
When a client requests a particular DLL, the intermediary is loaded instead. In turn, the
intermediary loads the shadowed DLL and acts as a “pass-through” for all client
requests. Thus the intermediary can monitor call traffic for a COM interface unobtru-
sively.

A result that is directly relevant to our paper is the reuse of legacy command-line pro-
grams (CLPs), i.e., programs whose functionality is accessible only through com-
mand-line inputs [21]. The idea is to place a wrapper around a CLP to
programmatically invoke its commands. This part is simple: invoking a method of the
wrapper causes specially-formatted (i.e., command-line) text to be sent to the program
to invoke a specific CLP functionality. The CLP responds by outputting text that repre-
sents the result of the command. This text can be returned directly to the client, but it
burdens the client to parse the returned text to decipher the output. A better way, as

1. For a discussion of the various types of instrumented connectors, see [17].

C B
K

components

connector

A BIntermediary

Instrumented Connector K

(a) (b)

Fig. 1. Connectors and Instrumented Connectors

detailed in [21], is to have the wrapper parse the generated output and return a semanti-
cally useful result (an integer, an object, etc.) that can be more easily consumed by a
calling program. Parsing is complicated by the possibility that the CLP can report
events prior to reporting the result of a method call. For example, if the CLP is a
debugger, the debugger can report that a breakpoint has been reached. The parser must
be smart enough to recognize the semantics of the CLP response (i.e., to distinguish
breakpoint event announcements from results of CLP method calls) and report events
to the client. The technique used in [21] relies on CORBA for interoperability between
a client and the CLP wrapper. Further, the CORBA Event Service is used to report
events generated by the CLP. A wrapper specification language was used to simplify
the development of parsers for CLP responses.

Also related to our paper is a set of general concepts and algorithms that trigger exter-
nal services automatically when certain events occur in an application. Schmidt calls
this the interceptor pattern [20]. The pattern is a framework with call-backs associated
with particular events. A user extends the framework by writing modules that register
user-defined call-backs with the framework. When a framework event arises, the regis-
tered methods are invoked thereby alerting the user to these events.

3 GDA Interception Concepts

In this paper, we deal with a special case of connectors where the connector interface is
a GUI or web-page (Figure 2). Normally, the calling “component” is a person where
the connector is materialized by hardware peripherals, such as a mouse and keyboard.
We want to replace the client in Figure 2 with a program (component) C as in
Figure 1a, so that application B can be programmatically manipulated by C. This
requires that the GUI of B (somehow) be objectified — i.e., the GUI of B becomes an
object and its sub-objects are its constituent GUI primitives. Further, we want to instru-
ment this connector so that interactions between a client and a GDA (component) can
be replayed and analyzed (e.g., Figure 1b). COM emulation, detours, and wrapping
CLPs can’t be used in this situation: GDAs might not be written in COM, GDAs might
not have published APIs to instrument via detours, and GDA functionality is accessible
through GUIs, not command lines.

Although the concept of intercepting events for GUIs is identical to that of events for
web-browsers, it turns out that different implementation techniques are used. In the
following sections, we explain techniques that we have developed for both.

Consider how keyboard inputs to a program can be intercepted for subsequent play-
back. Suppose incr is a process that takes integers from a keyboard prompt and prints

B
K

Fig. 2. “Connector” between Client and Application (Component) B

client

GUI

their incremented value. We want to record an interactive session with incr to replay
the input of this session (and recompute incr's response) at a later time. This can be
done with the Unix tee operator, where > is the command-line prompt:

> tee file_input | incr

tee redirects standard input to one or more files (above, file “file_input”) and this
input is passed onto incr for execution. We can then replay this interaction via indi-
rection:

> incr < file_input

This is an elementary example of interception: the binary application incr is
unchanged, but its external events (i.e., keyboard input) have been captured for later
replay. The process structure used above is important: the controlling process (tee)
forks the controlled process (incr), much like a debugger (a controlling process) forks
an instance of the (controlled) process to be debugged. Interception of GUI inputs uses
similar but much more sophisticated techniques as the following sections reveal.

3.1 Injecting an Agent into a Controlled Process

Let B be a GDA whose services are invocable only through a GUI. Let C be the con-
trolling client process that is to invoke the services of B programmatically. Because B
has no capabilities to communicate with C, it is necessary to inject an intercepting pro-
gram called an agent into the address space of B. The agent has its own thread of exe-
cution that can send and receive messages from C using standard interprocess
communication mechanisms. In particular, the agent has two responsibilities: (1) to
report to C selected events that occur within B and (2) to trigger events and invoke
methods in B as instructed by C. Readers will recognize that (1) targets the reporting of
a sequence of GUI events within B and (2) targets the playback of GUI events within
B. In this section, we outline a general technique, called code patching [10][18][19][4],
for introducing an agent into B. In the next section, we explain how an agent intercepts
and injects GUI events.

Recall how debuggers work. To debug a process B, a debugger creates B as a slave
(child) process. Doing so allows the debugger to read and write memory locations
within B as well as manipulate its register set, and to enable the debugger to stop and
continue B’s execution. We use a similar technique to introduce an agent into B. The
controlling process C creates B as a slave process. C interrupts B’s execution and saves
its context, which includes the program counter (PC) (Figure 3a). C reads a block of
instructions starting from the PC in B’s memory and saves these instructions. C then
overwrites these instructions in B’s space with code (Figure 3b) that:

• spawns a thread to load and execute the agent program,

• loads the agent program as a dynamically-linked library (DLL) into B’s address
space,

• jumps to the original breakpoint when the above two tasks have been completed.
The PC now equals the value it had at the original interrupt.2

Next, C allows process B to continue execution. B runs the injected code, thus creating
a thread to activate the agent and loading the agent DLL (Figure 3c). When B signals
that the breakpoint has been reached, process C:

• restores the original block of code,

• restores the original context, and

• lets B continue (Figure 3d).

As far as process B is concerned, it has executed normally. B is unaware that it has
been infiltrated by an agent that has its own thread of execution and whose purpose is
to intercept and replay GUI events.

3.2 Intercepting and Replaying GUI Events

Our agent (i.e., GUI interceptor) relies on deep knowledge of the structure of operating
systems and how they process GUI interrupts and interact with GUI programs.
Although our discussion and implementation focusses on Windows platforms, essen-
tially the same concepts are used in other operating systems, so our technique is gen-
eral. To avoid confusion in the following discussions, we capitalize the term
“Windows” to denote the operating system, and the lowercase “window” to denote a
GUI window created by a program.

Every GUI primitive (e.g., button, text field) and GUI window (i.e., a container of GUI
primitives) created by a program is registered with the Windows operating system.
Windows maintains for each primitive and window at least an identifier, its type, and
the screen coordinates that it occupies. Each window additionally has a corresponding

2. The reason is that the contents of the PC cannot be altered by a “debugging” program, unlike
other registers.

PC

(a) B’s memory space
at execution interrupt

load agentPC

(b) overwrite B memory
with code to load agent

PC

(c) create agent thread,

DLL code

DLL and start agent

load agent
DLL code

agent

PC

(d) restore B’s code,
restore B’s registers
and continue execution

agent

original
block

original
block

Fig. 3. “Code Patching” an Agent into Binary B

load agent DLL, and
jump back to original
breakpointthread

thread that runs an event loop, which receives and processes messages intended for the
window and its embedded GUI primitives. We call this thread the window thread.

When a mouse is moved or clicked, Windows uses this information to (a) determine
which GUI element the mouse is over and (b) which window thread is to be notified of
the mouse interrupt. Thus, Windows translates low-level mouse hardware interrupts
into an Internal Windows Message (IWM) that is delivered to the window thread whose
window contains the mouse-referenced GUI element. The IWM contains the identifier
of the referenced element, and the screen coordinates of the mouse’s position. Other
input (e.g., keyboard, tablet) is analogous; Windows stores the input in an IWM along
with the identifier of the receiving GUI element.

Windows delivers an IWM to a windows thread via the thread’s Virtualized Input
Queue (VIQ). Every window thread has a loop, often called the event loop, which peri-
odically polls the VIQ for messages. When an IWM is dequeued, the thread uses the
identifier in the IWM to deliver the message to targeted GUI element. Once delivered,
the GUI element translates this message into a familiar GUI event (click, mouseUp,
focus, mouseDown, etc.). Figure 4 depicts the above sequence of steps that translate
mouse hardware interrupts to GUI events.

mouse_click determines which GUI element
that is referenced, and enqueues
IWM on the VIQ of the
appropriate window thread

Mouse interrupt action

interrupt

Windows Operating System

event_loop reads IWM
and delivers message
to referenced GUI element

GUI element translates
IWM into familiar GUI event
and notifies listeners of event

window thread

Virtualized
Input Queue

(VIQ)

User Process

Fig. 4. Translation of Mouse Inputs into GUI Events

As mentioned above, Windows maintains a list of all GUI elements and windows. Fur-
ther, it makes all this information accessible through system calls. These calls make it
possible for an agent to determine what GUI primitives and windows a GDA has cre-
ated; the agent can essentially recreate all of the data structures used by the Windows
operating system and thus have its own copy. This capability is essential in monitoring
and replaying GUI events, and objectifying a GDA GUI interface.

GUI programmers aren’t typically aware of the above details; GUIs are designed to
hide such details. GUI programs are designed only to react to GUI events, not translate
IWM messages into GUI events. IWM to GUI event translations are performed by
primitive GUI components that belong to Windows Foundation Classes (WFC). User-
defined GUIs are normally constructed from WFC primitives; only rarely are new
primitive GUI elements implemented. Agents exploit this key fact.

Given the above, we can now explain how GUI events are intercepted. Recall that an
agent can discover all GUI primitives of a program through system calls. To intercept a
particular event is simple: like any other GUI program, an agent registers with a GUI
primitive as a listener for that event. Readers familiar with GUI programming know
that although there is a standard way to register for GUI events, different GUI primi-
tives use different registration methods. So the question arises: for each GUI primitive,
which of its methods should be called for event registration?

The agent relies on the fact that there are a small number of primitive GUI elements
from which most, if not all, GUI programs are constructed: these are the elements in
WFC (buttons, text areas, trees, etc.). We know the interface of each primitive GUI
type, and thus we know what events they throw and what method to call to register for
an event.

Once registered, every time an event is raised, the agent will receive the event, unob-
trusively as all other listeners. At this point, the agent sends the event immediately
back to the controlling client. For example, if a client wants to “see” what input was
typed into a GDA GUI text field, the client instructs the agent to register for the event
(e.g. textChanged) that is thrown by the text field to notify its listeners that its value
has changed. When the client is notified of a textChanged event, it can request the
agent to return the contents of the text field.

To playback a text field update, the agent simply invokes the setText method with
the new string on that text field. The text field component, in turn, notifies all listeners
that its content has changed. These listeners cannot tell, nor do they care, if the text
field was updated from the keyboard or by the agent.

Other events are harder to replay. For example, there is no direct way (e.g., a method)
to have a GUI element raise a button-click event. The only way to replay such events is
indirect: the agent must create an IWM that will be translated into the desired GUI
event. The agent has all the information to do this: it knows the identifier of the GUI
element, it knows the screen coordinates of that element to provide the appropriate

screen coordinates of a mouse click, and it knows the target window thread. Thus, the
replay of events is sometimes accomplished by having the agent send a series of syn-
thetic IWMs to the window thread. Because a windows thread cannot distinguish
IWMs created by Windows and those created by the agent, an exact sequence of events
can be replayed.

3.3 Intercepting and Replaying Web Browser Inputs

In principle, web browsers are just another class of GUI applications that are amenable
to the GUI interception techniques of the previous section. The primary differences are
that primitive GUI components on web pages are typically not the same as those used
in GUI programs: there are indeed primitive text fields, buttons, combo-boxes etc. on
web pages, but these components often have different implementations than their GUI
program counterparts. All this means is that a different agent, one that understands
web-components, needs to be written. But web browsers are a special class of applica-
tions that provide a wealth of support for interception that typical GUI programs don’t
have. Thus, using our techniques in Section 3 is by no means the easiest way to inter-
cept and replay web browser input.

The document content shown in a browser’s GUI is internally represented by the Doc-
ument Object Model (DOM). DOM level 2 is a specification that defines a platform-
and language-neutral interface that allows programs and scripts to dynamically access
and update the content, structure, and style of web documents [7]. Almost all commer-
cial browsers use DOM to internally represent document content. Using DOM, soft-
ware developers can access any component of a web application GUI using well-
defined set of interfaces. The DOM event model, defined in [7], allows developers to
intercept and replay any event in a web application GUI.3

There are two different ways in which DOM information can be accessed. One
approach is to use the Internet Explorer (IE) web browser ActiveX Control. It provides
a COM interface (i.e., IWebBrowser2) that can be instantiated and controlled directly
by an external application [2][3]. This interface provides a wealth of services that sup-
port and extend the DOM services and makes it possible for developers to control and
access every aspect of web-based applications.

3. While DOM support is a standard part of almost all commercial browsers, historically other
techniques have been used. Screen-scrapers are programs designed to harvest and replay
GUI information from web pages; they are essentially scaled-down web browsers. Other
programs have used Dynamic Data Exchange (DDE), which is a form of interprocess com-
munication that uses shared memory to exchange data between applications. A client appli-
cation can control a browser object, for example Netscape or Internet Explorer (IE) to get
web documents and to reproduce desired actions. This approach is difficult and has a number
of limitations. For example, a controlling application using DDE can only receive a very
limited number events from IE. This makes it difficult to record sequence of IE events.
Using DOM is the preferred way today to intercept and replay web-GUI events.

A better opportunity is presented by IE and to some degree by the open-source Mozilla
browser. Starting version 4.0, IE introduced a concept called the Browser Helper
Object (BHO). A BHO is a user-written dynamic link library that is loaded by IE
whenever a new instance of the browser is started. This library is attached to the IE
process space and is implemented in COM. In effect, a BHO provides the perfect scaf-
folding that is needed to introduce agents — the BHO is an agent that is automatically
loaded with IE, and the actions of this agent are not fixed by Microsoft, but are under
user-control. Moreover, every BHO is given a pointer to the IWebBrowser2 interface,
which allows it to have full access to DOM information and events specifically for the
task of intercepting and replaying web-GUI events.

Interception of GUI events for browsers or applications written in Java is harder. Our
prototype was developed on a Windows platform, which provides OS support for GUI
interception. Java GUI components rely on the Java Virtual Machine (JVM) for their
implementation, and thus discovering what GUI components are present in a Java pro-
gram or applet might not be accomplished through OS API calls. We believe that
instrumentation and augmentation of the JVM is required to support Java GUI inter-
ception.

4 A Design for an Interception IDE

An Interception IDE (I2DE) is an IDE that has the capabilities of a standard GUI
builder (e.g., Visual C#, Visual Age) and the capability of integrating GDAs. To under-
stand how an I2DE might work, consider the following problem which illustrates the
integration of two GDAs. GDA1 presents a GUI interface that contains text field x
(Figure 5a). GDA2 presents a different GUI interface that contains text field y
(Figure 5b). We want to build a GUI application MyApp that has a single text field z
and button add (Figure 5c). When add is pressed, the contents of fields x and y are
retrieved and their sum displayed in z. Assume x and y are variables that MyApp can
access. The obvious event handler for clicking add is shown in Figure 5d.

void add_Click(object sender, System.EventArgs e)
{

int xval = (int) x.getText();
int yval = (int) y.getText();
z.setText(xval + yval);

}

(a) (b) (c)

(d)

x y z

Fig. 5. A GUI that Integrates Two GDAs

From this example and the discussions of the previous section, it becomes clear how an
I2DE can work. The MyApp GUI of Figure 5c is constructed in the usual way. (A but-
ton, text field, and label are dragged from a toolbox of primitive GUI elements onto a
form, and their properties are modified to give the visual appearance of Figure 5c).
Next, GDA1 is activated and an agent injected. The agent informs the I2DE of each
GUI element used by GDA1. In turn, the I2DE creates a unique variable to reference
each element. The same process is applied to GDA2. The set of these variables, which
represents the set of all GUI elements used in all activated GDAs, is made accessible to
the author of MyApp, so that s/he could write event handlers like Figure 5d. These event
handlers define how GDAs are integrated. That is, each GDA is objectified as a local
object whose data members are its constituent GUI elements. The event handlers
define the relationships — a.k.a. business logic — between GDA objects that integrate
them into a coherent application (i.e., MyApp).

When MyApp is compiled, the properties of the GDA GUI primitives are serialized or
initialization code is generated, so when MyApp is executed, the properties of GUI vari-
ables can be reconstituted. (We currently write the values to a database, and when
MyApp begins execution, the contents of the database are read). At MyApp startup,
MyApp activates each GDA that it references and injects an agent into each GDA.
Whenever a method of a GDA GUI variable is invoked, the identifier of that GUI ele-
ment, the method and its parameters are transmitted to the agent for execution. The
agent returns the result of that method invocation4. Similarly, to register for a GDA
GUI event is method call on the event source. The agent invokes the registration
method to receive event notifications. When an event occurs, the agent notifies MyApp
of the event. Because event delivery from an agent is asynchronous, inside MyApp is a
separate thread that executes an event loop that processes events from GDA agents.
Using the same techniques that agents use to replay events, agent-posted events are
delivered to the MyApp GUI.

There are, of course, other details to consider. For example, after an agent has been
injected into a GDA, the set of primitive GUIs that define the GDA must be verified
with the set that is expected by MyApp. (A new version of the GDA might have been
installed since MyApp was created, and this new version may have changed the GDA’s
GUI, possibly invalidating the business logic of MyApp). There is also the matter of not
displaying GDA GUIs during execution. Normally, when a GDA executes, its GUI is
visible on the console monitor. While it is instructive to see the GUI of MyApp and its
“slave” GDAs executing in concert, in general it is distracting and also a source of
error (e.g., a client of MyApp could invoke inputs on a GDA GUI, disrupting its state).
In Windows, there are system calls that can be invoked to disable the display of a GUI
so that it is invisible. This is the normal mode in which agent-injected GDAs are acti-
vated. And just like any normal GUI, MyApp can have many different GUI forms/front-
ends, each defining a specific interaction among GDAs.

4. Readers will recognize these ideas as standard distributed object concepts, where MyApp ref-
erences a remote application (agent) through a stub and the agent implements a skeleton for
remote method invocation [8].

The above describes the essential concepts behind an I2DE. However, there are other
ideas worth mentioning. An I2DE must display a list (or tree) of all primitive GUI ele-
ments of a GDA. This list (tree) informs authors of MyApp of the variables of a GDA
GUI that can be accessed. The types of these variables are typically the same types as
those offered by the GUI builder of the I2DE. For example, variables x, y, z in Figure 5
might be instances of the same GUI element type. Even so, GDA GUI variables cannot
be used in the construction of the MyApp GUI. The reason is that these variables are
remote stubs to GDA components, and these components are visible only to the GDA
GUI, and not to the MyApp GUI. It is easy enough to create a corresponding MyApp
GUI variable and have its properties match those of a GDA GUI. This requires some
programming, but conceptually is straightforward.

5 An Example From E-procurement

A spectacular illustration of an I2DE application is the use of a Personal Digital Assis-
tant (PDA) to remotely control an integrated set of GDAs. The architecture of such an
application is simple (Figure 6): the I2DE is used to define a server that has no GUI.
The server interface exposes to remote clients a set of methods whose bodies invoke
methods of GDA GUI primitives. The I2DE also can be used to define a GUI program
that will execute in the restricted confines of a PDA — small screen, limited graphics
display capabilities, etc. The event handlers of this GUI invoke methods of the server.
This is the basis of the e-procurement example described below that we have imple-
mented and demonstrated in numerous forums.

staples.com is well-known e-business retailer of office supplies, furniture, and busi-
ness technology. Its customers are home-based businesses and Fortune 500 companies.
staples.com provides on-line services for managing business transactions. One of
these web-based services is a database where procurement requests of employees are
recorded. A manager of a business can access a staples.com web-page to review the
requests of his/her employees and can approve or reject requests individually.

To maintain a history, suppose a manager uses the Quicken ExpensAble (QE) account-
ing capabilities to keep track of expenses. QE is a proprietary Windows-based applica-
tion that has no published APIs. It does not use COM or CORBA components, and the
only way to use it is through its GUI.

Fig. 6. PDA Remote Access of GDA GUIs

PDA server

GDA1

GDA2
...

GDAn

server
calls
GDA GUI

PDA
client

server
methods methods

calls

A manager performs the following typical interaction: he logs into staples.com to
review the list of employee purchase requests. Each request could be approved, denied,
or a decision could be delayed until later. All requests of the displayed list are entered
into QE, where previously existing elements are simply updated (instead of being rep-
licated). Prior to our work, a manager would have to copy and merge lists into QE
manually, a slow, tedious, and error-prone task. More over, the manager would have to
run QE locally, as there is no facility to remotely access to QE. Using the ideas we dis-
cussed in this and in previous sections, we not only automated these tasks, we also cre-
ated a PDA application so that managers could invoke these updates remotely.

The layout for this project is shown in Figure 7. Three computing platforms were used:
PDA Palm OS 3.1, Internet Explorer web browser, and Windows 2000. A wireless
PDA runs the I2DE custom e-procurement client and is connected to Palm.net that
uses Southwestern Bell as a wireless connectivity provider. Our PDA application com-
municates with our I2DE server that, in turn, communicates with QE and sta-
ples.com via injected agents. The server uses the agent technology of Section 3 to
intercept and replay QE events. It uses the DOM event interception mechanism dis-
cussed in Section 3.3 for accessing and controlling staples.com.

The manager initially sends a request to retrieve the approval list from staples.com.
The server executes the request based on predefined business logic and retrieves data
from the manager’s staples.com approval queue. When the manager connects to the
server the next time s/he receives the requested data back on the PDA. This time s/he
approves or rejects items and sends the transaction request to the server. The server
analyzes the request and applies the update to both staples.com and QE.

Wide Area
Network

Southwestern Bell

SWB
Router

Palm.net
Router

PDA

Modem

ISP

www.staples.com
E-procurement application Web server Server

Quicken
ExpensAble

Internet Explorer
staples.com

Run

Run

Fig. 7. The E-procurement example layout

6 Discussion

The reaction that we have received when giving live demonstrations of the application
in Section 5 has been one of audience amazement and confusion. Interception of GDA
GUIs prior to our work was limited to specialized applications (e.g., screen scrapers)
that relatively few people knew about. Of course, even those technologies were not
general enough to perform the GDA integration that we described above. So the ele-
ment of surprise is understandable. At the same time, the techniques that we use are not
immediately obvious to most people, and it takes time to fully understand how all they
work cooperatively together to produce this result. Hence the other reaction.

Never-the-less, we believe an I2DE has enormous potential. It could be used for data
integration, GDA reuse, collaborative computing, and application migration to new
platforms. Its key advantage is that all these uses involve minimal development efforts.
Architects will not disrupt their organizations by recoding existing interfaces in order
to add new functionality. It offers, for example, an attractive alternative to the way leg-
acy applications are currently migrated to PDAs. And it abolishes the need for any pro-
gramming changes to the existing legacy applications in order to integrate them.

Of course, there are limitations. It is not clear how our ideas could apply to legacy dae-
mon or console applications. If an application has intensive graphic front end (e.g., a
game), then our approach may not be able to cope with the speed at which data is
updated. Further, legacy applications (and especially web pages) do change over time.
These changes can impact an application created with our technology, requiring
changes to be propagated to our application. For Win-32 and Unix GDAs, modifica-
tions of GUIs tend to be rare, whereas for web-pages, changes occur more often. In
such cases, additional approaches such as information extraction technologies may be
of help [5].

7 Conclusions

The reuse of binary legacy applications (GDAs) that can only be accessed through
GUIs is both a difficult and fundamental problem of software reuse. We have shown
that its solution is a special case of intercepting architectural connectors where a
human is at one end of a connector and a GDA is at the other. By instrumenting this
connector, we have demonstrated the ability to capture and replay inputs and GUI
events, and more importantly, to write programs that integrate GDAs into mega-appli-
cations.

Our solution hinges on the ability to objectify GDA GUIs — treating a GDA GUI as an
object and its constituent GUI elements as sub-objects. This required the use of agent
processes to be injected into GDAs. These agents collect information on all GUI ele-
ments that are used by a GDA, monitor events that are generated, and trigger GUI
input events. An agent presents an object (representing an objectified GDA GUI) to a
controlling program. This program can then invoke methods on specific GDA GUI ele-
ments and replay GUI inputs with the support of the agent.

We illustrated our ideas by creating a server application that integrates (1) a proprietary
Win32 application with (2) an Internet application. Further, we explained how a PDA,
with a simple GUI application, could remotely access our server to invoke its capabili-
ties. Doing so, we demonstrated capabilities that no other technology that we are aware
can provide — GDA GUI integration and remote access to proprietary Win32 applica-
tions.

Our technology, as presented as an Interception IDE (I2DE), can form the basis of a
new class of IDEs. We believe that I2DEs have great potential for opening up a new
class of applications that, prior to our work, were difficult or impossible to create.

8 References

[1] R. Balzer and N. Goldman. “Mediating Connectors”, Proc. 19th IEEE
International Conference on Distributed Computing Systems Workshop, Austin,
TX, June 1999, pp. 73-77.

[2] K. Brown. “Building a Lightweight COM Interception Framework, Part I: The
Universal Delegator”. Microsoft Systems Journal, Vol. 14, January 1999, pp. 17-29.

[3] K. Brown. “Building a Lightweight COM Interception Framework, Part II: The
Guts of the UD”. Microsoft Systems Journal, Vol. 14, February 1999, pp. 49-59.

[4] B. Buck and J. Hollingsworth. “An API for Runtime Code Patching”. International
Journal of High Performance Computing Applications, 2000.

[5] M. Califf, R. Mooney. “Relational Learning of Pattern-Match Rules for
Information Extraction”, Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing, 1997.

[6] D. Chappel, Understanding ActiveX and OLE: A Guide for Developers and
Managers, Microsoft Press, 1996.

[7] Document Object Model (DOM) Level 2 Specification. W3C Working Draft, 28
December, 1998.

[8] W. Emmerich. Engineering Distributed Objects. John Wiley & Sons, 2000.

[9] D. Garlan and D. Perry. “Introduction to the Special Issue on Software
Architecture”, IEEE Transactions on Software Engineering, April 1995.

[10]S. Gill. “The Diagnosis of Mistakes in Programmes on the EDSAC”. Proc. of the
Royal Society, Series A, 206, May 1951, pp. 538-554.

[11]M. Gorlick and R.Razouk “Using Weaves for Software Construction and
Analysis”. Proc. 13th International Conference on Software Engineering, Austin,
Texas, May 1991.

[12]G. Hunt and M. Scott. “Intercepting and Instrumenting COM Applications”, Proc.
5th Conference on Object-Oriented Technologies and Systems (COOTS'99), San
Diego, CA, May 1999, pp. 45-56.

[13]G. Hunt. “Detours: Binary Interception of Win32 Functions”. Proc. 3rd USENIX
Windows NT Symposium, Seattle, WA, July 1999.

[14]P. Kessler. “Fast Breakpoints: Design and Implementation”. Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation, White Plains,
NY, June 1990, pp. 78-84.

[15]MSDN Library. “Class Emulation”, Microsoft Corporation, 2001.

[16]D.Perry and A.Wolf, “Foundations for the Study of Software Architectures”, ACM
SIGSOFT Software Engineering Notes 17(4), 1992, pp. 40-52.

[17]D.Perry, “Software Architecture and its Relevance for Software Engineering”,
Keynote at Coordination 1997, Berlin, September 1997.

[18]Matt Pietrek. “Learn System-level Win32 Coding Techniques By Writing an API
Spy Program”. Microsoft Systems Journal, 9(12), 1994, pp. 17-44.

[19]Matt Pietrek, “Peering Inside PE: A Tour of the Win32 Portable Executable
Format”, Microsoft Systems Journal, Vol. 9, No. 3, March 1994, p. 1534.

[20]D. Schmidt, M.Stal, H. Rohnert, F.Buschman. Pattern-Oriented Software
Architecture: Volume 2, John Wiley & Sons, 2001.

[21]E. Wohlstadter, S. Jackson, and P. Devanbu. “Generating Wrappers for Command
Line Programs”, International Conference on Software Engineering, Toronto,
Ontario, May 2001.

