
Shared Execution for
Efficiently Testing Product Lines

Chang Hwan Peter Kim
Dept. of Computer Science

University of Texas at Austin, USA
chpkim@cs.utexas.edu

Sarfraz Khurshid
Dept. of Electrical and Computer Engineering

University of Texas at Austin, USA
khurshid@ece.utexas.edu

Don Batory
Dept. of Computer Science

University of Texas at Austin, USA
batory@cs.utexas.edu

Abstract—A software product line (SPL) is a family of related
programs, each of which is uniquely defined by a combination
of features. Testing an SPL requires running each of its
programs, which may be computationally expensive as the
number of programs in an SPL is potentially exponential in
the number of features. It is also wasteful since instructions
common to many programs must be repeatedly executed,
rather than just once. To reduce this waste, we propose the idea
of shared execution, which runs instructions just once for a set
of programs until a variable read yields multiple values, causing
execution to branch for each value until a common execution
point that allows shared execution to resume. Experiments
show that shared execution can be faster than conventionally
running each program from start to finish, despite its overhead.

Keywords-product lines; feature oriented programming; test-
ing; shared execution; dynamic analysis.

I. INTRODUCTION

A Software Product Line (SPL) is a family of programs in
which each program is defined by a unique combination of
features. Developing a set of programs with commonalities
and variabilities in a systematic way can significantly reduce
both the time and cost of software development. However,
the fact that an SPL can represent many programs, a number
potentially exponential in the number of features, makes
testing SPLs more expensive than testing ordinary programs.
Just 10 optional features can produce over a thousand (210)
distinct programs, meaning that a test case now has to be
run not once, but over a thousand times.1

The combinatorial problem can be tamed when some
features are irrelevant to the property being tested. For
example, if we can detect, before executing a test case,
that the code for 8 of the 10 optional features is not even
reachable, then the test case need only be run on 4 rather
than over a thousand programs. Previously, we developed
static analyses to tame combinatorics this way [14][15].

Unfortunately, combinatorics cannot be tamed when most
of the features are relevant to the test case and they interact,
meaning the test case must be run on each combination.

1A test case, with each variable set to a concrete value, represents a
single path through a test. For our purposes, a test is an arbitrary program.

Also, a test case may require every combination to be run
by design because it expects each program to produce unique
behavior. Thus the previously developed static analyses, and
static analyses in general, are ineffective in this setting,
which brings us to this paper.

Although combinatorics cannot be tamed in this setting,
we can still do better than just running the test case against
each program. Because programs in an SPL are syntactically
similar (i.e. share common code) by design, they are likely to
have semantic commonality as well. Namely, it is likely that
many bytecode instructions executed across the programs
will be identical. In this paper, we present the idea of shared
execution, which essentially “product lines” execution, exe-
cuting common instructions once, rather than multiple times,
to eliminate redundancy and reduce execution time. Shared
execution runs an instruction common to multiple program
executions just once by using a single call stack and memory
that keeps track of each program’s data. This paper makes
the following contributions:

• Technique. We define shared execution as a bytecode
level algorithm that can be implemented on top of any
virtual machine (VM).

• Implementation. We implement shared execution on
top of Java PathFinder (JPF) [24], a model checker
for Java that can also function as an easy-to-extend,
off-the-shelf VM. We use only the VM portion of JPF.

• Evaluation. We show, using non-trivial subjects used in
prior publications of other research groups, that shared
execution, despite its overhead, can run a product line
test case up to 50% faster than the conventional way of
running the test case for each configuration from start
to finish.

II. SHARED EXECUTION: BASIC TECHNIQUE

An SPL is a family of programs defined by feature
combinations and corresponding code. A feature model
defines the legal feature combinations, which form a subset
of 2N combinations possible with N optional features. 2

2Henceforth, an optional feature will simply be referred to as a feature
since the paper focuses on optional features. Arbitrary constraints, such as
XOR, may be applied on optional features.

(a) Sample SPL (b)
Conventional
execution

(c) Shared execution

Figure 1. Shared Execution on Sample SPL

One feature combination or configuration corresponds to one
program. A feature maps to code scattered throughout the
program such that the corresponding code is syntactically
present if and only if the feature is present. There are differ-
ent ways to represent a feature model and to map features
to code. For this paper, a feature model is represented as
a context-sensitive grammar [1] and features are mapped
to code by using feature variables, which are simply Java
Boolean variables (so an SPL is an ordinary program with
if-conditions [16]).3

Figure 1(a) shows the skeleton of a typical SPL that has
six fragments of code labeled as comments, whose numbers
indicate the order in which the fragments are executed. In
our example, the feature A is mapped to code by feature
variable A__ (code executed when the feature is true is
colored for visual aid). Note that a program with a feature
included can behave differently from a program without that
feature. For example, x could have two different values in
executions of fragment 5 and subsequently two different
program behaviors, depending on whether A is selected or
not. More generally, in a product line with N features,
fragment 5 could yield up to 2N different values of x and
trigger up to as many different program behaviors.

Conventionally, different program behaviors are produced
by first determining the configurations allowed by the feature
model, where a configuration is an n-digit boolean f1..fn
that represents feature assignments (true or 1 representing a
feature’s presence and false or 0 its absence). Then for each
configuration, the corresponding program is run from start
to finish. Figure 1(b) shows this process for the example.
Note the similarities between the execution traces: the only

3Our technique is not dependent on any feature model representation. In
fact, because a feature model is simply a set of feature combinations for
our technique, we do not discuss feature models in depth.

differences are that the A=1 configuration executes fragment
2 while A=0 does not and that fragment 5 behaves differently
due to the configurations having different values of x. Note
that the majority of computations are repeated across both
traces. Although a computation can only be repeated once
in this example, it can be repeated in general up to 2N − 1
due to 2N traces.

Instead of running each configuration separately, our idea
is to execute all the configurations together, executing a
computation just once for the configuration(s) for which it
is shared. Figure 1(c) shows the resulting trace, which is
essentially a superimposition of all the traces produced in
conventional execution in Figure 1(b). Note how fragments
1, 3, 4 and 6 are executed once, rather than twice. Fragments
in branches, such as the unnumbered fragment and fragment
2, are not shared by all the configurations and each branch is
executed one after another before shared execution resumes.

We now present the basic ideas behind our approach.

A. Bookkeeping

Since each variable can have as many different values as
there are configurations, memory M must be able to map
a variable v and a configuration c to a value o. Namely,
M : V ×C → O. A variable refers to any data storage that
can be accessed by a programmer-defined symbol, i.e. fields
(including array elements) and local variables. Conceptually,
memory can be thought of as an array of length up to 2N

with one array element holding the memory of one product
line configuration. Section IV will present a more efficient
representation.

We define shared execution as executing instructions for
a set of configurations using a common call stack, which
stores information including active method calls, program
counter of the current method call, and instruction operands
to represent a point in program execution or execution point.
Note that since we are treating local variables as part of
memory, a stack frame of the call stack only includes the
stack operands and associated attributes (e.g. which operands
are references). Before (or after) each instruction execution,
there exists a state S with configuration set Sconfigs and
the call stack Scallstack in use. At the beginning of shared
execution, Sconfigs has all configurations of the product line
and Scallstack just has the main function’s stack frame whose
PC is set to the first instruction.

B. Splitting

Since the idea of shared execution is to use one call
stack for multiple configurations, instructions execute as
they would for conventional programs except that loads and
stores must now access memory from a configuration set.
Assigning value o to a variable v in state S simply means
that ∀c ∈ Sconfigs,M(v, c) = o. Loading is a bit trickier.
If M(v, c) returns the same o for every c in set Sconfigs,
shared execution continues with the read value o. But if

M(v, c) returns multiple values, shared execution cannot
continue since we can only push one unique value on the call
stack. Shared execution now splits: there will be as many
call stacks as there are unique values. Namely, the current
state S’s children states, Schildren, are created such that:

• The union of every child state’s configuration set equals
the parent configuration set, Sconfigs,

• Each configuration in a child state’s configuration set
holds the same value of v,

• Each child state’s call stack is set to a clone of
Scallstack.

We say that S is split into children states with respect to v.
Each child state, which is ready to have a unique value of
v pushed onto its call stack, is set as the current state and
executed from where the splitting occurred. As execution
proceeds, if a load of another variable y yields multiple
values, the executing state will be split in a similar way.

In Figure 1(c), right before A__ is read, S has Sconfigs

equal to A = ∗ (the wildcard, which represents all pos-
sible values, is used to represent multiple configurations
concisely for presentation purposes). So A = ∗ represents
{A = 0, A = 1}). When the read occurs, S is split (dashed
lines outwards) into SA =0 and SA =1 since A__ has
different values: 0 in A=0 and 1 in A=1.4 The first child state
(circle labeled A=0) runs and then execution backtracks to
load the call stack of the second child state (circle labeled
A=1) for it to run.

C. Merging

We could execute each child state until the end of the pro-
gram, but doing so, we would miss out on opportunities to
share execution after splitting. For optimal shared execution,
we should wait until all children states come to a common
execution point, i.e. where their call stacks are equivalent,
and then resume shared execution with the same call stack.

There are two issues to finding a common execution point.
First, the children states could have considerably different
paths of execution. Second, finding a common execution
point close to the splitting point allows sharing to resume
earlier, but it may require more checks, each of which comes
with the cost of comparing potentially up to 2N call stacks,
where N is the number of features.

1) Conservative Merging: A reasonable compromise that
addresses both issues, which we call conservative merging,
is to wait until each child state’s execution reaches the end
of the method (just before a return statement) of where
splitting occurred since each child is guaranteed to reach
this execution point.5

4Thus, a feature variable is treated like an ordinary variable in shared
execution.

5A child state’s execution may not reach the end of the method due to
abnormal program execution (e.g. exception or system exit), in which case
the child state can be simply executed until the end of the program and
shared execution resumes with the remaining children. Our implementation
currently does not handle abnormal program execution.

Although a return value is in practice written and read off
of the call stack, for uniformity in explanation, we treat a
return value as a variable (written and read off of memory)
throughout the paper. This means that even with different
return values, the children states would have the identical
call stack at the function return, allowing shared execution
to resume. Then splitting would occur when the return value
is read after the function returns.

For example, in Figure 1(a), when the state executing
fragment 1 splits, A=0 and A=1 children states would
execute until the end of fragment 3 and then merge, allowing
fragment 4 to be shared. Then fragment 5 would cause the
state to split again and merge at the end of fragment 5,
allowing fragment 6 to be shared. But note that the proposed
solution is not as optimal as Figure 1(c) in that the former
does not allow fragment 3, or any instruction executed
between the splitting point and the end of the method, to
be shared.

2) Predictive Merging: Predictive merging improves on
conservative merging by using what we call a merge point.
When splitting occurs, we determine an optimistic merge
point, i.e. an execution point before the end of the method
that each child state is likely, but not guaranteed, to reach.
We then execute each child state until it reaches this opti-
mistic merge point or the pessimistic merge point, i.e. the
end of the method where splitting occurred. If the children
have all stopped at the same execution point, i.e. all are at
the optimistic or all are at the pessimistic merge point, we
resume shared execution with the parent state. Otherwise,
we execute each child stopped at the optimistic merge point
until the pessimistic, but guaranteed to be common, merge
point and then resume shared execution.

In Section IV-B, we discuss in detail how optimistic
merge points are determined. For now, it suffices to know
that when splitting is due to a read of a boolean variable
that is followed by an if-statement, such as if(A__), the
optimistic merge point is determined to be the end of the if-
statement since programs are typically written such that both
true and false branches will end up at this point. If the
true branch executes a control-flow breaking instruction
such as a return, shared execution will resume at the
pessimistic merge point.

As an illustration, in Figure 1(a), when the state executing
fragment 1 splits, the optimistic merge point is set to the end
of the if(A__) block. The children states would execute
until the beginning of fragment 3 and then merge, allowing
fragment 3 and 4 to be shared as Figure 1(c) shows. But if
there is a return within the if-condition, merging would
not be possible the first time around since A=1 state would
end up at the end of the method while A=0 ends up at the
beginning of fragment 3. Then state A=0 would be executed
from the beginning of fragment 3 until the end of the method
before merging with state A=1.

1 class SharedExecution extends VMListener {
2 State s = new State(legalConfigs, VM.getCallstack());
3 SPLMemory m = new SPLMemory(legalConfigs);
4

5 void beforeInstruction(Instruction insn) {
6 if(s.isAtMergePoint())
7 tryMerge();
8 else if(isLoad(insn)) {
9 s.children = split(s, getVariable());

10 if(s.children != null) {
11 s.mergePoints = getMergePoints();
12 loadState(s.children.get(0));
13 }
14 else
15 VM.load(getVariable(), m.values
16 (getVariable(), s.configs).first());
17 }
18 else if(isStore(insn))
19 m.set(getVariable(), s.configs, VM.getTopValue());
20 }
21

22 void tryMerge() {
23 if(s.isLastRemainingChild()) {
24 if(atSameExecPoint(s.parent.children) {
25 s.parent.callstack = s.parent.children.
26 get(0).callstack;
27 loadState(s.parent);
28 }
29 else {
30 s.parent.setMergePoint(RETURN_MERGE_POINT);
31 loadState(s.parent.nextRemainingChild());
32 }
33 }
34 else
35 loadState(s.parent.nextRemainingChild());
36 }
37

38 void loadState(State t) {
39 s = t;
40 VM.changeCallstack(s.callStack);
41 }
42 }

Figure 2. Shared Execution Algorithm

D. Putting Ideas Together

The ideas of bookkeeping, splitting, and merging can be
summarized in an algorithm that intercepts every bytecode
instruction, as shown in Figure 2. As shared execution works
with call stacks, the algorithm must be written in terms of
bytecode instructions.

1) Initialization: The legal configurations are determined
by applying an off-the-shelf SAT solver against the feature
model. S, which represents the state before the currently
executing instruction, is initialized so that Sconfigs is set to
these configurations and Scallstack is identical to the VM
call stack (line 2). Memory M requires legal configurations
(line 3) to explicitly map feature variables to values across
configurations since feature variables are special Boolean
variables that can only be read from but not written to. For
example, for feature variable A__, configuration A=1 maps
to the value 1 and A=0 to the value 0.

2) Loads and Stores: If a load returns multiple values for
a variable, the state is split into children such that each child
has configurations that map to the same variable value and a
clone of the executing call stack. The parent state keeps track
of both optimistic and pessimistic merge points where all of

its children will stop their execution (line 11). Then the first
child state is set as the current state and the executing (VM’s)
call stack is changed to the current state’s call stack (lines 12,
39 and 40). On the other hand, if the load returns one value
of the variable, the value is simply pushed on the stack as it
would be in conventional execution (line 15). Note that the
load of a feature variable, whose values across configurations
have been explicitly stored during initialization, will be what
first triggers splitting.

A store just sets the variable value for each configuration
of the current state (lines 18-19).

3) Merge: Following a split, we check if the current state
is at a merge point, i.e. its call stack is at a return instruction
(or an earlier instruction for an optimistic merge point) and
the stack’s depth is equal to that of where splitting occurred
(line 6).6 If the state is at a merge point, we backtrack
execution to the next child state (line 35), allow it to execute
until a merge point, and repeat the process until the last child
comes to a merge point (line 23). Then, if the children’s
call stacks are not identical, children are executed up to the
pessimistic merge point, i.e. the end of the method (lines
24, 30, 31). At this point, the parent state’s call stack takes
a child’s call stack and is set as the current state (lines 26
and 27), completing the merge.7

III. EXAMPLE

We demonstrate shared execution on the example SPL in
Figure 3(a) (line numbers in this section refer to this figure).
Features A___ and B___ are simply boolean variables that
are assigned concrete values for a particular program. An
SPL test case is simply an execution of the main method with
all variables, except the feature variables, assigned concrete
values. The test case must be run on all 4 combinations of
the feature variables.

A. Splitting and Merging

Figure 3(b) shows how states split and merge throughout
execution. Splitting first occurs in line 13 because A_ has
multiple values, i.e. 1 (true) for the configurations AB=1*
and 0 (false) for the configurations AB=0*. Therefore, as
the top of Figure 3(b) shows, the state with configurations
AB=** is split into two children. The optimistic merge point
is set to the end of the if-statement (line 15). The 0* state
does nothing and ends up on line 15. Then the 1* state
appends 2 and ends up on line 15. The two states merge
because their call stacks are identical on line 15. Figure 4
shows the memory snapshot at line 17. Note that line 16
computation is shared by all configurations.

6Note that we use the stack depth because comparing method signatures
alone will not suffice due to recursion.

7Note that the merge attempt is the first step in before-
Instruction() because processing a load instruction before merging
can end up splitting the current state without taking its siblings into account,
which can reduce the configuration set corresponding to a unique value of
a variable, which in turn reduces sharing.

(a) Product Line Test (b) Split Merge Diagram

Figure 3. Example Product Line

Figure 4. Memory snapshots

Appending 3 causes a split because line 18 leads to line
29, where reading count for increment yields multiple
values (1 for configurations 0* and 2 for configurations 1*).
The split states merge in line 30. Then, when line 20 causes
a split due to reading B_, optimistic merge point is set to line
23, the end of the if condition. Although the state *0 hits this
merge point, the state *1 returns and misses it, causing merge
at the conservative merge point (line 25). Figure 4 shows the
memory snapshot at the end of the test case (line 25). Note
that although each configuration produces a distinct row or
test case output, each computation was shared by at least 2
configurations.

IV. SHARED EXECUTION: OPTIMIZATIONS

For shared execution to be practical, we need an efficient
memory representation and an optimistic merging strategy.
Also, garbage collection needs to be modified to understand
product lines. In this section, we discuss these issues.

A. Memory

As mentioned in Section II-A, to access a variable value,
memory must now be addressed by both the variable and a
configuration. The easiest way to structure memory would
be to allocate a value slot for each configuration and variable
pair. However, this would be wasteful for the following
reasons.

1) Ownership: A variable can only exist in the config-
urations that created it. Suppose that a method bar() is
called in a state with configurations where A = true, as
shown in Figure 5. The local variables allocated for that
method call, such as b, cannot exist in configurations where
the feature is absent and therefore do not even need to
have storage for these configurations. Similarly, an object
and its fields cannot exist in a configuration that is not a
part of the state that created the object. Thus, it would be
impossible to access object 2 and its fields in a configuration
with A = false, while object 1 and its fields can be
accessed in any configuration (since the object is owned
by all configurations). We say that a variable’s owner is
the configuration set that created it either through a method
call (for local variables) or through an object creation (for
instance fields). For a variable, only as many value slots as
there are owner configurations are allocated.

1 class Program {
2 Obj x = new Obj(); // 1
3

4 void foo(){
5 if(A) {
6 bar();
7 x = new Obj(); // 2
8 }
9 m(x);

10 ...
11 }
12

13 voix bar(){
14 int b = 5;
15 ...
16 }
17 }

Figure 5. Memory Example

2) Small number of unique values: A variable owned by
M configurations could have M unique values, but chances
are that there will be far fewer number of values. The
reason is a variable is owned by configurations with the
creating feature present. For the variable to have as many
values as there are owner configurations, the creating feature
must interact with all the other features, which is possible
but less likely than interacting with just some of the other
features. Moreover, there will be variables used only by the
creating feature, i.e. by the owner configurations, to achieve
computations relevant only to it.

3) Dual Memory: We exploit the notion of ownership and
small number of unique values in the following way. Since
a variable having one value across its owner configurations
is no different than a variable in conventional execution,

we partition memory into two storages: 1) conventional
storage, i.e. memory created by VM that maps a variable
to a value (M1 : V → O) and 2) multivalued storage, i.e.
memory created by our technique that maps a variable and
a configuration to a value (M2 : V × C → O) and is used
to store variables with multiple values. This representation,
called dual memory, exposes how loads and stores work in
Figure 2:

• Loads. If a variable exists in multivalued storage, a load
is performed for each configuration of the current state
and splitting occurs if there is more than one unique
value. If the variable doesn’t exist in multivalued stor-
age, then the variable is loaded from the conventional
storage.

• Stores. A write could occur with the current state’s
configurations Sconfigs spanning either 1) owner con-
figurations or 2) a subset of the owner configurations.
In scenario 1), the variable will have the same value
across owner configurations after the write. Therefore,
the write is performed just once for the conventional
storage and the variable is removed from the multi-
valued storage since it no longer has multiple values.
In scenario 2), Sconfigs will take on the new value in
multivalued storage. If the variable exists in the con-
ventional storage, its value is transferred to multivalued
storage (to the complement of Sconfigs with respect to
the owner configurations).

For example, in line 16 of Figure 3, x is read from
and written to conventional storage, but in line 24, x is
transferred to multivalued storage. In line 11, count and
array[1] are in conventional storage, but by line 15, they
are in multivalued storage. array, array[0], array[3]
and array[4] remain in conventional storage throughout
the test case.

B. Optimistic Merging

As mentioned in Section II-C2, when splitting occurs, we
want to merge before the end of the method to potentially
share the remaining instructions of the method. Although
we could execute each child one instruction at a time
and check if their call stacks are equivalent, this would
perform checks too often. Thus, we use merge points, which
are candidate execution points for merging, to minimize
the number of call stack comparisons and maximize the
likelihood of a comparison succeeding. Note that because
children will merge within the same function where splitting
occurred (modulo abnormal program execution discussed
earlier), only the top frames of the children’s call stacks
need to be checked for equivalence, meaning the cost of
comparison boils down largely to the number of children,
i.e. the number of unique values of the variable whose load
caused the split.

If the variable load causing the split is followed by a
conditional instruction, the merge point is set to the target

instruction since both true and false branches are likely
to end up there. If the variable load is not followed by
a conditional instruction, an instruction following a store
instruction or a method invocation is treated as a merge
point. This is because a variable is likely to be loaded
for computing a value to write to another variable or for
invoking a method with the value as one of its arguments.
Also, if the children all come to the same instruction
following the same store instruction or the same method
invocation, call stack comparison is likely to succeed since
the different values have already been popped off the call
stack. So these merge points are ideal places to compare
call stacks. If the comparison fails, the children are executed
from where they are until the end of the method is reached
(i.e. the conservative merge point), where the call stacks will
be equivalent.

For example, in Figure 5, loading x as an argument for
method invocation m() will cause a split since x will point
to object 1 in configurations without A and to object 2 in
configurations with A. The end of the method invocation,
i.e. right before line 10, will be set as the optimistic merge
point.

C. Garbage Collection

As shared execution requires more memory than running
each configuration separately, garbage collection is espe-
cially important for optimal performance. Unfortunately, we
cannot use the VM’s garbage collection as-is since it is not
aware of product lines. For example, it will collect objects
that are still alive for some configurations. Another reason
why we need modify the conventional garbage collector
(GC) is to clean up our own multivalued storage.

In Figure 5, foo() is executed up to line 9 once with
A = true and once with A = false. At this point, as far
as the conventional GC can tell, x can point to either object
1 or object 2 but not both, meaning one of the objects will
be garbage collected, which is clearly erroneous since m()
must be invoked with each object as its argument.

Shared execution GC is a simple modification of conven-
tional GC such that objects are marked starting from the
call stacks of leaf states of the hierarchy of states, rather
than just from the executing call stack. Note that only the
leaf states have call stacks and the non-leaf states exist
for splitting/merging purposes. Also, the marking phase is
changed such that if a variable has multiple values across
its owner configurations, multiple references will be marked
as being alive. Finally, when an object is garbage collected,
shared execution GC removes variables corresponding to its
fields from the multivalued memory. Note that nothing needs
to be done with the object itself as an object is not a variable
that can have different values across configurations.

V. EVALUATION

Shared execution can be implemented on top of any
virtual machine, such as Jikes RVM [11] or Java PathFinder
(JPF) [24]. Although JPF is typically used as a model
checker rather than as a VM, we chose it as our platform
because of its extensibility and our familiarity with it. As
a VM, JPF is considerably slower than an ordinary VM,
but as we are running both shared execution and non-shared
execution using JPF, using it should not affect our results.
We evaluated shared execution on 3 subjects: Graph Product
Line (GPL) (originally appeared in [20]), JTopas [10], and
XStream [19], that have also been used for evaluating testing
techniques by other groups (GPL by [2], JTopas by [3] and
XStream by [8][25]). Our shared execution implementation,
subjects, and results can be downloaded from [13].

A. Graph Product Line (GPL)

GPL encodes programs that implement different graph
algorithms. The product line, with 1713 LOC, 14 features
and 146 configurations, was developed in our research
group, but long before this paper was written [20]. Note that
there are only 146 configurations despite 14 features due to
constraints. The features represent various graph algorithms
and structures (e.g. directed/undirected and weighted/un-
weighted). Due to lack of tests for this product line, we
generated graphs and ran the main method on each graph
against all configurations. Although many algorithms are
independent, some features do interact to produce different
outcomes. For example, DIRECTED will change the outcome
of CYCLEDETECTION and combinations of BFS (Breadth
First Search) and DIRECTED may change the outcome of
NUMBERING (how nodes are numbered).

Table I shows the results for GPL. As the headers show,
three types of graphs were generated: 1) sequence of neural
networks (each with one input node and one output node),
2) trees with a fixed degree, and 3) random graphs with
a fixed number of nodes and an average degree generated
using an off-the-shelf random graph generator [9]. No. of
test case instrcts only includes the bytecode instructions
executed by the test case, and does not include instructions
from the shared execution implementation. The table shows
that shared execution executes about 1/20th of the test case
and saves between 24% and 53% of execution time over the
conventional approach of running the test case against each
configuration from start to finish. Note that shared execution
saves time for the larger network and tree. Time saving
stays consistent across the random graphs, whose numbers
of nodes and edges are nearly the same, suggesting that
the results are probably representative of other graphs with
similar numbers of nodes and edges.

B. JTopas

JTopas [10] is an open source Java program for pars-
ing text that has 2031 lines of code. We converted

Table I
GPL RESULTS

Conventional Shared Execution Factor/Saving (%)
Network 1: 45 nodes, 80 edges

No. of test case instrcts 76702636 4024943 19:1
Duration (sec.) 25 19 24%

Network 2: 221 nodes, 400 edges
No. of test case instrcts 2951629460 146355025 20:1

Duration (sec.) 503 277 45%
Tree 1: 85 nodes, 84 edges

No. of test case instrcts 234426320 11907505 20:1
Duration (sec.) 51 36 29%

Tree 2: 341 nodes, 340 edges
No. of test case instrcts 9318420952 448314944 21:1

Duration (sec.) 1619 756 53%
Random 1: 101 nodes, 374 edges

No. of test case instrcts 450951320 23119790 20:1
Duration (sec.) 101 66 35%

Random 2: 101 nodes, 381 edges
No. of test case instrcts 431427468 22113491 20:1

Duration (sec.) 95 61 36%
Random 3: 101 nodes, 372 edges

No. of test case instrcts 449992982 23077201 19:1
Duration (sec.) 98 65 34%

Random 4: 101 nodes, 362 edges
No. of test case instrcts 429500846 22067178 19:1

Duration (sec.) 94 61 35%
Random 5: 101 nodes, 336 edges

No. of test case instrcts 431307370 22318788 19:1
Duration (sec.) 93 62 33%

this conventional program into an SPL simply by mod-
ifying Boolean configuration flags into Boolean fea-
ture variables that our shared execution tool can rec-
ognize: LINECOMMENTS, BLOCKCOMMENTS, COUNTLINES,
IMAGEPARTS, and TOKENPOSONLY. If COUNTLINES is
true, each token will have line and column information.
IMAGEPARTS gives each token’s string more structure, such
as breaking it into lines. TOKENPOSONLY represents a to-
ken by its position in the original text, rather than string.
LINECOMMENTS and BLOCKCOMMENTS, which return a single
token representing a line comment or a block comment
respectively if the feature is on and skips the corresponding
characters if the feature is off, change the result of tokenizing
an input embedded with comments significantly. These 5
features yield 32 configurations.

We simplified an existing test called TestLargeSource,
which tokenizes a Java class containing some methods, to
run against the configurations. We created 9 test cases out
of this test to not only test inputs of different sizes, but
also inputs that are expected to result in different amount
of instruction sharing. Since we expect tokenization across
configurations to be more different the more comments there
are, we used test cases with varying number of comments
to see if shared execution results are consistent with this
expectation. The Java code input for Many test cases is
shipped with JTopas. Some and Without test cases simply
take Many’s code input and remove some or all comments
respectively. The test case number N (e.g. Many N) means
the code input is tokenized N times. Table II shows that
instruction sharing, and consequently time saving, indeed

Table II
JTOPAS RESULTS

Conventional Shared Execution Factor/Saving (%)
Many comments 1

No. of test case instrcts 38195022 14988848 2.5:1
Duration (sec.) 16 25 -56%

Many comments 2
No. of test case instrcts 75706878 30919876 2.4: 1

Duration (sec.) 27 49 -81%
Many comments 3

No. of test case instrcts 113319726 46912432 2.4:1
Duration (sec.) 39 60 -53%

Some comments 1
No. of test case instrcts 34283622 3967675 8.6:1

Duration (sec.) 15 14 6.7%
Some comments 2

No. of test case instrcts 67826606 12661565 5.4:1
Duration (sec.) 26 28 -7.7%

Some comments 3
No. of test case instrcts 101424102 21416331 4.7:1

Duration (sec.) 33 39 -18%
No comments 1

No. of test case instrcts 33245790 2421775 14:1
Duration (sec.) 14 14 0%

No comments 2
No. of test case instrcts 65735326 4824448 14:1

Duration (sec.) 24 19 20%
No comments 3

No. of test case instrcts 98281742 7234081 14:1
Duration (sec.) 34 26 24%

does increase the fewer comments there are. A minus saving
indicates that the amount of reduction in executed code was
not large enough to offset shared execution’s overhead.

C. XStream

XStream [19] is an open source program for serializing
objects to XML and back again that has 14,480 LOC.
Like we did with JTopas, we converted this conventional
program into an SPL by simply converting the following
boolean configuration flags into feature variables. TREE-

STRUCTURE inlines references such that the produced XML
is a hierarchy, not a graph. CLASSALIAS and FIELDALIAS

allow class and field names to be aliased. OMITFIELD omits
specified fields when producing XML. IMPLICITARRAY

omits specified container objects to reduce XML clutter.
ATTRIBUTE places specified fields in the tag of the owner
object for readability. BOOLEANCONVERTER allows a boolean
field to be represented with custom string representation
for ‘true’ and ‘false’. With these 7 features, XStream SPL
encodes 128 configurations.

Like with JTopas, we developed 3 sets of 3 test cases, with
different sets testing different levels of instruction sharing
and cases within a set testing different input sizes. It was
easier to write our own classes and objects to serialize than
to reuse existing ones. The test is structured as follows:
a contiguous block of Variable objects are sandwiched
between contiguous blocks of Common objects in a list that
is serialized. XML of each Variable object is different for
each configuration because each feature influences it. On the
other hand, XML of each Common object is identical for each

Table III
XSTREAM RESULTS

Conventional Shared Execution Factor/Saving (%)
0 Common, 10 Variable

No. of test case instrcts 99814860 16308440 6.1:1
Duration (sec.) 32 27 15%

0 Common, 20 Variable
No. of test case instrcts 174168126 31258531 5.6:1

Duration (sec.) 49 43 12%
0 Common, 30 Variable

No. of test case instrcts 248489238 46172217 5.4:1
Duration (sec.) 67 59 11%

6 Common, 4 Variable
No. of test case instrcts 95104366 11849715 8:1

Duration (sec.) 36 22 39%
12 Common, 8 Variable

No. of test case instrcts 163223088 22415718 7.3:1
Duration (sec.) 46 35 24%

18 Common, 12 Variable
No. of test case instrcts 231362556 33049336 7.0:1

Duration (sec.) 63 48 24%
10 Common, 0 Variable

No. of test case instrcts 89531110 8351763 11:1
Duration (sec.) 28 19 32%

20 Common, 0 Variable
No. of test case instrcts 153652858 15970598 9.6:1

Duration (sec.) 43 30 30%
30 Common, 0 Variable

No. of test case instrcts 217951258 23623858 9.2:1
Duration (sec.) 57 37 35%

configuration, meaning that serialization between configura-
tions should be shared for these objects. As Table III shows,
the first 3 test cases have 0 Common object and therefore not
much instruction sharing (a bit higher than 5:1), but shared
execution is still 11% - 15% faster. For the next 3 test cases,
60% of the objects are Common, which increases sharing to
7:1 and higher and the speedup to at least 24%. Then with
0 Variable objects, sharing increases to around 10:1 and
speedup to as high as 35%.

VI. DISCUSSION

A. Testing for Correctness

Shared execution optimizes but is otherwise semantically
equivalent to conventional execution. To test that our tool
implements shared execution correctly, we check that every
shared execution’s output is identical to conventional exe-
cution’s output. For the 3 subjects, we produced a console
output for each configuration, each of which was identical
to the corresponding output of conventional execution.

B. Native Code

Java VMs call native methods, which are blackbox to the
VM. To handle shared execution, native code execution can
be changed to understand it or it can be treated as an atomic
operation. For our implementation, we chose the latter and
we ensure that splitting and merging occurs before and after
entering a native method, meaning that the native method
never reads a variable with multiple values across configu-
rations. The simplest, safest but also the most expensive way
to achieve this would be to split on each configuration of

the current state when a native method is invoked. Instead,
we manually analyzed frequently executed native methods to
determine under which circumstances we need to split. For
example, before entering System.arraycopy (native in
JPF), our tool checks whether the source array arguments
are multivalued and split if they are. Because there are not
many native methods, manual analysis was not a significant
issue.

C. Hybrid Approaches

Hybrid approaches would exploit shared execution but
also allow conventional execution to minimize overhead.
For example, instructions could be shared only up to the
first variable load that causes a split (i.e. a feature variable
load), at which point each configuration being tested would
be run to completion. This would almost guarantee a time
saving, although it may not be much if splitting occurs early
in the test. Another possibility is to switch to conventional
execution after a tester specified limit, such as time, memory
size or number of instructions executed. A more elaborate
possibility is to split the configuration set to test at the
very beginning of the test into N configuration sets and
run shared execution on each configuration set. The split
would be done in a way to maximize shared execution’s
effectiveness for each configuration set and could be per-
formed manually using domain knowledge or automatically
using static analysis.

D. Other Benefits of Sharing Execution

Although the main idea of this paper was to exploit
shared execution to save execution time, we noticed other
benefits. For example, shared execution reduces the size of
the execution trace for the entire product line significantly,
which can make it easier to store and analyze. Also, it
can be used to analyze behavioral properties related to
product lines. For instance, suppose that a tester knows that
a block of code must be shared by all configurations. Shared
execution can be used to determine whether it is or not.

VII. RELATED WORK

A. Testing Conventional Programs

Clustered test execution [22][12] combines test cases with
common initial segments into a hierarchical structure such
that tests are executed together until they differ, at which
point execution splits, much like shared execution. Unlike
shared execution, these techniques run until completion
rather than merging and thus is not able to share instructions
after splitting. Also, these techniques require comparing test
cases to find commonality, whereas the commonality in
SPLs exists already, provided naturally by the way a product
line is structured.
Rozzle [17] is a JavaScript multiexecution VM for

exposing environment-specific malware that, like our work,
explores multiple execution paths within a single execution.

However, our purpose is to optimize a given set of executions
by exploiting similarity between them, while their purpose
is to find bugs. Our technique preserves the given set of
executions, while their technique uses a form of symbolic
execution that allows infeasible and unsound executions.

B. Testing Product Lines

Sampling relies on domain knowledge to select com-
binations of features to test [7][6][21]. It is practical but
may miss problematic interactions, which our work does
not. Model checking product lines [5] [4], which builds on
standard model checking techniques, is different from shared
execution in that they are not able to share instructions after
splitting.

In [14], we statically determined features that are irrele-
vant to a test (e.g. unreachable or does impact outcome) to
reduce combinatorics. In [15], we inserted monitors only for
feature combinations that can trigger them by constructing
path conditions over the features using static analysis. Shared
execution, a dynamic analysis, complements these works by
providing a practical reduction in a setting where the test
case must be run on every feature combination because most
of the features are relevant and interact, as far as can be
determined statically.

There exists works on eliminating redundaunt test cases
for product lines. For example, [26] determines dataflow
dependencies that must be tested for each configuration and
prevents redundant dependencies from being tested. Also,
[23] uses symbolic execution to determine the configurations
required to achieve structural coverage and shows that the
number of configurations can be far fewer than the number
of all possible configurations. Our work is complementary
to these works in that ours eliminates bytecode instruction
redundancy still remaining between the configurations de-
termined by theirs.

[18] proposes reusing execution traces to reduce product
line testing. When running a test case for a given configura-
tion, every use of a module (a programming construct with
an interface) is recorded. If another configuration uses the
same module in a way that is identical to the recorded trace,
then the result is retrieved from the recorded trace without
having to recompute it. Shared execution can achieve greater
reuse and save more time than reusing execution traces by
working at the finer grained, instruction level. Also, the two
works are complementary since a technique may incorporate
both shared execution and trace reuse.

VIII. CONCLUSION

Shared execution is a technique for efficiently testing
product lines that allows each variable to have as many
values as there are configurations but carries out execution
using a single call stack. A variable is likely to have a
number of values that is considerably smaller than the
number of configurations being tested, meaning that many

instructions will be shared across multiple configurations.
This notion, coupled with the idea of ownership for low
memory overhead, is what makes shared execution generally
faster than running each configuration from start to finish.
And while shared execution’s performance has room for
improvement, the benefit of shared execution may not be
limited to time saving. Shared execution effectively “product
lines” execution, which may allow us to systematically
exploit commonalities and variabilities to tackle problems
that remain unsolved.

Acknowledgments: we gratefully acknowledge support
for this work by NSF grants CCF 0724979 (Science of
Design Project), CNS-0958231, CCF-0845628, and AFOSR
grant FA9550-09-1-0351.

REFERENCES

[1] D. Batory. Feature models, grammars, and propositional
formulas. In J. H. Obbink and K. Pohl, editors, SPLC, volume
3714 of Lecture Notes in Computer Science, pages 7–20.
Springer, 2005.

[2] I. Cabral, M. B. Cohen, and G. Rothermel. Improving the
testing and testability of software product lines. In Software
Product Line Conference (SPLC), pages 241–255, 2010.

[3] S. Chandra, E. Torlak, S. Barman, and R. Bodı́k. Angelic
debugging. In International Conference on Software Engi-
neering (ICSE), pages 121–130, 2011.

[4] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay.
Symbolic model checking of software product lines. In ICSE,
pages 321–330, 2011.

[5] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and
J.-F. Raskin. Model checking lots of systems: Efficient
verification of temporal properties in software product lines.
In International Conference on Software Engineering. IEEE,
2010.

[6] M. B. Cohen, M. B. Dwyer, and J. Shi. Coverage and
adequacy in software product line testing. In ROSATEA ’06:
Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis. ACM, 2006.

[7] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing
of highly-configurable systems in the presence of constraints.
In International Symposium on Software Testing and Analysis
(ISSTA), pages 129–139, New York, NY, USA, 2007. ACM.

[8] B. Daniel, T. Gvero, and D. Marinov. On test repair using
symbolic execution. In International Symposium on Software
Testing and Analysis (ISSTA), pages 207–218, 2010.

[9] GraphStream. GraphStream: A Dynamic Graph Library. http:
//graphstream-project.org/.

[10] Java tokenizer and parser tools. JTopas. http://jtopas.
sourceforge.net/jtopas/index.html.

[11] Jikes RVM. Jikes research virtual machine. http://jikesrvm.
org/.

[12] S. A. Khalek and S. Khurshid. Efficiently running test suites
using abstract undo operations. In International Symposium
on Software Reliability Engineering (ISSRE), 2011.

[13] C. H. P. Kim. Shared execution for efficiently testing prod-
uct lines: Evaluation. {http://www.cs.utexas.edu/∼chpkim/
sharedexecution}.

[14] C. H. P. Kim, D. Batory, and S. Khurshid. Reducing
Combinatorics in Product Line Testing. In Aspect Oriented
Software Development (AOSD), 2011.

[15] C. H. P. Kim, E. Bodden, D. S. Batory, and S. Khurshid.
Reducing configurations to monitor in a software product line.
In Runtime Verification, pages 285–299, 2010.

[16] C. H. P. Kim, C. Kästner, and D. S. Batory. On the modularity
of feature interactions. In Y. Smaragdakis and J. G. Siek,
editors, GPCE, pages 23–34. ACM, 2008.

[17] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. In Oakland, 2012.

[18] J. J. Li, B. Geppert, F. Rößler, and D. M. Weiss. Reuse
execution traces to reduce testing of product lines. In Software
Product Lines Testing Workshop (SPLiT 2007) in Software
Product Line Conference (SPLC).

[19] Library to serialize objects to XML and back again. XStream.
http://xstream.codehaus.org/.

[20] R. E. Lopez-herrejon and D. Batory. A standard problem for
evaluating product-line methodologies. In Proc. 2001 Conf.
Generative and Component-Based Software Eng, pages 10–
24. Springer, 2001.

[21] J. McGregor. Testing a Software Product Line. Technical
Report CMU/SEI-2001-TR-022, CMU/SEI, Mar. 2001. Avail-
able from http://www.sei.cmu.edu/pub/documents/01.reports/
pdf/01tr022.pdf.

[22] S. C. Narayanan. Clustered test execution using java
pathfinder. In Master’s Thesis. Department of Electrical and
Computer Engineering. University of Texas at Austin, 2010.

[23] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter.
Using symbolic evaluation to understand behavior in con-
figurable software systems. In International Conference on
Software Engineering, ICSE ’10, pages 445–454, 2010.

[24] RIACS/NASA Ames Research Center. Java PathFinder. http:
//javapathfinder.sourceforge.net/.

[25] D. Schuler, V. Dallmeier, and A. Zeller. Efficient mutation
testing by checking invariant violations. In International
Symposium on Software Testing and Analysis (ISSTA), pages
69–80, 2009.

[26] V. Stricker, A. Metzger, and K. Pohl. Avoiding redundant
testing in application engineering. In Software Product Line
Conference (SPLC), pages 226–240, 2010.

