
Program Comprehension in Generative Programming:
A History of Grand Challenges

Don Batory
Department of Computer Sciences

University of Texas at Austin
Austin, Texas, 78712 U.S.A.
batory@cs.utexas.edu
Abstract

The communities of Generative Programming (GP) and
Program Comprehension (PC) look at similar problems: GP
derives a program from a specification, PC derives a specifi-
cation from a program. A basic difference between the two is
GP’s use of specific knowledge representations and mental
models that are essential for program synthesis. In this paper,
I present a historical review of the Grand Challenges, results,
and outlook for GP as they pertain to PC.

1 Introduction

I have worked in the areas of generative programming, prod-
uct-lines, domain-specific languages, and component-based
architectures for over twenty years. The emphasis of my
work has been on program synthesis and design automation.
The importance of these problems is intuitive: through auto-
mation we can achieve better productivity, increase software
quality, reduce maintenance costs, and improve program
comprehension.

Generative Programming (GP) is an automated process that
maps a specification — ideally a declarative specification —
to an executable. Program Comprehension (PC) is the com-
plement: it is not an automated process whose goal is to
reconstruct a specification for an executable [16]. The core
approaches of GP and PC are understandably similar. Both
use domain models to express architectural relationships
among application components, both use situational models
to flesh out architectural designs with algorithmic details,
and both use program models to express programmatic and
language details [16][21][13].

GP and PC ask similar questions. The PC community applies
techniques to understand a program in sufficient detail in
order to manually customize, repair, or extend the program
correctly. The GP community starts with a program domain
— a family of related programs — and applies techniques to
understand the domain in sufficient detail in order to auto-
matically synthesize programs in that domain and to mecha-
nize certain maintenance tasks. If there is a fundamental
difference between PC and GP, it is that GP requires very

specific models of knowledge representation in order to
automate the design and synthesis of software.

As a rule, different communities think differently about sim-
ilar problems. They have different formulations, different
starting points, and different goals. To appreciate a discipline
requires one to know key events in its history: why study
these problems? Why these solutions?

In this paper, I present an historical review of concept devel-
opment in GP as it pertains to knowledge representation and
PC. This history is intimately related to software modularity
(knowledge chunking) and the quest for understanding the
fundamental structures and organizations of programmatic
knowledge.

What’s so special about GP knowledge representation that it
deserves such attention? Answer: Software design is an art-
form, and as long as it remains so, our abilities to automate
software design and to simplify tasks of program compre-
hension will be inherently limited. A “Science of Software
Design” is sorely needed.

Scientific theories arise by studying groups of related pheno-
mona. Theories of atomic physics, for example, were not
created by studying one kind of atom, but all kinds. Simi-
larly, astronomical theories are not created by studying one
star or one galaxy, but many stars and galaxies. In short, sci-
entists gain fundamental insights into nature by creating the-
ories that explain variations in related phenomena.

I argue that GP is leading us towards a “Science of Software
Design”. GP models are predictive and constructive theories
of how programs in a domain work and can be synthesized.
These theories rely on an unusual form of knowledge repre-
sentation. How one comprehends a generated program may
be very different from how one comprehends a hand-written
program.

Interestingly, the key results in GP did not occur in chrono-
logical order. In the following sections, I summarize contri-
butions in an order that I think makes their significance
easier to grasp and appreciate.
Page 1

dsb
To appear. Invited presentation at 12th International Workshop on Program Comprehension IWPC 2004 June 24-26, 2004, Bari, Italy.

2 Design Maintenance

In 1992, Ira Baxter observed that the software engineering
community was attacking the problem of program mainte-
nance in the wrong way [8]1. He noted that engineers are
burdened by the task of code maintenance. That is, they are
given a program with the task of extending or maintaining it
where the key details of the program’s design, rationale,
and abstractions have been lost. That is, the key information
needed for correct program maintenance and extension is
gone and must be reconstructed. (These, of course, are the
key problems of program comprehension).

Baxter advocated that instead of code maintenance, soft-
ware engineers should perform design maintenance (DM).
That is, we should maintain the design of the program
(which presumably is a smaller document that is much eas-
ier to understand) and derive the program’s code automati-
cally. He advocated that a program transformation and AI
planning approach could be used to realize DM.

The transform is the basic unit of modularization. It is a
function that maps a program to a program. The application
of a transform at a particular location is a transformation,
and is denoted by:

pattern1 ⇒ pattern2 @ location

That is, code pattern1 is replaced by code pattern2 at a
designated location in a program. Figure 1a illustrates a
transform that distributes multiplication over addition.
Figure 1b shows a program (in parse tree format) before the
application of the transform at node <1> and Figure 1c is
the result.

Given the use of transforms, the core ideas of design main-
tenance unfolds (Figure 2). One begins with a specification
of a program (f0) and applies a series of transformations to
produce the target program (fn). The transforms that are
used are not randomly chosen or haphazardly applied, but
rather selected on the basis of performance and functional-
ity goals (or “how to implement” goals) that are part of the
original specification. A program’s design history is
recorded by saving the rationale for each decision point
(indicated by the Gi nodes in Figure 2).

A design history records what was desired (the original
specification), how it was achieved (the series of transfor-
mations that were applied), and why this particular imple-
mentation (the justification for these transformations).
Given a design history, it would seem we have all the infor-
mation about a program’s development!

Baxter also conjectured that the generation of program
design histories might be expensive. If a change is made to
the specification, the recorded history could be used to
replay the design decisions that were unaffected. A new
program would be generated by filling in the missing pieces
caused by the change.

While it was not immediately obvious, the concept of
Design Maintenance raised seven Grand Challenge Prob-
lems, which I have come to believe are the Holy Grail(s) of
Generative Programming:

#1: Language Challenge: In what language should a pro-
gram specification be written? First order logic is too
sophisticated for most people. Ideally, we want a language
to be declarative — allowing users to specify what they
want, not how to do it. Further, we want a language that
people without advanced technical degrees can write and
understand.

#2 Automatic Programming Challenge: Mapping a
declarative specification to an efficient executable is hard.
Called Automatic Programming (AP), all but the most pio-
neering researchers gave up on AP in the early 1980s, as the
techniques that were available then did not scale [1].
Design Maintenance requires AP to be solved.

#3 Consistent Refinement Challenge: Individual trans-
forms need not be correctness preserving. Rather, the net
effect of applying a set of transformations must be correct-
ness preserving. This is similar to database transactions.
Each tuple update moves the database through an inconsis-
tent state; only after all of the updates have been applied is
the database consistent. The hallmark of transactions is ato-
micity: either all of its changes are made, or none are. Any-
thing less would corrupt the database. The same applies
here: either the entire set of transformations is applied, or
none are. This is the problem of consistent refinement: there
are many places in a program that must be transformed in a

1. Arguably the CASE community much earlier advanced the notion of
updating designs; Baxter gets credit for saying it in a brazen, clear way [9].

Figure 1. A Program Transform

+

+

*

3 z

4

*

3 y

?a * (?b + ?c) !
?a*?b + ?a*?c @<1>+

*

3 +

y z

4
<1> (a)

(b)

(c)

+

+

*

3 z

4

*

3 y

+

+

*

3 z

4

*

3 y

?a * (?b + ?c) !
?a*?b + ?a*?c @<1>+

*

3 +

y z

4
<1> (a)

(b)

(c)

f0o r ig in a l
sp ec

X1 @ L1 X2 @ L2

f1

X3 @ L3

f2

X4 @ L4

f3 fn p rog ra m

tran sfo rm s

T ra n s fo rm s a re
se le c te d b a se d
o n p e rfo rm a nce
an d fun ct io na lity

(o r h o w to
im p le m e n t)

“g o a ls”

G 0

G 1 G 2

G 3
G 4

Des
ig

n
Hist

or
y

f0o r ig in a l
sp ec

X1 @ L1 X2 @ L2

f1

X3 @ L3

f2

X4 @ L4

f3 fn p rog ra m

tran sfo rm s

T ra n s fo rm s a re
se le c te d b a se d
o n p e rfo rm a nce
an d fun ct io na lity

(o r h o w to
im p le m e n t)

“g o a ls”

G 0

G 1 G 2

G 3
G 4

Des
ig

n
Hist

or
y

Figure 2. Design History

coordinated way to preserve program consistency. How can
consistent refinements be realized?

#4 Modularity Challenge: The unit of knowledge repre-
sentation (transforms) seems too small. The progress of
programming languages and software design is marked by
increasing levels of abstraction: functions, to classes, to
packages, to components, etc. Transforms buck the trend.

Creating a knowledge base of transforms is possible, but
when and where should transforms be applied? How should
the knowledge base of transforms be searched? And the
space of possible programs that could be generated is gar-
gantuan: how can this space be enumerated, let alone
searched, efficiently?

#5 Design History Challenge: From a program compre-
hension viewpoint, DM is great stuff: we point at a piece of
code and immediately know its derivation. But how can
human-understandable explanations of a derivation be pro-
duced automatically? How can tens of thousands (or more)
of miniscule steps be abstracted into a human-comprehend-
ible form? How is it practical to maintain the history of
decisions for later partial replay?

#6 Scale Challenge: How can DM scale to large systems?
It only works for small systems, DM should be abandoned.
And finally,

#7 Science of Design Challenge: What is a scientific or
mathematical basis for all this? What is a “Science of Soft-
ware Design”?

DM sets the stage for our next major result, which ironi-
cally appeared twelve years prior to the DM paper…

3 Neighbor’s Draco

Jim Neighbors’ 1980 Ph.D. explained the importance of
levels of abstraction, domain-specific languages (DSLs),
and domain-specific optimizations in program generation
[17]. Neighbors also advocated a program transformation
(and maybe AI planning) approach to program generation,
but this is not surprising as both he and Baxter worked
under Peter Freeman at U.C. Irvine.

Figure 3 illustrates the Draco paradigm2. Neighbors advo-
cated that programs should be written in DSLs, because
doing so, they have their most compact and elegant expres-
sion. When a DSL program is initially written, it is unopti-
mized. Domain-specific optimizations can be applied to an
unoptimized DSL program to map it to an optimized DSL
program. This is possible because domain abstractions are
still visible. Or stated another way, one cannot optimize
abstractions that have been compiled away.

An optimized DSL program is
then translated to an equivalent
program in a more primitive
DSL that exposes lower-level
abstractions. This program is
unoptimized w.r.t. these abstrac-
tions, and the process of map-
ping it to an optimized DSL
program and then translating it
to an equivalent program in an
even more primitive DSL is per-
formed. The process repeats
until machine code is reached.

As an artificial example, consider a program that uses state
machines to perform file updates. The program is written in
a DSL for state machines. A state machine optimization
might, for example, eliminate unreachable states or fuse
states that are connected by null transitions. An optimized
state machine program could be translated into a language
with explicit support for file operations. A possible optimi-
zation on files is replacing “open(file); close(file);”
statements with no-ops. An optimized file DSL program
could then be mapped to a general purpose language for
further optimization and translation.

Draco provided two valuable clues to the Modularity Chal-
lenge. First, transforms for program optimization should be
separated from those of program generation. Design opti-
mization corresponds to the horizontal translations in
Figure 3, while program generation corresponds to the ver-
tical translations. Second, applying a set of miniscule trans-
forms is equivalent to applying a single large-scale
transform. The Draco paradigm is an algebraic recurrence
relation (1) that optimizes a programi in language Li and
generates an equivalent programi-1 in a lower-level lan-
guage Li-1:

programi-1 = generatei(optimizei(programi)) (1)

Further, Draco provided a clue for the Language Challenge:
a language for the masses will likely be some sort of DSL.

There are, of course, open questions such as: how generally
applicable is Draco? Programs have many levels of abstrac-
tions. Programmers use Java interfaces, for example, to
define these levels in their programs and neither DSLs or
optimizations are needed. So when and where are DSLs —
or more generally different languages — needed?

Draco, unfortunately, does not bring us closer to surmount-
ing the Design History Challenge. Optimizations make pro-
gram comprehension fundamentally harder. A fragment of
Java code may be the result of optimizations at multiple
levels of abstraction. To understand this code would
involve transforming the original specification; optimiza-
tions often break clean encapsulations obscuring specifica-2. In fact, the Draco paradigm applies to any language, not just DSLs.

Unoptimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Unoptimized
DSL

program

Unoptimized
DSL

program

Unoptimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Optimized
DSL

program

Unoptimized
DSL

program

Unoptimized
DSL

program

Unoptimized
DSL

program

Unoptimized
DSL

program

Figure 3. Draco Paradigm

tion simplicity. With optimizations, the need to maintain a
Design History becomes that much more important, and
apparently that much more difficult.

Our next result appeared ten years after Draco…

4 Feature Oriented Domain Analysis (FODA)

Kyo Kang was working at the SEI in 1990 when he made a
fundamental contribution to the understanding of product-
lines [14]. The motivating problem was clear enough: suc-
cessful programs spawn variants. Designing and building
each variant from scratch was way too expensive (even in
those days of rampant reinvention). He and his colleagues
realized that a more practical approach would be to create a
design for a family (or domain) of programs that leverages
common assets. This family of programs was called a prod-
uct-line. The fundamental contribution was the recognition
that features were the primary means by which members of
a product-line were distinguished.

To appreciate features, consider the following thought
experiment. How do you describe a program to someone?
Hopefully you wouldn’t say which DLLs or widgets the
program used. Instead, you are more likely to describe the
program by saying what features the program offers it cli-
ents. Abstractly, you might say that program1 has features
X, Y, and Z, while a competing program2 has features X, Q,
and R. The reason why you describe programs in this way is
because features align with requirements — or features are
the requirements. Thus, programs can be specified as com-
positions of features. Feature-specifications of products are
common, it is just not common for software (yet).

As an example, go to the Dell or Gateway web site. You’ll
find lots of HTML pages that are declarative DSLs — using
check boxes, combo-boxes, and radio-buttons, a client can
declaratively specify features or constraints on features for
a desired personal computer. Filling in these specifications
is simple; the hard part is writing the cheque! We want to do
the same for software.

In retrospect, FODA provided a solution to the Language
Challenge: declarative feature specifications can be written
and understood by people that do not have advanced techni-
cal degrees. So by creating feature models of product-lines,
we have an attractive and intuitive answer to the Language
Challenge.

FODA also leads us toward the solution of the Modularity
Challenge. Features define a new form of modularity —
they are a higher-level, more abstract way in which to
understand programs. It was soon realized that feature
implementations often do not align along class and package
boundaries. For example, program P in Figure 4 consists of
four packages A—D. Adding feature F requires changes in
all of these packages.

Astute readers may recognize Figure 4 as an example of
“cross-cuts” or “aspects”. This would be correct, but more
specifically, Figure 4 is a classical example of the consis-
tent refinement problem. That is, Figure 4 shows there are
multiple places in a program that must be transformed (or
updated) in a coordinated way to preserve program consis-
tency. Either all of these changes to P are made, or none are.
Anything less will leave P in a corrupted state. Thus, if we
could figure out how to modularize features, we could
crack both the Consistent Refinement Challenge and the
Modularity Challenge.

Features also contributed in another way to a better under-
standing of the Modularity Challenge. Kang, myself, and
others used preprocessor #ifdef—#endif statements to
surround feature-specific code fragments. System-genera-
tion (a.k.a. sysgen) approaches were employed, where the
code for a particular feature was included in a target system
if certain preprocessor flags were set. This implementation
technique helped broaden the focus of the program genera-
tion community from the program transformation and AI
planning world to include main-stream programming tech-
niques.3 After all, preprocessors and sysgen techniques
were known for decades. And this provided a good histori-
cal tie-in with the pioneering work in the late 1980s and
early 90’s of Craig Cleaveland [11] and Paul Bassett [3] on
their use of preprocessor-based program generator technol-
ogies. (I am sure that Cleaveland and Bassett were wres-
tling with the GP Grand Challenges too, in one way or
another).

The use of preprocessors led to an important cross-roads in
the GP community. The next significant advances occurred
about eight years after FODA…

5 Programming Language Representations of
Transforms

Every programming language (PL) is a knowledge repre-
sentation language. PLs like Java, C++, C#, etc. have for-
mal and precise definitions of programming concepts and
constructs. Preprocessors, on the other hand, are ad hoc

3. Or more accurately, there were two different program generation com-
munities — those using program transformations and those using prepro-
cessors — that slowly began to merge. This was a primary motivation for
creating the International Conference on Software Reuse (ICSR).

Figure 4. Consistent Refinement Problem Revisited

Program P

changes made by adding feature F

Packages

Program P

changes made by adding feature F

Packages

extensions to programming languages. They allow us to
express concepts that cannot (or are hard to) express
directly in a PL itself. In effect, preprocessors allow us to
express concepts that hopefully will appear in future lan-
guages. It’s not surprising, therefore, to see that generator
technologies have often been preprocessor-based. There
have been movements in the broader GP community to give
PL support for generative programming concepts, such as
template metaprogramming [22].

Recall Baxter’s definition of a transformation:

pattern1 ⇒ pattern2 @ location

Suppose pattern1 is a method signature (like “int
five()”) and pattern2 is a method body (like “return
5;”. Their combination is a method definition:

int five() { return 5; }

What’s missing is the location. But this is implicit: any
place in a program that invokes five() is the location at
which the five() transform can be applied. An application
of a method transform is called inlining — the body of the
method replaces its call.

We can take this analogy further: if a method is a transform,
then an object-oriented class encapsulates a set of consis-
tent transforms! That is, all methods (transforms) in a class
are designed to work together. So Figure 5a is a class (set of
consistent transforms) that define a container implementa-
tion, Figure 5b is a program that invokes these methods,
and Figure 5c is an inlined version of this program using
the container class of Figure 5a. This idea scales to pack-
ages and larger entities: they can be viewed as progres-
sively larger sets of consistent transforms.

Of course, one can’t always do such inlining. Polymor-
phism often precludes inlining because the exact type of
object that is invoked in a piece of code is not known (i.e., it
could be any object belonging to a type or any of its sub-
types, where subtypes override method definitions).

However, there are common situations in the implementa-
tions of features where inlining methods and entire classes
are exactly what is needed. The idea is called in-place
extensions of classes, or “inheritance without inheritance
hierarchies”. The following are ideas that have been used to
great effect in our work at the University of Texas [7].

Consider Figure 6a which defines class K. Figure 6b defines
a refinement or extension of K. That is, method foo() of
Figure 6b extends method foo() of Figure 6a by inlining
the original definition (that’s what Super.foo() means) fol-
lowed by statement c. Similarly, method bar() is extended
by statement d followed by the original body of bar(). The
member declaration “int f;” means add member f to class
K. Figure 6c is the result. Readers may recognize that
Figure 6c is equivalent to having the class of Figure 6b be
the subclass of Figure 6a, and their inheritance hierarchy
squashed into one class. As mentioned earlier, we can scale
this concept so that many classes are refined (extended)
simultaneously. This is how we implement features and
define them in a programming language.

Stated algebraically, if K denotes Figure 6a, and R defines
the refinement of K as in Figure 6b, the class of Figure 6c is
the result R•K, where • is a class composition operator.
More on this later.

Recall the Consistent Refinement Challenge: there are
many places in a program that must be transformed in a
coordinated way to preserve program consistency. The
class refinement/extension in Figure 6 is an effective way to
solve the consistent refinement problem.

Our last programming language example is Aspect Ori-
ented Programming. AspectJ introduces an important kind
of transformation to Java [15]. The definition of a dynamic
cross cut is:

pointcut_predicate ⇒ advice

It’s meaning is simple: A join-point is a designated point in
a program (e.g., method invocation, initialization body,
catch body, etc.). A pointcut is a predicate that defines a
set of join-points and advice is a code pattern that is to be
added at each qualified join-point location. I hope that the
transformation heritage of AspectJ cross-cuts is easy to see.
An aspect is a set of such cross-cut definitions (i.e., a set of
consistent transforms).

Let’s see how advances in programming languages impacts
the Design History Challenge. If programming languages
add constructs to implement feature modularities, then
high-level program abstractions will be explicit in program
source code. That is, semantic units of functionality and
their implementations will be more clearly separated. With
such advances, monolithic programs with code fragments

class container {
void getFirst() {

..getFirstAlg..
}
void getNext() {

..getNextAlg..
}

}

// main program

container x;
...
x.getFirst();
...
x.getNext();
...

// main program

container x;
...
..getFirstAlg..
...
..getNextAlg...
...

Figure 5. Class-Scale Transform Sets

(a) (b) (c)

refines class K {
void foo(){

Super.foo();c;
}
void bar(){
d; Super.bar();

}
int f;

}

class K {
void foo(){

a;b;
}
void bar(){
e;

}
}

Figure 6. Class Extension in AHEAD

class K {
void foo(){

a;b;c
}
void bar(){
d;e;

}
int f;

}(a) (b) (c)

of multiple features that are “scattered and tangled” should
be relics of the past. Thus, it seems that a useful step toward
improved program comprehension and the Design History
Challenge is to make architectural (or high-level) design
concepts more explicit in programming languages and in
program source.

Now let’s summarize what we’ve seen so far. The GP
dream is to realize Design Maintenance. We have made sig-
nificant progress on:

• Language Challenge — use declarative feature-
based specification languages

• Consistent Refinement Challenge and the
Modularity Challenge — extend programming
languages to express sets of consistent transforms

We still do not yet know how to solve:
• Automatic Programming Challenge
• Design History Challenge
• Scalability Challenge
• Science of Design Challenge

Our next contribution is arguably the most significant result
in GP. Ironically, it occurred 25 years ago, even before
Draco. It was conceived for a significant domain, had a rev-
olutionary impact on industry, and occurred around the time
researchers gave up on automatic programming!

6 Relational Query Optimization

Here’s how relational query optimization works [18]: An
SQL statement is parsed into an inefficient relational alge-
bra expression. A query optimizer rewrites the expression
into a semantically equivalent expression that has better
performance characteristics. A code generator translates the
optimized expression into an efficient program.

SQL is a classic example of a declarative DSL. It is a lan-
guage that is specific to tabular representations of data. The
code generator, which maps a relational algebra expression
to an executable, is an early example of GP. The query opti-
mizer is the key to Automatic Programming: it searches the
space of semantically equivalent expressions to locate an
expression which has good (or optimal) performance char-
acteristics.

Let’s look at what relational database researchers accom-
plished. First, they created a practical form of Design Main-
tenance! That is, programmers maintain declarative SQL
specifications, not the code that is generated from these

specifications. This approach has withstood the test of time
and has been a big win.

Second, they stated a practical formulation of the Auto-
matic Programming problem and solved it!

Third, a high-level design history is simple to maintain:
remember the original SQL statement, and maybe the opti-
mized relational algebra expression. Given these two as a
road-map, a programmer has a lot of information to com-
prehend a generated query evaluation program.

Fourth, it is interesting
to see that the Rela-
tional Query Optimi-
zation (RQO)
paradigm fits beauti-
fully with Draco.
There is a clear use of
multiple languages,
domain-specific opti-
mizations, and multi-
ple levels of
abstraction. This is yet
another clue to the
Scalability Challenge.

Fifth and most impor-
tantly, RQO provides
an invaluable clue to
the Science of Design Challenge. What relational database
researchers achieved is nothing short of remarkable. They
automated the development of query evaluation programs:
these programs were hard to write, hard to optimize, and
even harder to maintain. They created an algebra-based
science to specify and optimize query evaluation programs.
They accomplished this by identifying fundamental opera-
tors of this domain (relational algebra), the design of pro-
grams in this domain were represented by expressions
(compositions of relational operators), and identities among
these operators were used to optimize expressions (program
designs). That is quite a lot!

Several open problems remain: how do features relate to
RQO? And how does the RQO paradigm scale to large pro-
grams? Let’s move forward to the mid-1990s to some work
that I did that answers these questions and ties together
more loose ends. (Incidentally, at the time that I was doing
this work, I definitely was not cognizant of the history I am
unfolding in this paper).

7 Early FOP and GenVoca

The 1992 paper on GenVoca defined a simple, mathemati-
cal model of what is now called Feature-Oriented Pro-
gramming (FOP) [4]. A GenVoca model of a domain is a

Figure 7. Relational Query Optimization

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

declarative
DSL

automatic
programming

generative
programming

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

declarative
DSL

automatic
programming

generative
programming

Optimized
Algebra

Expression

query
optimizer

Unoptimized
Java

program

code

ge
nera

tor

Optimized
Java

class file

Java
optimizer

SQL
statement

Unoptimized
Algebra

Expression

pa
rse

r

Optimized
Algebra

Expression

query
optimizer

Optimized
Algebra

Expression

Optimized
Algebra

Expression

query
optimizer

Unoptimized
Java

program

code

ge
nera

tor

Unoptimized
Java

program

Unoptimized
Java

program

code

ge
nera

tor

Optimized
Java

class file

Java
optimizer

Optimized
Java

class file

Optimized
Java

class file

Java
optimizer

SQL
statement

Unoptimized
Algebra

Expression

pa
rse

r

Unoptimized
Algebra

Expression

pa
rse

r

Figure 8. RQO and Draco

set of operators that defines an algebra. Each operator
implements a feature. We write:

M = { f, h, i, j }

to mean model M has operators (or features) f, h, i, and j.
One or more of these operators are constants that represent
base programs:

f // a program with feature f
h // a program with feature h

The remaining operators are functions or large scale trans-
forms which represent program extensions:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

The design of an application is named composition of oper-
ators called an equation:

prog1 = i•f // program w. features i and f
prog2 = j•h // program w. features j and h
prog3 = i•j•h // program w. features i,j,h

where • denotes function composition. The family of pro-
grams that can be created from a model is it’s product-line.

A GenVoca expression represents the design of a program.
Such expressions (and hence program designs) can be auto-
matically optimized. This is possible because a function
represents both a feature and its implementation. That is,
there can be different functions with different implementa-
tions of the same feature:

k1(x) // adds k with implementation1 to x
k2(x) // adds k with implementation2 to x

When an application requires the use of feature k, it is a
problem of expression optimization to determine which
implementation of k is best (e.g., provides the best perfor-
mance). Of course, more complicated rewrite rules can be
used. Thus, it is possible to design efficient software auto-
matically (i.e., find an expression that optimizes some crite-
ria) given a set of declarative constraints for a target
application. An example of this kind of automated reason-
ing — which is exactly the counterpart to relational query
optimization — is [6].

The program synthesis paradigm of GenVoca is illustrated
in Figure 9. Program P consists of four classes c1—c4. It is
synthesized by composing features f1, f2, and f3. f1
encapsulates a fragment of classes c1—c3. f2 extends each
of these classes and introduces c4. f3 extends all four
classes. The manner in which these classes are defined and
extended was described earlier regarding the discussion of
Figure 6. Feature (functions) are implemented by sets of
consistent transforms.

The significance of GenVoca is two-fold. First, it shows the
connection among features, algebras, consistent refine-
ments, and feature modularities. A feature is synonymous

with a large-scale transform. Second, it allows medium-
sized programs (in excess of 80K LOC) to be synthesized.
We and others have synthesized database systems in 1987
[4], network protocols in 1989 [4], avionics in 1994 [5],
extensible compilers in 1998 [12], and program verification
tools in 2001 [20], among others, using these ideas.

We now have a preliminary solution for each of the Grand
Challenges:

• Language Challenge: use declarative feature DSLs
• Automatic Programming: extend RQO paradigm
• Consistent Refinement and Modularity: extend PLs

to express sets of consistent transforms
• Design History: remember original spec and its

optimized GenVoca expression
• Scalability Challenge: medium-scale program

synthesis
• Science of Design: algebraic foundation for

program synthesis

The next result revolutionized my thinking on program gen-
eration and program comprehension. It helps answer the
nagging questions of scale (how can we scale design main-
tenance to even larger programs?) and the Draco refrain:
how do different languages fit into the PC and GP worlds?

8 Recent FOP and AHEAD

Algebraic Hierarchical Equations for Application Design
(AHEAD) is the successor to GenVoca [7]. AHEAD shows
how feature models scale to the synthesis of multiple pro-
grams and multiple representations, and that software
design has an elegant algebraic structure that is expressible
as nested sets of expressions. The following sketches the
basic ideas.

8.1 Multiple Program Representations

Today’s systems are not individual programs but groups of
collaborating programs such as client-servers and tool
suites of integrated development environments. Further,
systems themselves are not solely defined by source code.
Architects routinely use many knowledge representations to
express and understand a system’s design, such as process
models, UML models, makefiles, formal specifications, etc.
If we are to understand and generate these larger systems,
we cannot solely focus on code comprehension and code
synthesis. We must understand programs from a much
broader knowledge representation viewpoint.

c1 c2 c3

f1

f2

f3

classes

Figure 9. Program P = f1 • f2 • f3

features

Program P c4

That a program has many representations is reminiscent of
Platonic forms. That is, a program is a form. Shining a light
on this program casts a shadow that defines a representation
of that program in a particular language. Different light
positions cast different shadows, exposing different details
or representations of that program. For example, one
shadow might reveal a program’s representation in Java,
another an HTML document (which might be a design doc-
ument). There are class file or binary representations of a
program, makefile representations, performance models, an
so on. Further, we want to encapsulate all of these represen-
tations.

Consider a compiler J. It uses (at least) two representations:
CodeJ and GramJ. CodeJ defines a set of Java classes that
implement the body of the compiler, and GramJ is a gram-
mar from which J’s parser is derived. We say that J encap-
sulates CodeJ and GramJ and write this relationship as:

J = { CodeJ, GramJ }

Set notation denotes encapsulation.

8.2 Generalize Transforms

Adding a new feature to a program changes any or all of its
representations. For example, if a new feature F is added to
a program, we would expect changes in the program’s code
(to implement F), documentation (to document F), make-
files (to build F), formal properties (to characterize F), per-
formance models (to profile F), and so on.

For example, suppose feature F adds state machine declara-
tions to the language for which J is a compiler. F would
change the code and grammar artifacts of J. Let CodeF and
GramF denote these changes. We say that F encapsulates
CodeF and GramF and write this relationship as:

F = { CodeF, GramF }

8.3 Generalize Composition

Given F and J, how do we compute F•J? The answer: we
expand the definitions for F and J and compose their corre-
sponding representations:

F•J = { CodeF, GramF } • { CodeJ, GramJ }
= { CodeF•CodeJ, GramF•GramJ } (2)

That is, the grammar artifact of F•J is the original grammar
artifact, GramJ, composed with its changes, GramF. Similarly,
the code artifact of F•J is the original code artifact, JavaJ,
composed with its changes, JavaF. In effect, equation (2)
defines an algebraic Law of Composition: it tells us how
composition distributes over encapsulation. A more general
definition of this law is presented in [7], where any set of
artifacts can be encapsulated and extended.

We’ve seen this idea before. Recall Figure 4 and Figure 9.
Both of these figures illustrate that a program contains mul-

tiple artifacts (four artifacts specifically), and that adding a
feature updates some or all of these artifacts. (2) is an alge-
braic statement of consistent refinement: program J encap-
sulates a set of artifacts and feature F encapsulates a set of
changes to these artifacts. When F is applied to P, all of F’s
changes are applied to P.

8.4 Generalize Modularity

A module is a containment hierarchy of related artifacts.
Figure 10a shows that a class is a 2-level containment hier-
archy that encapsulates a set of methods and fields. An
interface is also a 2-level containment hierarchy that encap-
sulates a set of methods and constants. A package is a 3-
level containment hierarchy encapsulating a set of classes
and interfaces. A J2EE EAR file is a 4-level hierarchy that
encapsulates a set of packages, deployment descriptors, and
HTML files.

In general, a module hierarchy can be of arbitrary depth and
can contain arbitrary artifacts. This enables us to define a
module that encapsulates multiple programs. Figure 10b
shows a system to encapsulate two programs, a client and a
server. Both programs have code, UML, and HTML repre-
sentations with sub-representations (e.g., code has Java
files and binary class files, UML has state machines and
class diagrams). Thus, a module allows us to encapsulate all
needed representations of a system.

Module hierarchies have a simple algebraic representation
as nested sets of constants and functions. Figure 11a shows
package K encapsulating class1 and class2. Similarly,
class1 encapsulates method mth1 and field fld1, and
class2 encapsulates mth2 and mth3. The corresponding set
notation is shown in Figure 11b.

methods fields

class

constantsmethods

interface

package

deployment
descriptors

HTML
files

J2EE EAR File

methods fields

class

methods fields

class

constantsmethods

interface

package

deployment
descriptors

HTML
files

J2EE EAR File

constantsmethods

interface

constantsmethods

interface

packagepackage

deployment
descriptors

HTML
files

J2EE EAR File

deployment
descriptors

HTML
files

J2EE EAR File

system

code UML HTML code UML HTML

client server

*.java, *.class *.htmlstate-machines *.java, *.class *.htmlclass diagrams

system

code UML HTML code UML HTML

client server

*.java, *.class *.htmlstate-machines *.java, *.class *.htmlclass diagrams

(a)

(b)

Figure 10. Modules are Containment Hierarchies

Figure 11. Modules and Nested Sets

class1 class2

package K

K = { class1, class2 }

graphical algebraic
mth1 fld1

class1 = { m th1, fld1 }

m th3mth2
class2 = { m th2, m th3 }

class1 class2

package K

K = { class1, class2 }

class1 class2

package K

K = { class1, class2 }

graphical algebraic
mth1 fld1

class1 = { m th1, fld1 }

m th1 fld1

class1 = { m th1, fld1 }

m th3mth2
class2 = { m th2, m th3 }

m th3mth2
class2 = { m th2, m th3 }

(a) (b)

8.5 Generalize GenVoca

A GenVoca model is a set of constants and functions. An
AHEAD model is also a set of constants and functions, but
now a constant represents a hierarchy that encapsulates dif-
ferent representations of a base program. An AHEAD func-
tion or large-scale transform is a hierarchy of extensions —
that is, it is a containment hierarchy that can add new arti-
facts (e.g., new Java and HTML files) at various points in a
target hierarchy, and can also refine/extend existing arti-
facts. When features are composed, corresponding program
representations are composed. If the representations of each
feature are consistent, then their composition is consistent.
This is exactly what we want.

8.6 Implementation Details

We implement module hierarchies as directory hierarchies.
Figure 12a shows our algebraic representation of a module,
and Figure 12b shows its directory representation.

Feature composition is directory composition. That is,
when we compose features, we fold their corresponding
directories together to produce a directory whose structure
is isomorphic to the original directories. For example, the
X.java file of C = B•A in Figure 13 is produced by compos-
ing the corresponding X.java files of B and A.

Our implementation is driven purely by algebraic manipu-
lation. We evaluate an expression by alternatively expand-
ing nonterminals and applying the Law of Composition:

C = B • A
= {CodeB,R.drcB,HtmB} • {CodeA,R.drcA,HtmA}
= {CodeB•CodeA, R.drcB•R.drcA, HtmB•HtmA}
= {{X.javaB, Y.javaB}•{X.javaA, Y.javaA},

R.drcB•R.drcA, {W.htmB}•{Z.htmA} }
= {{ X.javaB•X.javaA, Y.javaB•Y.javaA },

R.drcB•R.drcA, {W.htmB, Z.htmA}}

The result is a nested set of expressions. Each expression
tells us how to synthesize an artifact of the target program.
That is, the X.java artifact of feature C is computed by
X.javaB•X.javaA; the Y.java artifact of C is computed by
Y.javaB•Y.javaA, the R.drc artifact of C is computed by
R.drcB•R.drcA, and so on. Thus, there is a simple interpre-
tation for every computed expression, and there is a direct
mapping of the nested set of expressions to the directory
that is synthesized.

Figure 14 illustrates the AHEAD paradigm. An engineer
defines a system by declaratively specifying the features it
is to have, typically using some GUI-based DSL. The DSL
compiler translates the specification into an AHEAD
expression, which is then expanded and optimized, produc-
ing a nested set of expressions. Each expression is typed —
expressions that synthesize Java files are distinguishable
from expressions that synthesize grammar files — and is
submitted to a type-specific generator to synthesize that
artifact. The set of artifacts produced are consistent w.r.t.
the original declarative specification. This is a scaled gener-
alization of the Relational Query Optimization paradigm
and an example of Design Maintenance.

What does AHEAD mean to the Program Comprehension
community? First, there should be no worries that the core
problems of PC will go away. However, it does suggest that
we will be able to synthesize a variety of documents to aid
program understanding. Such documents will be used by
people who are manually integrating generated programs or
components into some hand-crafted system. Surely, this
will be better than inconsistent documents programmers
have today.

However, AHEAD does not support the detailed design his-
tories that Baxter advocated. Instead, it provides levels of
abstraction for various program artifacts, where histories or
code ancestries are maintained (as expressions) down to the
class or method level. But this may not be enough.

Stated another way, AHEAD is an architectural model of
program synthesis. Below a certain level of detail, its ability
to predict or explain is minimal. Just as Newtonian mechan-

W.htm Z.htmX.java Y.java

Code
R.drc

Htm

A

W.htm Z.htmX.java Y.java W.htm Z.htmW.htm Z.htmX.java Y.javaX.java Y.java

Code
R.drc

Htm

A

A = { Code, R.drc, Htm }

Code = { X.java, Y.java }

Htm = { W.htm, Z.htm }

(a) (b)

Figure 12. Algebra and Directory Correspondence

X.java = X.java X.java

Code

X.javaY.java Z.htm

R.drc

Htm

A

X.java W.htmY.java

Code

R.drc

Htm

B

=

X.java W.htmY.java Z.htm

Code

R.drc

Htm

C

X.java = X.java X.java

Code

X.javaY.java Z.htm

R.drc

Htm

A

X.java W.htmY.java

Code

R.drc

Htm

B

=

X.java W.htmY.java Z.htm

Code

R.drc

Htm

C

Figure 13. Composition of Feature Directories

h1 g1 f1

h2 g2 f2

h3 g3 f3

generator

generator

generator

equation
composition

& optimization

h g f
artifact1

artifact2

...

artifacts of
specified system

h1 g1 f1

h2 g2 f2

h3 g3 f3

generator

generator

generator

generator

generator

generator

equation
composition

& optimization

equation
composition

& optimization

h g f
artifact1

artifact2

...

artifact1

artifact2

...

artifacts of
specified system

Figure 14. Program Synthesis Paradigm of AHEAD

Engineer

declarative DSL

Engineer

declarative DSL

Engineer

declarative DSLdeclarative DSL

ics has a limited ability to describe atomic interactions,
more sophisticated models of program generation and pro-
gram comprehension (such as the work of Kestrel [10] and
NASA Ames [19]) are needed. The generation of really
useful explanations may hinge on this additional level of
detail. While considerable progress has been made in the
last 25 years towards Design Maintenance, there is still a
long way to go.

9 Conclusions

Just as the structure of matter is fundamental to chemistry
and physics, so too must the structure of software be funda-
mental to Computer Science. By structure I mean what is a
module and how do modules compose to build larger mod-
ules?

Unfortunately, the structure of software is not well-under-
stood. Software design, which is a process to define the
structure of a program, is an art-form. And as long as it
remains an art-form, our abilities to automate software
development and to simplify tasks of program comprehen-
sion will be inherently limited.

The history of key results in Generative Programming aim
to automate, and thus formalize, informal knowledge of
programmers. The major thrust of the GP community, in
retrospect, has been to move closer to a practical form of
Design Maintenance, and in doing so, address Challenge
problems that blocked our way to significant progress.

We have made progress in understanding program synthesis
using transforms and expressing transforms in program-
ming languages. We have learned that domains of programs
can be expressed as algebras, where particular programs are
expressions, and the operators of these algebras are large-
scale transforms. And we have learned that improved pro-
gram design and comprehension relies on many different
program representations besides source code.

Software has an elegant algebraic structure that is easily
obscured. Unfortunately, programmers are geniuses in mak-
ing simple things look complicated. Our job in GP and PC
is to reveal the potential simplicity of a program and to
remove its accidental complexity. Eventually, there will be
a “Science of Software Design” that will guide us both in
program synthesis and knowledge recovery of legacy pro-
grams. Continued progress will get us there.

Acknowledgements. I gratefully acknowledge the helpful
comments of Ira Baxter and Anneliese Andrews on earlier
drafts of this paper.

10 References

[1] A. Andrews, S. Ghosh, E. Choi, “A Model for Understanding
Software Components”, International Conference on Soft-
ware Maintenance (ICSM'02), Montreal, Quebec, Canada.

[2] R. Balzer, “A Fifteen-Year Perspective on Automatic Pro-
gramming”, IEEE TSE, November 1985.

[3] P. Bassett, Framing Software Reuse: Lessons from the Real
World, Yourdon Press Computing Series, 1996.

[4] D. Batory and S. O'Malley, “The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents”, ACM TOSEM, October 1992.

[5] D. Batory, L. Coglianese, et al., “Creating Reference Archi-
tectures: An Example from Avionics”, Symposium on Soft-
ware Reusability, Seattle Washington, April 1995.

[6] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design
Wizards and Visual Programming Environments for Gen-
Voca Generators”, IEEE TSE, May 2000, 441-452.

[7] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement”, International Conference on Software
Engineering (ICSE-2003).

[8] I.D. Baxter, “Design Maintenance Systems”, Communica-
tions of the ACM, Vol. 55, No. 4 (1992) 73-89.

[9] I.D. Baxter, personal correspondence, March 2004.

[10] M. Becker, et al., “Planware II: Synthesis of Schedulers for
Complex Resource Systems”, Kestrel Institute, 2003.

[11] C. Cleaveland, “Building Application Generators”, IEEE
Software, July, 1988.

[12] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and
Mixins”. ACM POPL, San Diego, California, 1998, 171-183.

[13] G.Y. Guo, “A Software Architecture Reconstruction
Method”, WICSA 1999, 15-33.

[14] K. Kang, et al. “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”. Tech. Rep. CMU/SEI-90-TR-21, Carn-
egie Mellon Univ., Pittsburgh, PA, Nov. 1990.

[15] G. Kiczales, et al. “An overview of AspectJ”. ECOOP 2001,
Budapest, Hungary, 18-22.

[16] A. von Mayrhauser and A.M. Vans, “Program Understand-
ing: Models and Experiments”, Advances in Computers, Vol.
40, Academic Press, 1995, 1-38.

[17] J. Neighbors, “Software construction using components”. Ph.
D. Thesis, TR-160, University of California, Irvine, 1980.

[18] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie,
and T.G. Price, “Access Path Selection in a Relational Data-
base System”, ACM SIGMOD 1979, 23-34.

[19] M. Stickel, et al., “Deductive Composition of Astronomical
Software from Subroutine Libraries”, In Automated Deduc-
tion, A. Bundy, ed., Springer-Verlag Lecture Notes in Com-
puter Science, Vol. 814.

[20] R.E.K. Stirewalt and L.K. Dillon, “A Component-Based
Approach to Building Formal Analysis Tools”, International
Conference on Software Engineering, 2001, 57-70.

[21] A.M. Vans, A. von Mayrhauser and G. Somlo, “Program
Understanding Behavior During Corrective Maintenance of
Large-Scale Software”, Int. J. Human-Computer Studies
(1999), #51, 31-70.

[22] T. Veldhuizen, “Using C++ Template Metaprograms”, C++
Report, vol. 7, no. 4, May 1995, 36-43.

	Program Comprehension in Generative Programming: A History of Grand Challenges
	Don Batory Department of Computer Sciences University of Texas at Austin Austin, Texas, 78712 U.S...
	Abstract
	1 Introduction
	2 Design Maintenance
	Figure 1. A Program Transform
	Figure 2. Design History

	3 Neighbor’s Draco
	Figure 3. Draco Paradigm
	programi-1 = generatei(optimizei(programi)) (1)

	4 Feature Oriented Domain Analysis (FODA)
	Figure 4. Consistent Refinement Problem Revisited

	5 Programming Language Representations of Transforms
	Figure 5. Class-Scale Transform Sets
	Figure 6. Class Extension in AHEAD

	6 Relational Query Optimization
	Figure 7. Relational Query Optimization
	Figure 8. RQO and Draco

	7 Early FOP and GenVoca
	Figure 9. Program P = f1 · f2 · f3

	8 Recent FOP and AHEAD
	8.1 Multiple Program Representations
	8.2 Generalize Transforms
	8.3 Generalize Composition
	F·J = { CodeF, GramF } · { CodeJ, GramJ } = { CodeF·CodeJ, GramF·GramJ } (2)

	8.4 Generalize Modularity
	Figure 10. Modules are Containment Hierarchies
	Figure 11. Modules and Nested Sets

	8.5 Generalize GenVoca
	8.6 Implementation Details
	Figure 12. Algebra and Directory Correspondence
	Figure 13. Composition of Feature Directories
	Figure 14. Program Synthesis Paradigm of AHEAD

	9 Conclusions
	10 References
	[1] A. Andrews, S. Ghosh, E. Choi, “A Model for Understanding Software Components”, International...
	[2] R. Balzer, “A Fifteen-Year Perspective on Automatic Programming”, IEEE TSE, November 1985.
	[3] P. Bassett, Framing Software Reuse: Lessons from the Real World, Yourdon Press Computing Seri...
	[4] D. Batory and S. O'Malley, “The Design and Implementation of Hierarchical Software Systems wi...
	[5] D. Batory, L. Coglianese, et al., “Creating Reference Architectures: An Example from Avionics...
	[6] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design Wizards and Visual Programming Environ...
	[7] D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling Step- Wise Refinement”, International C...
	[8] I.D. Baxter, “Design Maintenance Systems”, Communications of the ACM, Vol. 55, No. 4 (1992) 7...
	[9] I.D. Baxter, personal correspondence, March 2004.
	[10] M. Becker, et al., “Planware II: Synthesis of Schedulers for Complex Resource Systems”, Kest...
	[11] C. Cleaveland, “Building Application Generators”, IEEE Software, July, 1988.
	[12] M. Flatt, S. Krishnamurthi, and M. Felleisen, “Classes and Mixins”. ACM POPL, San Diego, Cal...
	[13] G.Y. Guo, “A Software Architecture Reconstruction Method”, WICSA 1999, 15-33.
	[14] K. Kang, et al. “Feature-Oriented Domain Analysis (FODA) Feasibility Study”. Tech. Rep. CMU/...
	[15] G. Kiczales, et al. “An overview of AspectJ”. ECOOP 2001, Budapest, Hungary, 18-22.
	[16] A. von Mayrhauser and A.M. Vans, “Program Understanding: Models and Experiments”, Advances i...
	[17] J. Neighbors, “Software construction using components”. Ph. D. Thesis, TR-160, University of...
	[18] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price, “Access Path Select...
	[19] M. Stickel, et al., “Deductive Composition of Astronomical Software from Subroutine Librarie...
	[20] R.E.K. Stirewalt and L.K. Dillon, “A Component-Based Approach to Building Formal Analysis To...
	[21] A.M. Vans, A. von Mayrhauser and G. Somlo, “Program Understanding Behavior During Corrective...
	[22] T. Veldhuizen, “Using C++ Template Metaprograms”, C++ Report, vol. 7, no. 4, May 1995, 36-43.

