
1

Jakarta:
A Tool Suite for Constructing Software Generators

Don Batory, Dan Miranker, David Brant
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

{batory, miranker, brant}@cs.utexas.edu
EDCS Contract Number: F30602-96-2-0226

1 Introduction

Software component (or software building block) technologies enable customized applications or their sub-
systems to be synthesized quickly and inexpensively from component reuse libraries. Software that is syn-
thetically produced is inherently more evolvable than software produced by other means: a revised system
is specified by a more appropriate composition of components and then regenerated. Generators are tools
that convert component compositions into optimized source code and that validate compositions to ensure
consistency. From our experience in building component technologies and generators for a variety of
domains [Bat92-97], there is a serious lack of support from industrial programming languages and tools to
simplify generator construction. 60% of the effort in building domain-specific generators involves the cre-
ation of largely domain-independent programming infrastructure (e.g., languages for component specifica-
tion, languages for component composition, etc.). Jakarta is a project to provide this common
infrastructure: the Jakarta Tool Suite (JTS) is designed for constructing software component technologies
and their generators.

Among the features of Jakarta are:

• Extensible Languages. Generators are compilers for domain-specific languages or compilers for gen-
eral-purpose languages with domain-specific extensions. The JTS simplifies the evolution of lan-
guages and their compilers.

• Compiler Generation. JTS allow both base grammars of languages and their extensions to be encap-
sulated as primitive building blocks. This is an advance over existing domain-specific compiler-con-
struction tools in that Jakarta merges domain-specific language/compiler technologies with software
component/generator technologies. Rather than having languages become progressively more bloated
and unwieldy, Jakarta makes it possible to select the specific features that one needs to develop
domain-specific applications, and to produce a customized (lean) language and its compiler for writing
such applications quickly and cheaply through component composition/generation. Language compo-
nents may include domain-independent extensions, such as templates and lexically-scoped macros, or
they may encapsulate entire domain-specific generators (that include libraries of reusable domain-spe-
cific components).

• Extensible Java. JTS is written entirely in the Java language, or more accurately, in a superset of the
Java language that is suited for building generators. We have defined component extensions to Java
that support meta-programming (i.e., LISP backquote and comma) for representing and manipulating
programs as data and generation scoping [Sma97] (a form of hygienic, lexically-scoped macros that is
appropriate for generators) to help build the Jakarta tool set. These components, like all GenVoca com-
ponents, can be easily removed from or installed into Java.

2

• Automated Design Patterns. JTS is geared for providing a solid foundation for automating object-
oriented program transformations known as design patterns [Gam95, Tok95]. By automating the
application of design patterns, one can more easily evolve existing OO applications.

• Adaptable Software. GenVoca, the software building-blocks model on which Jakarta is based,
expresses systems as equations, where components are primitive terms [Bat92]. A significant form of
domain knowledge that cannot be encapsulated within individual components is how target systems
that meet requirements specifications can be expressed as compositions of components. We believe
such knowledge can be captured by domain-specific rewrite rules that transform the design of one sys-
tem (i.e., equation) into an another (equation). We are developing domain-specific algebras to express
equivalences among software designs and are implementing this algebra using a high-performance
expert-system technology [War96]. A software tool that encapsulates a domain-specific algebra, called
a design wizard, will automatically apply its rewrite rules to critique hand-crafted system designs (i.e.,
equations), and will provide specific explanations on what can be improved and why. When integrated
with components that profile target system executions (that collect performance data that is needed for
system optimization), design wizards may enable adaptable software systems, systems that tune and
evolve themselves automatically to meet the demands of applications with changing workloads.

2 Project Status and Availability

The Jakarta Tool Suite will run on Solaris, Windows 95, and Windows NT platforms. A beta-release is
expected by the end of 1997. Demonstrations of JTS will be given this summer. For current information,
release announcements, and the latest technical reports, please check our web page http://
www.cs.utexas.edu/users/schwartz or contact Don Batory at batory@cs.utexas.edu.

This research is sponsored by the Defense Advanced Research Projects Agency. Technical and contrac-
tual management are provided by Rome Laboratory, USAF, under Cooperative Agreement F30602-96-2-
0226.

3 References

[Bat92] D. Batory and S. O'Malley. “The Design and Implementation of Hierarchical Software Systems
with Reusable Components”. ACM Trans. on Software Engin. and Methodology, October 1992.

[Bat95] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer. “Creating Reference Architectures: An
Example from Avionics”, Symposium on Software Reusability, Seattle Washington, April 1995.

[Bat96] D. Batory and B.J. Geraci. “Validating Component Compositions in Software System
Generators”, International Conference on Software Reuse, Orlando, Florida, 1996.

[Bat97a] D. Batory and J. Thomas. “P2: A Lightweight DBMS Generator”. Accepted for publication in the
Journal of Intelligent Information Systems, 1997.

[Bat97b] D. Batory, “Intelligent Components and Software Generators”, Software Quality Institute
Symposium on Software Reliability, Austin, Texas, April 1997.

[Gam95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pattens: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[War96] L.B. Warshaw and D.P. Miranker, "A Case Study of the Venus Approach to Rule-Based
Modularity", Conferenece on Information and Knowledge Management, (CIKM-96), 317-325.

[Sma97] Y. Smaragdakis and D. Batory, “Scoping Constructs for Program Generators”. Technical Report
96-37, Department of Computer Sciences, University of Texas at Austin, December 1997.

[Tok95]L. Tokuda and D. Batory, "Automated Software Evolution via Design Pattern Transformations".
3rd Int. Symposium on Applied Corporate Computing, Monterrey, Mexico, October 1995.

