
A Modeling Language for Program Design and Synthesis
Don Batory

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

Abstract. Software engineers define structures called programs and use tools to
manipulate, transform, and analyze them. A modeling language is needed to
express program design and synthesis as a computation, and elementary algebra
fits the bill. I review recent results in automated software design, testing, and
maintenance and use the language of elementary mathematics to explain and
relate them. Doing so outlines a general and simple way to express and under-
stand the relationships between different topics in program synthesis.

1 Introduction

A goal of software engineering research is to understand better how programs can be
developed automatically for well-understood domains. We know the problems of
building such programs, we know the solutions, but all too often these programs are
written by hand, which is an enormously expensive and error-prone task. Today there
is no lack of tools and approaches to synthesize programs automatically. The problem
is that their explanations are mired in a swamp of implementation details and tool-or-
approach-specific concepts that makes them difficult to comprehend and compare. In
effect, we focus too much on implementation minutia to differentiate results and spend
too little time exposing the common abstractions that should unite them.

Many researchers, including myself, are searching for general approaches of auto-
mated program development (e.g., [10][30][35]). In this paper, I present ideas that I
believe are critical to such an approach, and slowly I am seeing how the pieces fit
together. Although a polished integration is far from complete, I want to share with
you some of my progress from a personal perspective.

Science has always fascinated me: scientists observe different phenomena and create
theories to explain and predict such phenomena. By doing so, the underlying simplic-
ity of Nature is exposed. Newton’s laws and Maxwell’s unification of magnetism and
electricity are classical examples, where mathematics was the language of science. But
somewhere in my academic career, I became interested in software design, where a
mathematical orientation to design is the exception, rather than the rule.

As I see it, software engineers define structures called programs and use tools to trans-
form, manipulate, and analyze them. Today we see many examples. Object orientation
uses methods, classes, and packages to structure programs. Compilers transform
source structures into bytecode structures. Refactoring tools map source structures to
source structures. And meta-models of Model Driven Design (MDD) define the allow-
able structures of models, and MDD transformations map models to other models for
analysis or synthesis. As a community, we are slowly moving toward the paradigm that

program design and synthesis is a computation. We need a language that brings this
fundamental idea to the forefront.

Although not a mathematician, I have come to realize that models of automated soft-
ware development are intimately related to the language of elementary algebra which
provides the essential means to express program design and synthesis precisely. In
short, if you look at programming in the right way, it becomes evident that we are
using familiar mathematical concepts. Elementary algebra can connect many signifi-
cant and largely disparate areas of research and, I feel, provides an “architectural lan-
gauge” or “architectural framework” to express big-picture concepts in automated
software development.

In this paper, I focus on the use of elementary algebra as a language to express funda-
mental ideas in program design and synthesis. I explain from an informal, algebraic
perspective what software engineers do when they create and maintain programs and
cover a series of topics (i.e., pieces of the puzzle) that are relevant to automated devel-
opment, where product lines (i.e., a family of similar programs) are a central focus:

• metaprogramming and product lines,

• testing product lines,

• refactoring product lines, and

• operations for program synthesis.

2 Background
2.1 Program Synthesis and Product Lines

Program synthesis is the idea of programs writing other programs. I view synthesis
from a particular perspective: the source text of programs are values (0-ary functions)
and transformations are unary (1-ary) functions that map the source of an input pro-
gram to the source of an output program. The design of a program is an expression
(i.e., a composition of functions). Frankly, this is an old idea — it originates from rela-
tional query processing of the early 1970s, where the designs of query evaluation pro-
grams were written as compositions of relational algebra operations [32].

Recall that relational query processing is one of the great advances that brought data-
bases out of the stone ages to the technologies with which we are familiar today.
Instead of manually coding a program to retrieve data, a declarative SQL query is writ-
ten instead, specifying what to retrieve, but not how. A parser maps an SQL query to
an inefficient relational algebra expression, an optimizer optimizes this expression
using algebraic identities, and a code generator maps the optimized expression to an
efficient Java or C# program (Figure 1). The key to the success of relational query pro-
cessing is that query evaluation programs are defined by relational algebra expres-
sions which can be analyzed and optimized. It is an example of the paradigm where
program design and synthesis is a computation.

This paradigm generalizes to other domains, where operations are features that corre-
spond to increments in program functionality. (A feature roughly corresponds some-
thing useful to a customer that some products have while other products don't). A
feature is expressed as a function that maps a program without a given functionality to
a program with that functionality. Features are a hallmark of software product lines
(SPLs), which are families of similar programs. Each program of an SPL is distin-
guished by its set or composition of features; no two programs have the same composi-
tion. One starts with a base program and applies features to progressively elaborate it.
Thus the design of a program is an expression (i.e., a composition of features). Expres-
sion evaluation is program synthesis, and expression optimization is design optimiza-
tion [4]. There are many ways to implement features. Popular ways include program
transformations [8], aspects [20], mixins [9][13][33], virtual classes [27], refinements
[30], and traits [29].

Figure 2 displays an example of a simple calculator and its GUI. Figure 2a shows a
Base calculator which adds numbers. The calculator class encapsulates the computa-
tional functionality and the gui class implements the GUI. Figure 2b shows the result
of composing the Sub feature, which introduces the subtraction operation to the calcu-
lator. Note that the net effect of composing Sub with Base is to extend existing meth-
ods, add new fields, add new methods, and (although not shown in this example) add
new classes. Figure 2c shows the result of composing the Format feature for control-
ling the display of computed numbers. As before, adding a feature extends existing
methods, adds new fields, adds new methods, and (again, not shown in this example)
add new classes. Note that Base is itself a feature: it adds the rudimentary calculator
and gui classes to an empty program. By defining a set of features, different composi-
tions of features will yield different programs of a product line. In general, the code
modifications that Base, Sub, and Format make are typical of features.

Although the example of Figure 2 is simple, the ideas scale. Twenty years ago, I built
extensible database systems exceeding 80K LOC by composing features [2]. Ten years
ago, I built extensible Java preprocessors of size 40K LOC by composing features [3].
More recently, I was building the AHEAD Tool Suite, which exceeds 250K LOC, with
these same ideas [4]. There are many other people and projects who are doing some-
thing similar in creating feature-based product lines for other domains.

In summary, when a product line is created, the building blocks of programs are mod-
ules called features that define functions (transformations). A function typically does

Figure 1. Relational Query Optimization Paradigm

SQL
select

statement
parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
program

designs of query evaluation
programs are expressions

something very simple: it can add new classes to a program’s source, it can extend
existing classes with new fields and methods, and it can extend (wrap, advise) existing
methods. At least, this is what AHEAD and other tools/languages allow [4][19]. The
design of a program in a product line is the task of writing an expression (a composi-
tion of functions); the synthesis of the target program’s text is expression evaluation.

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

new methods

new fie lds

extend existing methods

Figure 2. A Calculator and its Graphical User Interface

(a) Base

(b) Sub•Base

(c) Format•Sub•Base

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

JButton format = new JButton(“format”);

ContentPane.add(format);

form.addActionListener(...);

void formatResultString() {...}
new methods

new fields

extend existing methods

So the art of program development in product lines is writing functions that implement
features, composing these functions, and evaluating the composition.

Although conceptually the idea is simple, it is important to note that conventional pro-
gramming languages (e.g., Java and C#) have limited facilities to enable programmers
to write functions to transform programs. Generics poorly support concepts that are
essential to feature-based developoment: (1) mixins, a class whose superclass is speci-
fied by a parameter, which enables individual classes to be customized, and (2) the
scaling of mixins to extend a large number of classes simultaneously [33]. So there is a
significant gap between our approach to constructing programs by composing transfor-
mations and that provided by conventional programming languages. However, the
approach suggests the kinds of extensions that conventional languages will ultimately
need. Some of these extensions are described in subsequent sections.

2.2 Simple Algebraic Models of Product lines

Now consider an algebraic description of feature-based product lines. The building
blocks of a product line are an empty program and a set of features. The empty pro-
gram is a value (0) and features are unary functions that map an input program (with-
out the given feature) to an output program (that is the input program extended with
that feature). The first function applied to 0 provides the infrastructural base code that
must be present before any additional feature-related logic can be inserted. The pro-
grams of a product line are constructed compositionally by applying features to pro-
grams. Different compositions yield different programs of a product line. In effect, the
design of a program is an expression (i.e., a sequence of unary functions applied to 0).

On closer inspection, it is well-known that not all compositions of features are mean-
ingful. Product line architects impose constraints on features to limit their composi-
tions only to those that make sense. This is the purpose of a feature diagram, which is a
tree-based notation, coupled with constraints, that define the legal combinations of fea-
tures [12].

I will not go into the details of feature dia-
grams, but their net purpose is to express a
product line as a directed graph (Figure 3).
Objects of the graph are programs in the
product line. The initial object is the empty
program (0). Features are arrows that map an
input program to an output program. Each
object Pi in the graph defines a domain with
one program (the ith program of the product
line). Arrows are maps (unary functions)
that compose. For example, the arrow
P1→P3 can be composed with the arrow P3→P6 to create an arrow from P1→P6. Arrow
composition is associative. Further, there are identity arrows (maps) for each object,
shown as loops in Figure 3. Such a graph is called a category [31]. In general, a prod-

Figure 3. A Category or Product Line

0

P1

P2

P3

P5

P6

P7
P8

a

b

c

d

e

f

d

b

uct line is a category. We will see in later sections how a categorical connection led to
recent advances in program testing and synthesis optimization.

The following idea is not part of categories, but it is useful in understanding program
synthesis. A traversal from 0 to the target program defines a plan (expression) which
tells us how to construct that program, step-by-step. In Figure 3, one way to synthesize
program P6 is to apply feature a to 0, then b, then d (i.e., P6=d•b•a•0, where • denotes
function composition and 0 is a 0-ary function). Such a traversal is commonly called a
makefile (i.e., do this, then do this, etc., to build P6).1

Figure 3 suggests there can be multiple paths to an object. Another makefile for P6 is
P6=b•d•a•0. In this case, we find an example of commuting features, i.e., d•b=b•d,
meaning that the order in which features are composed does not matter. Figure 4a
depicts such an example for our calculator product line. The features Motif (giving the
calculator GUI a Motif “look-and-feel”) and the Format feature are commutative: they
update disjoint parts of a program, and thus the net effect in which order Motif and
Format are applied is immaterial.2

Commuting relationships appear in categories as directed rectangles (Figure 4b) called
commuting diagrams. Visually they represent a simple idea: all paths between two
objects in a diagram are equivalent (i.e., each path is a makefile, and different paths
yield semantically equivalent makefiles). We will soon see why commuting diagrams
are useful.

1. Makefiles also provide an optimization of avoiding the recomputation of stored intermediate
results if computation inputs have not changed. This optimization could be applied here, too,
but is separate from the point that we are making.

2. I use the notion of syntactic commutativity, where the order in which features are composed
does not alter the program text. Although semantic commutativity is preferred, one can go
quite far with syntactic commutativity in evaluating feature commutativity.

class calculator { float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

public static void main(String[] args){

new gui();

}

}

UIManager.setLookAndFeel("Motif”);

JButton format = new JButton(“format”);

ContentPane.add(format);

Format
changes

Motif
changes

Figure 4. Commuting Features: Motif•Format = Format•Motif

(a)

(b)

b

b

d d

2.3 Program Synthesis

AHEAD [4] is both a methodology and an accompanying set of tools that allow
designers to write features as functions that transform the source of an input program
to the source of an output program. AHEAD functions have limited capabilities: new
entities (e.g. classes) can be added to a program’s source, new elements (e.g., fields
and methods) can be added to existing entities, and existing elements can be extended
(e.g., methods can be wrapped).

AHEAD generalizes the ideas of Section 2.1 by recognizing that programs have multi-
ple representations called artifacts. For example, let program P0 be defined by a state
machine specification S0, its Java source code J0, and its corresponding bytecode B0.
Program P0 is represented by a 3-tuple of artifacts [S0,J0,B0]. Features are functions
that map tuples of input programs to tuples of output programs; each program repre-
sentation is extended to capture the change that the new feature makes to that represen-
tation. For example, suppose feature a maps P0 to P1 by extending the original state
machine specification S0 to S1, the Java code J0 is extended to J1, and the bytecode B0
is extended to B1. Similarly, feature b maps P1 to P2; and feature c maps P2 to P3. This
mapping is depicted by the horizontal arrows in Figure 5. Features capture the lock-
step extension of multiple artifacts, which is the key idea behind feature-based pro-
gram synthesis.

Here’s the connection of Figure 5 to Figure 3: Let P0 denote the empty program (with
empty source, empty bytecode, and empty documentation). The path 0→P1→P2→P3
in Figure 3 is the path at the top of Figure 5. This linear path is expanded to show the
horizontal paths between the three representations of each program, at the bottom of
Figure 5. So each path from 0 to a program Pi in Figure 3 corresponds to a mesh of
horizontal arrows and program representations in Figure 5.

Model Driven Design (MDD) contributes another fundamental ingredient to automated
software development [34][35]. MDD is an increasingly prominent paradigm for pro-
gram specification and synthesis, and is also based on the idea that a program has mul-
tiple representations, but a different terminology is used. A program representation is
called a model. Functions (a.k.a. transformations) map input models to output models.
MDD models are usually just data (e.g., UML class diagrams with no methods), but

Figure 5. Lock-Step Extension of Program Artifacts by Features

P0

S0

J0

B0

P1

S1

J1

B1

P2

S2

J2

B2

P3

S3

J3

B3

a b c

more generally a model can be any artifact (e.g., a Java class). State machines, source
code, and bytecode are examples of models. MDD historically has focussed on the ver-
tical transformations in Figure 5, i.e., the mapping of models of one type to models of
another. Integrating MDD (vertical arrows) with product lines (horizontal arrows) is
still a topic in its infancy. Returning to vertical arrows, we have a tool jak2java:S→J

that maps state machine specs to Java source, and of course, there is the Java compiler
(javac:J→B) that maps Java source to bytecodes. Although considered tools,
jak2java and javac are transformations that map one artifact to another.3

Feature Oriented Model Driven Design (FOMDD) is a unification of AHEAD and
MDD [38][39]. The key idea is to transform arrows that extend high-level artifacts to
arrows that extend lower-level artifacts. In Figure 5, a user defines the arrows that map
state machines S0→S1, S1→S2, and S2→S3. FOMDD maps these arrows to the corre-
sponding arrows between Java source representations and bytecode representations.
That is, FOMDD maps arrow S0→S1 to arrow J0→J1 and then arrow J0→J1 to arrow
B0→B1. The same holds for the other arrows S1→S2, and S2→S3. By making all arti-
fact-extension arrows explicit, a commuting diagram of program representations
emerges: composing features sweeps out (in this case) the diagram of Figure 5.

A software engineering interpretation of the diagram of Figure 5 is straightforward:
start with the object in the upper-left-hand corner (namely the state machine S0 of pro-
gram P0), and derive the object in the lower-right-hand corner (namely the bytecode B3
of program P3 — see Figure 6). We know that each path between these two objects is
equivalent, in that both derive B3 from S0, but they do so in different ways. An imme-
diate observation is that traversing arrows has a cost. When a metric for arrow tra-
versal is defined, the regular geometry of Figure 5a warps to an irregular geometry like
Figure 5b. Although all paths produce semantically equivalent results, not all paths are
equidistant (meaning that some makefiles are cheaper to execute than others). The
shortest path, called a geodesic, is the most efficient makefile that synthesizes the tar-
get object from the initial object. If all arrows have equal cost as in Figure 6a, any path
is a geodesic. However, only the indicated path in Figure 6b is a geodesic.

Note that a “cost metric” need not be a monetary value or execution time; cost may be
a measure in production time, peak or total memory requirements, some informal met-
ric of “ease of explanation”, or a combination of the above (e.g., multi-objective opti-
mization [43]). The idea of a geodesic is quite general, and should be appreciated from
this more general context.

3. More generally, MDD transformations can take n input models and produce m output models.
This is not a problem for us: a function maps a single composite model (which is a tuple of n
input models) and produces a single composite model (which is a tuple of n output models).
Projection functions permit access to individual components of a tuple.

An interesting question is: can geometry warping be used to our advantage? That is,
are there interesting problems where geodesics is important? The answer is “yes”, and
we discuss one such example in the next section.

3 Testing Software Product Lines4

Testing software product lines is an important
and poorly understood problem. Not only
should we be able to generate customized pro-
grams given a set of selected features, we also
should automatically produce evidence that our
generated programs are correct [7][22][23]. In
particular, how can we produce tests for every
program in a product line? Ideally, our method
should be automatic; the manual creation of
comprehensive tests scales poorly.

Specification-based testing can be an effective
approach for testing the correctness of programs
[11][15][18]. The idea is to map a program’s
specification automatically to test inputs. These
inputs are submitted to the program, and the
program’s response to these tests can be vali-
dated automatically using correctness criteria.
Figure 7a shows the vertical (derivation) arrows
that map specifications of programs {S0...S5}
of a product line to their tests {T0...T5}. But
we also know that features connect (relate) dif-
ferent program specifications. These are the
horizontal arrows in Figure 7b. But elementary mathematics predicts there also must
be arrows that connect (relate) generated tests, thus completing the commuting dia-

4. This is joint work with S. Khurshid, E. Uzuncaova, and D. Garcia [40][42].

(a) regular geometry (b) warped geometry

Figure 6. Commuting Diagrams With and Without Cost Metrics

S 0

S 1

S 3

S 4
S 2 S 5

T 0

T 1

T 3

T 4
T 2 T 5

S 0

S 1

S 3

S 4
S 2 S 5

T 0

T 1

T 3

T 4
T 2 T 5

S 0

S 1

S 3

S 4
S 2 S 5

T 0

T 1

T 3

T 4
T 2 T 5

(a)

(b)

(c)

Figure 7. Completion of
Commuting Diagrams

gram of Figure 7b to yield Figure 7c [31].5 By completing the diagram, we immedi-
ately recognize, for example, that there are multiple ways of producing test T5 starting
from specification S0. We observed that conventional research follows a particular
path: start with the original specification S0, progressively refine it to S5, and then
derive the test T5 using some tool. That is, conventional tools and approaches follow
particular paths in the diagram of Figure 7c to produce results, but some paths — par-
ticularly the paths that refine tests — have not been explored as we were unaware of
them. The challenge is that it is not at all obvious how to take any path other than the
conventional path — we’ve never taken any other path! Herein lies the potential for
geodesics and the “predictions” or generalizations our approach can bring.

Our case study was test generation using Alloy [17][18]. An Alloy specification S for
program P is written. This specification defines properties (constraints) that the data
structures must satisfy. The Alloy analyzer [17][37] maps spec S to T. To express the
mappings of features, we exploit the fact that a feature is an increment in functionality.
In principle, we start with a base program B with Alloy spec SB. Feature G has specifi-
cation SG that extends the spec of the base program. When G is composed with B to pro-
duce program P=G•B, let us assume that the composite specification is SP=SB∧SG (i.e.,
the conjunction of the G and B specs).6 The Alloy analyzer translates SP into a proposi-
tional formula. This formula is solved by a SAT solver yielding IP. Each solution in IP
is converted into a test program [24]. The set of all test programs that is produced from
IP is TP. The Alloy tool-set has been used to check designs of various applications such
as Intentional Naming System for resource discovery in dynamic networks [28], a
static program analysis method for checking structural properties of code [36], and for-
mal analysis of cryptographic primitives [26].

Some pragmatic observations: as a specification becomes more complex, finding its
solutions tends to become more costly (Figure 8). For example, generating an instance
of a linked list with 18 nodes using the Alloy Analyzer takes 41 seconds on average.
However, when the specification is refined to that of ordered linked list, computing
actual lists of comparable size is exceedingly expensive. In our experiments, we termi-
nated the SAT solver after an hour of computation, unable to find a solution. Clearly, a
problem with Alloy is scaling the size of problems it can handle.

5. The completion of categories, as described above, corresponds to a pushout [31].
6. The composition of specifications may not always be this simple, although specification con-

junction is both a common assumption [30] and occurrence in actual systems [7].

Figure 8. Scalability of Test Generation

p ro d u c t # o f
n o d e s

a v e tim e to
g e n e ra te

ra tio

b a s e 1 8 4 1 s
o rd e re d •b a s e 1 8 s to p p e d a fte r 1 h r > 8 7 x

An elegant way to scale test generation was proposed by Uzuncaova [41]. Instead of
solving the entire formula SP (as is done conventionally), an alternative is to find a
solution IB to the base program SB, and then use IB as a constraint for solving SP. That
is, start with the solution (tests) of a simpler program, and extend it to a solution (tests)
of a more complex program. This procedure is called the incremental approach, and it
has appealing properties. First, it is sound: any solution of SP that can be computed
from IB is, obviously, a solution of SP. Second and more interesting, it is complete: any
solution to SP must embed a solution to subproblem SB. Thus, by iterating over solu-
tions to SB, it is possible to enumerate all solutions of SP (note: some solutions to SB
may not extend to solutions of SP, and some SB solutions may extend to multiple SP
solutions). The incremental approach allows us to traverse new synthesis paths that we
were previously unaware. The question is: what is the benefit?

Initial experimental results comparing the incremental approach with the conventional
approach are encouraging. Figure 9 shows the time for creating tests for a product line
of lists (a standard example of researchers using the Alloy analyzer). For some experi-
ments, the conventional approach was faster. The reason is that the composite predi-
cates were simple enough to solve directly — it was overkill to partition them into
elementary predicates, solve the simpler predicates, and then extend their solutions.
However, for a majority of cases, the conventional approach to solve a composite pred-
icate directly was often more than an order of magnitude slower than an incremental
approach. In several cases, an incremental approach was 20× faster. The reason is that
it is easier to find solutions to simple predicates and to extend those solutions.

It is possible to permute the order in which features are composed. Although the tech-
nical details for how this is can be done for arbitrary program artifacts is beyond the
scope of this paper (see [21] for details), in principle, the idea is clear for the way
Alloy specifications are composed. Figure 10 shows the construction of tests for a bal-
anced search tree; the different ways in which a tree specification (S0) can be mapped
to the tests for a balanced search tree (T2) is visualized by a 3-dimensional commuting

Figure 9. Conventional v.s Incremental Test Generation

diagram. Note that the conventional and incremental approaches correspond to partic-
ular paths in this diagram. We evaluated all possible paths through this cube.

Conventional paths traverse the top of the cube starting at S0 and lastly deriving the
test T2 from the full specification of S2. The fastest this could be accomplished was in
4.87 seconds. Incremental paths derived test T0 immediately, and traversed the bottom
of the cube to T2. The fastest that this could be accomplished was in 1.34 seconds, a
factor of 3.6× improvement. However, neither of these traversals was a geodesic: the
fastest traversal is formed by first refining S0 by the balance feature, then deriving the
test for balanced trees, and finally extending this test by the search feature to T2. This
path was traversed in .18 seconds, a 27.3× factor improvement over the conventional
approach. Further work by Uzuncaova introduced a constraint prioritization approach
that can assist in identifying an optimal path for test generation; details of this
approach are described elsewhere [41].

Although this line of work (e.g., following novel paths to synthesize program artifacts)
is in its infancy, initial results are encouraging. Elementary mathematics tells us ways
of generating results efficiency that we didn’t have before — what we are doing above
is exploiting geometry warping. For more details, see [42]. For examples of using geo-
desics for optimizing the synthesis of programs, see [38][39].

4 Refactoring Product Lines

A refactoring is a disciplined technique (a.k.a. transformation) for restructuring a body
of code that changes its structure but not its behavior [14]. There are many common
refactorings in use in the object-oriented (OO) programming: move field (from one
class to another), delete method (usually done when no references to the method exist),
change argument type (i.e., replacing an argument type with its supertype), replace
method call (with another that is semantically equivalent in the same class), and so on.
An interesting question is: how do refactorings affect a product line? What happens a
feature is refactored, say by moving a field or method from one class to another? Not

S0 balance

balance

balance

balance
T2

start

end

Figure 10. Geodesic in a Commuting Diagram

conventional4.87 sec

incremental1.34 sec
3.6×

mixed (geodesic)0.18 sec
27.3×

surprisingly, little is known about this subject. In this section, I present conjectures on
possible directions of research and how our approach/language illuminates this topic.

A common design technique in product lines is to superimpose the OO class diagrams
of all programs. Doing so defines a class diagram of a “master plan” for all programs
in the SPL. It encourages a standard meaning and naming convention for all classes
and their members that appear in any program of a product line. Stated differently, a
“master plan” avoids the complexity and confusion that would arise if inconsistent
meanings and names are used for the same method (e.g., m() means θ in program P1,
but is named n() in program P2, and means ¬θ in program P3). Such inconsistencies
would make a product line incomprehensible to engineers who are responsible for
maintaining and extending it. Standardization of meanings and names is a common
way to control complexity in SPLs and in many other engineering disciplines [1].

Figure 11a depicts a master plan. The black feature has classes A (members x,y), and B
(members r,s). The orange feature adds class C (members u,v) and member t to B and
z to A. The blue feature adds class D (members m,n). And the red feature adds class E
(members i,j,k) and member w to C. Eliminating unwanted features yields the class
diagram of a program in the master plan’s product line.

Refactoring a feature can involve any standard OO refactoring: members can be
renamed, members can be moved from one class to another, etc. There are also non-
standard refactorings that are feature-specific, such as moving members from one fea-
ture to another. In general, refactoring a feature alters many programs of a product line.
As an example, if member y in class A is renamed to h, then all programs of the product
line that use the black feature will see this renaming (Figure 11b). The same holds for
moving method r in class B to class A (Figure 11b): all programs of the product line
that use the black feature will see these changes.

Here is a working hypothesis (conjecture): refactoring an SPL is the same as refactor-
ing one huge program where typically not all pieces of this program are present in any
one member of this SPL. Composition of features is modeled by a projection of this
“huge” program that eliminates unneeded features. So by refactoring a single “huge”
program, an entire product line is refactored.

D
m

A

x
h

B

r

s

z

t

C
u
v

E
i

n
pw

j
k

rename y to h
move B.r to A.r

D
m

A

x
y

B
r
s

z

t

C
u
v

E
i

n
pw

j
k

Figure 11. Refactoring Master Plans of SPLs

(a) (b)

To better understand the refactoring of features, consider Figure 12a. Suppose the
black feature maps the empty program (0) to program P1. Any change to black that
we considered (e.g., renaming y or moving B.r to A.r) will be visible to any program
“downstream” (meaning any program that is derivable from) P1. Any program that
does not use the black feature, such as 0, P2, and P7, will be oblivious to this change.

So when a refactoring R is applied to a feature, it potentially transforms every program
in a product line. That is, R maps each program of the original product line to a corre-
sponding and unique program in the refactored project line (Figure 12b). In effect, R
defines the object-to-object mappings from the original category (product line) to the
new category (the refactored product line). But looking closer, we recognize that pro-
grams of a product line are not stored — they are computed by composing features.
What is actually being refactored are the arrows (the modules that implement individ-
ual features). So a product line refactoring actually maps both objects and arrows of a
category (product line) such that the connectivity properties of the original category
(product line) are preserved. Stated differently, a refactoring is a structure preserving
map between two categories. This concept is known as a functor in category theory
[31].7 The functors that frequently arise in feature-based development are maps

0 P2

P1

P3

P4

P5

P6

P7

original product-line

0 R2

R1

R3

R4

R5

R6

R7

refactored product-line

R() =

0
P2

P1 P3

P4

P5

P6

P7downstream direction

0 P2

P1

P3

P4

P5

P6

P7

a

b

c

cd
d

e

f

0 R2

R1

R3

R4

R5

R6

R7

A

B

C

CD
D

E

F

R() =

original product-line refactored product-line

Figure 12. Refactoring Product Lines

(a)

(b)

(c)

between isomorphic categories (i.e., categories that have the same shape, but possibly
different labels for corresponding objects and arrows). We call such functors manifest.

We have seen several examples of manifest functors already in this paper. Each tuple
of Figure 5 defines a category of program artifacts (the jak2java tool maps a state
machine spec to its Java code counterpart, javac maps Java source to bytecodes). Fea-
tures define manifest functors from one tuple to another. Figure 7a defines a manifest
functor from a product line of program specifications to a product line of program
tests. Alloy tools implement the object-to-object mappings of this functor.

I conjecture that features, MDD
transformations, and refactorings
can be unified in the following
way. Consider Figure 13. Starting
with a state machine specification
of program P0, we want to derive
the bytecodes (B1) for a refactored
program P1. A conventional way is
to refine S0 by applying a feature,
and then refactor the state machine
(e.g., renaming states), and then
derive its bytecode implementation
(B1). This corresponds to the
“upper-perimeter” path of the cube in Figure 13. Alternatively we might immediately
derive the bytecode implementation of S0, refactor the bytecode, and then apply the
corresponding (refactored) bytecode feature to produce B1. This corresponds to the
“bottom-perimeter” path of the cube in Figure 13. A pragmatic reason for this alterna-
tive path is that one does not have to expose the state machine specifications (or their
source refinements) to users. If a product line comes with a set of binary (not source)
features that can be composed and refactored, the intellectual property (IP) of the orig-
inal state machines may be better preserved. This certainly is the case for conventional
COM components and proprietary Java libraries which are typically distributed in
binary form for, among many reasons, increased IP protection.

Commuting diagrams, such as Figure 13, suggest how elementary mathematics can
neatly tie together basic concepts in feature-based product lines, transformations in
MDD, and refactorings. But much more work is needed to (a) demonstrate this and (b)
recognize the technical and educational benefits in doing so. This is a subject of ongo-
ing work.

7. A functor from category C1 to category C2 is an embedding of C1 into C2 such that C1’s con-
nectivity properties are preserved [31].

S 1

J 1

B 1

J 0

B 0

S 0

J 0

B 0

S 1

J 1

B 1

S 0

E n d

S ta rt

Figure 13. Unifying Refactorings, MDD,
and Features

5 Operations for Program Synthesis8

As mentioned earlier, AHEAD defines features as functions that map tuples to tuples.
In my informal conversations with mathematicians many years ago, a question arose
frequently: can feature compositions be modeled by a vector space? Of course, I had
no answer and only recently began thinking about it and its implications.

Informally, a vector space is a collection of tuples called vectors, where vectors can be
added and scaled. Formally, a vector space satisfies a number of basic axioms, such as
vector addition:

• is commutative: ∀x,y∈V: x+y=y+x

• is associative: ∀x,y,z∈V: (x+y)+z=x+(y+z)

• and has an additive identity: ∀x∈V: 0+x=x

where V is the set of all vectors and 0∈V is the zero vector. Further, vectors can be
scaled by multiplication:

• scalar multiplication: ∀m∈M: m⋅[a,b,c]=[m⋅a, m⋅b, m⋅c]
• scalar multiplication distributes over vector addition: ∀m∈M and ∀x,y∈V:

m⋅(x+y)=m⋅x+m⋅y

where M is the set of all scalar multipliers and m⋅x means scale vector x by m. Of course,
my immediate reaction (like yours no doubt) is: what does this have to do with soft-
ware development? But on further thought, I realized that my questions should have
been: Is there an addition operation in software development? And is there a scaling
operation? To my surprise, the answer to both questions is “yes”. Every feature that I
have built with AHEAD has both operations, but I failed to recognize them.

Recall an earlier example,
which I reproduce in
Figure 14. Note that when
a feature is composed, we
see an addition operation in
action: a feature can add
new classes and add new
members to existing
classes. The order in which
classes/members are added
is immaterial (i.e., addi-
tion is commutative and
associative), and adding

8. This is joint work with D. Smith [5].

void sub(float x) { result=-x; }

JButton sub = new JButton(“-”);

ContentPane.add(sub);

sub.addActionListener(...);

}

class calculator {
float result;
void add(float x) { result=+x; }

}

class gui extends GuiTemplate {

JButton add = new JButton(“+”);

void initGui() {

ContentPane.add(add);

}

void initListeners() {

add.addActionListener(...);

}

}

JButton format = new JButton(“format”);

ContentPane.add(format);

form.addActionListener(...);

void formatResultString() {...}

calcsub •format •

add new methods

add new fields

scale existing methods

add new methods

add new fields

scale existing methods

Figure 14. Addition and Modification of Java Source

nothing to a program yields that program (i.e., addition has an additive identity,
namely 0, the empty program).

There is also a modification operation, which is a form of scaling: a feature can extend
existing methods with new code. There are many ways in which code modifications
can be expressed, but all satisfy the properties of scalar multiplication. For example, a
transformation is a (pattern, rewrite) pair [8]: when the pattern is found in source
code, it is modified according to the rewrite. A transformation is applied to all com-
ponents of a program (i.e., it matches the idea above of scalar multiplication where the
modification is applied to all components of a vector). One can recognize these ideas
in Aspect Oriented Programming (AOP): AOP advice is a (pointcut, modifier)
pair: the pointcut identifies patterns in program execution, and the modifier is extra
code that is to be run when that pattern occurs during run-time. Although AOP advice
is understood in terms of extending program executions, it is well-known that AOP
compilers weave advice statically, which can be conceptualized by transformation
(pattern, rewrite) pairs [25].

To make this concrete, consider the following example. Figure 15a shows a Base
buffer whose value can be set. Figure 15b shows the Restore feature (as expressed in
AspectJ, which we assume a minimal familiarity [20]), that allows one to restore the
previous contents of a buffer. Figure 15c shows the composition of Restore•Base.

Let’s see how we can express this design algebraically. We model a class by a tuple,
one component per possible member. The tuple for class buffer (Figure 15a) is
Base()=[buf,set,0,0], where buf denotes the Java declaration of the buf variable
and set denotes the Java declaration of the set() method. The extra zeros (0) mean
that the restor and back members are presently undefined.

We model the Restore feature as a unary function that takes a tuple v as input and pro-
duces a tuple as output:

Restore(v) = [0,0,back,restor] + Δset⋅v

Let’s see what the above means. The Restore feature adds members back and restor
to class buffer. This is expressed by the tuple [0,0,back,restor]. The before advice

class buffer {
int buf=0;

void set(int i)
{ buf=i; }

}

aspect Restore {
int buffer.back=0;

void buffer.restor()
{ buf=back; }

before():
execution(set(int))
{ back=buf; }

}

class buffer{
int buf=0;
int back=0;

void set(int i)
{ back=buf; buf=i; }

void restor()
{ buf=back; }

}

(a)

(b) (c)

Figure 15. Base, Restore, and Restore•Base

is represented by Δset, which is to be applied to the input class v. To compose Base
with Restore, we evaluate Restore•Base:

Restore•Base
= [0,0,back,restor] + Δset⋅[buf,set,0,0] // substitution

= [0,0,back,restor] + [Δset⋅buf,Δset⋅set,Δset⋅0,Δset⋅0]
// scalar mult.

The above expression can be simplified by noting that Δset only affects the set()
member (component); it has no effect on the other members (as Δset does not capture
any of their join points). Let set’ denote the Java definition of the set() method in
Figure 15c. Simplifying:

= [0,0,back,restor] + [buf,Δset⋅set,0,0] // simplify
= [0,0,back,restor] + [buf,set’,0,0] // substitution
= [buf,set’,back,restor] // addition

Note that the resulting tuple [buf,set’,back,restor] expresses the class buffer in
Figure 15c. The last step in a computation is to transform this tuple into its source code
representation (Figure 15c).

Here’s how to understand this calculation in a more general setting: given an input fea-
ture expression (e.g., Restore•Base), a compiler will inhale the code of each feature;
convert the code into an arithmetic expression; evaluate, simplify, and possibly opti-
mize the feature expression; and translate the resulting tuple into the output program,
just as we did above. In effect, I foresee that feature-based compilers will become pro-
gram calculators that use simple algebraic rewrites to optimize program synthesis. In
effect, this is what AHEAD is doing now, except at a much finer level of granularity.

In [5][6], I show how these ideas can be taken further. Refactorings are operators that
map expressions to expressions. So the idea that engineers manipulate programs alge-
braically by tools and compilers is given a more algebraic foundation. Of course, much
more work is necessary, but hopefully you get the idea.

Having said this, there are clear mismatches in program development and vector
spaces. Scaling (modification) of source code is highly non-uniform. Only selected
methods are modified by an advice in AOP. Source code does not seem to have an
additive inverse. Classes and class members can be deleted, but there does not appear
to be the notion of a “negative” or “anti” method, which (when added to its positive
counterpart) annihilates that method. Further, it is debatable whether modifiers
(advice) belong to the same type of elements as method definitions and fields.

Although the analogy with vector spaces is at best suggestive, it is still useful. Making
explicit the operations of addition, subtraction, and modification offers a simple lan-
guage to explain complex processes involving program refactoring and relating differ-
ent feature-based programming concepts by focussing on their similarities, rather than
their implementation differences [6][25].

6 Conclusions

Software engineers define structures called programs that evolve though additions (of
classes, methods, fields), deletions (removal of classes, methods, fields), and transfor-
mations (adding features and refactoring). The language of simple mathematics can be
used to describe these processes in an understandable and uniform way, and has both
pedgogical and practical benefits, such as revealing new ways to synthesize artifacts.

Ultimately, however, it requires us to think differently. Software development may be
an ad hoc practice in general, but the automated development of software in well-
understood domains should not be. It requires us not to think in terms of monolithic
designs, but rather in terms of changes to designs, and composing (or rather integrat-
ing) a sequence of changes to produce complete designs. That is really what we do
when we build and modify programs incrementally, although we don’t normally think
of program construction in this way.

Clearly there is a lot more to do. Using mathematics to express the essense of auto-
mated software development is, in my opinion, a first step toward principled auto-
mated software engineering. It will tell us on how to think about program construction
in a structured and non-ad-hoc way. It is clear that many ideas are being reinvented
over and over again: this is not accidental; it is a symptom or characteristic that what
we are doing is part of a larger paradigm that we are only now beginning to under-
stand. Doing so will lead to better design and program construction techniques, better
tools and languages, and better design methodologies. And it may also lead the way to
deeper applications of mathematics to the construction and synthesis of programs with
assured or verified properties.

Acknowledgements. I appreciated the help and patience of Prof. Egon Börger by
allowing me to take my time in writing this paper. I also appreciated the helpful and
insightful comments of the referees.

7 References
[1] ASME web site. http://www.asmesolutions.org/Energy/Nuclear.cfm
[2] D. Batory and S. O'Malley. “The Design and Implementation of Hierarchical Software

Systems with Reusable Components”. ACM TOSEM, October 1992.
[3] D. Batory, B. Lofaso, and Y. Smaragdakis. “JTS: Tools for Implementing Domain-Specific

Languages”. ICSR 1998.
[4] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-Wise Refinement”, IEEE TSE,

June 2004.
[5] D. Batory and D. Smith. “Finite Map Spaces and Quarks: Algebras of Program Structure”.

University of Texas at Austin, Dept. of Computer Sciences, TR-07-66.
[6] D. Batory. “Program Refactorings, Program Synthesis, and Model-Driven Design”.

ETAPS-CC 2007.
[7] D. Batory and E. Börger. “Modularizing Theorems for Software Product Lines: The Jbook

Case Study”. To appear, JUCS.
[8] I.D. Baxter. “Design Maintenance Systems”. CACM, April 1992.

[9] G. Bracha and W. Cook. “Mixin-Based Inheritance”. OOPSLA and ECOOP 1990.
[10] M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser. “Stratego/XT 0.17. A Language

and Toolset for Program Transformation”. Sci. of Computer Programming, 2008
[11] J. Chang and D.J. Richardson. “Structural Specification-Based Testing: Automated Support

and Experimental Evaluation”. ACM SIGSOFT/FSE 1999.
[12] K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and

Applications. Addison-Wesley, Boston, MA, 2000.
[13] M. Flatt, S. Krishnamurthi, and M. Felleisen. “Classes and Mixins”, POPL 1998.
[14] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the

Design of Existing Code, Addison-Wesley, 2005.
[15] J. Goodenough and S. Gerhart. “Toward a Theory of Test Data Selection”. IEEE TSE, June

1975.
[16] D. Jackson, I. Schechter, and I. Shlyakhter. “ALCOA: The Alloy Constraint Analyzer”.

ICSE 2000.
[17] D. Jackson. “Alloy: A Lightweight Object Modeling Notation”. ACM TOSEM, April 2002.
[18] D. Jackson. Software Abstractions: Logic, Language and Analysis. The MIT Press,

Cambridge, MA, 2006.
[19] C. Kästner, S. Apel, and M. Kuhlemann. “Granularity in Software Product Lines”. ICSE

2008.
[20] G. Kiczales, et al. “An Overview of AspectJ”. ECOOP 2001.
[21] C.H.P. Kim, C. Kästner, and D. Batory. “On the Modularity of Feature Interactions”,

submitted 2008.
[22] S. Krishnamurthi and K. Fisler. “Modular Verification of Collaboration-Based Software

Designs”, FSE 2001.
[23] S. Krishnamurthi, K. Fisler, and M. Greenberg. “Verifying Aspect Advice Modularly”,

ACM SIGSOFT 2004.
[24] S. Khurshid, “Generating Structurally Complex Tests from DeclarativeConstraints”, Ph.D.

Thesis, MIT EECS, 2003.
[25] R. Lopez-Herrejon, D. Batory, and C. Lengauer. “A Disciplined Approach to Aspect

Composition”, PEPM 2006.
[26] A. Lin, M. Bond, and J. Clulow. “Modeling Partial Attacks With Alloy”. Security Protocols

Workshop (SPW). April 2007.
[27] O.L. Madsen and B. Møller-Pedersen, “Virtual Classes: A Powerful Mechanism in Object-

Oriented Programming”, OOPSLA 1989.
[28] D. Marinov and S. Khurshid. “TestEra: A Novel Framework for Automated Testing of Java

Programs”. ASE 2001.
[29] E.R. Murphy-Hill, P.J. Quitslund, and A.P. Black, “Removing Duplication from java.io: A

Case Study Using Traits”, OOPSLA 2005.
[30] D. Pavlovic and D.R. Smith. “Software Development by Refinement”, UNU/IIST 10th

Anniversary Colloquium, Formal Methods at the Crossroads: From Panaea to Foundational
Support, Springer-Verlag LNCS 2757, 2003.

[31] B. Pierce. Basic Category Theory for Computer Scientists, MIT Press, 1991.
[32] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. “Access Path

Selection in a Relational Database System”, ACM SIGMOD 1979.
[33] Y. Smaragdakis and D. Batory. “Mixin Layers: An Object-Oriented Implementation

Technique for Refinements and Collaboration-Based Designs”. ACM TOSEM, April 2002.
[34] T. Stahl and M. Voelter. Model-Driven Software Development: Technology, Engineering,

Management. Wiley, 2006.
[35] J. Sztipanovits, “Generative Programming for Embedded Systems”, GCSE 2002.

[36] M. Taghdiri. “Inferring Specifications to Detect Errors in Code”. ASE 2004.
[37] E. Torlak and D. Jackson. “Kodkod: A Relational Model Finder”. TACAS 2007.
[38] S. Trujillo, M. Azanza, O. Diaz. “Generative Metaprogramming”. GPCE 2007.
[39] S. Trujillo, D. Batory, O. Diaz. “Feature Oriented Model Driven Development: A Case

Study for Portlets”. ICSE 2007.
[40] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. “A Specification-based Approach to

Testing Software Product Lines”, Poster Paper, ACM SIGSOFT 2007.
[41] E. Uzuncaova and S. Khurshid. “Constraint Prioritization for Efficient Analysis of

Declarative Models”. Symposium on Formal Methods (FM), May 2008.
[42] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory, “Testing Software Product Lines

Using Incremental Test Generation”, submitted 2008.
[43] Wikipedia, Multiobjective optimization, http://en.wikipedia.org/wiki/

Multiobjective_optimization

	A Modeling Language for Program Design and Synthesis
	Don Batory Department of Computer Sciences University of Texas at Austin Austin, Texas 78712
	Abstract. Software engineers define structures called programs and use tools to manipulate, trans...
	1 Introduction
	2 Background
	2.1 Program Synthesis and Product Lines
	Figure 1. Relational Query Optimization Paradigm
	Figure 2. A Calculator and its Graphical User Interface

	2.2 Simple Algebraic Models of Product lines
	Figure 3. A Category or Product Line
	Figure 4. Commuting Features: Motif·Format = Format·Motif

	2.3 Program Synthesis
	Figure 5. Lock-Step Extension of Program Artifacts by Features
	Figure 6. Commuting Diagrams With and Without Cost Metrics

	3 Testing Software Product Lines
	Figure 7. Completion of Commuting Diagrams
	Figure 8. Scalability of Test Generation
	Figure 9. Conventional v.s Incremental Test Generation
	Figure 10. Geodesic in a Commuting Diagram

	4 Refactoring Product Lines
	Figure 11. Refactoring Master Plans of SPLs
	Figure 12. Refactoring Product Lines
	Figure 13. Unifying Refactorings, MDD, and Features

	5 Operations for Program Synthesis
	Figure 14. Addition and Modification of Java Source
	Figure 15. Base, Restore, and Restore·Base

	6 Conclusions
	7 References
	[1] ASME web site. http://www.asmesolutions.org/Energy/Nuclear.cfm
	[2] D. Batory and S. O'Malley. “The Design and Implementation of Hierarchical Software Systems wi...
	[3] D. Batory, B. Lofaso, and Y. Smaragdakis. “JTS: Tools for Implementing Domain-Specific Langua...
	[4] D. Batory, J.N. Sarvela, and A. Rauschmayer. “Scaling Step-Wise Refinement”, IEEE TSE, June 2...
	[5] D. Batory and D. Smith. “Finite Map Spaces and Quarks: Algebras of Program Structure”. Univer...
	[6] D. Batory. “Program Refactorings, Program Synthesis, and Model-Driven Design”. ETAPS-CC 2007.
	[7] D. Batory and E. Börger. “Modularizing Theorems for Software Product Lines: The Jbook Case St...
	[8] I.D. Baxter. “Design Maintenance Systems”. CACM, April 1992.
	[9] G. Bracha and W. Cook. “Mixin-Based Inheritance”. OOPSLA and ECOOP 1990.
	[10] M. Bravenboer, K.T. Kalleberg, R. Vermaas, and E. Visser. “Stratego/XT 0.17. A Language and ...
	[11] J. Chang and D.J. Richardson. “Structural Specification-Based Testing: Automated Support and...
	[12] K. Czarnecki and U. Eisenecker. Generative Programming Methods, Tools, and Applications. Add...
	[13] M. Flatt, S. Krishnamurthi, and M. Felleisen. “Classes and Mixins”, POPL 1998.
	[14] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design o...
	[15] J. Goodenough and S. Gerhart. “Toward a Theory of Test Data Selection”. IEEE TSE, June 1975.
	[16] D. Jackson, I. Schechter, and I. Shlyakhter. “ALCOA: The Alloy Constraint Analyzer”. ICSE 2000.
	[17] D. Jackson. “Alloy: A Lightweight Object Modeling Notation”. ACM TOSEM, April 2002.
	[18] D. Jackson. Software Abstractions: Logic, Language and Analysis. The MIT Press, Cambridge, M...
	[19] C. Kästner, S. Apel, and M. Kuhlemann. “Granularity in Software Product Lines”. ICSE 2008.
	[20] G. Kiczales, et al. “An Overview of AspectJ”. ECOOP 2001.
	[21] C.H.P. Kim, C. Kästner, and D. Batory. “On the Modularity of Feature Interactions”, submitte...
	[22] S. Krishnamurthi and K. Fisler. “Modular Verification of Collaboration-Based Software Design...
	[23] S. Krishnamurthi, K. Fisler, and M. Greenberg. “Verifying Aspect Advice Modularly”, ACM SIGS...
	[24] S. Khurshid, “Generating Structurally Complex Tests from DeclarativeConstraints”, Ph.D. Thes...
	[25] R. Lopez-Herrejon, D. Batory, and C. Lengauer. “A Disciplined Approach to Aspect Composition...
	[26] A. Lin, M. Bond, and J. Clulow. “Modeling Partial Attacks With Alloy”. Security Protocols Wo...
	[27] O.L. Madsen and B. Møller-Pedersen, “Virtual Classes: A Powerful Mechanism in Object- Orient...
	[28] D. Marinov and S. Khurshid. “TestEra: A Novel Framework for Automated Testing of Java Progra...
	[29] E.R. Murphy-Hill, P.J. Quitslund, and A.P. Black, “Removing Duplication from java.io: A Case...
	[30] D. Pavlovic and D.R. Smith. “Software Development by Refinement”, UNU/IIST 10th Anniversary ...
	[31] B. Pierce. Basic Category Theory for Computer Scientists, MIT Press, 1991.
	[32] P. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price. “Access Path Select...
	[33] Y. Smaragdakis and D. Batory. “Mixin Layers: An Object-Oriented Implementation Technique for...
	[34] T. Stahl and M. Voelter. Model-Driven Software Development: Technology, Engineering, Managem...
	[35] J. Sztipanovits, “Generative Programming for Embedded Systems”, GCSE 2002.
	[36] M. Taghdiri. “Inferring Specifications to Detect Errors in Code”. ASE 2004.
	[37] E. Torlak and D. Jackson. “Kodkod: A Relational Model Finder”. TACAS 2007.
	[38] S. Trujillo, M. Azanza, O. Diaz. “Generative Metaprogramming”. GPCE 2007.
	[39] S. Trujillo, D. Batory, O. Diaz. “Feature Oriented Model Driven Development: A Case Study fo...
	[40] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. “A Specification-based Approach to Test...
	[41] E. Uzuncaova and S. Khurshid. “Constraint Prioritization for Efficient Analysis of Declarati...
	[42] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory, “Testing Software Product Lines Using I...
	[43] Wikipedia, Multiobjective optimization, http://en.wikipedia.org/wiki/ Multiobjective_optimiz...

