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Abstract. A significant number of techniques that exploit aspects in software
design have been proposed in recent years. One technique is use case slices
by Jacobson and Ng, that builds upon the success of use cases as a common
modeling practice. A use case slice modularizes the implementation of a use
case and typically consists of a set of aspects, classes, and interfaces. Work
on Feature Oriented Programming (FOP) has shown how features, incre-
ments in program functionality, can be modularized and algebraically mod-
eled for the synthesis of product lines. When AspectJ is used in FOP, the
structure of feature modules resembles that of use case slices. In this paper,
we explore the relations between use case slices modeling and FOP program
synthesis and describe their potential synergy for modeling and synthesizing
aspect-based product lines.

1 Introduction

A significant number of techniques that exploit aspects in the realm of design have been
proposed in recent years [4]. One technique, proposed by Jacobson and Ng [15], is use
case slices, which are modular implementations of use cases. Typically, the implemen-
tation of a use case slice consists of a set of aspects, classes, and interfaces. A similar
structure appears when aspects are used to implement features [16][19], which are in-
crements in program functionality, with Feature Oriented Programming (FOP)
[10][11], a technology that studies feature modularity in program synthesis for product
lines.
In this paper, we present a simple product line example and its implementation in As-
pectJ. This example helps us illustrate how use case slices can model features in aspect-
based product lines and how features can be algebraically modeled for program synthe-
sis. We analyze the relations between use case slices modeling and FOP program syn-
thesis and describe how their potential synergy can serve as a foundation of a method-
ology for modeling and synthesizing aspect-based product lines.

2 Product Line Example

To illustrate the similarities between use case slices and features we use a simple prod-
uct line based on the Extensibility Problem [17]. This problem has been widely studied
within the context of programming language design, where the focus is achieving data



type and operation extensibility in a type-safe manner. Our focus is on designing and
synthesizing a family of programs that we call the Expressions Product Line (EPL)
[17]. Next we describe in detail this product line and its implementation using AspectJ. 

2.1 Example Description
EPL supports a mix of new operations and datatypes to represent expressions of the fol-
lowing language:

Exp :: = Lit | Add | Neg
Lit :: = <non-negative integers>
Add :: = Exp "+" Exp
Neg :: = "-" Exp

Two operations can be performed on expressions of this grammar:
1) Print displays the string value of an expression. The expression 2+3 is repre-
sented as a three-node tree with an Add node as the root and two Lit nodes as
leaves. Operation Print, applied to this tree, displays the string “2+3”. 
2) Eval evaluates expressions and returns their numeric value. Applying the oper-
ation Eval to the tree of expression 2+3 yields 5 as the result.

An extra class Test creates instances of the datatype classes and invokes their opera-
tions. 
A natural representation for EPL is a two-dimensional matrix [17]. Rows represent da-
tatypes and columns specify operations. Each matrix entry is a feature that implements
the operation, described by the column, on the data type, specified by the row. As a
naming convention throughout the paper, we identify matrix entries by using the first
letters of the row and the column, e.g., the entry at the intersection of row Add and col-
umn Print is named ap and implements operation Print on data type Add. This ma-
trix is shown in Figure 1 where feature names are encircled.
A program member of this product line is composed from the set of features that are at
the intersection of the set of operations (columns) and datatypes (rows) selected for the
program. EPL is formed by all the possible combinations of selections of rows and col-
umns. For instance, the program that implements Print and Eval operations on da-
tatypes Lit and Neg is composed with features lp, le, np, and ne.

Figure 1. Matrix representation of EPL
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2.2 AspectJ Implementation
Let us now analyze how the features of EPL are implemented in AspectJ [17]. Recall
that feature lp implements operation print on datatype Lit. Thus the implementation
of this feature contains: a) interface Exp that declares method print, b) class Lit with
a value field, a constructor, and the implementation of print method, and c) class
Test with a field ltree of type Lit, a constructor that creates an instance of Lit and
assigns it to ltree, and method run that calls method print on ltree. See entry lp
in Figure 1 for the short depiction of this feature’s contents. lp can be implemented as
follows1:

Feature lp constitutes the base code in our product line because it contains only stand-
ard Java classes and interfaces which are used by all the other features of EPL.
Let us now consider the implementation of feature le. This feature implements opera-
tion eval on Lit datatype. It adds the definition of method eval to an existing inter-
face Exp using an inter-type declaration as follows2:

// Exple.java
aspect Exple { 

abstract int Exp.eval(); 
}

We refer to this as an interface extension [10][11] which we denote with ∆Exp in Figure
1. Similarly, we refer to the additions to existing classes as class extensions [10][11],
which are also shown in Figure 1 with symbol ∆ prefixed to the name of the class. Fea-
ture le makes class extensions for classes Lit and Test. It adds a new method to class
Lit as follows:

// Litle.java
aspect Litle { 

int Lit.eval() { return value; } 
}

1. Class members privileges are omitted for simplicity.
2. Aspect file names are formed with the name of the class or interface they are extending
followed by the feature they help implement. This naming scheme was chosen to make
the connection to the algebraic model described in Section 4 clearer.

// Exp.java
interface Exp { void print( ); }

// Lit.java
class Lit implements Exp {

int value;
Lit (int v) { value = v; }
void print() { 

System.out.print(value);
}

} 

// Test.java
class Test {

Lit ltree;
Test( ) { ltree = new Lit(10); }
void run( ) { ltree.print( ); }
void static main(String[] args) {

Test test = new Test();
test.run();

}
}



We refer to this type of extension as method addition [10][11] and denote it in Figure 1
with the header of the method. Feature le also executes an additional statement in
method run of class Test that calls method eval on field ltree. We call this a method
extension [10][11] and denote it as ∆run() in Figure 1. The implementation uses a
pointcut that captures the executions of method run and gets a reference to the object
target of the execution, and an around advice that contains the additional statement as
shown below:

// Testle.java
aspect Testle {

pointcut LPRun(Test t): execution(void Test.run()) && target(t);
void around(Test t) : LPRun(t) {

proceed(t); System.out.println(t.ltree.eval());
}

} 

Seasoned AspectJ programmers may wonder at this point why the contents of the three
aspects are not aggregated (copied) into a single one. In previous work we showed that
composing aspects in this way is not equivalent to their separate file definitions under
the current AspectJ precedence rules [18]. Additionally, keeping classes and interfaces
extensions into separate aspects improves program understandability [6] and simplifies
the algebraic composition model described in Section 4.
As another example, consider the implementation of feature ap. First this feature im-
plements operation print on the Add datatype as follows:

// Add.java
class Add implements Exp {

Exp left, right;
Add (Exp l, Exp r) { left = l; right = r; }
void print(){ left.print(); System.out.print("+"); right.print();}

}

// Testap.java
aspect Testap{

Add Test.atree;
pointcut APTest(Test t): execution(Test.new()) && target(t);
void around(Test t) : APTest(t) {
proceed(t); t.atree = new Add(t.ltree, t.ltree);

}
pointcut APRun(Test t):execution (void Test.run(..)) && target(t);
void around(Test t) : APRun(t) { proceed(t); t.atree.print();}

}

Notice that Testap implements a construction extension denoted as ∆Test() in Figure
1. The implementation of the rest of the features is similar to the ones just described.
An EPL program is created by passing all the names of the files that implement its fea-
tures to the AspectJ compiler or weaver ajc [5]. When several pieces of advice apply
to the same join point an order of execution must be specified following AspectJ prec-
edence rules as the order is in general undefined. For example, if in the program that
implements both operations for Lit and Add (which we call LitAdd) we would like to



 

execute the method extensions to run in order ap, followed by that in le, and ae, we
would need to define a precedence clause in an aspect as follows3:

aspect Ordering { 
declare precedence : Testae, Testle, Testap; 

}

The whole composition of LitAdd becomes:
ajc Exp.java Lit.java Test.java Exple.java Litle.java Testle.java 
Add.java Testap.java Addae.java Testae.java Ordering.java 
-outjar LitAdd.jar 

With this example, we present how use case slices can be used to model EPL features.

3 Use Case Slices

Use cases are a common technique to capture system functionality and requirements us-
ing UML [21]. However the implementation of use cases using traditional object ori-
ented languages and techniques typically breaks use case modularity as their implemen-
tation is scattered and tangled in the modules supported by the underlying OO languag-
es. This is the observation that Jacobson and Ng exploit to make the connection with the
work on aspects [15]. They propose use case slices as a modularization unit to address
these problems.
A use case slice contains ([15] pages 111-112):

• Collaboration. A collaboration is a set of UML diagrams (interaction, class, etc.)
that describe how a use case is realized.

• Specific Classes. Classes that are specific to a use case realization.
• Specific Extensions. Extensions to existing classes specific to a use case realiza-

tion.
A use case slice is modeled as a special kind of package with stereotype << use case
slice >>. The package has the following basic contents:

• Use case slice name. 
• A collaboration symbol (a dashed ellipse) and its name.
• Specific classes. Denoted with the standard UML symbol for classes. These class-

es may have any relationships of standard class diagrams.
• Specific aspects. Denoted with a symbol similar to UML class. It has stereotype

<<aspect>>. This symbol has two compartments, one for the pointcuts and one
for the class extensions. Aspects may have the same relations between them as
supported by AspectJ.

Let us illustrate a use case slice with feature ap as shown in Figure 2. Recall that this
feature implements the print operation on the Add datatype. First, notice the name of
the use case slice and its collaboration. Since ap adds new class Add, this class is rep-
resented using the standard class symbol. This feature also contains one constructor ex-

3. In [18] we describe several compositional problems that precedence clauses cause.



tension and one method extension to class Test. The pointcuts compartment of the
Testap aspect contains the definitions of pointcuts APTest and APTRun. The class ex-
tensions compartment contains class Test as all the extensions that this aspect imple-
ments are for this class. In the attributes compartment of the Test class the atree field
appears as it is introduced by the aspect. In the operations compartment, the method ex-
tension and constructor extensions are shown. The extensions are given names for ref-
erence, apAtree() and apRun(), and specify the type of advice (around), the point-
cuts they apply to (APTest and APRun) and a denotation of their operations, addf and
testf (names chosen arbitrarily) for adding and testing a field (in this case atree).
Use case slices have the same relationships as use cases, extend, generalization,
and include with a comparable semantics. This relationship can be used to describe
how a program of the product line can be composed. To the best of our understanding,
use case slices do not provide modeling support for the variability entailed by a product
line design, thus a use case slice diagram conveys the design of a single member of a
product line. Use case slices can be further modularized into use case modules, where
each slice modularizes a different model of the use case lifecycle: analysis, design, im-
plementation, testing, etc. [15] (Chapters 4 and 10).
In this section we described the basic ideas of use case slices. However, they can pro-
vide more sophisticated modeling functionality . For instance, their pointcuts, classes,
and class extensions can be parameterized, using UML templates, to allow extra design
flexibility [15]. In next section, we present how EPL can be algebraically modeled with
FOP.

4 Feature Oriented Programming (FOP)

Feature Oriented Programming (FOP) is a technology that studies feature modularity
and its use in program synthesis. FOP aims at developing a structural theory of pro-
grams to express program design, manipulation, and synthesis mathematically whereby
program properties can be derived from a program’s mathematical representation. In

Figure 2. Use case slice for feature ap
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this context, a program’s design is an expression, program manipulation is expression
manipulation, and program synthesis is expression evaluation. AHEAD (Algebraic Hi-
erarchical Equations for Application Design), is a realization of FOP that is based on a
unification of algebras and step-wise development [8][11]. FOP research predates the
work on use case slices and aspects.

4.1 AHEAD in a Nutshell
An AHEAD model of a domain is an algebra that offers a set of operations, where each
operation implements a feature. We write M = {f, h, i, j} to mean model M has
operations (or features) f, h, i, and j. AHEAD categorizes features as constants and
functions. Constant features represent base programs, those implemented with standard
classes and interfaces. For example: 

f // a program with feature f
h // a program with feature h

Function features represent program refinements or extensions that add a feature to the
program received as input. For instance:

i•x  // adds feature i to program x
j•x   // adds feature j to program x

where • means function application. The design of a program is a named expression
which we refer as a program equation. For example:

prog1 = i•f // prog1 has features f and i
prog2 = j•h // prog2 has features h and j
prog3 = i•j•h // prog3 has features h,j,i

4.2 An Algebraic Model of EPL
The AHEAD model of EPL is algebraically expressed as a set of features:

EPL = { lp, le, ap, ae, np, ne }

These features are themselves formed with classes, interfaces, class extensions, and in-
terface extensions. They are denoted as follows (where subscripts identify the feature
an element belongs to):

lp = { Explp, Litlp, Testlp } le = { Exple, Litle, Testle }
ap = { Addap, Testap }  ae = { Addae, Testae }
np = { Negnp, Testnp } ne = { Negne, Testne }

Thus features are hierarchical modules that can contain any number of nested modules.
Two features are composed by composing its elements by name (ignoring subscripts).
The elements that do not have a match are simply copied to the result of the composi-
tion. For example, the composition of ap•lp is defined as follows:

lp = { Explp, Litlp, Testlp }
ap = { Addap, Testap }
ap•lp = { Explp, Litlp, Addap, Testap•Testlp }



A similar composition scheme is only depicted throughout Chapter 4 in Jacobson and
Ng’s book [15], where it is denoted with symbol +, however its realization is not further
described nor elaborated.
Features are implemented as hierarchies of directories and can contain multiple artifacts
other than source code. Artifact types are distinguished by the names of the file exten-
sions. Composition of non-code artifacts follows the same principles of source code
composition [10] and feature elements are composed when they match both file name
and extension. The AHEAD Tool Suite (ATS) provides tailored composition tools for
different artifacts which are selected by ATS’s composer tool according to the artifact
type. Currently ATS supports composition of equation files, XML files, and grammar
files [8]. Since AHEAD treats all artifacts from all life cycle stages equally, we find that
the ideas of use case slides and use case modules are unified or indistinguishable in
AHEAD.
Scalability is a prominent concern in any software project. We explain now how
AHEAD addresses this concern. Normally, a program is specified in AHEAD by a sin-
gle expression. By organizing feature models as matrices (or k-dimensional cubes), a
program is specified by k expressions, one per dimension. This can drastically simplify
program specification, from O(nk) to O(nk) for k dimensions and n features per di-
mension [11]. This complexity reduction is key for the scalability of AHEAD’s pro-
gram synthesis. Such matrix (or cube) is called an Origami Matrix. An example is the
EPL matrix in Figure 1. Each dimension of a matrix is represented with a model. In
EPL, the dimensional models are:

Operation = { print, eval }
Datatype = { Lit, Add, Neg }

Each model lists the features in each dimension. To specify a program, one equation is
defined per dimension. For instance, a specification of program LitAdd is:

operation= eval•print = Πiε(eval,print)Operation
datatype = Add • Lit = Πjε(Add,Lit)DataType

where ΠiεX denotes dot composition of a given sequence X of features. If we denote MLA
as the projected EPL matrix that forms the intersection of Lit and Add rows on both
columns, LitAdd program can be algebraically expressed as:

P = Πiε(eval,print)Πjε(Add,Lit)MLAoperation,datatype
= ae • le • ap • lp
= { Addae, Testae } • { Exple, Litle, Testle } 
• { Addap, Testap } • { Explp, Litlp, Testlp }

= { Addae•Addap, Litle•Litlp, Exple•Explp, Testae•Testle•Testap•Testlp}

The algebraic representation of origami matrices has proven an useful abstraction to an-
alyze matrix orthogonality, a property that guarantees that the same program is pro-
duced for any valid (conforming to design constraints [11]) composition order [9]. 
AHEAD has been successfully used to synthesize large systems (in excess of 250K Java
LOC) from program equations [11]. Currently AHEAD does not support AspectJ, it
uses a language called Jak that can express all the types of extensions required by EPL.
We are working on extending and integrating an algebraic model of AspectJ [18] into



ATS. Nonetheless, the composition model described for EPL still holds. Furthermore,
FOP ideas have been used to implement an AspectJ version of the core tools of AHEAD
which generates 207+KLOC of which around 30% is aspect code [19].

5 Integrating Use Case Slices and Features

The last two sections explore two seemingly disjoint facets of aspect-based product line
development. The first proposes modeling aspect-based features with use case slices
while the second describes an algebraic foundation of program composition and synthe-
sis. 
On closer inspection there are several similarities. Use case slices consist of classes, in-
terfaces and their extensions implemented with aspects; which is identical to the struc-
ture of features. Both features and use case slices can be nested hierarchically and also
aim at modularizing non-code artifacts. Similarly, both have relative strengths and
drawbacks which we analyze next.
One one hand, we presume that use case slice notation may be easy to adopt for aspect
modeling as UML is a popular modeling language. However, we believe the research
on use case slices lacks a clear composition model to map use case slices models to con-
crete working implementations. In terms of source code, the translation to AspectJ is
missing an important compositional issue, precedence management. Similarly for other
artifacts, we find unclear how such modularization is actually realized (implemented).
On the other hand, the strength of AHEAD is its composition model that supports scal-
able composition of multiple artifacts backed by an algebraic model. However, for pro-
grammers unfamiliar with algebraic notation it may be less intimidating to adopt a fa-
miliar modeling notation such as UML.
We believe that the differences and similarities described can be exploited for the de-
velopment of an aspect-based product line methodology that profits from both lines of
work. A feature modeling notation based on use case slices that can ease the adoption
by programmers, and an underlying scalable and multi-artifact composition model for
program synthesis. 
Along the same lines, earlier work by Jacobson hints at the possibility of expressing use
case models with a simple algebra of program extensions [14]. However this line of
thought is not further pursued in the work of use case slices. We believe our work on
AHEAD and FOP could provide a basis for an algebraic foundation for use case slices.
We are unaware of any tools that support use case slices and generate AspectJ code
from their models. In any case, such kind of tools would encounter the same sort of
problems of program synthesis of multiple artifacts faced and solved by AHEAD.

6 Related Work

In UML 2.0 a collaboration is a set of class instances that play different roles [21]. In
that sense it is closer to the notion of collaboration-based designs which are the origins
of AHEAD [10]. Though use case slices also treat several types of UML diagrams as
part of a collaboration.



A close line of work to use case slices is Theme [8]. A theme, is an element of design:
a collection of structures that represent a feature [8]. Themes are classified into: base
themes that share structure and behaviour with other themes, and crosscutting themes
that correspond to aspects. Programs are built by composing themes with a set of bind-
ing specifications. Thus Theme and AHEAD classify features in a similar way, but their
composition mechanism is significantly different. Also, to the best of our knowledge
there is no tool support for this approach. It would be interesting to explore if the com-
position mechanism of Theme could be expressed in an algebraic notation similar to
AHEAD’s.
Several extensions of UML to model product lines have been proposed. One example
is Product Line UML-based Software engineering (PLUS) [13] which is a method that
brings FODA [12] modelling ideas to the realm of UML diagrams. PLUS models fea-
tures as packages of use cases that are stereotyped with the kind of feature they imple-
ment such as optional, alternative, etc. Another example is the work of Ziadi and
Jézéquel that describes extensions to model variability in class and sequence diagrams
and an algorithm for product derivation based on UML model transformations [23]. To
what extent this line of work could benefit from aspect research and algebraic modeling
is an open question.
There are several pieces of work on aspect-based product line engineering. Anastasopo-
ulus and Muthig propose criteria to evaluate AOP as a product line implementation
technology [3]. Alves et al. study product line evolution and refactoring techniques ap-
plied to mobile games [2]. Loughran et al. merge natural language processing and as-
pect oriented techniques to provide tool support for analyzing requirements documents
and mining commonality and variability for feature modeling [20].

7 Conclusions and Future Work

In this paper we compare and contrast use case slices and FOP as complimentary facets
in the modeling and synthesis of aspect-based product lines. We briefly sketched how
these two lines of work can serve as the foundation of a product line methodology that
exploits their synergy, feature modeling based on use case slices and program synthesis
based on FOP. 
We plan to explore how to model algebraically and implement advanced use case slices
functionality such as parameterized pointcuts. A promising venue is the work on Aspec-
tual Mixin Layers (AML) which allows extensions of pointcuts and pieces of advice us-
ing mixin technology [5]. AML provide some support for the parameterization of use
case slices. Similarly, the work by Trujillo et al. could be used as a basis for the com-
position of UML diagrams that are part of a use case slice collaboration [22].
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